Lycée E.Mimard, Saint-Etienne

M-+ Exercices de Mathématiques Sup/Spé

En 2 parties. Table des matiéres p.142s. Exercices avec indications et lecture :

de niveau Sup, mais avec pas mal de géométrie (00-33)

et Spé, avec diverses questions culturelles (34-60).

. exemples : une "Lemniscate de Bernoulli" (symbole de I’infini) ;
. deux "Cardioides" (la petite étant dite "développée" de la grande); enfin

. la "Tractrice et sa développée, la chainette" : c’est aussi ’enveloppe des normales !
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a Clément-Marie, a mes parents et ma famille,

aux nombreux étudiants, colleques et a divers amateurs,

M. Henri Chambon, 19 rue Saint-Joseph, 42000 Saint-Etienne.
| 2021 /revu en 2026

Ces pages doivent beaucoup a Lucien Sportisse, ancien collégue en Spé-PT, m’ayant appris aussi le TeX et & Jean-Pierre

Jouvinroux, ancien collégue en Spé-PSI, qui a relu les exercices de Spé. Qu’eux et tant d’autres soient tous, ici, remerciés !

"Pourquoi y a-t-il quelque chose plutot que rien" ¢ Leibnitz (Leipzig 1646- Hanovre 1716) ;
"Pourquoi y a-t-il de la musique, plutot que du bruit” 2 Hubert Reeves (astrophysicien 1932-2023)



Exercices de programme SUP

0. Ensembles N, 7Z, Q. Raisonnements

0.1 Plusieurs questions concernant les nombres entiers (...)

1. Montrer que : 105"%2 £ 103" 4 1 est divisible par 111. [Réc. ou 111=3.37 divise 10> — 1]

2. Idem n.4""' — (n+1).4" + 1 divisible par 9. [Réc. ou (z — 1)? divise n.z"™ — (n 4+ 1)z" + 1]

3. Découpage en parts indivisibles. Comment acheter 100 volailles avec 100 écus si 10 poussins cotitent
1 écu, 1 coq : 2 écus, une dinde : 3 écus 7 [10.7 poussins, ¢ cogs, d dindes; réponse : 60p., 26¢.,14d.|

4. Nombre minimum d’objets si "comptés par lots de 3 : il en reste 2; par 5 : il en reste 3; par 7:2" 7
[Th. chinois, > 23| et cf. (21.1,9) Th. de Fermat a” = a(p), p € P; Th. de Wilson p € P < (p — 1)! = —1(p).

0.2 (*) Comparaisons (cf. les tailles d’un groupe en rectangle)
1. Pour a;; € R, montrer que : maz;[min;(a;;)] < min;[maz;(a;;)]; 1 <i<n,1<j<p.

2. De méme, montrer l'inclusion entre parties :  U;(N;A4;5) € Nj(Uids).

0.3 (*) Pgcd et ppcm (nombres, polynémes, nombres de Fermat)
1. a,b €N : (15a +4b) A (11a +3b) =aAb ? Ici polynomes : (X — 1) A (X9 —1) = XPM 1 ?
2. Avec F, =2% +1=2x+1 |Fermat|, déduire que : F, ., —2 = F,.(entier); et Fy A Fpy = 1.
3. F@ " —1y22 1=

2 car (x —1)/(z? — 1) mais m/(2™ — 2) = m premier si m < 341 = 11.31.

0.4 (*) Résoudre z? + y* = 2> dans N*. Les solutions sont (...)

pged(z,y,2)=1 : x = a? —b?, a Ab =1, parité différente; y = 2ab; z = a®> + b*; autres : xd € N*.

0.5 (*) Décomposition des nombres en facteurs premiers (...)

Sin =p{*..pp*, pi distinets, a; = vp, (n) : valuation en py de n. [15(18) =1, 3(18) = 2, v5(18) = 0].
1. Montrer que : vp(n!) =>" E(n/p*). En déduire le nombre de 0 a la fin du nombre : 1000!
E>1
2. Soit a = p{*...p5". Montrer que le nombre de diviseurs positifs de a est : (a; + 1)...(cvp, + 1)
et que leur somme vaut :  (p¢* T —1)/(p1 —1). ... (2T = 1)/(pn — 1).

0.6 Théoréme de Johnson 1916 : 5 cercles de méme rayon (...)

1. Soit 3 cercles de rayon r sécants BHC, CHA, AHB; tracer les losanges AJHK, KHIB, IHJC.
2. Avec O = tJ—é(A) justifier que ABC, de centre O, donc a aussi pour rayon 7 ; et d’orthocentre H.
3. Puis AI, BJ, CK,OH, méme milieu : IJK, sym. de ABC, aussi de rayon r; et d’orthocentre O.

0.7 Relation RST (D,D’) = (A,A’) antiparalléles=bissectrices.méme.dir.

Montrer que (D, D') = (A, A') &(D,A) = (A, D) (m)&(DNA,DNA,D'NA, D' NA) cocycliques.
Ajout : Si A, B,C, D sur un cercle, (AB),(CD) est antiparalléle a (AD), BC') et aussi a (AC), (BD).
Exemples : (D, D’) resp, (A,A’); Triangle de tangente AT : (AB, AC) = (BC, AT) = (AH, AO).

Quand les couples de droites sont antiparalléles et de plus concourantes, on dit "isogonales". Cf. 5.3.



1 Arrangements, Combinaisons, Injections, Surjections

1.1

1.2

(*) Divers calculs difficiles de dénombrement  (...)

. Montrer que : Z | XNY |=n4"! si| E|=n. Idem : Z | XUY |=3.n4" L
X,Y XY
. 4 (n+2 ) . nn+1)(n+2)3n+1)
. Montrer que : Z i.j =Chio= ( 4 > Et: Z i.j = o .
i+j<n Iigisn

. (Probléme d’Euler.) On prend un polygone convexe a n + 2 cotés Ay, Ag, ..., Apyo; soit T,

le nombre de découpages en triangles. On pose Top=1 etona: T} =1; To =2; T3 =5.
(a) En prenant le triangle A1 A3 Ag. o, montrer que : T, = Z Te 11—k
0<k<n—1
(b) Vérifier (avec anciennes notations des coeff. binomiaux, cf.2) que : C%, — Cy—t =C% /(n+1)
(dit "nombre de Catalan", Belge 1814-1894) (**) et que cet entier vaut 7T),. [Ind. Posant
S p k
C(z) = Z Ty.x®, C(z) = 14 2.0%(x), C(z) = 1=vizdw et V1—4dx=1- Z :C—Qkxkﬂ.]

2.x + 1
0<k<Lo0o 0<k<Loo

. (*) Dans N%, on étudie les trajets partant de O(0,0) en se déplagant de +7" ou 4+ a chaque pas.

(a) Nombre de trajets reliant O et M(p,q) ? Déduire qu'il y a 2" trajets de longueur n, n > 1.
(b) Soit A(1,0),A’(0,1), D la droite : y =x; et p>q ici.
— Montrer que le nombre de trajets [AM] rencontrant D est le nombre de trajets [A'M];

— que le nombre de trajets [OM] sans rencontrer D est C’g;;_l — 054.[1_1 ; et que le nombre
— de trajets de longeur 2n sans rencontrer D est : 2. > cyt —Ch =203 =03
n+1<p<2n

(c) Avec I' de longueur 2n, 0 < k < n, k max. : (k, k) € I, en déduire ZC’;,C.C’;’;_’“% =22 — 4,

Sur les applications (f~' appliquée aux parties de F)

. Pour f: E — F, montrer que A C f~1(f(A)); et: égalité VA & f injective.

Idem : BD f(f~4B)); deplus: égalite VB < f surjective.

. Avec toujours  f~!': P(F) — P(E), montrer que :

f injective < f~! surjective. f surjective < f~! injective.

. Puis:  f(A1UAs) = f(A1)U f(A2);  mais par contre :

f(A1NAy) C f(A) N f(Ag); et égalité tout le temps < f injective. (Si f~' égalité)

. Pour f:0—1; fn=1Id, ona f(Cn+) & Cpay et Craey € f(Cne);

Et lére égalité vraie (tout le temps) < injectivité ;

2¢me égalité vraie (tout le temps) < surjectivité. (Avec f~! égalités vraies)

!
.Si|E|=n+1, | F|=n, justifier quona: n. (n+ 1) (n—1)! _n(nt L) surjections.

2 2



2 Avec les nombres réels

2.1 A4+ B+ C =7 = cos*(A) + cos*(B) + cos*(C) = 1 — 2.cos(A).cos(B).cos(C)

L G- 1+ cos(2A) —12- 1+ cos(2B) —1—6082(0) 1y cos(2A) —12- cos(2B) +COS2(C). Or -
cos(2A) + cos(2B) = 2.cos(A+ B).cos(A — B), dott G =1+ cos*(C) — cos(C).cos(A — B) et

cos(C) — cos(A — B) = —2.sin C—h;l_ B sin C+§_ A— _9sin W_;'B . sin ﬂ_;‘A, etc.

2. Soit 1'éq. de degré 2 en cos(C) : cos?(C)+2.cos(A).cos(B).cos(C) +cos? (A) +cos?(B) —1 = 0.
A = 4.c05*(A).cos*(B) — 4.cos*(A) — 4.cos*(B) + 4 = 4cos*(A).[-sin®(B)] + 4.sin*(B) ; ou :
A = 4.5in*(A).sin*(B). Eg. vraie si cos(C) = —cos(A+ B). Enoncé: C =7 — (A+ B).

2.2 Triangle toujours : a + b+ c = 2p, i: centre du cercle inscrit 5.4
1. tan(A) + tan(B) + tan(C) = tan(A).tan(B).tan(C)  (Ici on isole : tan(C'))
. sin(A) 4 sin(B) 4 sin(C) = 4.cos(A/2).cos(B/2)cos(C/2) = p/R (fin a = 2Rsin(A))
. a.sin(B —C) 4+ b.sin(C — A) + c.sin(A— B) =0 (idem ici avec a = 2Rsin(A))
. sin(2A) + sin(2B) + sin(2C) = 4.sin(A).sin(B).sin(C) = 2S/R*  (abc = 4RS)
. sin(A/2).sin(B/2).sin(C/2) = r/4R cf.(4)/(2) = tan(A/2).tan(B/2)tan(C/2) =r/p
. a.cos(A) + b.cos(B) + c.cos(C) = abc/2R* = 2S/R  (avec : a = 2.R.sin(A) ... puis avec 4)
. Vérifier hors abc =4.R.S : S =p.r = (p—a).rg = ... et avec 5.10 S* = p(p — a)(p — b)(p — ¢) :

. Montrer également les relations :  ab+bc+ca =1r>+p> +4Rr; 14 +1rp+r.=r+4R, dite
formule d’Etienne Bobillier, 1/hy + ... =1/rg + ... = 1/r. (rorp + ... = P2 raryre = rpP= S%/r aisé)

0 N O Ot s W N

9. (O—z>41—|—O—B>—&—O—>C')2—SR2 = 2R*(cos(2A)+cos(2B)+cos(2C)), cos(2A)+cos(2B)+cos(2C) = —4cos(A)cos(B)cos(C)—1
= OH? = R*(1 — 8cos(A)cos(B)cos(C)). [Voir aussi a® + b? + ¢? = 3(GA® + GB? + GC?) = 9R* — OH?|.

10. *Carnot cos(A)+cos(B)+cos(C) = 1+4.sin§sin§sin% = 1+% ; [gauche = 2.cos— O.cosA ; B +
1- 2.sm2% = ..] ou avec OA’ = R.cos(A) : OA + OB’ +0C" = R +r; Ai* :W [car S%/p? =

2 _ — A 3 2 2 erme trouvé
r“={p-a)(p—-0b(p—c0c)/pl. x=p—a,y,z zérosde T° — pT*+r(4R+ r)T — pr (ﬁ;:p) Eq.

en A =A%, .. 0 X+ (8R—1r>—pH)X2 +8r2R(2R — )\ — 16R*r* =0 ( gree A=rt, ) don 3 1/iA%

= A% —

2.3 Montrer que Va2 +b02+vV2+d > (a+c)?+(b+d?, a,...d>0

Géométriquement : inégalité triangulaire ! (Autre note géométrique : Si AB CD est un trapéze

avec (AC) N (BD) =1 et JIK//(AB) : 1J/AB+1J/CD =1, etc. D'ow L+ = 2. 4.6).

2.4 (*) Le théoréme de Beatty (p, ¢ > 0) [corrigé]

(p, ¢ >1 et E(n.p)nen+, E(n.q)nen~ forment une partition de N*) < (p, ¢ irrationnels et %4—5 =1).

[(*) 1) Assez aisément pour ¢ > 1, lim Ba}nllbnl] _ 1 gensite de la partie. D’ou : 1
n—-+o0 n a p

Puis p irrationnel obligatoire ; sinon p et ¢ rationnels et parties non disjointes.

2) Pour n € N*, le nombre de multiples non nuls de p, < n, est E(%). Idem pour ¢q. Mais p et ¢ sont
irrationnels : % -1< E(%) < %; idem pour ¢ =n—2< E(%) +E(%) < n; donc E(%) +E(g) =n-1,

ceci Vn € N*; aussi pour n+ 1, d’ott un unique multiple de p ou bien de ¢ dans |n € N*,n 4+ 1[. Fini.|



3 Nombres complexes

3.1 Avec la conjugaison [on indique ici seulement la réponse (...)]

Soit : p, ¢ € N*. Trouver M(z) tel que 2P et z? soient conjugués.

(Réponse :  Sip =g, 2 droites passant par O; sip#gq, O et Upyy.)

3.2 CNS : les racines de 2! — a2® 4+ b2? — ¢z + d forment un parallélogramme

3.3

. (*) Généraliser pour un polynome de degré au plus n, avec : w = exp(

Quitte & re-numéroter les racines, on peut traduire I’énoncé par : Mi My = MyMsz ou :

Zo —2z1 =23 —2z4 oubien 2z 4+ z3 =29+ 24 noté ‘8221+23222—|—Z4.‘ (*)
Z1+23 22tz P . -
(Au passage 5=y est une équivalence : les diagonales se coupent en leur milieu.)

. Corrigé, lére solution : (le cas a =b=c¢ =0 doit convenir !)

L’idée est d’utiliser les relations de Viéte qui, avec (x), vont devenir manipulables !

Notons : p = z1.23 (non pas z1.22) q = z9.24 (22,24 associées)
Ona: 2z +..+24=a quiestdonc 2.s=a;
puis : 2122 + ...+ 23.24 = b qui (calcul laissé) devient p+ 2;.s + 23.s+¢=>b ou p+ >+q=>
pUis : 212923+ ...+ 222324 = ¢ qui devient p(za+24)+ (21+23).¢g = ¢ ou (p+q)s=c

Enfin p.g =d: 4 équations pour 3 lettres p,q,s ... normal : la contrainte du parallélogramme !

On obtient : s=a/2, p+q=>b— a2/4. Avec p.q = d, on pourrait alors trouver p et q.

[Connaissant la somme et le produit de 2 nombres, ces nombres sont solutions d’une équation du

second degré| et on voit qu'il reste donc une et une seule contrainte : | (b — a®/4).a/2 = c.

. 2éme solution. (*) On peut faire un changement de repére par translation en prenant une nouvelle

origine le point d’affixe : (21 + ... + z4)/4 = a/4 centre de gravité ! en posant (simplement)

Z =z —a/4. On aura une nouvelle équation du type : 744023 + a2+ .2+~ =0.

. Pourquoi 0.Z3? car (Z; + ... + Z4)/4 =0 barycentre=nouvelle origine !

. Trouver «, 3,y ne doit pas étre un souci : ceci peut avoir lieu dés que c’est utile ...

. Si 3 =0, on a une équation bicarrée de racines =77, +Z5 donc on a un parallélogramme ! la
condition est suffisante. Inversement, pour avoir un parallélogramme, la condition 8 = 0 est
nécessaire car : & ce moment, la nouvelle origine serait centre, donc milieu des diagonales d’ou les
racines seraient +7;, +Z; dans ce cas, 212973+ ... + ZoZ3Z4 doit étre nul ( laissé).

Ainsi donc partant de I’énoncé et remplagant z par Z + a/4, on exprime tout simplement que

le coefficient de Z (le seul a calculer) est nul | Et trouver a nouveau ... |(b—a?/4).a/2 = c.

Complexes et polyndmes : une majoration (inégalités de Cauchy)

. Soit P(z) =ap+a.z + as.z>.

Calculer les 3 coefficients a Paide de : P(1), P(j), P(j?), j et j2.

En déduire : |sup | ax | < supy <1 | P(2) |-

2w )
n+1"
(On calculera 1+ w” 4+ w? + ... +wP™ selon que n+1 divise p ou bien non) ...




4 Complexes et géomeétrie

4.1 Chercher M(z) de fagon a avoir des points alignés (...)

1L {M(z): A1), M(z), M'(1+ 2*)} soient alignés. [y=0 ou z = —1/2]

2. {M(z): A1), M(z), M'(z%)} soient alignés. [y =0 ou Cercle (A(2),R =2).]
4.2 Fonction argument d’un complexe de C\R™ continu avec Arctan

Siz=|z|.e? ¢R™ [pourin], avec (z/|z|, y/|z|) et le Th. de I'angle inscrit, vérifier que :

0 _ y/lz| : _ o v _ , -
tan 7 = e/ 1] Doncsif €] —m,n[: 0= 2. Aretan(——~—s). [= In(z) = In(p) + .0 possible].

4.3 Composition de rotations planes (et cf. aussi le ch. suivant 5.21)

1. Si 6+ ¢ # 0(2m), montrer que 75, 0 T4 9 = rC g+, Trouver C' comme q.2 (ou autrement) :
2. Décomposer r4 = sap 0 Sp, et rg = sp,05ap en produit de 2 sym; /des droites. En déduire C.

4.4 Centre de similitude directe#translation, autre construction d’Euler

Soit o, similitude directe plane A +— A’, B +— B’; angle (E,H); H=(AB)N(A'B"); centre I ?
1. lére. I : autre-intersection-cercles (AA'H),(BB'H) 5.28. [ldem A — B, A’ — B’, 4 cercles | Ex. ABC
triangle, P, @, R sur les cotés : (AQR)(BRP)(CPQ) conc. en M ; M € (ABC) & P,Q, R alignés point de Miquel.
Fin: MP,MQ = MP,PQ+ PQ,QR+QR,MQ; CB,CA=CM,CA+ PQ,QR+ AB,AM ; CB,CM — AB,AM = PQ,QR].
2. Deuxiéme : Euler! considéra la perpendiculaire en A & AB; et en A’ a A'B’, se coupant en A”.
(a) Veérifier que AA’A” HI sont cocycliques et que A” H en est un diamétre. Idem pour B” H.
(b) Et que I est la projection orthogonale de H sur (A”B”) | (angles droits HIA”, HIB”).

4.5 Similitudes directes, cercles et Théoréme "de ’angle inscrit" (...)

Si CNC' ={A,B}; slasim. directe(A,C —C'); s(M)= M’ : montrer que M, B, M’ sont alignés.
, —_— — —_— — —_— = 7 2 —_— — -_— —, ,
[P=MBNC'; OA,0M = 2.(BA, BM) = 2.(BA, BP) = O'A,0'P = AM, A0 = AP, A0, P = M'|

4.6 Birapport et points alignés ou sur un cercle (une conique) DH, QH 4.7

c—a d—a

1. Montrer que k = [A, B,C, D] =

€ R <(4, B, C, D) cocycliques ou alignés sur D. (Arg...)

c—b d—b
2. Montrer k = —1 "division/quadrangle harmonique" < (a +b)(c+ d) = 2(ab + cd) < rel. de Descartes
(C origine) 2 L + L [si points non alignés mettre les affixes!| < rel. de Newton, O milieu de
chb CA CB

[AB], 042 = OB?> = 0C.0D (idem Q milieu de [CD]) < relation de Mac-Laurin? CA.CB = CO.CD.
sin(AUC) | sin(AUD
sin(BUC) * sin(BUD
= la "polaire" d’un point M /2 droites sécantes en U est une droite (m) passant par U ( //29.10.)
4. Cas cocycliques. SiU € C (origine), f(z) = 1/z, g(z) = z, vérifier que [a,b,c,d] = [1/@,*,*,1/d] = k
car k € R. Donc [A,B,C,D] = [UA,UB,UC,UD] indépendant de U € C (= AC/BC : DA/DB.)"

3. Cas alignés : Si U extérieur, vérifier que k = ; ‘Donc idem si U’ ou D’ !‘

! Note sur le cercle d’Euler : Ayant un triangle ABC avec A’ milieu de [BC], A1 pied de la perpendiculaire issue de A,
A milieu de [HA], avec des homothéties de centre A et C, on voit que A'C’ A2Cs est un rectangle donc 4 points sur un
—_— = — —
cercle de diameétre [A/Az], [C'C’z], [B'Bg] ; il contient aussi A1, B1,C1. Son centre w vérifie 2Hw = HO, 2Gw = —2GO.

2 Et (b— a)2 +(d— 0)2 = 4.[c;d e ;r b]2. Ex : C,C’ cercles L et D passant par O les coupant en ABCD, ABCD DH.

3 Cas alignés, le birapport est aussi celui des aires AUC ... des sinus des angles en U ... et des coeff. directeurs de UA ...
[= sin(a — v)sin(B — §)/sin(B — v)sin(a — §) = (tan(y) — tan(a))(tan(d) — tan(B))/(tan(y) — tan(B))(tan(d) — tan()).]
y=mz Ly=m'z & mm = (:I:i)2 & conjuguées/isotropes y = +ix. Une diag. du quadr. complet div.H. par les 2 autres.

4 Coniques propres : une proj. centrale raméne au cas du cercle ; birapport sur des droites conservé [U; A, B,C, D] ...




4.7

Soit A, B, M, M’ : =—-1 ou

1.

4.8

1.

2.

(*) Quadrangle harmonique QH cf. Th. de la puiss(M)/Cercle 29.10.6

z—a 2 —a 2 —a z—a
z—b 2 —b 2 —b z—b
Montrer : (1)< (2) (a +b)(z + 2') = 2(ab + 22') : Relation aux affixes ou de Chasles [a,b, 2, 2" € C].
Donc on peut permuter a et b; z et 2'; {a,b} et {2,2'} : (A,B,M,M") QH & (B, A, M, M’) QH ...

(1)| (QH) Si A, B, M, M’ alignés, (Div.H).

. Avec les modules, A, B, M donnés, k :%—g # 1, déduire que M, M’ € T : cercle centré en Q € (A, B),

1 cercle C(A, B, M) de centre O [solution en 29.10.6.] Fig.sik=3, AB=8cm ? Etsik=1 7

. Et que (MA, MB) = (M'A, M'B)+n (2.7). Puis, si 0 —MA,MB # 0 (7), que (M, M'A, B) sont

cocycliques sur C. Compléter la figure et préciser M’. Que se passe t-il si ]\ﬂ, MB=0 (m)?
[Rem. (A, B,C,D) Q.H.; ordre A,C,B,D € C: AB.CD =2AC.BD = 2AD.BC Ptolémée 5.22.]

. Au lieu d’un repére quelconque, soit ici un repére centré au milien H de [A, B]; a, b, z, 2’ les affixes :

(a) Déduire ici (b = —a) que (3) 2.2/ = a® = b* (origine mil[A, B], Relation de Newton) et (arg.) :
(H,A); (O,H) =D bissectrices (H—)M,m/) K =millM,M"]: (K,M); (K, Q) de (KA,KB).
(b) On prouve que : KA+ KB=HM+ HM' = MM, = BB;, My =(MH)NC, B = (BK)NC.
— On note z = u? 2 2

, 27 =v"; onrappelle que : 2.2/ =a® et le théoréme de la médiane :

20u PP +1v®) =|lutv|*+|u—v[®2 Enobservant que: |u+v > =] (u+v)?*]| ,
ZZZI—HI I+ z—;z’
~ HM.HM' = HA?, KAKB = KM?; (HM +HM')> =2 (HK? + KM? + HA?) = (KA + KB)®.
— Mieux. HA? = HB> = HM.HM, = HM.HM' = HM' = HM, ; AMK = BMH : médiane et

symédiane de AMB. Idem BK, BH pour MBM’'. MBB, = M'BA = BMM, termine.

montrer que : | —a|=]z|+|7] etconclure. Ou vérifier que :

. Soit P=(A,B)N (M, M) et w= (M,M')ND. Cercles L = Q = pole de (M, M")/C. Cf. 29.10.

Idem (H; A,w, M, M'") faisceauH., (w, P, M, M") DH., w = pole de (A, B)/C : M' = (wWM)NCNT.

O epolaire(P)/T". Q,w, P autopolaire/C. (2, P,A,B) DH., KP L KQ = K P bissectrice !
(B; Bw, BA, BM, BM'") faisceau H., donc: YU € C, (UB,UA,UM,UM’) faisceau H. !

. On suppose connu 2.z’ ou A, B; et z+ 2’ ou K milieu de (M, M") & (A, B). On cherche M, M’ :

Avec (A,B); D et Biss. de (KA, KB),on a: wetC car (wB) tangente; faire alors (wK)NC ?
Des lieux : . Si M € A, dr. passant par H : M' € A'; 4. .fx = HA? : K € Hyp. d’asympt. A, A’
. Si HM = r (cercle de centre H), HM' = R (idem) et KA+ KB =1+ R : ellipse de foyers A, B.
.Si M €C de centre O, M' €C et wK 1 OK = K € Arc-AOB du cercle de diamétre [Ow].
. Si M €T, de centre Q orth. & un (donc a tous) cercle passant par A, B, M’ € T aussi; la polaire
de P /T est D= (OH), donc P est fixe ! Et K décrit le cercle de diameétre [QQP].
puiss(w/C) = wA? = wO.wH ; donc O, H, M, M’ cocycliques. Q = Bar[A(1), B(—k?)] =
P = Bar[A(1), B(k?)]. Relation de Descartes 2/(z—2') =1/(z—a)+1/(z—b) et [1,-1,2,1/z] QH.

(*) Théoréme de Mohr-Masheroni (Napoléon ’a importé d’Italie)

Tracer un cercle I', puis oublier son centre {2 et son rayon. Prendre ensuite O sur I', tracer un
cercle C de centre O, de rayon R coupant I en A, B; puis contruire D intersection des 2 cercles
de centre A, B passant par O (donc de rayon R). Tracer le cercle de centre D passant par O
coupant C en E, F (et Oz en J). Les cercles de centres F, F' passant par O se coupent en [ = Q.
Dém : Soit unr.on. (0,0x = (OD)): OA = 1et Uinversion f : M(z # 0)— M'(z' =1/z = z/| 2 %).
(a) Vérifier que OM’ = OM/||OM|?. Déduire que O, M, M’ sont alignés et que OM.OM = 1.
(b) Puis que fof = Idc~ d’ou f involutive C* — C*. Et aussi que A, B, E, F sont invariants.
(¢) On suppose connu que : droite(A, B) a pour image un cercle passant par O [privé de O]; si
G =TNO0zx, H = droite(A, B) N Oz, déduire : f(droite(A,B)) =T, f(H) =G, f(D)=q.
(d) Soit K = droite(E,F) N Ox. Montrer : f(cercleOEF) = droite(E,F); f(J)=K; et Q=1.



5 Géométrie dans R?

5.1 Trajet minimum |[hors Probléme de Fagnano et de Fermat (**)]
1. Soit A, B d’un méme coté de la droite A ; trouver M € A : AM + M B soit minimum [sym (A)/A].
2. Bt avec M A%+ MB? |[cf. théoréme de la médiane|? (M A2 — MB? = 2TM . AB, I milieu de [AB]. )
5.2 Sur le triangle rectangle [hors Théoréme de Pythagore, inversion]

Si H proj, (A, (BC)) : ABC recte, o < BA? = BC.BH < AH? = —HB.HC < AB.AC = BC.AH <
(He]B,C[-L— Loy

+
Note. ABC rectg, ABPQ, ARSC carrés; alors (BS), (CP), (AH) concourantes ! [avec le Th. de Céva 5.18]

IE = Ape AC2)' Et a contact cercle.inscrit-BC' : S = Ba.aC'. [2S = bc = (r + Ba)(r + Ca)]

5.3 (*) Probléme de Fagnano 1682-1766 et variations cf. 5.8, 5.15

1. Soit un triangle acutangle (angles < 90°) ABC. X € (BC) quelconque, X', X” ses symétriques

orthogonaux par rapport a (AB) et (AC) dans l'ordre. Figure en joignant AX, AX', AX” ?

2. X étant le point précédent, Y € (CA), Z € (AB) quelconques, justifier X'X” < XY +YZ + ZX
et que 1'égalité est possible pour Y, Z a placer. Puis vérifier que : X'X” = 24X.sin(A).

3. (a) Justifier qu’il y a une et une seule position de X, puis de Y, Z rendant le périmétre minimum.

(b) Soit S l'aire du triangle, a = [BC] etc les cotés et ha la hauteur issue de A. Justifier que

sin(A) = 2.5/ b.c; aha=2.5 et en déduire que le périmétre minimum vaut 8.5%/ a.b.c.

4. Sur une autre figure tracer ABC et les pieds Aj, By, Cq des hauteurs [c’est le triangle orthique|.

Justifier que CiATA =AM B, = g—jzl\ [Ceci signifie que A1 B1Cy est une trajectoire de lumiére. |
(On peut utiliser le triangle X’AX” analogue & question 1, avec le point X = Aj.)

5. Soit H l'orthocentre de A, B, C' (intersection des hauteurs) O le centre du cercle circonscrit & ABC.
Montrer que HAB = g — B. Puis que 2.ABC = AOC = 7 — 2.0AC. Conclure que AH, AO et
AB, AC ont méme bissectrices. [On dit : AH et AO isogonales; ceci est le Théoréme de Nagel].

6. Il en résulte que : 373-1\01 = B/O-a = g -B (ou Th. de Pangle inscrit) ; donc : /@1\01 — B. Comme

(AC,AT4) = BC,BA) ‘conclusion sur (B1,C}) et (0O, A) a tracer ?‘ Note : OAA; =|B-C|.

Rem . ABC et tr. de Gergonne du tr. orthique homothétiques de méme droite d’Euler; ou jkl, i1igig tr.

de G. du tr. orthique hom(S,2R/r), méme droite d’Euler £ : O',Oapc, Hjj = iapc € E = S € E.

. Soit L et M, projections orthogonales de A; sur (AB) et (AC) dans l'ordre et Q@ = (CCy) N (LM).

(LM)// (X'X” = B1Cy) avec X = Ay ; coupant [A1C}] en son milieu; et %21 =og = gg ; A1LC1Q
1 1
rectangle ! On montre encore que les 6 points L, M et analogues sont sur un cercle : cercle de Taylor.

5.4 (*) Théoréme de la puissance d’un point et relations d’Euler
2 cercles (O, R); (i,r) sont circonscrit ; inscrit & un triangle < 0i> = R?> — 2Rr (Chapple, Euler).
Idem (O, R) et (j,74) circ. et ex-inscrits < (04)? = R* + 2Rr4. 29.10.6 : puiss(i/Cercle) = i0*— R* =

iAiAg, Ag milieu BC.. Or iBjC € cercle.centre. Méd|BC| Nij = Ag : iAg = BAg = 2R.sin é ; sin g = i]

5.5 (*) Quadrilatére A, B,C, D, quelconque et droites paralléles

Si E=(BD)Nn//(BC)en A, F = (AC) N //(AD) en B, montrer que (EF)//(CD). [I = (AC)N (BD) et hy, kY,
hom : hoh' = h'oh. Cas (AC)//BD ?] Rem. Si ABCD trapézeap),/cp) : Moy-harm.(AB,CD) = 2UI = 2IV = UV.
Ex. : BC corde focale de Par.; V.= F; A,U,D € Dir.; Isommet € ACNBD | [IV/AB+IV/CD = (CV + BV)/CB =1




5.6 (*) Triangle pseudo-rectangle en A; hyperbole équilatére HE
Ayant 1 cas, il y a 4 par symétries; cas 8 — v = 7 /2. Ici ABC direct, BC = 2.a, v > w/4, 3 < 37/4.

1. Montrer qu’il y a 1 cas de triangle pseudo rectangle isocéle : 3 = 2%, a= % [1/3 triangle équil. !|
2. Soit O milieu de [BC], 7', 7 orthonormé, 7" colinéaire & BC. Vérifier que (AB) : y = tan(p).(x+a),
1 a

. _ 9 atan(28)) décrit I squilatere : 22 —y? = 2.
(AC) :y tan(3) (x—a). Et que A (003(26) a.tan( 5)) décrit ’hyperbole équilatére : z° —y“ = a

3. SiD=(LaAC en A)N(BC), montrer que J = mil[BD)] est pied de la hauteur issue de A. Et :
JA? = JB.JC; Ay tangent en A a Tapc dott 22 —y? = a®. Idem J = mil[EC] [L (AB) en A.

4. Puis H = sym(A/(BC) orth. de ABC [(BH) L (AC)]. Si A" = sym(A/Med.[BC)), Q = mil[A, A']

w=mil[QH| € (BC) : centre du cercle d’Euler. Bissy coupe (BC) a g U = mil.are.BC| et :

ACA = ABA' = 11/2 : sur toute // a l'axe transverse, [AA'] est vue sous 7/2 de chaque sommet.

. . B A AB .
5. Si R est le rayon, vérifier (avec angles au centre) que : ¢ = ¢ = =2.R. Puis que :

sin(a)  sin(B)  sin(7y)
CA?+AB? = 4.R? (idem ici au triangle rectangle). Si A = 2R%sin(a)sin(3)sin(y) aire du triangle,

BC.AB.sin(8)  RZ%.sin(2a)

6. A= ) = 5 | Puis, ABJ, A’AB semblables (ou ABA’ rectangle, AC = A'B) :
AJ 1 1 1

2 _ _— = 2 = = ] g N

BA* =2R.BJ, OA'Sin(ﬁ) CA.AB =2R.AJ, CA*=2R.CJ et 152 + 102 = A2 Soit A= M

7. Si C cercle principal de diamétre [BC| : u = (By) N (AC), m = proj, (B, (AC)). Vérifier la D.H. :
(Cyp,m, M) |[car Bu, BC biss.]. m € C < M € HE sont dites courbes homologiques (homologie
de centre C, d’axe By, 26.3) : les tangentes en m et M se coupent en 1" € By. Si K = mT N Oy,

KmT homologue de MT ; siv € CKNBy, K mil[Cv] homologue du point oo de T'angyr : CK//MT.
8. a) XY = a_; si Asympt. b) Si (MM')N(Asympt) = {N, N’} : méme milieu. c) Si Tang. en M :
ON.ON' =2X.2Y = 24? [Aire Cte] et OMN,OMN’ isoceles®. Foyers : Si Cy centré sur Oy passant
par N, N’, coupe Oz en F', F'; Ny = sym | (N/Oy) : OF? = OFle.ON' =2a%> = I, F fixes
et OF = a.V2. %Wl — FON = Oz, Oy : biss. de N/OW’; siE=NNNOzxz,G=NNnNOy,
(NN'EG) D.H. : G pole de FF'; pole de NN’ conj. de G : € FF'. Et | NN'FF'| points oti une
tangente coupe les asymptotes U foyers sont sur un cercle partagé harmoniquement (QH). N'O, N'N
médianes et symédianes de FN'F'; F'M, F'F idem pour F'NN'. Si FFM NCy = ¢, N'o = NF :
Mg = MF;(MF' = MF)? = MF?+ MF?—2MF.MF' = 20M>+20F?-2MN? = 20F? = 4d.
la tangente en M est bissectrice de F'MF (QH) et MF.MF' = MN? = OM?. 4.7, 5.18.

Tang. en A=.
/1 CK. 3

_#

=
E

mT tangente a

la courbe de m,

homologue de

la courbe de M i

wf,

B—vy=7/2, w=HxQ¢c (B,C) [milieu de H,Q)]. Oxy, OXY : FFFNN' Q.H.; OF = a.V/2.

® Une question plus générale : Si OX, OY non orthogonaux, enveloppe des NN’ : ON.ON’ = k*? X/t + tY/k:2 =1,
—X/P4Y /K =0. X =t/2,Y = k?/2t; XY = k*/4 =7 (a*+b°) /47 ; dou Hyp., OF = OF' = k; F,F' N, N’ Q.Harmonique.



5.7 (*) Hyperbole équilatére H : des compléments a 5.6 (cf. 29.2)

1. Si M € 'H projeté en P,Q sur Asympt, M’ € H, MM’ de direction fixe coupant Asympt en N, N':
A = My = M{, point de tangence; MP.MQ = Cte == MN.MN' = cte = AD.AD' = 0A? = d2.
Si I = mill]MM'], a* = (IN — IM)(IN 4+ IM) = I0? — IM? : (avec diamétres conjugués
2% —y? = d?) et IM?>=10*—-0A%= (IO + OA).(I0 — OA) = TATA, A’ : sym(A/O); d’ou
(puiss I/ 4 a) IM tangente & C : H, lieu des points M € I'}; 4 4 de tangente de direction fixe

idem si M; diam. opposé sur I'* : Tout cercle passant par A, A’, diam. opposés de H, coupe H en
M, M; d'un diamétre de T'*, de direction fixe | Tang. en A, A" & H (autre définition; AA’-Tanga
diameétres conjugués de H) : si | HNIT™ |= 4, 2 diam. opposés sur une, les 2 autres aussi sur l'autre!

2. De plus : MAA' — MAA=DMIA = cte (2¢éme définition). Et si Bissgpa coupe C en U, on a
2.IMU = MQ*U = cte : Biss a une direction fixe //Asympt (3¢me définition). Et 29.2.

5.8 (*) Avec le Théoréme de I’angle inscrit, ABC inscrit dans C

1. On trace la bissectrice issue de A coupant BC en ig, C en Ag; Ag aussi milieu de [ij], j = Nbiss,.
Montrer que les triangles ABigq et AAgC sont semblables. Déduire que : AB.AC = AAy.Aiy.

2. Théoréme de Reim : Soit 2 cercles sécants en A, B, C, A,C" et M, B, M’ alignés, (A, B,C,M) €T,
etc. Montrer que (C', M")//(C, M). [# 4.5. Ind. 6’—!— O’ = T ou avec 29.8 : 2 droites=conique dégénérée. |

3. Soit Ay, By, Cy pieds des hauteurs et tanga tangente en A. Avec les angles : (AC, ATy) = (BC, BA)

(AC, B1C4) = (BC, BCY), déduire : tanga//B1Cy et OA L B1C; sans plus supposer 'triangle aigu’ !

I T

~

= TATpTc triangle tangentiel et A; B;C; triangle orthique : homothétiques. Hypc = ia,B,¢, 5.3.
AT, : symédiane 5.18. FE c.-cercle d’Euler, I’ point de Feuerbach, Fi[" alignés 5.23. jkl et le
triangle de Gergonne de son triangle orthique i1i2is : homothétiques [(kl) L (Aij) L isis]; méme
droite d’Euler [Euler; contient i = H,//Euler;,,,:, contient i, centre du cercle circonscrit|. Idem ABC'

5.9 Intersection de deux cercles. Axe radical et construction (...)

Soit Cy : 22 + y? — 2a12 — 2b1y + ¢1 = 0; Cy analogue et (a1,b1) # (az2,b2), en repére orthonormé ; et
D : 2(a; — az)x + 2(by — ba)y = ¢1 — ¢2, "axe radical" des 2 cercles; M € D < méme puiss/Cy, Cs.
1. Vérifier que C1 N Cy=C1ND. (Note : hauteur AA;= axe rad. des cercles de diam [AB], [AC].)
2. Vérifier que D est orthogonale & la ligne des centres; puis construire D si Cy, C5 non disjoints.
3. Si disjoints : avec un cercle coupant C et Ca, construire D. [Ind. Aze(C-Cy) N Aze(C-Cs) € D.|
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5.10 Diverses constructions de cercles; les points de Poncelet (...)

1. Construire I' centré en I, L C de centre O. [Euclide : TNC = {T,T'} : ITOT’ cocycliques.|

2. Construire les points de Poncelet du faisceau engendré par 2 cercles disjoints non concentriques.
[l de centre M € Axe.radical, 1 & C et C', coupe la droite des centres aux points cherchés.]

3. Construire, s’il existe, le cercle orthogonal a 3 cercles donnés. [Son centre a méme puissance/3. Si
les centres sont non alignés, un seul point convient : I centre radical, intersection d’axes radicaux.
Si I intérieur a 1 cercle, 0 solution. Si I extérieur, un cercle de centre I, L a 1 cercle, est L aux 3.

5.11 (*) Quadrilatére inscrit (ex : biss de MNPQ) /circonscrit/orthodiagonal

1. Si quadril. quelconque non orthocentrique, centre d’Euler, intersection des 4 cercles d’Euler 29.2 ;
. Si inscrit OF =2.0G et E €chaque mi-hauteur; si orthodiagonal F = AC N BD; si les deux q.2,3.
. Si ABCD convexe inscrit autre preuve : de P milieu de [AB], abaisser PP’ L (CD), etc. Si E :
QA + (ﬁ_—i—) (ﬁ_—i—)@_:) 2.@ montrer que ces 4 segments passent par E. [E # (AC) N (BD) ici;
car 2.PE=QC+QD L CD : Fini | (E "point de Monge" si tétraeédre et sphére de centre §2).]
2. Un Théoréme de Brahmagupta : ABCD inscrit dans un cercle et & diagonales 1 sécantes en X
(orthodiagonal) : P,X = E, P’ alignés | [ou X = E car ACD = ABD = BXP... OF = 2.0G aisé.|
3. Quadr. inscrit orth. . EA>4+EB?*+EC?*+ED? = AB?>4+CD? = AD*+BC? = 4.R?. (AQB+CQD = r)
. Rayon-cpgrs : 4. PR* = AC*+BD? = AE*+ EC®+2AE.EC+... = 4(R*—p.(E/Capcp)) = 4.p° = 2.R* —QE>.
4. Quadr. orthodiagonal, non inscriptible, plus de droite conc. (Louis Brand 1944). Avec le parallélo-
gramme de Varignon (pére Pierre Varignon, jésuite 1654-1722) des milieux PQRS de ABCD (de
périmétre AC' + BD; ici c’est un rectangle), vérifier [avec PP'R :g] que les 8 points M;, H; sont
sur un cercle, centré en G. Avec K, L milieux de [AC], [BD] et EKQL rectangle, G milieu de [E€].
‘Cas de ABCH, H orthocentre‘ ce cercle de 8 points (6 ici) est le méme que celui de BCAH (car 3

points communs) : c’est le cercle des 9 points ! de centre milieu de [B’Bs], Bs milieu de [HB] et
isobarycentre de PQRS donc de ABCD; donc le centre w du cercle d’Euler est Bar(G,3), (H,1).

5. Q. circonscrit (tangentiel) : AB+CD = AD+BC' (Henri Pitot) puis Airerap+rcp = Arpo+1ap- Or
{M : 2. Aprapivep = Aapept = D(mil[AC), mil[BD]) (Th. Pierre-Léon Anne); = I € Dnewion-

6. Q. ABCD inscrit et circ. t,u,v,w : tangences. (Durrande) : Ati sembl iuC'; At.Cv = Bt.Dv = r2.

7. Pour le quadrilatére inscrit dans un cercle cf. aussi 4.7; 5.10; et les Théorémes de Ptolémée 5.22.

5.12 Formule de Héron d’Alexandrie [quadrilatére inscrit : F. de Brahmaguptal]

1. Soit ABCD un quadrilatére convexe : AB, BC,CD,DA égaux & a,b,c,d, de surface S, donc
|AB—AD|< BD < DC+BC; |CB—CD|< AB+AD (x). Si2p=a+b+c+d,
(a) Montrer que a® 4 d? — b* — ¢ = 2(ad.cos(a) — be.cos(7y)), a« = BAD, ~ = BCD.
(b) Vérifier que : 2S = ad.sin(«) + be.sin(y) (en découpant en 2 triangles). Et
déduire que (a® + d? — b? — )2 +165% = 4(ad + be)? — 8abed[1 — cos(€)], a+v =7 + €.
(¢) Vérifier que : 165% = [(a + d)* — (b—¢)?][(b+ ¢)* — (a — d)?] — 16abcd.sin2(§) (Bretschneider)
et déduire S = /(p—a)(p —b)(p —c)(p —d) & (A, B,C, D) cocycliques, (p demi-périmétre).
a2 2 _p2 _ 2
%

(d) Pour a,b,c,d donnés tels que (), montrer qu’il existe a tel que cos(a) =
Veérifier que ceci traduit cos(y) = —cos(a); préciser ce cas géométriquement.
2. Et dans le cas du triangle ? [Formule de Héron d’Alexandrie : S = /p(p —a)(p — b)(p — ¢).]

5.13 Triangles équilatéraux (ex.1 peut servir au Th. de Fermat 32.3)

1. Soit ABC équilatéral inscrit dans C ; montrer : Bz Mpm.téb — M' € [AM]; et BM+MC = MA.

2. Soit 3 droites D, D', D” passant par A telles que (D,D’) = (D',D”) = (D”,D) = /3 (x). Idem
avec A, A’ A” et B # A. Montrer que : M = DNA, M’, M” forment un triangle équilatéral direct.
(Indication : Voir que M, M” sont sur le cercle ABM’ par le théoréme de I’angle inscrit ! Etc.)

11



5.14 (*) Au sujet des cercles : Trois exercices trés difficiles

1. Théoréme "du papillon" (énoncé facile, solution difficile). Soit une corde [AB] de milieu C' d’'un
cercle et 2 cordes DE, F'G passant par C, coupant AB en M, N. Alors : C est milieu de [M N].
2. Soit ABCD un carré; on trace (AE), E € (BC) coupant (CD) en F. Soit I le milieu de [BE].
Alors (FI) N (DE) décrit le cercle circonscrit au carré. Et (FI) est tangente au cercle inscrit.
3. Soit un triangle ABC, I le centre du cercle inscrit, DEF le triangle inscrit : D = projpc(I).
Supposons AC' < AB. Montrer que la projection orthogonale de C sur (AI) est sur (DF').
Solutions. 1) Soit E, F' sur le petit arc; les triangles FC'D, ECG sont semblables : % = g—g
Avec les perpendiculaires OH et OJ, FH/FC = EJ/EC; donc FCH et ECJ semblables et

FHC = E/J?j; ces angles se retrouvant en MOC (OCMH cocycliques) et NOC : CM = CN.

2) Si M, N sur le cercle avec (AN)//(DM), fig.2 : les triangles EC M, ADN sont homothétiques
car AND = DMC'; et Arcgy, = Arcgy, EMB = /2. Done (M N) coupe (EB) en son milieu /.

En ayant IMB = IBM, (IM) et (IB) sont symétriques par raport a (OI). D’ou les tangences.

AN
A ’//I‘I// \ C '// T
e
/ }:/ Z\\\/\> /\/ \\ \(\' H \'i\d \ {
N 3/

Cerclecpig N DF'; IM L CM’ et, fig. 3 on a3 angles x égaux. Si M” = proj(C, (AIl)),

3) Si M’ =
figd:z+u+tv=y+u+v, x=y; et comme IM” J_OM”, M' = M” qui est donc sur (DF).

Note. D//(A, B) en M’, M” coupe [AC] en son milieu B’ car B'CM” = B'M”C = CB'M” = A ...

5.15 (*) Pieds des bissectrices du triangle orthique 5.16, 5.3,8

1. Soit A, B, C un triangle de centre du cercle circonscrit O ; O, symétrique de O/ milieu A’ de [BC].
Montrer : O,B L A;B; coté du triangle orthique. [Car O,B//OC L A1B;.|] Idem O,C L A;C1.

2. (*) Et aussi que O, A L Igle, Ip, Io étant les pieds des bissectrices du triangle orthique A1 B1Cy.
[Si H orthocentre de ABC, H = I, centre du cercle inscrit & A1 B1C (non a ABC'). On peut noter
A = J... car centre d’un cercle ex-inscrit & A1 B1C;. A1B1C1 est aussi triangle orthique pour HCB

d’axe orthique 5.16. J4, = BC' N BlCl,IB = HB N AlCl,IC =HCNAB L Dr01te d’Euler FA
OOa et E milieu de [OH]; d’ou O A= 2EA]

(car A orthocentre) ! Or (connu) AH = 2. OA’

5.16 (*) Avec la puissance d’un point/cercle 29.10.6, axe orthique

)—C(M) = 2.(%}1?4, H = proj, (M, Aze.rad.) O # O',C(M) = puiss(M/C).
(b) Si w est le milieu des centres, I sur Aze N (OO') déduire que : 2.00".wl = R? — R"*.

2. Axe orthique. Soit ABC un triangle, Ay B;C1 son triangle orthique, P = (B,C) N (By,C1), etc.

Montrer que P,Q, R Axe 1 Droite d’Euler de ABC. [Ind.: PB.PC = PB;.PC; donc P a
méme puiss./aux cercles (ABC), (A1 B1C1), etc. Et axe radical L droite des centres (O, E).|

1. (a) Vérifier que C'(M

5.17 (*) Théoréme de Ménélaiis. Les six pieds des bissectrices (...)

1. Avec une projection sur (B,C) pour = et Cours pour la réciproque, montrer que :

(M € (B,C),N € (C,A),P € (A, B) sont alignés) < MB NC PA _ | Utilisation : on a
MC NA PB

./ P L. . . . Cig Ci/A

i) intérieures et extérieures alignés 3 4 3. [ -~ = ,,

Big Bi'y

‘)

2. les 6 pieds des bissectrices (i, ...,
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5.18 (*) Théoréme de Céva. Point de Lemoine (et de Gergonne/Nagel)

1. Avec K barycentre de A, B,C pour = montrer, pour M € (B,C),N € (C,A),P € (A,B) :

(AM,BN,CP concourantes [en K| ou paralléles) <« — ===l (8; gfﬁ7p]\7;?grz]\(/[))

2. Utilisation. "Symeédianes" concourantes au point "de Lemoine" L du triangle cf. fig. 5.8 et 4.7

Soit ABC un triangle de cercle circonscrit I', TATgT¢ le triangle formé par les tangentes en A, B, C
Ap, Aj les milieux des arcs BC, A’ milieu de BC. Comme BAg, BAj, bissectrices de (BC') (BT4),
(B; Ag, A, Ta, A') est un faisceau harm., d’ott (Ag, Af, Ta, A') [alignés] en D.H. et (4; Ag, Ay, Ta, A")
f. harm. Ayant (AAg) L (AAjf), ce sont les bissectrices de (A4,T4) et (AA"). (AT4), symétrique de
la médiane (AA’)/biss., est dite symédiane. Avec TyB = TyC... (' = TpTc, 20" = d' + b + ),
%A%A%: —1; ce point de concours est le "point de Lemoine" de ABC'; "point de Gergonne"
de TATgTc si ABC aigu; si A obtus (2 cas de fig.) T" cercle ex-inscrit & TATgTe ; T4AN... non point
de Gergonne ni "point de Nagel" de TATpT 5.24 (mais toujours de "Lemoine-Grébe" de ABC).
si & = dist(P, BC), ... P intérieur ; le minimum de ° + y* 4 2° ayant ax 4 by + cz = 25 vérifie : 2z/a = 2y/b
=2z/c=2(a +y° + 2%)/2S; (azx : by : xz) prop (a® : b* : ¢*) coeff. baryc. c’est donc le point de Lemoine 5.30.

Remarques . On a aussi un théoréme de Céva "trigonométrique", avec des sinus (exercice).
Avec lui et lisogonalité (*) 5.30, on a de suite que les symédianes de A, B, C' sont concourantes.
« By = projac(B) : syméd coupe [B;C1] au milieu M car 0.7 (AB, AC) = (BC, B,C4), B1C1//AT.
(Attention T'=TpTc.) Et AM polaire de U = AT N BC'; donc T4 pole de (BC) est aussi sur (AM).
Et pour A1B:1C1, A, B,C sont les centres des cercles ex-inscrits. (A, B1 * C1) N ... est dit "Mittenpunkt").
U =nN(TsTc),(BC),(By), 8=BLNAC [(BC)N(8y) =U": AB, AC, AL, AU’ Harm. U = U'| V, W : dr. de Le-
moine 29.10. T4 conjugué de U, U conj. de A (tang.) : pole(AT4) = U, L conj. de U : (U, V, W) polaire de L.
Ou aussi (*) Th. de Pascal : A,B,C,A* =C,B* = A,C" = B € Conique = AB* N A" B, ... alignés 29.1.
3. (*) En gén. : Aa, BB, Cy céviennes conc. < o = (BC) N (B7), ... alignés : polaire trilinéaire de M/ABC.

5.19 Coordonnées barycentriques M=bar[A, AireM BC ;B, AireMC A ;C, Aire M AB]

1. (*) Pour A, B,C non alignés, montrer que tout point M du plan (A, B,C') est un barycentre de
A, B, C avec certains coefficients ; par exemple Aire(M BC), Aire(MCA), Aire(MAB). 29.1

AT Dl =projuys (B )

a b ¢ a

Du centre du cercle circ. sin(24), sin(2B), sin(2C); de l'orthocentre tan(A), tan(B), tan(C').

2. Et que des coordonnées de i, centre du cercle inscrit sont

5.20 (*) Inversion isotomique (si 3 points alignés, les inverses ? non!)

Cest f: M+ M telle que Max M)y =G = A", Ma,M)y,Ga € (B,C). Vérifier que si M a pour
B C) M (A B C) (L’imagedeDo@::c—&—y—&—z:O est Dellipse )

. . A
coordonnées barycentriques <x Yy oz Yz zx  TY de Steiner circonscrite yz + zx + zy = 0. 26.3.

5.21 (*) En composant diverses similitudes affines directes (...)

1. Soit A, B, C, D un quadrilatére convexe direct ; M, N, P,/ AM B isocéle rectangle direct en M, etc.

(a) Soit s la similitude de centre A d’angle 7/4 de rapport V2 et s’ de centre C, d’angle 7 /4 de
rapport 1/v/2. Vérifier que s'0s est la rotation d’angle 7/2 de centre le milieu de [AC].

(b) Idem avec s90s, s1(centre C,angle m/4,rapport v/2); sp(centre A,angle 7/4,rapport 1/v/2).

Images de M puis de P ? Conclure que MP = NQ, (MP) L (NQ). (Victor Thébault.)
2. (Idem) Soit ABC dans le sens direct et 2 carrés extérieurs ABDEA, ACFGA; I = B x C (milieu)
J=CxG,K=ExG,L=AxD; ra=r4,/; H lesymétriquede A par rapport a I.

(a) Vérifier que 74 transforme [EC] en [BG]. En déduire que IJKL est un carré.

(b) Par rj_, /9, vérifier que : C'+— A, A+ G, H — M ot AM = ?_F/g(CT)Y), CH = AB. Déduire
que M est un point connu et que ACH et GAF sont isométriques. Comparer Al et E—Cf

(c) A peut-il étre le centre du carré 7 (Exprimer AJ = AL, angle(AL, AJ) = m.)
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5.22 (*) Inversion (image d’un cercle passant par O : une droite)

. 't k. AB
1. Avec les complexes, vérifier que A'B’ = 0A0B

2. D’oti : Théoréme de Ptolémée. Avec A, B,C, D cocycliques dans 'ordre < B'D' < B'C' + C'D’
‘en fait égalité, inégalité toujours vraie ‘ dans l'inversion de pole A de puissance 1 : (méme inég.) <

BD BO CD 2 . . 3 et.cet —
A5 AD S A5.40 + A0AD déduire : | A, B,C, D cocycliques (ord're) & AC.BD = AD.BC + AB.CD.

3. Note : 2éme Théoréme de Ptolémée. Autres notations : AB =a,BC =b,CD =¢,DA =d;

_ abAC _cdAC . . PR AC _ ad+bc
montrer que A(ABC) = , A(ADC) = R (relation des sinus) et déduire BD = b7 od

avec laire totale calculée de deux fagons ! [Le ler Théoréme s’écrivant alors ‘ ac+bd = AC.BD H

, pour une inversion de pdle O, de puissance k£ > 0.

5.23 (*) Inversion : image d’un cercle ne passant pas par O (...)

1. Vérifier que "l'inversion conserve les angles". (On dit "tranformation conforme" car avec dfay,,

elle change 'angle o de 2 courbes en I’angle —« pour les courbes images : anti-homographie).

‘Donc, avec des courbes tangentes : "l'inversion conserve le contact"; et "’orthogonalité". ‘

2. Avec le Théoréme de la puissance d’un point, un cercle I'(w, p) ne contenant pas O est transformé
globalement en un cercle homothétique. On étudie I'image du centre : dessin ! (cf. DH.)

Soit C(O, R) orthogonal AT en T, T'; R, S ses intersections avec Ow ; une 1ére inversion de puissance
I'(O) laisse I invariant; dans le cas général, on ajoute une homothétie de rapport k/I'(O).
Par la lére inversion, soit P image de w et A, B =I' N Ow. Montrer que P =TT’ N Ow. Ind. :
— un point de vue : (R, S, A, B) sont en DH (Formule de Newton) ; mais OA.OB = Ow.OP;
donc (R, S,w,P) en DH. D’ou (Polarité cf. ch 29) P sur la polaire de w/C : P € TT'.
— un autre : Q = TT' N Ow est tel que O, Q sont conjugués/I" cette fois; or 2.0w = OA + OB =
2 1 1

=—+—=— ou (O,P, A, B) DH selon une relation de Descartes; d’ou = P. Donc :
OP OB OA

‘L’homologue du centre d’un cercle est le pied de la polaire de O par rapport au cercle image.

3. Remarques : — On peut aussi prendre I'image d’un rayon (w7') de I' par la lére inversion !

— Soit M, M’ homologues dans la 2éme inversion : les tangentes forment un triangle isocéle MIM’
(cf.1) donc puiss (I/T) =puiss (I/T'). Dot I est sur I'axe radical A, des deux cercles !

— Et M, M', N, N’ cocycliques (puiss de O), d'ot J = MNNM'N' € A, car J centre radical !

— Avec f = inv(A',i1A? = j1A™), i1 proj (centre.cercle.insc), f(ia) = Ay pieds de biss. et haut.
car Ayiaiijy DH. Si D = sym, (BC/bissa), A', A1 € f(D);et (D, BC) = (AB, AC) = (T4, BC)
d’ott f(D) cercle d’Euler car sa tangente en A’//T4 : Th. de Feuerbach = iE = R/2 —r.
Et AF,, BFy,,CF, conc. en ¢, iEFp DH : soit ¢ centre d’hom. < 0, h: Cg +— (i); h(Fy) € (i) ;
puis si ha : (j) — (i), > 0, ha(Fy) = h(F,) car sur (i), proche de A, méme (T) : A, ¢, F, alignés.

5.24 (*) Partager ABCA en deux longueurs égales, cf. 5.18

1. Avec une droite issue de A : Soit j; le point de contact de [BC] et du cercle ex-inscrit face a A.
Montrer que Aj; convient. (Tracer les deux tangentes issues de A au cercle ex-inscrit).

| Bjy = Ciy = p — ¢ (i1 pied du cercle inscrit) =3 "céviennes" Aji, Bky, Cly concourantes

au "point de Nagel" (Th de Céva). Avec i1, "point de Gergonne" : points "isotomiques".|

2. Droite issue de A" milieu de [BC|] : La bissectrice au triangle médian issue de A’ convient.
(Tracer par B sa paralléle coupant (A,C) en D. Alors BA = DA; et avec le Théoréme de Thalés

conclure. Cette intersection des bissectrices de A’B’'C’ est appelée le : "Spieker-center".)
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5.25 (*) Une preuve du Théoréme d’Erdés-Mordell (...)

Soit P intérieur au triangle A, B,C. PA =u, PB =v, PC =w; §(P,(BC)) =x; v,z de méme.
Alors : u+v+w > 2(x +y+ z) et égalité < Triangle équilatéral de centre P. [D’un livre d’Avez :

"Conjecturé par Erdos en 1935, prouvé par Mordell 2 ans plus tard, il fallut attendre encore 8 ans

pour une premiére démonstration élémentaire par Karazinov! Celle qui suit est du a V. Komornik".]
. 1 .
1. Supposons P € [BC]. Montrer que Aire4pc vaut §(b.y +c.z). En déduire : a.u > by + c.z (x).
. . . H H
2. On prend maintenant P quelconque intérieur a 'angle (AB, AC).

La paralléle a (B, C) passant par P coupe (A,C) en Cy et (A, B) en By. En posant a1 = B1CY,

by = AC1, ¢1 idem. Avec une homothétie de centre A, prouver que (x) est encore vraie.

3. Soit @ = sym (P/biss —int — A). Montrer alors que : a.u > b.z + c.y (xx). (La clé !)
2 2 2 2 2 2
4. Déduire que u+v+w = b ;C a+ £ ;a y+ 2 ;Z_)b .z et le théoréme, avec cas d’égalité.

5.26 (*) Cercles orthogonaux et relation trigonométrique (...)
Soit deux cercles (O,7); (O',7); se coupant en A, B. On note t= OAO" = OBO'.
1. Montrer avec le théoréme d’Al-Kashi, que :  (00")? = (' — )% + 2r' (1 — cos(t)).

Déduire que (T'T")% = 2r1'(1 — cos(t)) ot T, T’ : points de contact d'une tangente commune.

L / / L. L 1T ~2r(1—cos(t))
2. On note L la projection de TT" sur (O,0"). Veérifier que T = 0O et L= 00 )

3. Puis OO'.AB =2A = 2rr'sin(t). Déduire que L = AB.tan(t/2) et Cercles | & L = AB.

5.27 (*) Avec le Théoréme de l’angle inscrit, droites de Simson et Steiner

—_— — = ——
1. Soit un triangle ABC'; M donné, « sa proj, sur (BC), etc. Justifier : af,aM = CA,CM ()
puis : af,ay=CA,CM — BA,BM (7). Donc: «,f,v alignés < A, B,C, M cocycliques.

2. Montrer que cette droite de Simson est paralléle & Aag ot v est sur le cercle tel que M, «a, oy
T . — —_ — —_— —
alignés. Cf. aussi 29.2. (avec AB,Aay = MB,May = MB,Ma =~vB,ya = AB, Siy.)

Donc : Siy L Siy < ag,a] diamétralement opposés < M, N diamétralement opposés.

3. Droite de Steiner. Montrer que Stj; homothétique de Siys dans hps o contient H orthocentre.

(Si My = sym(M)/(BC), My/ (CA), on passe de My & M; par la rotation (C,2.C'). Mais (connu)
HeC = MBC et HeCo=MyCA. Donc My H My alignés selon Ex. 4.5 : si CNC = {I,J} et
s similitude directe de centre I, C + C’, alors M JM' alignés. Ou plus aisément avec Aa; !) 5.30.

4. Pour M, N diamétralement opposés, justifier enfin que Siy; N Siy € Cercle d’Euler de ABC'.
— —
(La droite passant par M de direction Stj; et celle passant en N de direction Sty sont L et se
coupent sur C. Par homothétie (centre H,rapport 1/2) : Sipr N Siy € Cercle d’Euler de ABC'.)

5.28 (*) Droite de Steiner, point de Miquel ; isotomie et droite de Newton

Soit un triangle ABC et une droite DEF, D sur (BC'), etc. : Les orthocentres de ABC, AEF,
DBF, DEC sont alignés; les milieux de [AD], [BE], [CF| aussi; et ces 2 droites sont orthogonales.

1. Preuve de tout avec la puissance. Si a = (AH)N(BC) : HA.Ha = HB.H3 = HC.Hvy (ABap3
cocycliques) ; puiss(H /cercle.diam[AD]) = puiss(H /cercle[BE]) = puiss(H/cercle[CF]) et idem
avec Hy ... ces 3 cercles forment donc un faisceau d’axe radical H, Hy, Ho, H3, donc alignés (droite
de Miquel); et les 3 centres milieux de [AD], [BE], [CF] sont aussi alignés : droite de Newton L !
(5.11.5 : un cas particulier si I'on veut, avec le triangle ABT', T' = (BC) N (AD) et en changeant quelques lettres. )
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2. Avec une droite de Steiner : [on peut s’aider de fig.1; mais ici voir fig.2]. Montrer que les
les 4 cercles ABC, AEF, BDF,CDFE concourent au "point de Miquel" du quadrilatére. cf.4.4.
(M sur ABC N AEF, angles égaux a w prés : BAM, BCM, FEM donc DCM et DEM ;

ainsi CDE contient M). La droite de Steiner de ce point M est donc H, Hy, Ho, H3 !

Et I'unique parabole quadri-tangente a pour foyer ce point M et pour directrice cette droite St.

fig 2: point de Miquel (1838) du
"quadrilatére complet".

Cercle de Miquel :

Les centres Oy, 0,, 03, Oy des quatre cercles et le point de Miquel M sont cocycliques.

Le cercle contenant ces cinq points est appelé cercle de Miquel.

‘ , Droite de Newton-Gauss.

/ Sym(M/ pgF) aussi sur St (avec
. fs Hk) car sym(F/tang.parabole).

. Droite de Steiner
" qui contient les 4 orthocentres

= droite de Miquel du quadrilatére complet; orthogonale a
la droite de Newton ou de Gauss du milieu des diagonales.

"Cercle de Miquel" : Par inversion de pdle M, les 4 cercles deviennent 4 droites; les 4 droites, 4

cercles passant par M, point de Miquel de la nouvelle figure, dualité ! Avec les symétriques de M
/(A,B),(B,C),(C, A) alignés, (St. : 8 points; -les proj. du foyer d’une parab. sur tang. : Simson-)

par inversion, on a 3 cercles de centres cocycliques avec M : O3 sur le cercle (MO102) ; O4 aussi.
3. La droite de Newton-Gauss avec ’isotomie : au lieu de D, E, F', notons ici Ay, B1,C1; I milieu de
[CCh], B' de [AC], G = isobar(A, B,C). Figure de ABCC1I ? Avec B'I:Cy = hg _o(I) € (AB);
N —
puis : BCy = —2.B'T = —A—Cl> (Cy isotomique de C1). Alors : Ay, By, Cy alignés = Ag, By, Cy

alignés (Ménélaiis). Et donc les 3 milieux sont alignés (par 'homothétie inverse : hg _1/2(C2) ...).
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5.29 (*) Isogonalité et calcul de la longueur des bissectrices (...)
1. Soit ABC un triangle, M sur (AB), N sur son cercle circonscrit avec C'M,CN isogonales, ce qui
est : Angle ACM = AngleNCB. Montrer alors (triangles semblables) : CA.CB = CM.CN.
2. (a) Exemple: CH, CO dou a.b=2.R.hc. Autres exemples & justifier :
(b) Ci bissectrice coupant AB en i¢c et le cercle en Cy : a.b = Cic.(Cic +icCp); avec Cig =1,

icA=a,..|ab=1>+a.B| [avec bissectrice extérieure : a.b = o/.0' — (I')?] ou autrement.
3. Avec la relation de Stewart : A, B,C € D, VM = BC.MA? +CA.MB?+ AB.MC?+ AB.BC.CA=0
(fonction scalaire de Leibniz, cas : AB+ BC +CA = 0, 32.3), retrouver la longueur des bissectrices.

5.30 (*) Isogonalité : points inverses du triangle (pour conique tritangente)

1. Soit ABC un triangle, M un point ; P;, Py, P ses proj, sur les cotés (triangle podaire de M), et
My, My, M3 les sym | par rapport aux cotés. Idem avec P} et Mj,, pour M’, en question 2.
M Triangle podaire, en anglais : "pedal triangle" ; alors que triangle pédal (fr) : "cevian triangle"]

( ) Verlﬁer que P1P2 P1P3 = P2P1 P3P1 P2P1,P2M +P2M P3M+ P3M P3P1
C’B CM+AC AB+BM BC = BM CM — BA CA= MB MC — AB AC’( ).
(b) En déduire que : Py alignés (droite de Simson) < M € Cercle circonscrit C. (5.27.)
[Note. Alors, My, alignés sur la droite de Steiner ; qui contient H : BC My H cocycliques car
—_— —_— = — —
le sym. orthog. de H /(BC') sur Cercle (A,B,C); HB,HM,; = CB,CM, = CM,CB.
— > —_—
Idem HB,HM;s; = AM, AB; différence nulle car ABCM cocycliques. //AS1,51 € CNMP;
car angles égaux : AB,AS; = MB,MSy = MB,MP, = P3B, P3P, = AB, Sij;.|
2. Cas de non alignement : (*) Soit M’ le centre du cercle I' circonscrit aux My, si M ¢ C.
(a) Vérifier que A_C)‘,m = M>M, MyM; (1) = %(A—)M,AMg) = Fw,ﬂé : (AM, AM') isogonales.
cotes; AM’mediatrice: AM=AMo=AMj5
Déduire que les 3 droites isogonales concourent en M, dit point "inverse isogonal" de M.
(b) Justifier que les Py, P/ sont cocycliques. (ngé\PQ’—kPﬁg =n/24a+7/2—a, a = E,W,
car (A, M), (A, M") sont isogonales. Et ce cercle  est centré au mil[M, M'], homy 1 /5(T).)
3. Cas M € C\{A, B,C} [voire A, B,C]|, M’ = 00 gy ¢ soit Dy, Dp, D¢ les droites isogonales.
(a) Vérifier ici que : (Da,AB) = (AC,AM) = (BC,BM) = (Dp,BA) (7). Et déduire :
(b) Da//Dp//Dc L Sty ! [(AB, AS1) + (AC, AM) = (MB,MPy) + (BPy, BM) = 7]

4. Exemples : Vérifier que 1,14, Ip, Ic invariants; que O et H sont inverses (inversion isogonale).

Etude de I'inverse de G : point de Lemoine L, intersection des symédianes. 5.18.
5. Barycentres. Montrer que PiM.P{M' = P,M.PyM' = P3M.P;M’ [puissance de M /7.

A B C
M = Bary(A 5 C) que M/—Bar( 20 By )

| x |= a.PL M, par ex., signe a voir| d’ott | L(a?,b?, ¢*) Lemoine |et|Capc : a’yz + b*zx + xy = 0.

). [Rappel sur les coord. barycentriques :

(Les points de Copc n’ayant pas d’image par isogonalité : Copc isogonal de Do, x +y + 2z = 0.
L’image d’une droite est une conique, parabole si tangente a C, hyp. si sécante, HE si diamétre ...)

Toujours M (z : 3 : z) C(M) la puissance de M/Capc. ® Si far(P) = 2PA*4+yPB*+2PC?:
far(P) = far(M)+ (x 4y + 2)PM? [f. scalaire de Leibniz]. P =0 = (x+y+2)C(M) = —far(M).
P=A,B,C...et tLy +yLo+2L3 = VM, a*yz+b*zx+c*xy = (x+y+2) far(M). e Soit v un autre

f.af fine.des.coord.cart.

cercle, u = y(A) — C(A) =~v(A4), ... : y(M)—C(M) = U~ +z+ ~+.. don y(M);

Y(M) =0 < a*yz + b2z + oy — (x +y + 2)(uz + vy + wz) = 0, axe radical : ux + vy +wz = 0.

e Ne pas confondre avec la transformation isotomique M +— M* = Bar ( 11/4 1]/5; 17 > ' cf. 5.20.
Ici Do a pour image "l'ellipse de Steiner circonscrite" [de centre G, passant par A(1,0,0), 26.3] :

yz+zx +xy = 0, (* tandis que Dellipse de Steiner "inscrite" : 2?2+ 4+ 22— 2yz — 220 — 2ay = 0).
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6 Géométrie dans R?

6.1 Distance 6(O,D)si D=PNP :zx+y+z=1N2x—-3y=0
1. En donnant une équation paramétrique de D(A, ') et avec la formule §(O, D).
2. (*) Deux autres fagons : en calculant le minimum de dist*(O, M) quand M décrit D. Puis

3. (*) En vérifiant D C Py tx+y+ 2 — 1+ A2z — 3y) = 0, en trouvant A : P/ LP” et dist(O, P”).

1. Corrigé. ‘La question de passer d’un syst. d’éq. cart. pour une droite, & un syst. paramétrique est essentielle‘

r+y+z=1 o x 0 1 0N L (3
D o3y —0 Prenons x arbitraire, par ex.; alors: |y | =(0] +z.[ 2/3 | =(0| + z. 9
. z 1 -5/3 1 -5

My AN 13

type : M = A + )\ﬂ> M c D N 5(M1,D) = W‘T”u M1 quelc. donne (Ml — O) 5 _ %

z—1 N -
= un systeme cartésien.

wly
VIS

)+ () -

T 0 3
2. ‘Question trés intéressante. ‘ Reprenons M € D définie paramétriquement : (y) = (0) + A ( 2 )
z 1 -5

OM? (carré plus simple) vaut OM? = f(A) = (3A —0)% 4 (2A —0)? + (=5\+ 1 —0)% = 38X — 10\ + 1.
La courbe représentative est une parabole tournée vers le haut et le minimum est atteint pour
A= —b/2a =5/38 : OH?=385/38% —10.5/38 + 1 =..=13/38; OH =6 =/13/38 idem !

142X
3. Py izx+y+2z—14+A2x—3y) =0 estunplan car (1 - 3)\) # 0, vecteur normal. [Ce

ISIINSE

Inversement, si D en param. : (

1

z+yt+z=1

A, ici, n’a rien a voir avec celui qui précéde|. De plus si M vérifie { Y3y =0 alors M vérifie

Alors, au lieu de D = P NP’ avec P et P’ non

T+y+2z—1+A2z—3y) =0, VA |soit D C Py".

142X 2
orthogonaux (Figure !) D = P” NP’ ot P” sera judicieux contenant D, L P’. Ici, (1 — 3)\) . (—3) =0
1 0

_ 1 . . ”\ 13 . |ax1+by1—|—czl—d|
donne \ = &’ 09=dist(O,P”) = i1 car |dist(My,ax + by +cz=d) = s

P? 152+ 10y 4+ 132 = 13. 6;=dist(O, P') =0, 6% =62 402 = 0+ 13%/13.38 = 13/38 ... Idem encore !

et

6.2 (*) Sur le tétraédre : deux exercices difficiles (...)

1. Soit un tétraédre équifacial (faces de méme aire) ; montrer que 2 arétes opposées ont méme longueur.

Soit J, K, L, proj; de I milieu de [A, D], A, D sur (B,C). AK = DL : méme aire; et J
milieu de [K L] donne AJ = JD. D’ou I, J dans le plan médiateur de [A, D| : (I, J) perp. commune.
Elle coupe aussi [B, C| en son milieu. Donc le 1/2-tour d’axe (I, J) envoie [A,B| sur [C,D]|.

2. Soit 2 fixe et A, B, C variables sur S, sphére de rayon 1, de centre O avec QA, QB,QC 1. Montrer :
— Que le plan A, B, C' passe par G fixe, @ = 3.0—C>¥. [A” diam. opposé, I14 plan passant par 2, L QA,
14 NS : cercle contenant A, B, C de centre Iy = proj(0,114) = mil[QA"] et mil[BC] car BQC = 7/2;
donc isobar(A, B,C) = isobar(A, A’,Q) = bar((2,1),(0,2)).] Puissi H = proj,(Q, ABC), A laire,
H = orth(A, B,C) [QH L ABC,C9 L QA,QB, AB donc CH L AB etc] et —— = —— 4 14 1
— H =orth(4, B,C) | 5 5, onc etc| e oz~ ortag Too
[A%(Q, A, B) = A(HAB).A(CAB) : R = proj . (Q, AB) = R tang. au cercle QHC, RQ* = RH.RC';

d'ott A>(ABC) = A*(QAB) + A*(QBC) + A*(QCA) ; et avec le vol. du prisme 3V = A(ABC).QH ..]

18



6.3 (*) Au sujet du tétraédre orthocentrique (...)

1. Soit un tétraedre ABC'D. Montrer que (hauteurs AH,, BHp concourantes) < AB L CD.
Corrigé. (=) Si AH4 N BHp = {H}, Plan(A, B, Ha, Hg, H) L CD; d'oa AB L CD.

(<) : Ici, le plan orthogonal & (C, D) contenant A (donc Hy4) contient aussi B (donc Hp).
Mais AH, et BHp ne peuvent pas étre paralléles; donc concourantes.

— —_— — —

2. Montrer : (1) 4 hauteurs conc. = (2) Arétes opp. L = (3) (AB LCD,AC 1L BD) = (1).
Pour (3) = (1) : AB.CD + AC.DB + AD.BC = 0 (rel. d’Euler) ; puis avec AH4 N BHp = {H}
- == —— — —_ — —_— —— — —_ — e

CH.AD = (CB + BH).AD =0, CH.BD = (CA + AH).BD = 0. Idem DH.
3. Montrer : Tétra¢dre orthocentrique (1,2,3) < (4) Hp orthocentre de ABC. Seul < & voir :
—_— — —_ — —_— —_— —_— —_— = —
Il donne : AHp 1. BC';or DHp 1 BC, d'ou: AD L BC; idem BD 1 AC, CD 1 AB.
—_ = —_— = . 9 9 9 9 —_— =
4. Avec AB+CD = AD + CB, vérifier que AB“+ CD* = AD“+ BC*+2.CA.BD. Donc:
Tétraédre orthocentrique (1-4) < (5) AB? +CD? = AD? + BC? = AC* + BD? noté X2
5. Volume du T.orth. : Soit ABR, R € (C, D), le plan L C_Tﬁ; forcément R, B, H 4 sont alignés et
AB.CD.RS
R, A,Hp aussi. D’ot H orthocentre de (A, B,R). Si S =HRNAB, alors V = — %

6. lére sphere d’Euler. Par hg _y/3 la sphére S — &) passant par les 4 centres de gravité G4 ... des
faces ; et si Tétraédre orthocentrique, la droite d’Euler O4,Ga, Ha de BC'D, montre que Sl(Q,g)
contient les 12 points : G4 ... Hy (QG4 =QHa) et Ty ... : 3.HTy = HA (si orthocentrique) car

AA A partir de Og,Ga, Hy, tracer G; puis . Alors :
7oy

t0 S1(€2, 5) passe par G 4. Une autre hom h, /3 : S — §; d'oll

‘ e 7, —— ——

1 "W.. 0 | i € AH 5 donc sur chaque hauteur : y=H et OH = 2.0G.
] ., ! — - — — e e ) o :

ﬁf"“’(ﬁid" s -,xri.Hﬁ__ (Si non orth., yu :04 + OB + OC + OD = 2.0u "point de Monge")

— — — — — —
Note : En général sur u, avec pA + ... =4.uG = 2.0, on trouve 2.ul.CD =0 : p € 6 plans (I, L CD) !

7. 2éme sphére d’Euler pour T.orth. Soit ici: I,J, K, L, M, N milieux de AB, BC,CD,DA, AC, BD.
Ils sont sur une sphére Sy(G, p), (IJK L rectangle...) et SoN ABC' = cercle d’Euler = 6x2 + 4x3=24
points remarquables ; et 2.1J = AC, 2.JK = BD = p=X/4. Note : GI* = GO* +2.GO.0I + R* —
AB%/4 = GO® + 2.GO.0K + R* — CD*/4 = 2p° =2.GO*> + 2.R> — 4.0> + 4.GO.0G : 3.° = R*> — OG> |

6.4 (*) "Division vectorielle" //éq. lin. avec second membre

— —_—
Résoudre l'équation @ A7 = b, @ # 6}, si possible. (7 = OM, ici.)

— Important. Par ex. pour un torseur de résultante 5) : A7M = /T/l)A + 5) A Z?\? Si on cherche M : ./\—/iM
est, non pas nul (impossible en général), mais colinéaire a Q:ONAM = —./\—/(> A+ k. (k a voir), on
trouve une droite affine 'axe central du torseur. Pour les vitesses d’un solide, c¢’est I’axe instantané ’du
mouvement hélicoidal tangent” au temps t. (Toute isométrie affine positive étant un vissage.)

~ Reésolution de @ A OM = ?, a # 0. "Probléme de la division vectorielle".

«Sia [ b, pasdesolution. [a.b =0 est une C.N. de solution donnant k ci-dessus.]

. —> - . . . 5e . - — o - —
«Si @ L b, un dessin laisse deviner qu’il y a une solution du type og=OMy=a.b AN a.

— — —
. Avec la formule du double produit vectoriel @ A (b A €)= (a.C)b —(a.b)C: a=1/|d|>
—_— — —_— —_— —_— _—

. Puis ayant une solution, @ AOM = b < @ AOM =a AOMy; @ ANMyM = 0 o MoM = \d.
—
b —

Toutes les solutions, si @ L b OM = ﬁ +A.@ droite affine. Relire le cas d’un torseur (et trouver k).

a
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7 Limites des fonctions de R dans R

7.1 Des limites de suites ou de fonctions (...)

1/n 4 pl/n\" T 4 p 1/x
Montrer que : (L) —  Vab. Et : (a + ) —  max(a,b).

2 n—-+oo 2 T—+00

7.2 Preuve du Th. de prolongement des inégalités
1. Enoncé : Si f < g au voisinage de zy et si f(w)xjml, g(m)xjx;m, alors [ <m.
2. Preuve : . On va prendre xg fini ou +00; rappelons que V est un voisinage de x( fini si:
dr>0: |Jzg—r,xzg+r[CV; et de zg = +o0 si: JA>0: JA, +oo[C V.
. On va se limiter, par contre (pour plus de clarté¢), aux seuls cas [, m réels (finis)
. Supposons donc [ > m; on va trouver une contradiction.
Choisissons : € = Z—Tm >0 (le tout est de comprendre ce choix !)
3V, voisinage de xg tel que x € V1 = f(z) €]l —€,1 + €],

3V, voisinage de zg tel que © € Vo = g(x) €lm —e,m +¢€[; mais: VNV =V
est aussi un voisinage de zp et : x € V= g(x) <m+e=10—¢ < f(z). Impossible.

7.3 Calcul de limite avec un encadrement (...)

1. Montrer que, sur 0, > 0[: In(l+2z) < sh(z) < —In(l —x) (sh(z) = %)
* . : 2 Ay -
2. Pour p e N* : nErJrrloo n<%<:pnsh(1/k) : (Rép. : In(p).)

7.4 (*) Préciser diverses limites [corrigés|
Soit f dérivable sur [0, 7] avec f(0) = f(mw) = 0.

Montrer que g(z) = f(x).cot(x) a des limites finies en x =0 et z = 7. Corrigé (rédaction) :

En 7 : Comme f est dér. en 7, Je(x), avec e(x)—0: f(z) = f(7) + (x — 7) f'(7) + (z — 7).e(x).

T—T

Avec f(r) =0, g(z) = f(w)ZjZEi; = (z —7).[f'(m) + e(m)]% — f'(w). Idem en 0.

7.5 (*) Limites en lien avec des intégrales

x 1
Soit  f(z) = / i, —— infinie autour de 1 : 1 ne doit pas étre dans [x,ac2] ; montrer que
. In(t)" In(t)

1. f est définie pour z €]0,1[U]1,4+oco[. (Ici, f est dérivable, donc continue, avec f'(z) = 2 1.)

1
2. Existence de I = / e (%—_1 [tend vers 1en 1] et 0en 0: I existe. I>0.)
Jo In(x) In(x)

3. f tend vers 0 en O (facile).  Si on trouve une limite finie L pour f en 1: f sera continue par

prolongement ; et C' par le Th de la limite de f ! Alors on aura I ="f(1)" —”f(0)” = L —0.

Calcul de L :| Autour de 1, li ~ L . f(@) :/ ld—t) et g(z) :/

n(t)  t.in(t) n(t t.In(t)
... si z (donc t) proche de 1; et la 2éme aisée. Rigueur ? Montrer f(z) — g(x)—1>0. A finir !

aussi 7

[L =in(2). On aurait aussi pu remplacer In(t) par ¢t —1 autour del ..
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8 Continuité des fonctions de R dans R

8.1 Fonction continue, bornée, non prolongeable par continuité

(Par ex. : x+ sin(1/z) continue et bornée sur R*).

8.2 Quelques questions en lien avec la fonction Arctan (...)

1 1 2
1. Montrer que : Arctcm(g) + Arctcm(z) + Arctcm(g) = %
2. Puis Arctany | ~—% = X Arccos(z) [t = Arccos(a)]:  Arctan——— — Aresin(z)
. Puis Arctan = —Arccos(z) |t = Arccos(z)]; rctan——— = Arcsin(z).
1+z 2 ’ 1—2a2

8.3 (*) Une fonction uniformément continue, non lipschitzienne
Montrer que: 0<z<y=0<y— V< Vy—u=. (On peut améliorer 'inégalité :
| vy —+vz | <+/|y—=a|..etpour la prouver, 0 < x < y peut étre supposé¢). Conclure.

8.4 Trouver les fonctions C° telles que : f(z) = f(22 +7)

Up —

Indication. Avec la suite : ug =t, upy1 = (arithmético-géométrique convergeant vers

—7, montrer que f(t) = f(—7). Puis que les solutions sont exactement les fonctions constantes.

8.5 Une fonction bijective mais continue nulle part (...)

Soit f(z) =asizeQ; f(r)=1—asiz e R\Q; g¢:9(0)=1;9(1) =0; g(z) =z, ailleurs.

Vérifier que gof convient. Puis trouver un autre exemple.

8.6 (*) Démontrer les Théorémes sur la continuité

1. Théoréme des Valeurs intermédiaires. Pour trouver x € [a, b] tel que f(z) =y siy € [f(a), f(D)] :

Si f(a) < f(b) : considérer o = sup{t € [a,b] : f(t) < y}.

2. Continuité sur un segment :

. Montrer d’abord que de toute suite de [a, b], on peut extraire une sous suite convergente.

(Propriété de Bolzano-Weierstrass obtenue par "dichotomie" - divisions du segment en 2 -)
. Montrer ensuite que f est bornée supérieurement par I'absurde.

. Montrer enfin que la borne supérieure est atteinte.

3. Continuité de la bijection réciproque. Cas f croissante (strictement) :

Utiliser la bijectivité, la croissance stricte, I'image d’un intervalle.
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9 Dérivation des fonctions de R dans R

9.1 Révisions des théorémes fondamentaux de ’analyse (...)

Limites

Théoréme de la limite monotone. Si f croissante sur (a,b) (bornes ouvertes ou fermées), Vxg €]a, b[
f posséde une limite I, en z, [ en 3:8' et Iy < f(xo) < lg; une limite & gauche en b, & droite en a.

Exemple : In posséde une limite en 400. Idem avec les suites, mais ici : n tendra toujours vers +oo.

Continuité (3 théorémes)

Théoréme des valeurs intermédiaires. f contiue sur un intervalle I vérifie Va,b € I,Vy € [f(a), f(D)],
Jdx € [a,b] : y = f(z) (ainsi 'image f(I) = J de U'intervalle I : partie convexe, donc un intervalle).

Théor. de continuité sur un segment. Une fonction C¥ sur un segment est bornée et atteind ses bornes.

| Continuité de £~ : Soit fCY, strict. monot. , sur un int. I; alors f(I) est un int.,f bij. I — J, f~1C°

4

|l Avec des hypothéses supplémentaires de Dérivabilité :

Théoréme de Rolle. Si fC sur [a,b], dér. sur |a,b[, a # b, f(a) = f(b) : e € [a,b] tel que f'(c) =0|=

Théoréme des accr. finis. Si fC¥ sur [a,b], dér. sur |a,b[ a # b, 3¢ € [a,b] : £(b) — f(a) = (b—a).f'(c)
ou, en posant b=a+h, 360 €]0,1[ avec f(a+h)= f(a)+h.f'(a+0.h) ("T.AF.")

On déduit 3 conséquences fondamentales du théoréme des accroissements finis :

1. Sens de variations des fonctions dérivables; avec la précision :
f' >0 et f nulle qu’en un nombre fini de points sur un segment = f strictement croissante.

2. Théoréme de la limite de la dérivée : Si fC° sur [a,b], dér. sur |a,b[, a # b, et si f/(2) posséde une
limite [ finie en a™, alors f’(a) existe, vaut [ et donc f’ est en méme temps continue en a.
(Si la limite est infinie : tangente verticale; si pas de limite : ne rien déduire !)

3. Pour f dérivable (hypotheése) : f k-lipschitzienne < | f'|< k.

9.2 Chercher f dérivable R — R : f(x) — f(y) = (z —y).f'(x + v)/2)
1. Corrigé : On connait le Théoréme des accroissements finis : f continue sur [z,y| dérivable
sur |z,y| (si z #y) entraine Jc €]z,y| tel que f(z) — f(y) = (x —y).f'(¢).
En général ¢ non unique, dépend de z, y et f. Ici, on peut prendre le milieu !
2. On cherche si possible toutes les solutions. Déja f(x) = a.x + b convient ! On peut
aussi savoir que c’est vrai pour les paraboles f(x) = az? + Bz 4+~ solutions.
3. Montrons qu’il n’y en a pas d’autre :
Posons z+y=2t, x—y=2 ou cequiestpareil z=t+1, y=t—1:
Légalité s’écrit  2.f'(t) = f(t+1) — f(t —1); ainsi, on voit que f” existe. En recommengant, on

voit que f () existe ... Idée : on dérive en espérant trouver quelque chose de plus simple !
4. En dérivant la lére ligne / z, on a: f'(z) = f’(xT—w) + (z — y).f”(x ;_ y)%
Dérivons par rapport & y maintenant de facon a avoir 0 a gauche :
0= (30 - PN S @ fOCEY L Done O =0 f() =2
') = §.t +8 .. |dou: f(z)=ax®+pr+~y forcément.| (Faire un dessin !)
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9.3 (*) Diverses remarques sur le T.A.F. et ses conséquences (...)
1. (*) Le T.A.F. sert aussi a diverses démonstrations (*) sur les fonctions convexes.

2. On a encore : T.A.F. = Théoréme d’intégration des développements limités

= Formule de Taylor-Young concernant les développements limités.

3. . La formule de Taylor-Young et les développements limités, comme les limites ou équivalents,

ont un caractére "local", c’est-a-dire seulement "au voisinage d’un point".

. Par contre la formule de Taylor-Lagrange (ch.Intégrales, différente), a un caractére global :

vraie sur un segment [a, b|, par forcément "petit". (Généralisation des accroissements finis.)

9.4 (*) f C*®, f> 0O, nulle hors de [—1,1] valant 1 sur [—0,0] ...
1. Soit f: f(z)=0siz<0; f(z)=e"siz>0. Montrer que f est C(R).

2. En déduire une fonction C* sur R, positive, nulle hors de [—1, 1] avec / =1
R

Corrigé :

1. . Comme f(z) — 0, (x — 07), on a f C°(R) aisément (car sur R* : C° par composition).

1 ¢ 1
. Puis pour z > 0, f'(z) = e_l/m.? C! sur )0, +oof, vérifie f/(x) = o t= o T donc
Tr—
f'(z) —>+0 - le th. de la limite de la dérivée fournit que f’(0) existe, vaut 0 et f' C% en 2 =0
x—0

a droite. Ainsi f existe sur R et y est continue (car pas de probléme en 0 par la gauche) : f C L

_]“_4
£\ NTA P c s e(R) oy Py () ~1/z
(*) Méme Théoréme appliqué ici a f\%(z) = ——>.¢ .

pors . (Fin laissée)

2. Voir g(z) = f(z+1), h(z) = F(1—2); ¢(z) = g(x).h(z), a = / o >0 et ¥lr) = ()

3. Remarque (*) : on peut répondre au titre en s’aidant de ¥(z) = / Y(t).dt. A finir.

9.5 (*) Questions au sujet d’une pseudo-dérivée (...)

fla+h)—flz—h)
2h
1. Soit f C° sur un intervalle I pseudo-dérivable a lintérieur et f* > O ici. Soit a < b dans I.

(a) Soit € >0. Et E={z € [a,b]: f(u) > f(a)—€} Yu € [a,z]}.

Montrer que E est non vide, majoré¢ (on note ¢ = sup(E)).

On dit que f est pseudo dérivable en z si a une limite finie. Notée f*(z).

Montrer que ¢ > a. Puis que ¢ € E. Enfin que : ¢ = b par I’absurde.

(b) Déduire que f(a) < f(b). Montrer que f est strictement croissante.
2. On remplace f* > O par f* > O. Avec f,(z)= f(z)+ %, montrer que f est croissante.

3. Soit f continue [a,b] dans R, pseudo-dérivable sur ]a,b[ avec f* continue sur |a, b|.

(a) On suppose que f(a) = f(b). Montrer que : Jc €]a,b[ avec f*(c)=0.
b) —
1056 _ gy

(b) En général, montrer que ¢ €]a,b[ avec
(c) Ce résultat demeure-t-il sans supposer f* continue ?
)

(d) Montrer que f est C* sur ]a, b].
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10 Polynémes R[z], C[z]

10.1 Polynoémes scindés sur R (Théoréme de Rolle)
1. Si P est un polynéme scindé sur R, montrer que P’ aussi.  (donc : [(1 — 22)"]™ scindé !)
a racine de P d’ordre k > 1 = racine de P’ a l'ordre k — 1 et Th. de Rolle ...

2. Si P, polynéme de degré n, est scindé sur R montrer que P + k.P’ aussi. (avec e%.P(a:).)

10.2 En utilisant les racines complexes [corrigés]
1. Résoudre le systéme : (1) z+y+2=0, (2) 2> +32+22=14, (3) 2>+ 43+ 23 =18
Rép. : Avec (1) et (2), on a oo = =7 d’ou z, y, z racines de T% —0.7? — 7.7 — g3 = 0.
Alors (3) : 7.01 + 3.03 = 18. Donc z, y, z racines de (T 4+ 1)(IT? —-T —6) =0 ...
2. Donner une C.N.S. pour que les trois racines de z° + p.zz +¢ =0 aient méme module.
Rép.: p=0. (Car: €+ e 4 e =0« cesont : {9, j.e, j2.e})
3. C.N.S. pour que P(z) = 23 4 p.x + ¢ ait une racine au moins double (racines : a,a,b).

— Th. : a racine au moins double < P(a) =0, P'(a) =0 < a® +p.a+q=0,3a> +p=0. (1),(2).

- SiaeR:peR™, a:e.q/%p ,e==+1. (1) : —p.g—l—p.a:—q, %p.e.,/%p: —q. e = £1 (2 cas

permis) ; équivalence en élevant au carré : g.pQ.%p = ¢ ’m 27.A = 4p® + 274°.

— Cas a,p,q € C, rédaction difficile. La division euclidienne donne (idée importante !)
3.P(z) = P'(2).Q(z) + Reste; ( 3.P(z) plus agréable) : a racine de P et P’ < a racine de P’
et du Reste = 2p.x + 3q. Aisé mais nouveau! a doit exactement vérifier (3) 2p.a+ 3¢ =0, (2);

2
ou 3. (—Q—Zq) +p = 0; on retrouve par équivalence 4p® + 27¢> = 0. Toutefois ici on doit voir

a part (a cause de la division) le cas p =0 : forcément g = 0 avec (3); ce cas entre donc aussi
dans le cas général 4p3 +27¢% = 0 et termine. [Note : 'expression de la racine au moins double

a :_2—:;;] , 81 p# 0, est bien plus simple que a = €.y/ _?p et celle-ci valide que si p réel négatif !|

Si A<0:a,bceR@E®—3z—1=0).cos(3y) = 4cos*(y)—3cos(y);x =kz : 42> — 32 = K, K? < 1!

4. Remarque : avoir = = </a+\/5+ (/a,—\/g €Q ? a,beN* bnon carré; A3 =a%—b.

(a) Montrer que V/a+ Vb & Q (bnon carré); et >0 (sia< Vb, Vb+a>Vb—a).

(b) Montrer que z € Q* = A € Z*, z € N* et z(2? —3.A) = 2a; par suite : z divise 2a.

¢) Montrer que x = 2a est impossible (4a®> — 1 =3A, A>1; 4b=1+3A —4A3 >4, A < 1).
)
)
)

(

(d) Et z = a impossible (a> =3A =2, A> —1; b=2+3A-A3>1, A< 1; A =1:impossible).
() Quez=1<a=3p—-1,b=p*@p—3),peN* et z=2ca=3p+1,b=p(+3)% Donc
(f) Siae|1,5]],2<b<3:2¢Q. [Sinonb)c)d):z=10u2.. Maisa=2, b=5:2=11
10.3 P € C[x],P(2*) = P(z).P(x — 1) (Pcte : 0,1)

1. Avec P(x) =0= P(2?) =0, déduire que : 2 racine = 2% racine. Donc racines € {0}U U.

(Sinon, racines de module tous différents ; infinité de racines différentes; et P = O, vu).

2. Avec: P(r—1)=0= P(z*)=0,si z=a— 1, montrer que : z racine = (1 + 2)? racine.

. ainsi 0 racine = 1 racine = (1 + 1)? = 4 racine ... on a vu que ceci donne P = O. Donc :
. zracine = | z | = |1+ 2z | = 1. Mais avec Cercles(centre O, r = 1) N (O (affixe —1), r = 1),

seules j, j°> possibles ! Réciproque ... Solutions : P = O et P(z) = (2> +z +1)?, p€ N.
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10.4 Majorer le module de racines dans C [corrigé]

Soit f(2)=2"4+az" '+ .. ta,, g =2"-|a|z" " —..—|an|, a,#0.

Montrer que g posséde une unique racine dans R™ et qu’elle majore les racines de f en module.
~ Si f(2) =2 —z41ou f(z) = 2° — 2+, ex. dit que g(x) = 2° — 2 — 1 a une unique racine dans R"

qu’on peut estimer (zg < 1,2) et que les 5 racines (€ C) de I’équation initiale ont un module < 1,2 !

— Montrons que g a une racine unique dans |0, +o0o[ (qui est dans |0, +oo[) par récurrence. n =1 : vu.

Passage au rang n : avec les notations de I’énoncé. Alors g est dérivable (comme polynéme) et
g (xz) =n[z"' —b.2"% — ... —b,_1] tous ces coefficients étant dans RY.
. Ici, on a un léger ennui : soit tous les by, sont nuls. Auquel cas g strictement croissante sur R (car ¢’
ne s’annulle qu'une fois en 0) et avec ¢(0) = — | a, [< 0 [et la limite en +o00|, c’est fini.
. Soit non. On écrit : ¢'(z) = n.ajk.[:nn_l_k — .. —bp_k_1] de fagon a ce que —b,,_x_1 < 0 : 'hypothése
de récurrence permet de dire que ¢’ s’annulle en 0 (peut-étre) et en z1 > 0 seulement sur R (racine
simple) et un tableau de variations de x € R + g(z), semblable, termine aussi ce cas.

Notons xg la racine dans ]0,+oo[ de g et retenons aussi : g négative avant xy, positive apreés.

— Maintenant si z racine de f, alors —2" =a12" '+ .. Fan, |z <|a | 2" At | an |
inégalité triangulaire; ou en notant : |z |=x € RT: g(z) <0. Donc: z=|z| <z !

10.5 Reégle de Sturm pour le nombre de racines réelles

1. VP € R[z], considérer la suite de Sturm : Sp = P,S1 = P'; Sp_1 = S,.Q — Sky1, d° Sk+1 < d® S.
[Div. eucl. "signée".| Soit p minimum : S, = Cte. Montrer que S, =0 = pgcd(P,P') = S,_1

donc P a une racine (complexe) double, cas qui est exclus ensuite (car alors prendre P/S,_1).
2. Avec pgcd(P, P") = 1, montrer que si ¢ est une racine de Sy, 1 <k<p, Sp_1(c).Spp1(c) <0. (Clest

le point clé avec le signe — ! On ne peut avoir de plus Si(c) = Sk_1(c) = 0 avec pged(P, P') = 1.)
3. On considere les signes de Sp(z), ..., Sp(z) notés +, 0, — pour >0, 0, <O0.

On note V(x) le nombre de variations de signes, sans tenir compte de 0 :
(rappel, pas deux 0 de suite) ; ainsi +,+,0,—,0,—,0,+, —,+ serait compté pour V(z) = 4.

(a) Soit R I’ensemble des racines des S, € I un intervalle. Si I N R = () vérifier que V(x) = cte.

(b) SiINR={c}, P(c) #0, cracine de S;,, ..., S;,, montrer que x+— V(z) est constant sur I.
[Les signes de (S;,—1,Si,,5i,—1) sont (+,?,—) ou (—,?,+) avec q.2, (?) pouvant changer
avant/aprés x, mais dans chaque cas pour ce passage et les autres, méme valeur avant/apres. |

(c) SiINR ={c}, P(c) =0, montrer que xlincl—v(x) —xling(a:): 1. [Avec (b), on étudie seulement
le passage So(x),S1(z); cas P'(c) > 0 ou P'(c) <0 : ici un changement de signe ! Etc.]

(d) Si P(a).P(b) # 0, en déduire que V' (a) — V(b) = nombre de racines de P sur U'intervalle ]a, b[.

10.6 Meilleure approximation uniforme de O (polynémiale)

1. Montrer : 3! T, € R[z] : T),(cos(a)) = cos(na) [pol. de Tchebychev, n > 1 = T,,/2" ! unitaire] et
2. sin(a).Uy(cos(a)) = sin(na); T, = n.U, ; Tp(ch(a)) = ch(na) sh( ).Un(ch(a)) = ch(na), pair/impair.
_ I

=57
[z = cos(k.m/n), Q =t,—P :si||P|| < ||tnll, @(x0) > 0,Q(x1) <O0,...,Q anracines, deg(Q) < n—1
donc O, imp. Egalité (*) : (=1)*.Q(zy) > 0; et (1), Ijsp (2 — 25) > 0 car xp > 21 > ...; donc si
Lo =" A T0 (X — ;gj)<Pol-de-L> M >0. Lo =Q, coeff. dea™:0, Y N =0,\, =0:Q=0]

k

3. (*) VP € R[z] de degré n > 1, unitaire : [|P|_ 5 = | et égalité & P =t,

on— 1H_ n—1

n+lzx
1 —r.cos(a)
1 —2r.cos(a) +

4. Avec la série entiere » r™.e™ | vérifier que > Ty (cos(a)) =

5, pour | |[< 1.
n=>0 n=>0 r

Et que les T, sont orthogonaux pour le produit scalaire sur R(z] : < f,g > = / f 1 i d:v.
— X
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11 Fractions rationnelles

11.1 "Homographie" : écriture analogue pour f, f~!

i az+b ) _ . .
Soit z — f(z) = ot d ad — be # 0. Veérifier que =1 (la on elle existe) a une écriture analogue.
cz
Noter le birapport [00,0,1,z] = z et (f conserve le birapport ... = [p,q,r, f(2)]) < f homographie.
. _Z—Zl_ Z —Zz1 (birapport) . . 1 1 B 2c z +— z + [ seul cas ou
2 points fixes : . —k.Z_ZQ < —ete ), si1seul: FA——— <ooseulpointdouble )

11.2 Quelques décompositions a effectuer (...)

b
- +— (trouver 0).

1. Soit a, b, ¢ distincts et P(x) = (z —a)(z —b)(z —¢). Calculer P'(a) + o) T P
2

[Ind. : P?w) ::E—a+:n—b+3:—c' Trouver a:P’(a)' Puis faire%et:pﬁ—l—oo].

2.z
x2 — 2z.ch(a) + 1

2. (Indépendant). Décomposer en éléments simples :

11.3 Transformation d’équations, utilité (...)

X" -1 1
Y1 = 0. En posant Zl—m
. En déduire que H 2 = —.

1<k<n—1 n

On sait que les x; = ei‘k'zﬂ/”, 1 <k<n—1, sont racines de

former un polynoéme dont les racines sont z =

11.4 (*) Le Théoréme de Gauss-Lucas (...)

Soit P un polynéme de degré 3 (on se limite ici), de racines complexes distinctes z1, 29, 23.

Montrer que les racines complexes de P’, notées u et v ici, sont situées dans le triangle My, My, Ms.

P’ 1 1 1 1 1 1
Solution. On sait (& voir) : (z) = + + . Donc 0= + + .
P(x) r—2z1 T —2zy T — 23 u—2z1 U—2zy U— 23
u—2z1 U — 29 u—z3 u— 2z U — 29 U — 23

Ou: =0.

= 0. On conjugue :

lu—z1 P Ju—= |u—2]? lu—z1 P Ju—2 P Ju—2z]?

D’ou enfin, vectoriellement : «. MU + 8. MsU + v.M3U = 0 avec a, B, des coefficients positifs.

Mais une égalité du type a.GM; + 8.GMs +~v.GM3 = 0 avec o, 3,7 réels tels que a+ B +v #0
est une question de Barycentre !

Donc :  Ul(u) est barycentre de My, My, M3 affectés de coefficients (réels bien sir) positifs !

Si on le calcule par associativité, le barycentre partiel G; de My, Ms est sur le segment [My, Ms)
car les coefficients sont positifs. On recommence avec G7 et M3. Finalement :

U(u) est bien situé dans "I’enveloppe convexe" (le triangle !) My, My, M3. Idem pour V(v).

11.5 (*) Equations paramétriques dans R*! (coniques)
Soit : Py, P3, P3, @ des polynomes de Ry[z], avec Q # O. On pose :

_bh®, B0 B
Q) ' T e’ T T Quy

(Indication : Pj, P», P3, @ liés donc courbe plane; ainsi que P12, v, PoP3; d’ot :

Montrer qu’on a une droite (en partie) ou une conique.

a.x? + by’ 4+ c2> +dry+exz+ fyz=0: cone de degré 2; conique !)
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12

Fonctions élémentaires

12.1 Proche du cours. Diverses études [corrigé]

1.

"Formule de Moivre" pour ch,sh 7 (e*)" =e"": ‘ [ch(x) + sh(z)]" = ch(nx) + sh(nz) et parité !

Simplifier C' = Z ch(kz). Analogue a Z cos(kx) pour revoir la trig. circulaire.

0<ksn 0<k<n
Avec: E = Z ek C sera la partie paire de E(z) ou C= w si besoin. Alors :
0<k<n
etz 1 e+ D2/296h (0 4+ 1)x/2]  sh(n + 1)z/2] sh[(n +1)z/2]
b= e — 1 - er/2 28h($/2) = Sh(:ZT/Z) [ch(mc)—l—sh(n:v)] C= W@h(nx)

[Vérifications|: n=0, n=1, 2=0..

. (*) Preuve de : ch(a + b) = ch(a).ch(b) + sh(a).sh(b); sh(a+b) = sh(a).ch(b) + sh(b).ch(a).

Solution : €™ = e%.e? [non € ici] ch(a +b) + sh(a + b) = [ch(a) + sh(a)][ch(b) + sh(b)] et
parité ! e (4t — ¢79 70 ce quiest ch(a+b) — sh(a+b) = [ch(a) — sh(a)][ch(b) — sh(b)], etc.

. Etudier f(z) = Arctan Lcm(x). Domaine z # 7/2+ k.7, f etz #w/4+knm a

1 —tan(z)
cause du dénominateur de la fraction. Ici, astuce trigonométrique : f(z) = Arctan[tan( E +z)] !

D’ou, si < —I—:L' < 5’ flx)=- + x. C’est un intervalle de longueur 7 : la courbe est connue.

4
m En 7/2 + k.7, non seulement f se prolonge par continuité (comment ?) mais devient C'*

(*) Simplifier f(z) = Arcsin(2z.4/1 — x2) grace a de la trigonométrie, ici, ce qui évite de dériver.
(a) Corrigé : Domaine capital. (1) x € [-1,1] avec \/ et (2) 2z.v/1 — 22 € [-1,1] avec Arcsin.

Résolvons (2) avec x = sin(t) vu que (1) doit étre satisfaite. C’est nous qui choisissons ¢ : pre-
nons t € [r/2,+m/2] donnant tous les x € [—1,1]. (2) : 2.sin(t). | cos(t) |= sin(2.t) € [-1,1] :
toujours vérifiée! Ainsi (1) et (2) donnent : Dye finition = [—1,1]. Detude = [0,1] par imparité.

(b) Domaine de dérivation. Déja = # £1 a cause de ,/ , sin(2t) # £1 & cause de Aresin.
2t = +7/2 (sur D) ou t = +7/4 ou & = +v2/2 a exclure. Exclus ou a voir z = +1,+v/2/2.

(c) Alors y = Arcsin(sin(2t)) . Si 2t € [_Tﬁ, g], on ay = 2t. Comme t = Arcsin(x), si

te [_TW, %] ousi z € [_T\/i, ?] : y=2.Arcsin(z) connu ! (et dérivée si besoin !)
LSio2e [g,w] e [?,1]; sin(2t) = —sin(2t — ). [La] 2t —m e[, "0 c [%ﬂ,g],
y = —Arcsin(sin(2t — 7)) = —(2t —m) =7 — 2t = 7 — 2. Aresin(z). Dessin, vérifications ?

1) y € [-7/2,7/2] partout et 2)y — 0. Note : pas de dérivée si : = = v/2/2.
Tr—

Polynomes réels positifs sur R. Soit P € R[x| tel que Vx € R, P(z) >0; montrer que :
P=A?+DB? ot A BecR[x]. (Factoriser sur C; puis (S%+T?)(U? +V?) = M? + N?%)

Soit P#£ 0O, PeR[x|: Ve eR, P(z) > 0. Montrer que: Q=P+ P +...+P™ > 0.
(Q(x) ~ P(x) > 0. Si a, plus grande racine de @ si elle existe : Q(z) ~ a(x —a)?,a > 0,p > 1.

Or Q est C*°, on peut dériver un D.L. et dire que Q'(z) ~ a.p(x —a)?~'; donc dire que : P(x) =

Q(x)— Q'(x)x:a — a.p(z — a)P~! par différence de termes d’ordre différents. Impossible si z — a™.)
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12.2 Equation fonctionnelle de la fonction th (...)

Trouver f continue R — R : f(z+y)= %

Si on exclut f = £1 (f = cte), montrer : —1 < f < 1. Puis avec Argth(f), que f(z) = th(a.x).

12.3 Courbes et géométrie (exercices remarquables)

1. Dériver les fonctions suivantes (trouver cte/ch(x)) puis en déduire des relations entre elles
Arctan(e®)  Arctan[sh(z)] Arctan(th;) [Voir ch(2a) = (ch?(a) 4+ sh*(a))] Arcsin[th(z)].
Arctan[sh(x)] = 2. Arctan(e®) + C = 2.Arctan(thg) + D ! constantes avec z = 0; +00; —00 ...

Finir avec la 4éme fonction. (*) Ceci lié a la "fonction de Gudermann". [cf. Cours.|

2. Soit z+y =1; montrer que : z.ln(z)+ y.Iln(y) = —In(2)
0<uz, y<l1,acausedu In et de z+y=1. Etudier f(z) = z.In(x)+ (1 — z).In(1l — z), ses

variations; trouver un minimum atteint pour x =y =1/2 valant : —In(2). Vérifier et finir.

3. Entrelacement des racines de deux trinémes du second degré. On considére, avec o # 0 :

ar’ +br+c a (ab—ap)z— (a.c—axy)

== — . Vérifier que (et graphe des 7 cas) :
ax? + x4y ot ala.x? + B.x+7) que (et grap )
Siab—a.f#0,avec Y =y — g, X =z — x7 unique point de Cubiquen Asymp. horizontale ;
o
. kX —p. X2+
u’alors on obtient : Y= " Y =k ="
d pXZ+gX +r B

(a) Si % —4a.y <0 ou ¢ —4pr <0, donc pr>0: aux max, min, X?=r/p et
CubiqueN(Y = h) donne X3, X, avec XXy =r/p, donc X1, X2, Xinin, Xmaz en D.H.

(b) Si % —4ay >0 ou ¢*—4pr >0, mais pr > 0 : courbe non bornée; D.H. idem. Racines
de az? + bz 4 ¢ : 0 ou non enchevétrées avec celles du dén. (car aux 2 asympt. vert. X| < X3,

méme limite infinie en X{Jr, X} car coupée par une droite horizontale en 2 points au plus.)

(c) Si % —4ay >0 ou ¢*—4pr >0, et pr <0: 3 arcs ol f strict. monotone. Ici, X1, X
toujours séparées par une Asympt. vert. Donc : les racines s’enchevétrent et réciproquement.

i 32— - 2 =0y = Xy XX
(d) Si f%—4ay=0 ou ¢*—4pr=0: Y_(X—XQ)Q’Y_ K-(X_Xo)gvdonCXertEtXAV.
symétriques / point X7. Si intersections avec Y = h, (X3, X9, Xav, Xezt) en D.H.
Enfin siab—a.f=0,Y = A7 0 , ici un axe de symétrie. 0,1 ou 2 Asymptotes vert.
a.[(x —x0)2 — 4]

mais dans ce cas-ci, pas d’enchevétrement des racines. (Ici, Cubique N Asympt. horiz.= ().)

4. (*) Soita>1; b>1 a#b. Montrer que

les courbes y = a” et y =5b" sont homothétiques de centre sur I'asymptote commune Oz.

SN .
Corrigé. Soit (C) décrite par M(x,y), d’équation y = a*. L’homothétie h: QM' = k.QM

[Q(c,0) sur asymptote commune Ox| donne : <Z> — (I - Z’ikk(; B a)), k # 0.

On déduit en inversant le systéme que =z = o + (2’ — a)/k; y=1vy'/k; et que (z’,y') sont liés

‘Clia . . . . /
par ¢ = k.a®" "k : c’est la courbe image décrite par M’. On veut que ce soit aussi ¢’ = b" .
/

On choisira k>0 et l'égalité des In: 2'.In(b) = In(k). + [+ - a].ln(a); va' e R.
l In(k
Possible avec k = ZZEZ; ; et a= m. (Egalité de deux polynomes en ).
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13 Equations différentielles

13.1 Trouver les polynémes P(x) € R[z] : P’ divise P

1. Ecrivons P(x) = P'(z).Q(z). Si P'(z) = O, P = O; sinon Q(z) = %.(z—a); n = degré (P) > 1:
Par conséquent : n.P(x) = P'(x).(z — a).

2. Premiére solution (bréve) ! Soit zp une racine de P a l'ordre k > 1.

2o est racine de P’ a 'ordre k — 1. (Bien réfléchir a cela car on a fini !) Donc I'égalité prouve

que zp = a. Finalement P posséde une seule racine sur C et ‘P(x) =a(z—a)", n>1. ‘

Inversement si P(z) = a.(z —a)" : P'(z) =n.(z —a)"" ! donc P’ divise P. (1/n est sans ennui)
3. Autre solution (M. Bouchut, Saint Chamond). Ecrivons n.P(x) = P'(x).(x — a) :
(a) Aprés avoir vu que P(a) = 0, dérivons : n.P'(z) = P’ (z).(x—a)+P'(x) donc (n —1)P'(a) = 0.
(b) Re-dérivons : n.P”(x) = P®(z).(x —a) + 2.P”(2) donc (n—2)P”(a) =0 ... Ainsi:

(c) 0<k<n= P(k)(a) = 0; donc a racine (unique) d’ordre n. Réciproque comme ci-dessus.

4. Autre idée : traiter ceci en Equation différentielle P(z) solution de (z —a).y’ —n.y=0 ...

13.2 Trajectoires orthogonales (de courbes planes ici ...)

1. Si f(z,y,y') = 0 est 'équation d’une famille de courbes (éq. diff.), justifier que les trajectoires

-1
orthogonales sont solutions de f(z,y,—-) = 0. Cas de la famille de droites Cj: y=*k.x ?
Yy

2. Si f(p,0,p) =0 est I'équat. d'une famille de courbes (éq. diff.), justifier que les trajectoires ortho-

2
gonales sont solutions de f(p, 0, —/j) La famille Cj : y = k.xz est exclue en polaires car 6 = cte.

Cas de la famille de cercles : p = A.sin(f) ? ou vues comme ceci : 22 +y°> + Ay =0 ?

(*) des cardioides p = )\(1 + COS(@)) 7 [Par inversion conservant L, on a des paraboles d’axe Oz, de méme
foyer O : p = p/(14cos(6)) ; les traj. . sont les paraboles sym/O, donc les traj., cherchées sont les cardioides sym/O.]

13.3 Trajectoires orthogonales (de courbes non planes ...)

1. Définition. Sur une surface, on appelle lignes de plus grande pente les trajectoires orthogonales
a la famille de courbes C, tracées sur la surface telle que z = k : lignes de niveau 58.5.

2. Lignes de plus grande pente (horizontale) au Paraboloide Hyperbolique : 2z = z? — y2 ?
Un vecteur directeur d’une Ligne horizontale en M vaut 7(1,E, 0) car 2.z — 2.9y’ = 0; donc
Y

une trajectoire orthogonale vérifie : dr +x/y. dy=0 ou I',: (1) z.y=p, (2) 2 —y? =2z

13.4 E.D. Lagrange y = x.A(y') + B(y'), Clairaut A(y') =

Lagrange <> isoclines rectilignes : Avec ¢ :% , (t— A(t)).%—w.A'(i) = B'(t) : LIN,, courbes intégr.
en paramétriques 40.9. Les homogénes en x, y en sont un cas particulier ; idem les éq. de Clairaut.

Pour ’éq. de Clairaut : une famille de droites solutions y = t.z 4+ B(t) et leur "enveloppe" (E) ch.30.

Traj . & une famille de droites. Eq. diff. des traj.; I'), : z+yy = ' .B(—1/y); les isoclines : droi-
tes de coeff. dir. —1/y- , L aux Courbes Intégrales I, qui sont donc des courbes paralléles de méme
développée ch.30, enveloppe (FE) des droites initiales y = t.x + B(t) : des développantes de (E). 56.1.

13.5 Résoudre y = /1+y. Ne pas oublier la solution : y = —1
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13.6 Equations différentielles avec utilisations de la parité (...)

1. Résoudre f'(z) = z.f(—x), f dérivable sur R. (cf. q. 2.3.)

2. Trouver f C%: f?(z)+ f(—z) =¢€®. (Ecrire f = g+ h, g paire, h impaire).

3. Analogue : Résoudre f'(z)= f(1—=x), f dérivable. (Des indications :)
— Attention : ce n’est pas une équation différentielle !| Comme 2) ou bien
— Le membre de droite est dérivable donc le membre de gauche aussi et f”(z) = —f'(1 — ).
— Donc: f’(z)=—f(x) .. f(z)= A.cos(x)+ B.sin(z) = C.cos(r — ¢); mais attention :
— Réciproque a faire ! A la fin, infinité de solutiolns a une seule constante arbitraire.

let, si la réponse est juste, c’est : y = C.cos(m—% - 5)]

13.7 f C° 2.7- périodique. CNS pour que F' (primitive) soit 2.7-périodique

1. Voir déja le cas : f(z) = cos(z), F(x) = sin(x)+ C est 27 -périodique.
_ 1+ cos(2w)’ Flz) = g n sz’nfz)

2. Voir aussi et savoir f(z) = cos*(x) + C' non périodique.

(Et cela sans rapport avec la constante arbitraire.)

3. Déja, toute fonction C° posséde des primitives par Théoréme.
Puis: Notons d(z) = F(x + 27) — F(z) (comme différence).
Alors : d'(z) = f(z +27) — f(x) =O. Donc d(z) = cte. Ainsi :

x +— d(z) est identiquement nulle si et seulement si elle est nulle en un point, par ex. d(0) = 0.

2m 1 2m
Donc F sera 2m-périod. < d(0) = f(z)dz =0. Comme o f(z)dz est appelé valeur
0 T Jo

moyenne de f, on a finalement : ‘F sera 2m-périod. < la valeur moyenne de f est nulle. ‘

13.8 Si f C° 2.7- périodique, ¥’ + y = f(z) a une unique solution 27-périodique

sin(3z)

1. On a une Eq. diff. LIN. d’ordre 1, a coeff. constants. [f(x) = 5T cos5(72)

est permis| !

2. L’unicité est facile. Car vu I'ESSM, si y(z) et yo(z) sont deux solutions quelconques :

y(x) = yo(z) + k.e™™ ! Quelles soient toutes deux 2m-périod. exige que ke * aussi, donc k = 0.

3. L’existence est difficile. Posons d(z) = y(x + 27) — y(x) (comme différence). Alors :
d'(z) =y'(z+2m) —y'(2) = f(z +27) —y(z + 27) — (f(2) —y(2)) = —d(2) : d'(z)+d(x) =0,

d(xz) = k.e”* : x — d(x) identiquement nulle si et seulement si nulle en un point, par ex. d(0) =0

Soit yo(x) une solution fixée (on ne sait rien sur sa périodicité). On a y(z) = yo(x) + k.e”".

Et donc :  y(z + 27) = y(z) tout le temps <= y(2.7) = y(0) (en un point) avec ce qui précede.

Et yo(27) 4+ k.e > = yo(0) + k.e® conduit & une (et une seule) valeur de k : une sol. 27 périodique.
4. On peut tester tout ce qui précéde sur le cas trivial : ¢ +y=1. y(z) =1+ Xe ...

5. Résolution générale non utile ici. [Voici : var. de la constante, y(x) = u(z).e ", u'(x) = f(x).e”

dott u(x) = / et dt+ k (cf. In(z) = /1 x%.dt). Donc y(z) = ¢, / " F(t)etdt + ke )
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14

14.1
1.
2.

Développements limités

(*) Une suite avec un développement limité (...)

Montrer que tan(z) = x posséde une unique solution, notée x,, sur |nm — 7/2,nm + 7 /2|.
. 1 1 n
(*) Montrer ensuite que 'on a : x, = n.t+= —¢, avec €, =—— — —— &n
2 nw  2mwn?  n?
1

_}h _}3 4

(Avec €, = Arctan

14.2 DI de fonction réciproque avec f(z) = +2° — 2°

1.
2.

Montrer que f est bijective de I sur J ou I est maximal contenant 0.

On note g = f/;. Justifier que g~ ! posséde un DLy en & = 0 & déterminer.

— Corrigé. Bien voir, autour de 0, que f(z) "ressemble" & x mais est au dessus : f(z) = z 4+ 2% + o(z?)

en rouge d’ou f~! en bleue.  Sur R, voici f cf. limites en +o0.

— Sur le DL : On fait le calcul d’abord, en supposant I'existence du DL ; celle-ci laissée en fin !

Un cas usuel d’existence est : ¢ fonction C* avec formule de Taylor-Young (cours).

— Calcul. Supposons g~} (x) = z + az? + z?¢(z), méthode de coefficients indéterminés. Exprimons que

2

g gx) =z :x=[z+2*— 2% +al.]?+2%e) car [..]%.e(x) = 22.€*(x). DI unique : a = —1.

— Existence ? ¢! est continue (pourquoi ?) et dérivable avec : (¢~ 1) (z) = 1/¢'(y) = 1/¢' (g7 (z)) ; cette

expression montre que g~ ! est C'' (on veut davantage !) et méme dérivable 2 fois en 0 : le DLy existe.

Note : profitons d’une certaine analogie Développements limités - Développements décimaux pour

. . . P . m 2 st 5

la question suivante sur les rationnels : période maximale pour — € Q, n > 2 (dév. périod.) ?
n

1.
2.

Cas de 22/7 ? Pourquoi : longueur-de-période < n—1 ? (sin — 1, on dit "période maximale").
(Période max.)< (n premier, m non multiple, long. de pér. des restes de div. des 107 par n : n—1).
Comme la long. de la période du dév.d. vaut la long.de la période des restes des div. des m.10F
par n (facile),3i : m.10* = 1(n) ; chaque p € [[1,n—1]] (= m.107) inversible. D’ou (facile) n premier.
Par le Th. de Fermat (21.1) 10" = 1 = m.10°, m = 10"~ : les restes des div. des m.10" sont

donc les mémes que des 10P7* p=n —1—1i. Ou, dans le groupe (Z/nZ*x) 10 est un générateur.
Remarques. m non multiple de n : clair; n # 2,5; Vm € [[1,n—1]] périod. max.! et 1/11=0,09009...

m est congru & un entier de 1,...,n — 1 donc & un 10'; on finit alors aisément. Exemple :

. 1/7=0,142857 3/7=0,428571 2/7=0,285714 6/7=0,857142 4/7 =0,571428 5/7=0,714285. Et

N = 142857 vérifie 3N = 428571 2N = 285714 6N = 857142 4N = 571428 5N = 714285 7N = 999999 !

. Par recherche informatique, on trouve que les n tels que 1/n soit a période maximale sont (pas

2,3,5,11, 13) : 7, 17,19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223 ...

. Caractérisation, p premier : comme en fait < 10 > est un sous groupe de (Z/pZ* x), la longueur de

la période est un diviseur de p — 1 (Lagrange). Alors : 1/p est a période maximale < [p # 2,3,5
et Vd diviseur propre de p — 1 (# 1,p — 1), p ne divise aucun des entiers ag = 11...1 (d chiffres)].

(ag =11, a3 = 3.37, aqg = 11.101, a5 = 41.271, ag = 3.7.11.13.37... donc 13 ne convient pas car 13
divise ag et 6 diviseur propre de 12; 37 et 41 non plus ...). [Indication : 107 — 1 =9.q4 ! |
(Voir aussi les nombres m/13 de période 6 : avec 6 permutations de 076923 et 6 de 153846.)
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15 Courbes en paramétriques [hors coniques]|, fonctions R — R"

15.1 Une courbe orthoptique (avec diverses indications ...)

z = a.cos>(t)

Y = a.sin3(t)) 7 z.sin(t) + y.cos(t) = a.sin(t).cos(t).]

1. Equation de la tangente & la courbe (

2. Montrer que (2 tangentes sont orthogonales) < cos(t —t') =0; par ex. t —t = —7/2 + 2km.

4
ou p :i.cos(20) : courbe orthoptique de I'astroide,"quadrifolium". Dessins 7 15.5.

V2

15.2 Cinématique : composition des vitesses et des accélérations

a T a T
3. Montrer que la courbe cherchée vérifie x = —.sin(2t).cos(— —t), y = —.sin(2t).sin(— — ¢t
q gsin(2t).cos( 1), y= J.sin(2t).sin(] 1)

.
Notations. Soit un référentiel R,(O, 7,7, k), i.e. (id est) un repére fixe au cours du temps.

Soit maintenant un repére R(A, w, v, w) mobile et M(t) un point mobile.
. — N — N —_— = —— o
Siona: OM=z7 + .. et AM=Xu+ .., et OM =0OA+ AM, on définit :

y p p p dM
%(O—M)Ro = %(w)—f + E(y)7 + %(Z)? appelé vitesse absolue de M, notée ‘—/}a(M) ot %/Ro-

Attention : ce vecteur peut étre exprimé dans n’importe quelle base, fixe ou non !

—
dM

dt /R

%(A—)M)R = %(X)ﬂ> + %(Y)? + %(Z)W appelé vitesse relative de M, notée \—/T(M) ou

d — du dv dw
= a(OA)RO + X.ERO + Y.EROZ.ERO dite vitesse d’entrainement du point M.

C’est la vitesse /Ry d’un point coincidant avec M, mais lié au repére mobile R . Vérifier que :

— —
dM dA = = .. . .
t TR T + QANAM A, M liés au solide mobile R, 27.7, 28.5.
—
) - d’0A v dX du X _, i
2. P:ns queHF (M)LRO :i i +X 7 +..)+ 2(%E +..)+ (W u +...) ou bien :
I')re =T /r+Te+2Q AV,, dernier terme appelé accélération complémentaire ou de Coriolis.

—
Enfin : [ V.(M)

— — —
L|\Va=V, + Ve

=
3. Remarquons que si le mouvement d’entrainement est une translation : I'. = 0. Etcf16.3.

15.3 Exemples de mouvement particulier trés important (...)

— — —_—
1. Si V L OM alors OM?=k? (Sphére ou Cercle)

. . _— = —
2. Si mouvement a accélération centrale de centre O, OM A V = (C'te : mouvement dans un plan.

15.4 (*) Etudier les mouvements de A, B, C, tels que (...)

M%w ﬁxe! et

1. ‘_/)A = A—B), etc, par permutation. Supposer A, B, C' équilatéral au départ. (O =

CZ—: =zp—za=(J—1Dza; za= ei't‘\/g/z.e_?"tﬂ; t = oo pour atteindre O. Spirale p = 6—\/5.9.)
— —_—  — o . y . .
2. V4= AB/||AB]||, etc. A,B,C équilatéral at =0. (24 = p.e*?, p =1 —¢.4/3/2... m. trajectoire.)
L = — — — v%/[ .
3. Soitici: Va4 =a(t).AB,etc; a=BC(t). Avec ||Vyu AT m| = R, Dréciser: R4.Rp.Rc.
M
. — — 9 —_— —
Corrigé : Comme ||V oA T 4l =a°.5.2.5, car |[ABA BC| =2.5; on a, avec a.b.c=4.R.S:

1 8.93 1 . .
= ol R est le rayon du cercle circonscrit au temps t.

() RA.RB.RC - (a.b.c)3 (2.R)3
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15.5 (*) Mouvement plan sur plan. Podaire, développée 30.6

Un plan (@) d’un solide se déplace en restant en coincidence avec un plan fixe (P). Le mouvement
hélicoidal tangent est donc soit une translation (trés exceptionnellement) parallélement & (P), soit

une rotation de centre I(t) : centre de Rotation, "CIR". Et Q= d_6’ EL(P); 0= (7).

Donc les normales aux trajectoires des points du solide (Q) passent par I(t) au temps t.

Mais le point géométrique I(t) change avec t; son lieu dans (P) est "la base" ; dans (@) "la roulante".
C’est un roulement sans glissement car T_/ (I)= ? donc : 1_/&([) = ‘—/T(I) : tangentes et ds = do.
. R — dZA — - —
SiAfixéa (@) 15.2 0 ———i—Q /\AI Al = k;/\— (Z1 = Za+i. ) et V,[Me(Q)] = Q ANIM.
si une famille de courbes C%, provenant du mouvement d’une Courbe Ce(Q), a une "enveloppe"
—_—

(E), soit M le point caractéristique de Cy : ona MI(t) L C; (M = I possible). |zcos(t)+ysin(t) = r.]
1. Tangente aux conchoides : Si M décrit C et OM P alignés : M P = cte, M P sur un solide de CIR
I € Normaleys et E 1 ]\W}D car M P passe par O fixe : méme sous-normale polaire en P et M.

2. Podaire d’une courbe : P = proj, (O,Tang.ps & C). Les droites (M P) et (OP) passant par O fixe
sont L en P et forment une figure invariable. D’ou I (donnant la normale en P) sur les normales
en O et en M ; (mais : I non centre de courbure en M !) donc IP passe par le milieu de [OM].

_t2 N 3

ive YT i)

Note : la podaire de la parabole : (;:i) / Sommet est la Cissoide droite : (x =

3. Courbe orthoptique. Les tangentes | en M et M’ (sécantes en P) forment une figure invariable. Le
CIR est sur les normales en M, M’ : MPM'I rectangle, donc IP contient le milieu J de [MM’'].

Ellipse, par Chasles : Ici, (P, J) passe par O (affinité !), on a le cercle "de Monge" : (O, v/ a? + b2).

P,Q € Cy4(F',2a), médiatr.[PF] coupe PF’ en M (tang.) FQ L FP = T = mil(P,Q) €Orth.,

4a* = TF?4+TF"? = 2.(0OT?*+¢?) (F'TP rect., Th. de la médiane) ou enfin par équation bien choisie
y = uz + v tang. < v = d®u® +b? © u?(2® — a®) — 2uxy +y* — > = 0; faire uwu’ = —1.

4. cf. ch.30 "Développée" (et 56.1) : le centre de courbure est un CIR d’un certain solide. Ainsi :
(a) Développée de la spirale logarithmique : Avec V' = C'te, le rayon (O, M) est fixe dans M ,?, N ;

donc [cf. ci-dessus| I se trouve sur la normale a (O, M) en O. Et R :sinp(V)'

— —
(b) Développée de la tractrice : Comme MT = a, le point T est fixe dans (M, T', N). Donc I sur
la normale en M est aussi sur la normale & Oz en T ! Forcément : Ygepeioppee-COS(Qder) = a.

D'ott y = a.\/1 + y2. Paramétrons : y' = sh(y) : y = a.ch(p), de = a.dp et y=a.ch * —axo

5. Epi, hypo, péri-cycloides. Un point M d’un cercle de centre C' de rayon r roule sans glisser sur un

cercle de base B de centre O de rayon a; point de contact en P; arcAP = arcPM, A fixe sur B.

. . L, . ; ; ; N a
.Epicycloide (extérieur) : a.t = r.au, zpr — 20 = € (zp—2¢) : 2pm =7 (m.e“ — elm't) ou m=1+-—.
r

Hypo (0 < r < a) et Péri (r > a) : changer r en —r ! Avec p =r ou —r : si contact extérieur ou

intérieur |zpr = p (m.eit - eim't) m=1+ . m>1 Epi, 0<m <1 Péri, m <0 Hypo.

p
Cas m = —1,"engrenage de La Hire" : diamétre ! 29.6,7. Double génération : (—p.e"™ = p m/e
p.me’ = —p'e™ ) [idem ellipse] : mm/ =1, p' = —p.m=P'C' = —p—a, t' =m.t; doi méme

_ Iy o _ / P . (m=2,1/2,cardioide,L = 16a
cercle fixe a’ = (m'—1)p' = (m—1)p = a.T Hyp, I" Hyp. I Péri, I Epi. m = —5, 12, deltoide).

m—1 2m.r U

-1
Longueur (Newton) s ds? =dz.dz = 4p2m2sin2(m t)dt2 ; ds = 2p.m.sin( t)dt = 13in( 2)du.
m—
. dz o ; . - L d
Développée semblable (Lahire) : avec pri p.m.z.(elt—emlt) = 2.p.m.8m(m t). i g T :d—Z»
s
1 -1 d -1 =iz
_ m;— t; (sim < 0,t — 0T : sign p.m.sin(m t) <0, d_j <0.)|zc :Z+ 1.em—l .ZM(t+—m7: 1) !
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16

16.1

Courbes en polaires [hors coniques]

(*) Sur les limagons de Pascal (Etienne, pére de Blaise ...)

. Soit Cj : p=acos(f) + 1. Vérifier que M(#) de C; et N(0+ ) de C_; coincident.

En déduire que C; = C_;. Dorénavant [ > 0.

2. Tracés de ces courbes ? (I = a : cardioide)

3. Avec p? + 2/)'2 — p.p”, chercher les points d’inflexions et vérifier que cela correspond a 1 < 1/a < 2.

16.2

1.

2.
3.

2 . 12\3/2
"0 R (ch30) Cas p— 07

[Lieu des points d’inflexions p® + a.p.cos() + 2a*sin*() = 0.] PRy

. Pour | = 2a, vérifier que le rayon de courbure en (—a,0) est infini.

[En général, on peut voir que Rg—g = a(A+ 1)?/(A+2); Ry—r = a(X — 1)?/(A = 2); ou A = 1/a).

. Comme "conchoides", vérifier qu’elles ont méme sous-normale polaire que le cercle (I = 0).

Vérifier que ce sont aussi les courbes inverses des coniques par rapport a un foyer;
et aussi les podaires d’un cercle pour un point du plan.

. Vérifier qu'une équation cartésienne est : (22 + % — az)? = 1?(2% + o).

| ay — (e + )

Y@ 147 +az) (en éliminant 7).

Qu’obtient-on par dérivation ? Vérifier que : y

sin?(0)

Déduire que les points & tangente horizontale sont inclus dans la cissoide droite : p = a. OB
cos

Ou sont les points a tangente verticale 7

. Milieux des cordes de Cj, vues de O sous un angle droit ? [(z — a/2)* +y* = 1?/2]]

Sur la cardioide : Vitesse proportionnelle au rayon de courbure < 6 fonction affine de ¢ (ou w = cte).

inflexions : Apres : sym./Ozwx.

(*) Tracer une courbe donnée par une équation polaire (...)

p =1/ cos( g ) |Trissectrice de Mac-Laurin ; si A(—2,0), (Az, AM) = 6/3, alors (Ox,OM) = 6]

— Au départ un intervalle en 6 de longueur 6.7 donne tout.

— p(0 +37) = —p(#) : un intervalle en O de longueur 3.7 donne tout sans aucune symétrie !

— On choisit [-37/2,3.7/2] car p(—0) = p(#) permet encore de le diviser en deux avec une symétrie
par rapport & Ox. Dpyge = [0,3.7/2]

— Au départ 6 =0 tangente paralléle & Oy avec tan(V) = ...

— A Darrivée, branche infinie. y = p(0).sin(#) tend vers —oo, x = p(6).cos(#) tend vers —3. (...)

Idem p = \/cos(2.0); p=1/+/cos(2.8) Lemniscate de Bernoulli et Hyperbole équilatére.
Idem p = cos(#)/sin*(0);  p = sin*(0)/cos(h) Parabole de sommet O et Cissoide droite.

— sint 3.
1 — sin*(0) dH——F.]

. - R R
[L’aire entre la cissoide et son asymptote : 2.5 . /0 ooz =7
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16.3 (*) Accélération en coordonnées polaires, Formules de Binet

— . -2
1. Ayant OM = p(t).w (t), montrer que V= pU + pOuy; et T = [p—p.0 ]

A ne pas confondre avec le repére de Frenet (cf. courbure) !

(acc. centrale f}, U col.) & (

) Q(*)/ = d(x) D/ 1

p2.9:C

= HO—>M/\7H cte;

C'(;)/? P -

02

@y

U+ [2
et que T —li[ 2.0]; donc :
que Ty, =~ 710" 0); :
c’est la "Loi des aires" dA/dt = C/2.)

T/’_c<—(

p

C? 9
z=C

1

2

dé
dp 1

Vz:(dt

)’ + (

p

+(9)7P

)pz

p(t)

connu avec d(V2)

1

)

P P

1
)W+ =
P

—
U1

—
u

—
:[‘ — )77 _"_

=

DI

ou p(0). 2.dt

<l

02
= _dp dve) _dp C°
ici dt "’ 2.dp  dt2 p3’

- =
u

3. Remarque : Mouvement & accélération centrale, Hodographe, Podaire et Inversion !

—
Hodographe = {u : Op =

—

Vit

)}

pour la cycloide z'(t) = a(1 — cos(t)), y'(t) = a.sin(t) : un cercle ...

— Cas d'un mouv. a acc. centrale : Si ici H = proj;(O) sur Tang. a Courbe initiale (podaire)

dA = %pzdﬁ = %dt :%.OH.dS = OH.V =C. Psur (OH) avec OH.OP = C se déduit de la

podaire par inversion de pole O de puiss. C' [aussi P pole de (M, 17) /Cercle,, /& tppr| et on passe
de P a pu par ro,x. Rem. Sila traj. a une asympt. x = a # 0, 1(0,y = C/a) : point de contact
d’une tangente passant par O ; si branche parab. de dir. Oy 'hodographe passe par O, tang. Oy.

16.4 (*) Avec I’hodographe, mouvements a accélération centrale

1. (*) Enoncé : Quelles sont les trajectoires des mouvements a accélération centrale de centre O dont
I’hodographe est un cercle passant par O 7 (Connaitre les coniques de foyer O en polaires).

— La sous-tangente polaire OT (dans OXY) : % = (p

Corrigé. Hodographe de coord. polaires (v, ), v = 2a.cos(yp) : V= a.[(14cos(2¢)) 7 +sin(2¢) 7).
On calcule T : colinéaire a O—]\>4(9) S20=0+7/2(r). Donc V=¢p—0=—(p+ g) (m) et :

P 1 sin(p) _ _ B 2k _ _
>~ tan(V) ~ cos(p)’ df =2dp. p= o) 1Feos0F D) parabole, axe Oy, foyer O. Ou :
Par ! le lieu de P est un cercle contenant O, d’inverse D : y = —b # 0; Pantipodaire de D : par.

de foyer O, d’axe Oy. [Si O ¢ cercle, antipodaire encore connue : ellipse ou hyperbole de foyer O.]

. (*) Enoncé : Chercher T = f(p)u, pour que I’hodographe soit un cercle.
Corrigé : Soit A(a,0) le centre du cercle et V =07+ R.T(go). Alors T = R(p? Forcément :
T = +, f(p) =+R.@. Et 6= cp—i—g (m): p=0. 6= % (loi des aires) donne f(p) =+ Rp—QC

Inversement ici T = £R.0%@. Or duy/dt = TV = FR.Wq + cte. Hodographe : cercle.

. Enoncé. On a une trajectoire circulaire passant par O avec la loi des aires. Vitesse, accélération ?
. , C%a? a(v?) 202.q?
Corrigé : Si p = a.cos(f), trouver que : V* = et, avec , =- .
— p 2.dp p°

Remarques. [(**) Pour les Ovales de Descartes, cf. un probléme de Robert Ferréol].

1) ; la sous-normale : ON = p et OT.ON = —p°.

rg = —e.p. Si L =proj (K,(OM)) :

. B e.d 1 —sin(0) —— T L
Cas des coniques. p = T+ ecos(®)’ OF T OT .cos(0+ 2) =d: T € Directrice. Normale (r, )
dans OXY : O% + OLN =1 ou % _ cosle =) + Sm((p,_ %) NormNOx ={K}:p=0(n) = 0K =

P S
OL = —e.p.cos(f) donc: LM = p.(1+ e.cos(f)) = cte = p.

- ‘ Comme autres courbes ‘ on a les Ovales de Cassini w.v = k?, v = F'M, v = FM ; en polaires :

équation bicarrée de degré 4; 2 axes de symétrie; elles (!) contiennent la lemniscate de Bernoulli.
Les Ovales de Cayley : 1/u + 1/v =2/b avec FF' =2a. (Moyenne harmonique; // ci-dessus.)
Ovales de Descartes : 1 axe de symétrie, 3 foyers (Descartes, Chasles) n'.u +n.v = [; contiennent des
coniques +u £ v = 2a (1 foyer infini) et les limagons de Pascal (2 foyers égaux; 3 si cardioide) !
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17

Suites : généralités

17.1 Des études de suites assez faciles (...)

a b
1. ag >0, bgp > 0; = ——"— bpy1= 5 P a = iby,).
ao 0 Gpi1 R a1 R (Penser & z, = a, + iby,)
2. P, :H(l + k/n?) (Utiliser = —2%/2 < In(1+2) < = pour z>0.)
k=1
2
10+ Un - Justifier que la suite (u?) est connue. Conclure.

3. Soit la suite wupy1 =

2

17.2 Suite impliscite comme racine de polynémes

1.
2.

Montrer que Py (z) = x + 22 + ... + 2™ — 1 posséde une unique racine x,, dans [0, +oo[. Limite ?

Corrigé trés classique. (n >2.) P, continue, strictement monotone sur R,
P,(0) =—1, P,(1) =n—1 > 0sin > 2, donne l'existence et I'unicité de x,, et que x, €]0,1][.

Comme P, 1 > P, (dessin!) P,+1(zy) = Po(zn,) = 0. Donc z,41 €]0,z,] et (x,) décroissante.
D’ou (z,) décroissante, minorée par 0, converge vers [ > 0. [ a trouver, si possible ! Or :

5 11—z Ty — Tl 1 1
r+rt 4. a2t =2 : L =1, x, —aptt =1—x, Montrons: zi"' — 0,
1—z 1—.Z'n n—-+0o00

d’ou : x, tendra vers 1/2. x, < 1 insuffisant : (1—1/n)" - /e ! 0 <z, < 29 < 1, 29 fixe, suffit.

17.3 Accélération de convergence : méthode de Stirling

1.

3.

400 2 +o00 00
1 T - .
Pour ZEZE ona S=5,+R,, S:Z..., R, = Z ... Vérifier alors que :
=1 k=1 k=n-+1
1 1 1 1 1 1 1
S ) 2 P — ht —— =T, wt+—=T,. Et:
Rk k1 B Smeony O Stapmp Tt IS <St o=t
) 1 L 1 ) <[ I R S 1
Ck(k+1)(k+2) 2°k(k+1)  (E+1)(k+2) K k(k+1) | k2(k+1)  (k—1Dk(k+1)
1 1
Et d Ty =U, T,+———=U.
onc +2(n+1)(n+2) U, <8S< +2n.(n+1) U,
Puis : 1 L — L = 2 =
k2 k(k+1D) k(E+1D)(k+2)  K2(E+1)(k+2) 7

17.4 Accélération de convergence : méthode de Richardson

1.

2.

17.5

Supposons que :  up, — Il = XA +O(hy), |ho| <|hi| <1l

Unp+1 — hl Uy,

Montrer alors que v, = converge aussi vers [ mais, de plus : v, — I = O(h%).

1—hy
Exemple : calcul de 7w par la méthode d’Archiméde.
Soit 1 u, = 2".81'711; alors :  wupy1 = Un ou ¢, = cos1 et donc : cpy1 = L+ iy
2n Cnt1 2n 2
(ug = 2.2, ¢ =V?2/2). Vérifier ici que : hy =1/4; ho=1/16 (DI de sin).

(*) Fractions rationnelles convergeant vers un irrationnel

Si Pn — 1z avec t € Q, p, A g, =1, montrer que | Dn |, qn tendent toutes deux vers +oo.

n
(Si g, # oo, on peut trouver (g, ) bornée (par M) ; alors | pp, | bornée (par N); (rp,) prendrait
un nombre fini de valeurs et convergerait vers x, donc stationnaire pour k > K : on aurait x € Q.)
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18 Suites u,11 = f(u,). etc.

18.1 Suites avec beaucoup de radicaux (...)

L. Soit la suite : a, = \/2+\/2+ \/2+... +v2 (nradicaux), a; = V2.

(a) Vérifier : 1+ cos(2z) = 2.cos*(z). Déduire qu'on peut poser a, = 2.cos(,), O, & préciser.

(b) Conclusion sur la convergence (éventuelle) 7 cf. 18.8.

2. Soit la suite : b, = \/ 1+ \/ 1+4/1+..+v1 (nradicaux) [méthode généralisable ici].

(a) Vérifier que by =1 < by = V2 =1,414...; et bpt1 =V 1+ by
(b) Soit f(z) =1+ 2. Montrer que :

E

1+
2

— L’équation f(z) = x a pour unique solution dans RT : |y = =1,618... nombre d’Or.

— f est croissante sur [0, ] (suffira); et f continue sur RY...
(¢) Conclure par récurrence que : 1 < b, < by41 < ¢ donne, avec f croissante :

1< f(1) = V2 <bppr <bnra < f0) = .
(bn) croissante, majorée par o, converge vers [ < ¢. Puis montrer que [ = ¢ :

. car dans l'égalité u,+1 = f(uy), si n tend vers +oo, le membre de gauche tend vers [;
. et le membre de droite tend vers f(I), vu que f est continue sur R™ méme ! Donc :

I = f(l), équation déja vue; seule solution positive ¢ : b, converge vers ¢ (en croissant).

3. (*) Montrer la convergence de ¢, = \/1+ \/2+ \V3+..+vn [Sip=24:p—14++/2p<2(p—1)]

18.2 Soit u,11 = u, + ui, ug € R : un équivalent

1 _ i 9

Un+1 Unp
-1

(b) Avec le Th. de Césaro admis : v,, — A\ = Wh Tt 3 déduire que u, ~ .
n—-4o0o n n—-+00 n—+oo N

1. (a) Si —1 < wup <0, montrer que (uy,) converge et u, N Unt Convergence de v,, =
n—-+oo

2. (a) On prend dans cette question 2, ug > 0. Montrer que : wu, — + o0.
n—-roo

On voudrait un équivalent de u, en +0o0. On pense que In(u,+1) =~ 2.In(u,) donc que
In(uy,) = cte.2" est une estimation grossiére possible. Aussi, on pose v, = In(uy)/2".

1 1 . 1 1
(b) Prouver que vp41 — v, = W.ln(l + u—n); puis que 0 < Vpqpt1 — Ungp < W‘ln(l + =)

Un

2 1ot 1 1 . - ..
(c) Déduire que vy4g+1 — vp < o n(1+ —=). Puis (v,,) majorée, convergente vers une limite a.

Un,
(d) Montrer que Vn € N : u, < exp(a.2") < u, + 1. En déduire un équivalent de u,, en +oo.
(Pour la derniére inégalité, on pourra utiliser un passsage a la limite dans (c).

(e) On précise méme plus ! Soit [, = exp(a.2") — u,. Montrer que (/3,,) est bornée et que :
2.6n—1= (Bus1+ 8% —6,).exp(—a.2"). Déduire que u, = exp(a.2")— % +é€,, avec €, — 0.

n—-+o0o

18.3 (*) Méthode de Newton avec f(z) = z— ¢(z)/¢/ ()

1. Montrer que lim Sntl _ f7(r) (r=0)* ¢"(cx)
| e T2 2 )

2. Regle de Fourier (le signe de ¢” est supposé constant) : (u; — b)(u; —r) < 0 < ¢(b).¢”(b) > 0.

(up —r = si départ de b.)
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18.4 Vitesse de convergence de suites convergeant vers {/a

1 1
Upt1 = E[(n — Duy, + %] converge plus vite que v, = —[v, + %] [Cas 1, f'(¥/a)=0.]

n 2 n

18.5 Suite wu,11 = V2 — uy, ug € [—2,2] et u, = 2.cos(¢,)
1. leére solution. Visée : | upt1 —1|< k. |u, —1|, k<1, k fixe. Déja, la suite existe :

Forcément u; existe et u; € [0,2] C [—2,2] et de méme on peut passer a uz, etc.

V2 —u, +1 V2 —u, +1

V2 — u, + 1, minorer /2 — u,, minorer 2 — u, ; minorer —u,, ; finalement : majorer u,. Mais si

on dit u, < 2 (comprendre pour tout n; et qui est juste) : ———
V2 —u,+1

conclure ! Il faut faire mieux. La clé provient de I’observation :

Ensuite : |upy1—1]= | up, —1 | On veut majorer , donc : minorer

< 1, et on ne peut pas

En réalité : u; € [0,2] et donc us € [0, V2] et ceci est vrai pour tout u, tel que n >2: wu, < V2.

1 1
< =k < 0,567.
V2Z—un+1 " /2241

Donc: n>2 = |u,—1]<k" 2 |uy—1]| caron ne remonte qu’a uy ici !

On vérifiera que ceci entraine :

2. 2¢éme solution : (ug,) convergente vers quoi ? Ici aussi, il y a une difficulté ...

(a) Une chose aisée est que f décroisante de [0,2] dans [0,2] entraine fof croissante de [0,2]
dans [0,2]. Bien str : uqy = fof(uz), ug = fof(uq)... Partons de uy car on a : ug € [0,2].

(b) Voici la difficulté : Une fois qu'on aura vu (pas encore fait) que (u2p)p>1 monotone, bornée
(par 0 et 2), elle sera convergente vers... un point fixe de fof ! (car fof continue).
Donc on résout fof(z) =x. x =1 est solution mais peut-étre d’autres 7
fof(x)=\2-V2—xz. (1) fof(x)=2 = 2—V2—x=2% cequiest (2) 2—2®°=v2—=x
qui = 2—2%?=2-2 ou: (3) z'—42® +24+2 =0 qui posséde z = 1 comme solution.

Donc: a'—42’+24+2=0=(z—1)(2®+2? -3z —2) (division).
L'é¢tude de @(z) =2+ 2% -3z -2 (¢ (2) =0 & z = %\/ﬁ ~ —1,39; 0,72; et
©(0) <0 et ¢(v/2 < 0) montre que ¢ n’a pas de racine sur [0, V2] : car (2) imposait

aussi z < V2 : tant mieux !

Finalement fof n’a qu’un seul point fixe sur [0,2], c’est x =1

(c) Sur [0,1] : = < fof(x) <1 (pourquoi?) donc (ugp)p>1 croissante majorée par 1 si ug € [0, 1]
(pourquoi ?) et décroissante dans l'autre cas (pourquoi?) converge. Et donc vers 1 avec (b).

Puis ugpy1 = f(ugp) converge vers f(1) = 1. Ainsi la suite (u,) converge vers 1.

3. 3éme solution : Voir que wu,, = 2.cos(p,) avec

©n arithmético-géométrique en s’aidant de : 1 — cos(a) = 2.sin’(a/2) = 2.cos(7/2 — a/2).

18.6 Des suites couplées (étudiées sans matrice ici ...)

Up, + Up, Uy + OV

Soit les suites : Uy =2, v1 =3; Upt1 = — Uptl = 6

Déterminer 2 réels q tels que I\, u: A, + p.v, géométrique de raison q. Conclure.
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18.7 Questions autour du Théoréme du point fixe (...)
Soit f contractante, de I dans I, avec I intervalle fermé de R.

1. Montrer que Yug : up+1 = f(u,) converge vers I'unique point fixe de f.

2. Avec f(x) =x +e ¥ de R — R, montrer que | f(z) — f(y) |<| z — y | pour & # y, ne suffit pas.

18.8 Suites pour le calcul approché de 7 (Archiméde ...)

Soit le cercle de rayon 1, de centre O. A chaque pas, on double le nombre de cotés. Pas 1 : carré de coté
I} = V2, demi-périmétre p; = 2.v/2, a; = n/2. Pas n : polygone de k, = 2" 1.4 = 2" ¢otés, chacun

1
de longueur I, ; p, = §kn.ln, d’angle «, = %. Une jolie formule :
1. (a) Vérifier que : 1, = 2.81'71% (= 2.sin%). Donc : p, = k‘n.sin%. (0< aq/2 < 7/4).
. - 1—4/1—sin?(2 .
(b) Avec z € [0,%] = sin®(z) = ! CZS(zx) = sin*(2z) déduire : l41 =1\/2— 412

2
2. (a) Calculer lo. Montrer que : l,41 =v2—u, ou u, = \/2 +1/2+V/2+..vV2, avec n radicaux.

(b) Vérifier que : pp11 = 2"t /2 " w,. Sans calcul : limite de u, et de 2"T'\2—w, ?

Quelle valeur approchée obtient-on pour n =4 avec py =2°.+/2—us ?  Notes b

. . 4 : « ) N S I A Y M
3. Meilleure relation de récurrence : Soit ¢, = 603(7") I’apothéme : & I’étape n, c’est la hauteur issue

1 2 . 1 n 1 R
de O. Avec : cos®(z) = H%(:C), vérifier :  cpp1 = 4/ —;C ;' Pnil = Dn- [Archimede)].

Cn+1

18.9 Meéthode des isopérimétres : périmétres constants & 2

(*) Schwab, Nicolas de Cuse vers 1450 : 9 décimales ?

AB est un co6té au pas n, de longueur [,,, de milieu H, OA = R,,, OH = r,, AOB = Qn;
- 1
C étant milieu de 'arc AB, soit A’, B’ milieux de [AC] et [BC]. Le cercle limite a donc un rayon de —.
™

1. Observer que A’'B’ est le nouveau coté. Placer H' et déduire géométriquement que :

1 « Ry, +r
Tn <Tntt, Ba>Rapp1, 1 < = < Ry, Ant1 = 7n Note 7 Et: rpp= %
T
. . ' R r
2. Avec cosinus de A’OC, A’OH’, vérifier que : EH = Rnill et donc : Rpy1 =+/Rp.rnte1. Note 8
mn mn
1 V T'n Rn —Tn

3. Erreur? Par calcul, vérifier que 0 < R,41 — rp+1 = + (Ry, — Tnt1) < n "™ Note ?

VR, + \/rni1 4

6 .
Trois notes :

L, A . . . 1 R
. ™ + % Aussi la suite g, = §(4pn+1 — pn) converge vers la méme

limite mais encore plus rapidement. (Accélération de convergence de Richardson; cf. 17.4 ignorée d’Archimeéde) !

i. Avec les développements limités : p, =

.. S . a P 1 c? 1+4¢ )
ii. Demi-périmétre extérieur : P, = kn.tan(—n). LCR Ty = ntl _ T on > 1 décroissante vers w et
2 Poy1 1 —tan?(=%2) Cn 2¢n

5
Pnlﬂ = %(pin + Pin)’ Prnt1 =/ Pn-Prny1. %.sin(:c) + %.tan(:c) =z+ ;—0 + O(z") = pondération ;% : meilleure !

iii. Et avec les aires ? On voit que laire du polygone intérieur a 1'étape n est : A, = pp—1. (Donc rien de neuf) !

n 2 n . . . .
"Ona: 2.Rn.sin% =l (= k—)7 2.rn.tan% =l,. Quiredonnent les formules de 1) 2). Mais inutile.
n bn . . .
8 A ne pas confondre avec : an+1 = a ;_ , bnt1 = Van.bn (moyenne arithmético-géométrique de Gauss ...)

(R1—1m1)

’ Et donc, par effet de cumul : 0 < R, — 1, < T n>1. Aussi n =15 semble donner 9 décimales ...

Erreur, géométriquement : tracer A'B’, D son milieu. H'A'D = DA'C (théoréme de I'angle inscrit). D’otu H'D < H'C/2 |
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19 Intégrales simples

19.1 Six petites questions initiales (...)
1. "LPP": T :/Arcsin(:zr)da: = /Arcsin(x).l.d:c = /u.v/.d:c:u.v—/v.u’da: o u = Arcsin(z),v =1

).

k.

Vu
2. "LLP.P" avec bornes : /a:.cos(a:).dx = z.sin(z) — /sm(m)dw Avec des bornes | 3 | endroits :

z.dx

I =x.Aresin(x)— N z.Arcsin(x) + V1 — 22 + cte  (car la derniére :
— X

/2 /2
/ x.cos(x).dx = [a:.sin(:z:)]g/Q - / sin(z).de = ... = g + [cos(a:)]g/2 = g -1 >0. (veérifie)
0 0

3. Changement de variable (facile) : /x.(l +2%)'de. Avec: u=14+2% ona: k/ Y (z).da
1 (1+2%)>°

ou k. /u4.du. /x(l + 22t de = 35— e (on n’a jamais développé (14 z2)* 1)

4. Une somme de Riemann : Lim S,, n — +oo, ou S, = Z ﬁ.sm (k—W> ?

1<k<n n
1
(...) On trouve que la limite existe et vaut L = / x.sin(r.x)dr. Puis par parties ... L= —.
0 o
a+T T T/2
5. Si f € CM, T-périodique montrer : / f(z)dz :/ f(z)dz :/ ... : indépendante de a,
- a 0 —-T/2

. . . . -T
par calcul. Ce qui est : D'intégrale sur une période indépendante du départ [Cas a :7]'

a+T 0 T a+T
On a lécriture (par relation de Chasles) : / = / + / + / ; maisavecz =T +1:
a a 0 T

a+T t=a t=a 0 a+T
/ f(z).de = f(T+1t).dt = / f(¥).dt avec la T-périodicité. Donc : / +/ =0.
a T

T t=0 t=0
. . /2 sin(t) T m
6. Une intégrale calculée par symétrie : / —————~—dt=— (Poser z = = —1t.)
o sin(t) + cos(t) 4 2
/4 /4 /4
Rem. Avec I :/ In(cos(x))dx :/ ln[cos(g —t)]dt, voir que J = / In[l + tan(z)]|dz = W'ZZ@) !
0 0 - 0
a m—+1
19.2 Comment Fermat calculait / o™ dy = =
Sur [0, a], on prend la "subdivision" (infinie) : #.a, #%.a,... on 0 <6 < 1. Alors, une
somme (supérieure) vaut : Z 08 (1 — 0).a.0"™.a™ = a™ (1 - 9)1_0%“ Puis 6 — 1 ...

0<k<+oo
19.3 Une équation différentielle avec une primitive (...)
Trouver f continue sur R telle que :  f(z) + x/ f(t).dt — / t.f(t).dt =1.
0 0

(On montrera que f est dérivable et, avec y(z) = / f(t).dt, que vy’ +y=0. f(x)=cos(z).)
0

19.4 fC°([0,1)), /1f(t).dt =0;a=inf f, B=sup f: /1f2(t).dt < —a.f

a+ 3
2

00—«
2

Indication : /01 (f — 2 (t).dt < ( )2
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19.5 (*) Quelques calculs de diverses intégrales [avec ici les réponses|

— 0
xd:L': 5— et / Vi(z—a)b—x) dx— —(b—a)?, géométriquement !
+x

1—u
2. Soit [ / in{l + ) dzr et J:/ de. En posant x =
142 A 14+u

1
1. Montrer que /

calculer I. En déduire J.

Rép. I:Z.ln(2)—l... I:g.ln@)—J donc J:I:g.ln@).

3. Calculer I(a) :/07r dix I(a) :/Jﬂr/2 = 2./;/2 (u=tan(z)) I(a)= T

1+ a.sin?(x) /2 Vita
/2 dt i /2 sin?(t).dt T
4. Caleuler I(z) _/0 cos?(t) + x.sin?(t) (2\/5) et J(@) _/0 (cos?(t) + x.sin?(t))? (4,953/2)'
., . o ) [T cos(nt).dt
5. (Récurrence) On considére les intégrales : I, = /0 = 2beos() 71 0<b< 1

Calculer I4o+ I, — (b+ 11)) nt1. BEn déduire que I, = a.b™ + ﬁb—n = \/17:_I)2.b”.
b
19.6 (*) a<b, A >0, g C'; par parties / g(t)sin(A\.t)dt — 0 si A\ — +oo
b 1
Corrigé : / g(t)sin(A\t)dt = ... = X[g(a).cos()\.a) ).cos(A.b) +/ ).cos(A.t)dt]. Or :

¢ bornée (C° sur un segment, g C1); |utv4w | <|u| +|v|+|w]| et |/ t)dt | < /|<p | dt

y 1 , K connu sous le nom de
Dot |/ Bsin(\)dt | < X[|g(a)|+|g(b)|+/a 90| =5 (lemme " Riemmn_Lebesgue).

19.7 (*) Une intégrale classique par limite de somme de R. 44.7

n—1
1. Pour n € N*, montrer : 2" —1 = (2® —1).[] (¢* — 2z.cos(km/n) +1).

k=1

2. Soit a un réel, a # +1; en déduire : I(a) :/ In(a® — 2a.cos(t) + 1).dt.
0
3. (*) On peut aussi étudier a — I(a) comme fonction définie par une intégrale :
L - :
On a, pour | r|<1: /0 T 2rczz?2§a—i)— r2 do = m car c’est §Re/0 > r*.e"*da; donc
— cos(a)) o 2.
R2—2Rcos()—|—1 R’

pourR]>1/ I(a)=2mn|al,si]la|>1; 0,si|al|<]1.

b
19.8 (*) Limites et intégrales [dont (/ (). dz)™ L]

b
1. Soit I, = (/ f™(x).dx)", f = O, C° sur [a,b]. Montrer que I, - [ fllco = supja,p f-

1
2. Soit uy, :/ t"f(t)dt, f C°. Montrer que l'on aici :  n.uy, 7 f(1).
0 n—-—+o0o
n
2
T dr ? (Trouver n(2)
m4+1
)

1 1
3. Montrer que wu, :/ f(™)dt - f(0). Equivalent de/ ).
0 n—-+0oo 0

R0

T f(t
4. Soit f paire. Montrer g(x) = /0 ;2: f_(xé dt est paire. hm g(z) 7 Idem avec /0 P dt.
w (k+1).7‘r/n
5. (%) Si f C°(Jo, 7)), / f(z) | sin(n.x) | dz — 7T/ f(z f(@). | sin(nz) | dov =
0 n—-+oo k‘n’/n

%.f(w.@k). Le total tend vers 2./ f(r.z).dr; car on a la limite d’'une somme de Riemann.)
0
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20 Calcul de primitives

20.1 Les primitives de z— e¢¥® sont-elles calculables ?

On y arrive : /et.2.t.dt

20.2 Primitives de fractions rationnelles en sin(z), cos(z)

' .d
/ % ? Déja |cos(3x) = 4.cos®(x) — 3.cos(z). (P3(X) =4.X3 - 3.X polynome de Tchebychev).
cos(3x —

; .d dt . . . .
D’ou F(z)= / % =— / prEmEvE ici w=1t* bon car fraction rationnelle impaire !
cos(3z —

t.dt 1 du 1 du
F = — —_— e ——, —_— = — —. - a - D’ b. ]. :
(x) /(4t3 31 5 /4u2 " 3 /u2 — écomposer, ou bien le cours
1 du dX —k X+A 1.8
Fao)=—f. | — ===k | ——— ==—.In C*—l
(@) 8/[u_§]2_(gz /X?-A? ol x—alt nly
1 t2 1 cos?(x)
F(z)==.n | | +C=-n| ————=
6 cos?(z) — 2
1 4.cos(x).cos®(z)

- B 1 4.cos3(x) cos®(x)
Do F@”)—a-l"' Rt 71O 6 0 14O 50

Remarque. Quand on a dit : ¢ = cos(z), personne n’a dit z € [0,7] car = est celui ... de I’énoncé.

+
OO|<'.;J owlw

| +C. D’on

OO|<'.;J OO|<'.;J

w

| +C. Mais : 4.cos(x).[cos®(z)

=..=cos(3.x) !

B

| +C = | +D.

En un mot, on ne pouvait pas dire "z = Arccos(t)". D’autres exercices :
cos®(z) -1 1 .
1. Montrer que / S’ () de = Tsini (@) + 2512 (2) + Cte;  (t = cos(x) est bon aussi).

sin(z) + cos(x)

2. Avec astuce : Calculer / dr en posant t = sin(z) — cos(z) !

3+ sin(2x)
20.3 Avec des fonctions irrationnelles ( / A connu)
vaz? +bx +c
1
1. Primitive de uantité conjuguée
\/ﬁ+ i1 @ uguée)
2 —a—b -
2. Vérifier que / = Aresin =2 272 L 0 = 2Arctany | 22 + D.
1/ x—a —;13 b—a b—x
a—|—b b— a . . T
[z = sm(t , t € [—7m/2,7/2], pour la premiére; et voir que C — D = 5]
1 1/4/2
3. Vérifier que / = 2Arctan /x — —=In | M | +Cte
2+x V2 =12
. r+2 1, V-1 _ Hlsiz> -2
4. Vérifier que/ x+3dm—e. (:v+2)(:v+3)+§ln| N e—{ lsiae—3
dx 1
5. Vérifier ue/—: * 4 21 x—x—2| —=In|2.4/x—2x — 1] +Cte.
we |y VA Ve e s 2 gl 2k = 20 = 1[4 Cle
. .d
6. Veérifier que | ——t = \/x —2In | x4+ 2+ V* | +Cte.
Va2 +4x +5
. +2)dx —3 3 1
7. Vérifier que __(@tde = —A?‘CCOS\/j x—1)— =.v/*+ Cte.
d 222 +4r+1 V2 2( ) 2\/_

8. Vérifier que /x.\/ 224z + lde = é(>’<)3/2 \1/63(2x +1)/* — iArgsh%C—\/—gl + Cte.
1

9. Calculer /f/x_lda: / z+1 / / t= )
r+1 :v+2 w/xzx— aw+ﬁ\/ax2+bx+c a.x+
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20.4 Une primitive hors série de : f(x) = 1/[ch(z).\/ch(2)]

Calculer / __dr [t = \/ch(2x) rameéne a / sign(z) V2 dt "abélienne" ; faisable.|
ch(z).\/ch(2x) B+ 1)Viz -1

20.5 Calculs de limites (seulement) d’intégrales irrationnelles

Calculer lim [limite seule] et lim

/m dt /A dx
a—0+ Jo /(1 + 2)(22 — £2) A=t Ve = 1)(A - )

[Idem.|

20.6 Intégration des "différentielles binémes" / ™. (a.x" +b)P.dx

1. Montrer que le cas /xm.(a.aj” + b)P.dx se rameéne avec a.x”" = —b.t a /tq.(l —t)P.dt.

2. On suppose p entier et ¢ = N/D rationnel ; montrer que ¢t = uP permet de faire le calcul.

3. Idem si ¢ entier et p rationnel. Dans un troisiéme cas, on suppose p + ¢ entier et p = N/D
. 1-—-t¢
rationnel ; avec / P

1-t¢ .
P.dt et ( T): u”, montrer que le calcul est encore possible.

20.7 (*) CNS: /%dm soit rationnelle (a,b,c,d distints)

Une solution naturelle mais technique. On écrit F(z) = P__ 14 T+ _cton

G—cP -0 w-d? @-d
veut exactement que : ¢ =s =0. Mais la réponse finale doit porter sur a,b,c,d seuls !

D’autre part, en multipliant par x et avec  — o0, clair que ¢ + s =0. Donc CNS & exprimer ¢ = 0

. _(e=a)(c=b) o _ P __a r s TGN .
Ona: p= c—df et | F(z) e (a:—c)+(a:—d)2+(:z:—d)' D’ou & gauche :
- P _ (z—a)z=b) p (x—a)(x—b)—%.(w—dy oi x) le numérateur
PO - o " a—0t@—d? @—cf @ — 02 (z —d) - Soit N(z) 1 t
N'(c)

— Forcément N(c) =0 (sans effort). La formule de Taylor dit que : N(x) =
N'(c)
c—d)?
Par cette fagon, tout revient donc & exprimer que N'(c) =0 !

"oy (c—a)(c—D)
N(w)—2.x—(a+b)—2.w

0 (x—c)+ ..

en faisant comme d’habitude :  *(c — ¢) puis z = c.

— Donc on obtient (notre souci) ¢ = (

(c—a)(c—0b)
(c—d)

({x—d) .. ou c—a+c—b=2. ou enfin :

Deuxiéme solution : plus facile !

On écrit : Elk,l:( LA )/:F(x). Ou:3k, l: —k(z—d?—Il(z—c)?=(x—a)(z—D)

r—c x—d

k+l=—1
(les numérateurs) ; ou bien (coefficients de 1, z, z%): 3k, [:{ 2kd+2lc= —(a+b)
kd* +1c* = —ab

— Ici 3 équations, 2 inconnues (k et [) donc une contrainte entre les paramétres a, b, ¢, d.

1 1 1
— Une fin élégante. Le systéme s’écrit k. (Zd) +1. (2c) =— (a + b) . Il est clair que les 2 premiers
d? ? ab
vecteurs (u, v') sont libres (c # d); on exprime que le 3¢me est dans Vect(w, v') en annulant
1 1 1 1 0 0
2d 2 a+b 2d  2(c—d)  a+b—2d
d & ab & (c—d)(c+d) ab—d*

(a+b)(c+d)=2(ab+cd). (xx) Mais: (x) < (xx) c’est la "division harmonique" !

un déterminant ! =0. =0. Ici on trouve :
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21 Groupes, anneaux, corps

21.1 Diverses questions d’Arithmétique (...)

1. Les congruences dans Z. | a est congru & b modulo n et on note a = b(n) sia =b+ k.n, k € Z. ‘

[Analogue aux congruences modulo 2.7 dans R pour les mesures d’angles.] Ex : 19 = 1(9).
On pourrait développer la "preuve par 9" pour la multiplication des entiers. Autre théme :

2. Le (petit) théoréme de Fermat. Sia € Z, et p nombre premier, montrer que |a” = a(p).

Autre énoncé : p divise a.(a?~! —1). |Si p (premier) ne divise pas a, alors a”~' = 1(p).

Exemple : 1234 = 1234(5) (Fermat, 5 est premier) et ... =4(5) : facile.
Démonstration . Cas p = 2. Il faut voir que a® — a est toujours pair Va € Z. Facile.
. Autres cas : p=3oub,ou7oull .. Sia€N:récurrence. a =0 clair. Sinon a=b+1:

b+1)P =b"+ 1+Zlgkgp,1(§'§.bp_k. Voyons que C;f, 1 < k < p, est divisible par p, ce sera fini.

El.(p— k;)!.CI'f =p! et p est un nombre premier qui divise le membre de droite. Il divise donc

un terme du produit & gauche. Or ne divise ni k! car k < p ni (p —k)! : k > 1; donc divise C;f.
Pour a € Z™ : posons a = —b et p impair (rappel). o = —(b") = —b = a.

3. Utilisation du Théoréme de Fermat. Déja tout nombre de Z est dans une et une seule des 4 parties :
{...,-8,-4,0,4,8,12,16,...} nombres 4k ; {..-7-3,1,5,9,13,...} nombres 4k + 1;

{...,-6,-2,2/6,10,...} nombres 4k + 2; {...,-5,-1,3,7,11,...} nombres 4k + 3.
. Puis : aucun nombre premier du type 4k. . Un unique du type 4k + 2 : c’est 2.

. Une infinité du type 4k + 3 : cf. un exercice du début du Cours (assez difficile).

. Et plus difficile encore : ‘il y a une infinité de nombres premiers du type 4k + 1. ‘
Sim > 2, on va trouver un nombre premier p congru a 1 modulo 4, p > m; celd suffira.

Soit le nombre (m!)2 + 1, p un diviseur premier (tout nombre > 2 en posséde); p > m sinon p

divisant (m!)? ne diviserait pas (m!)2 +1; (m!)? = —1(p) donc [u = v/,v = v/ = wwv = /0]
-1 -1
(m)P~' = (m)>" = = (-1)"z . Or [Fermat| (m!)*~! = 1(p) donc p;zl pair; p =1+ 4k. |Beau !|
Deux remarques 1) Le théoréme de Fermat se généralise avec la fonction indicatrice ¢ d’Euler.
2) Pour p premier, on a donc Va € Z,a” = a(p). N’y a-t-il que les nombres premiers ayant cette
propriété ? Non; un tel nombre est dit "nombre de Carmichaél" ; exemple : 561 = 3.11.17.

21.2 Avec la division euclidienne, préciser les sous-groupes de Z

Ce sont les n.Z. (c’est connu)

21.3 (*) Au sujet des Groupes quotients (...)

1. Soit G un groupe, R une relation d’équivalence. Montrer qu’elle est "compatible & gauche" si et
seulement si elle est du type 2Ry <z~ 'y € H ott H (qui est classe(e)) est un sous-groupe de G.

2. Si H sous-groupe, de G fini, montrer que toutes les classes (relation précédente) ont méme cardinal ;
et card(H) divise card(G), Théoréme de Lagrange; [card(G)/card(H) : indice de H dans G.|

3. Montrer que ’ensemble quotient G/R peut étre muni d’une relation de groupe < H est un sous-
groupe "distingué", i.e. (id est) *H = Hz, V © € G. Exemples : noyaux d’homomorphismes.

21.4 Un groupe admettant un nombre fini de sous groupes est fini

Les éléments sont tous d’ordre fini (sinon contient un sous-groupe isomorphe a Z donc une

infinité de sous-groupes). Etalors: |G| < Y |<a>|. Donc G est fini.

finie
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21.5 (*) Groupe G opérant sur un ensemble £ (...)

1. G opére sur E si on a une application (¢,2) — g.x: ¢.(g.7) = (¢'g)»z et e.x =2, V2 € E.

Montrer que §: z — g.z est bijective E — E, de réciproque : x +— g

.x. Et que g — g est un
homomorphisme G — Sg. Inversement, un hom. g — g, G — Sg définit I'opération g.z = g(z).
2. On appelle Orbite de x :  Orb(z) = {g.z, g € G}. |G induit une action sur Orb(z)].
Vérifier que Vy € Orb(z), Orb(y) = Orb(z). Et que les orbites forment une partition de E.

3. Soit E/G l'ensemble-quotient des Orbites ; vérifier la | formule des classes|: | E | = SO

OcE/G
4. Exemple. Si H est un sous-gr. de G, H agit sur G par (h,g) — h.g; cl(a) = {h.a} = H.a = Orb(a).
Ici toutes les orbites (pour cette "translation a gauche") ont méme cardinal | H |; Uindice de H
dans G est (G: H)=|G/H | (si fini) et ‘ |G |=(G:H).|H| ‘ D’ou le Théoréme de Lagrange !

5. Stabilisateur pour action quelc. : Si A C E, Stq ={g:g9.A = A} : sous-gr. (non distingué) de G;

ex:Stxsia:EE;ona“G\ =|0(z)|.| Sty ]‘ [g — g.x surj. sur O(x) et g.x = g1.x & g € g1.5t, :

ainsi, les antécédents de gi.x sont au nombre de | St, |. Ou bien noter que : Sty = g_l.Stm.g.]

21.6 Le centre Z(G) d’un p-groupe (fini) n’est jamais réduit a {e}

Soit I’action de G sur G : (g, ) — g.z.g" ' ‘ | O(x) | divise | G |. ‘ Si|O(z) | =1,onaze Z(G); donc
|G| =1|Z(G) |+ > | O(z) | ces derniéres de card. multiple de p; d’ou p divise | Z(G) |.
¢ Z(G),0€G/action

(Donc : tout groupe d’ordre p* est abélien. Sinon G/Z(G) cyclique donnerait g = ab.d et gg = dg.)

21.7 (*) Le groupe G des isométries du cube (...)

. % H H . . . .
1. En prenant un repére orthonormé direct A, AB, AC, AD, vérifier qu’il y a 8.3.2=48 isométries, dont

24 directes (GT) laissant le cube invariant. Et que le centre de gravité G est invariant.

2. GT : Id; 3 rotations d’axe I.J milieu de 2 faces opposées (+7/2,7) et 6 autres; 6 demi-tours d’axe
UV milieux d’arétes opposées; 8 rotations d’angle iQ% d’axes AA’ joignant 2 sommets opposés :

24 déplacements. Et en faisant agir GT sur les (AA’), etc, voit que GT est isomorphe & Sy.

21.8 Non unicité de la décomposition dans un anneau non factoriel
Dans Z[i.V/3] : avec 4 = 2.2 = (1 +iV3)(1 —iV/3) et dans Z[i.V/5] : avec 6 ... (Exercice)

Seul 26 vérifie a? < 26 < b%, b —a? = 2 (x). Car ici Z[i.v/2] euclidien, donc principal, factoriel.
b= (a+iV2)(a—iN2);eta—iN2Na+iNV2=a—iV2A(i.V/2); or (aisé) i.v/2 irréductible;
¢'il divise a —i.v/2, il divise a dans Z[zﬂ] et a pair; mais (%) = a,b impairs : a+iN2hNa—iN2=1.
Ainsi : a+iv2 = (a +i.8.V2)%; 3(3a® —23%) =1; seulcas: B =1, = +1; dott a = £5;b = 3.

21.9 (*) Au sujet des Anneaux quotients (...)

1. Soit A, un anneau, R une relation d’équivalence. Montrer que I’ensemble quotient peut étre muni
d’une structure d’anneau si et seulement si xRy < = —y € I ou I est un idéal bilatére de A :
i.e. I sous groupe de (A,+) commutatif et: Va€ A, Ve €I, ax et x.a sont dans I.

2. Montrer que les idéaux de Z sont les n.Z. FEt: Z/p.Z corps < p premier. Th. de Wilson :

(p > 2 premier) = (p — 1)! = —l(p). [« aisé; = dans (p — 1)! regrouper chaque terme avec son inverse sauf

1 et p—1: seuls égaux a leur inverse, cf. éq ?—1= 0, dans un corps commutatif. Voir le cas p =2 aussi.]

21.10 (*) Avec A =ZJi], si p premier, p=1 (4) : p somme de 2 carrés

Avec l'idéal T = p.A (voir 21.9), montrer que dans A/I, 2P~ — 1 posséde p racines, les classes

de 1, ..(p — 1) et i. Déduire que ce n’est pas un corps puis que p est non irréductible ; conclure.
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22 [Espaces vectoriels

22.1 Donner des exemples de sous e.v. supplémentaires

1. Avec une base : Dans R® ? dans R,[z] ? dans R[z] ? 2. Dans F(R,R) ? dans F(R,C) ?

22.2 (*) Résolution de systémes linéaires [corrigé]

r4+y—3z=-13 la+y—32z=-13 et
. . r+y—2z=-8 z =5 Lo« Lo— 1,4
1. Avec le pivot de Gauss : (5) rtytz =3 & Cy4Ts =99 Ly Ly—2L, &
r+2y—3z = 5 Y = 18 Ly« Ly— 1,
On a pris "appui" sur Ligne 1 pour supprimer les x+ de TOUTES les autres Lignes.
lz+y—32=-13 lz+y—32=-13 lz+y—32=-13 lx4+y—3z=-13
—ly+72=29 —1ly+72=29 —ly+72=29 —ly+72=29
=5 < =5 < lz=5 < lz=5
y =18 Tz =47 L4+ Ls+ Lo =12 Ly« L4 —TL3 0=12

‘impossible, visible avant ! mais on a voulu illustrer les opérations élémentaires. ‘

r+y+22+0t=-1 & 3r+2y+6z+t=1 —y+0z2+t=4 Ly« Ly—3.1,

Jx+2y+62+t=1 r+y+224+0t=-1 r+y+22+0t=-1
(S &
20 +2y+5z+t=1 20 +2y+5z+t=1 z4+t=3 Lz« L3 —2.1L,

‘ Sous cette forme, on voit qu’il y a une infinité de solutions a une seule lettre arbitraire. ‘

par exemple t : ¢ arbitraire, z=—-t+3, y=t—4, x =t — 3.

Ar1 + T2 =0
)\Zl’+y =0 r1 + A.x2 + x3 =0
2. (% z+Ay+z=0 et T2+ A3 + 24 =0 ou:en posant Tg = T,11 = 0, le systéme
y+Az=0 .

i Tn—1+Azn =0
de n équations : 1 < k < n:xp_1+ Axp + 21 = 0. On discute sa résolution selon la valeur de A.
(a) Résoudre le cas n = 3. [Rép. : si A ¢ {0,4V/2} solution unique = = y = z = 0. Sinon 3 cas
particuliers en \ ou, chaque fois, on trouvera une infinité de solutions & une lettre arbitraire.]
b) Cas général. Avec wupi1 + Aup + up_1 = 0, montrer que si A =2 : xp = (—1 ko + 0.k) et
+
que le systéme posséde une unique solution : z; = ... =z, = 0. Et analogue si A = —2.
(c) Supposons A # +2; notons 7 # 1/r les racines de 24+ A.z+1 = 0. Donc 2, = a.rf + 5.1 /r".

Justifier, avec zg et z,41, quon doit voir le cas 772 = 1; se produisant "ssi" r = eip“/(”"'l),
p € [[1,n]]; que vaut alors A = —(r + 1/r) 7 Montrer ici que le systéme a une infinité de
solution & une lettre arbitraire. Et sinon qu’il a la seule solution évidente : z1 = ... = x,, = 0.

22.3 Des exemples de combinaisons linéaires [corrigé]

1. Indiquer un espace vectoriel contenant les fonctions cos(pz), sin(qz), p € N, ¢ € N* et montrer
que sin(z) est combinaison linéaire des sin(qz), ¢ = 1,2, 3.
[Sol. Par ex. E = C™(R,R). Trouver (Euler) sin®(z) = _Tl.sm(z%x) + %sin(x), imparité respectée.|

2. Idem pour ch*(z) en combinaison linéaire de ch(pz), p=0,1,2,3,4. [8.ch*(z) = ch(4z)+4.ch(2z)+3.]

22.4 (*) Complexifié d’un e.v. réel (comme le passage de R a C)

1. On considére ExE et on pose, si z =a+ib: z.(u,v) = (ad —bv,av +bw). Ainsi:

(T +i.0)+(u'+i.0") = ... et (a+i.b).(W+iv) = ... Vérifier que c’est un C-e.v. (E¢c = F +i.E).
2. Si dimg(E) =n, E de base €1,..., €, alors ExE = E¢ est de dimension n sur C (et 2.n sur R),
de base (€1, W), (e, 6)) : on dit qu'on a complexifié FE. [Ainsi : (W,e—f) =i.(eq, 6))]

(En affine: &c = O+Ec; f(x,y) =0, courbe réelle; f(X,Y) = 0sa courbe complexe. Ex. X2+Y? = 0.)
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23 Espaces vectoriels de dim finie

23.1 Sur-famille, sous-famille [facile; corrigé]
Soit (';)ier une sur-famille de (W;);es cest-a-dire J C I : ensembles d’indices.
1. Montrer que : (;);cs génératrice = (;);c; génératrice.  Puis :

2. Une sous-famille d’une famille libre est libre; ou bien : une sur-famille d’'une famille liée est liée.

. Rédaction : On a dans tous les cas Vect(W;)ic; C Vect(u;)ier car JC 1.
L’hypothése dit alors que Vect(w;)ics = E; a fortiori, dans ce cas : Vect(W;)ier = E.
. Soit My + ... + )\p.ﬂ’p = 6), les indices étant dans J; on peut considérer qu’ils sont dans I

et donc (sur-famille (';);cs libre) les Ay sont nuls; d’out la sous-famille (';);cs est libre.

23.2 Dans EF = R?, dimgR?*=3, famille libre, génératrice

a\ _, 1] 5 - 1 4 - 7
Soit les vecteurs : @ [0, b ], |~ |,.d 2], |5],7f|8].
0 0 c 3 6 m
1. Familles libres 7

. 4 vecteurs sont forcément liés en dimension 3 !
— . .,
. € et f sont (par contre) libres car non colinéaires.
= ., — . - _ NN
«Pour d, €, f :lesystéme 3x3: x.d +y.€ +z. f = 0 donnem#9=zx=y=2=0;
m # 9 = syst. libre

m =9 = syst. lié. Famille libre < m # 9.

m=9:x,y, 2z pas forcément nuls. Donc {

— —
.Pour @, b, ¢ : Siabc#0, z.da +y.b +z.?:6>:>w:y:_;z:0: Syst. libre.
En sens inverse Syst. libre = a # 0, car tout systéme contenant 0 est clairement lié.
. . — — - — P . — T = ..

Syst. libre = b# 0 sinon @ =at et b = ¢ colinéaires, donc liés; et a’, b, ¢ liés;

—
et Syst. libre = c¢#0 sinon @ =a7,b =871 +bJ), ¢ =71 ++ 7 liés car 3 vecteurs

—
dans Vect(7',7) ! Donc|@, b, ¢ libres < abc # 0 pour le systéme "triangulaire” donné.

2. Enfin génératrices 7

. Deux vecteurs ne sont jamais générateurs (de tout l'espace) en dim 3.
— —
comme on est en dim 3 :‘ d,e, f gén. < base < libre & m #09.

. Puis,

23.3 Famille libres / liées dans F = R, [z] ou R[z) [corrigé]

1. L’ensemble des polyndomes de degré 2 (exactement) n’est pas un sous espace :

O non dans cet ensemble car de degré —oo
Plusieurs raisons ! Si P, @ sont de degré 2, P + @ pas forcément !
Enfin A=0= AP =0.P non de degré 2.

2. On a R, [z] = Vect(1,x,,...,2") donc sous-e.v.! (1,...2") : Famille génératrice; qui est libre

aussi; donc base a (n + 1) vecteurs. | dimgR,,[x] =n + 1| (Ne pas confondre avec R"™.)
3. Puis:
‘Soit Ry, Ry, ..., Ry, des polynomes de degré ro < r; < ... <rn, 19 = 0: cette famille est libre. ‘

Car soit ap R, + ... + ag.Rg = O. Siun a4, est non nul, soit oy, celui non nul de plus grand
indice ; on aurait une contradiction car alors degré(Gauche)= r, > 0, degré(Droite) =—o0.

. Do (z — a)kogkgn libre & (n 4 1) vecteurs d'un e.v. R,[z] de dim. n 4+ 1 donc autre base.

. Le cas de Py, avec d°P, =k >0 est un cas particulier de I’encadré ci-dessus.
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4. Le cas Riz| et la famille infinie des Qp =z.(r —1)...(z —k+1) :

Montrer que c’est une (autre) base de £ = R[z].

Corrigé. Comme par définition, une famille infinie est libre si toute sous-famille finie est libre,

on est donc ramené a ’encadré ci-dessus (degrés distints > 0) donc la famille est libre.

Voyons qu’elle est génératrice (attention ! infinie). Soit un polyn. P # O (sinon évident) :

voyons qu’il est comb. lin. de la famille. Si degré(P) =p >0, on a P € Ry[z], de dim. p+1
et Qo, ...Qp libre & p + 1 vecteurs de Ry[z]| d’oit génératrice de R,[z], donc géneére P € Rix].

23.4 Quelques autres exemples de famille libres / liées [corrigé|
1. Dans E = C*®(R,R), les fonctions z — 1,2 — sin(z),z — cos(z),z — sin*(x),z — cos*(x) sont
liées.
2. Mais les fonctions = +— 1,z — sin(z),z — cos(x),x — sin(2x),x — cos(2z) sont libres.
Corrigé :

. Vrai car voici une relation de liaison (comb. linéaire!) : 1.1 — 1.cos*(x) — 1.sin?(z) = O.

. On applique la définition :

a.l + bsin(x) + c.cos(x) + d.sin(2x) + e.cos(2x) = a=b=c=d=e=0 7 :la question !

Réponse : on prend 3 équations avec = = 0, puis z = /2, puis = —7/2; puis on dérive
a+c+e=0
a+b—e=0

b.cos(x) — c.sin(x) + 2d.cos(2x) — 2e.sin(2z) = O et mémes valeurs. D’ou : al)—+b2—de::()0
—c—2d=0

c—2d=0

(2) et (3) donnea—e=b=—b donc b=0,a=e. (5) et (6) :¢c=2d=—-2d donc c=d=0.

(1) donne alors 2a =0; donc a=0=b=c=d=c. Fini.

23.5 Somme directe. Supplémentaires et dimension finie [énoncés]

1. Soit E de dimension finie.

EiNE,={0}

Montrer Péquivalence : | E = Ey @ By <
OHMIEr S eqtiivaience 195 {dim(E):dim(E1)+dz’m(E2).

Non corrigé ici mais essentiel.

2. Soit Ej,...E, sous e.v. de dim finie. Alors E; + ... + E, directe & dim(z Ey) = Zdzm(Ek)

3. Soit E = Ey @ Eso, dim(E}) finie; W € Ey, U # 0. On pose B} = Vect(u + ¢, € base de E1}.

Montrer que c’est un autre supplémentaire de Es, distinct de Fj.

4. D’une famille de n vecteurs de rang 7, on extrait une sous famille de n’ vecteurs de rang r’.
/! /
Montrer n —r >n' —1r'.

[Car la famille de n’ vecteurs peut étre complétée par n —n' vecteurs de rang r — /|

5. Montrer, avec des sous e.v. que : (Ey + E2) N E3 D (E1 N E3) + (E2 N E3),
(E1NEy) + Es C (B + E3) N (B2 + Es) avec inclusions strictes possibles.

Déduire que dim(E; + Ey + E3) = dy + dy + d3 — d12 — d13 — dog + d123 est parfois faux.
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24 Applications linéaires

24.1 En dim. finie, une équivalence importante pour f € L(FE)

=
1. Montrer |En dim. finie : Ker(f) et Im(f) supplémentaires < Ker(f)NIm(f) ={0}.

2. Corrigé. Déja bien revoir : Soit £ de dimension finie; alors on a ’équivalence 23.5 :

. . _ EiNE,={0}
(Si_dim(E) finie)  E=F & F < { dim(E) = dim(By) + dim(E»).

Avec ceci, il suffit d’invoquer le Théoréme du rang et c’est fini.

24.2 Soit f € L(F) : noyau et image parfois non en somme directe
1. Montrer en dimension quelconque : fof = O < Im(f) C Ker(f).
2. Si E de dim. finie sur K, montrer que : Ker(f) = Im(f) < (f?> = O et n = 2.rg(f)).

Corrigé facile :
1) lére équivalence : fof = O & fof (W) = 0, Ve flf(a)] = 0, Ve Im(f) C Ker(f)
vu que les f(u') décrivent I'm(f) en entier.
2) = Ayant dim(E) = dim(Ker(f)) + dim(Im(f)) [Th. du rang| : dim(E) = 2.dim(Im(f)) = 2.rg(f).
De plus o € E = f(u) € Im(f) Z%Ker(f), donc f(f(w)) = 0 ou fof =0.
< Puisque f[f(W)] = 6, cela veut dire que f(u) € Ker(f), ceci Vu :  Im(f) C Ker(f).
Puis : le Théoréme du rang et l'égalité (par hypotheése) dim(FE) = 2.dim(Im(f)) donnent
[avec dim(FE) finie] dim(Ker(f) = dim(Im(f)) : Egalité des sous espaces Im(f), Ker(f).

24.3 Dans E = Ryz], sur la Dérivation discréte (et cf. 25.7)

1. Vérifier que f: P(z)+— P(x+1) est un endomorphisme; et aussi A = f — Id.

2. Noyau, image et rang de A 7 (Voir que d = degre(P) > 1 = degre(A(P)) =d —1.)

3. Vérifier que A3 =0 et inverse de Id — A? puis de Id+ A = f avec P(x) — P(x —1).
Corrigé :

1. "endo" est clair car d°(P(z + 1)) < 2. Deux démonstration de "morphisme", ou de la linéarité :

(a) Profitons de la dim. finie et prenons la base usuelle (1,z,2%) : P(z) = a + bz + cz?, a
pour image P(z +1) =a+b(z +1) +c(@® + 2z 4+ 1) = (a + b+ ¢) + (b + 2¢)x + cz® donc

a a+b+c a+b+c 1 1 1 a

— | b+2c |. Cette écriture b+2c | =10 1 2|.(b] prouve la
c c c 0 0 1 c

linéarité et donne méme la matrice en base indiquée.

(b) Donnons une autre démonstration sans tenir compte de la dimension (finie ici) :
Ona fAP)=AP)(z+1)=APlx+1)=Af(P); et
fP+Q)=(P+Q)(z+1)=Plx+1)+Q(x+1)=f(P)+ f(Q) : fini. Et A= f—1Id

0 1 1
est lui-méme un endomorphisme, par différence, de matrice dans (1, z, 3:2) : (O 0 2) .
0 0 0

2. Noyau, Image, rang de A. Déja A: P(z) — P(x +1) — P(x) = A(P)(x) = (b+¢) + 2cx et

AP)=0<b+c=2c=0« P(z) =a. ‘Ker(A) = Ro[z] ‘ sous e.v. des polynomes constants.
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Donc dim(Ker(A)) =1, rg(A) =3 —1=2 par le théoréme du rang, soit dim(Im(A)) = 2.

Or: P =z a pour image A(P) = 1, P = 2% a pour image A(P) = 142z, Im(A) D Vect(1,14 2x)
= Vect(1,2z) = Vect(1,x); 'égalité des dimensions (finies) donne ‘Im(A) = Vect(1,z) = Ry[z]. ‘

3. Pour A% = 0, il suffit de voir que l'image de la base (1,z,z%) par A® est le polynéme nul [laissé].
Id— A3 = (Id— A)(Id+ A+ A?) = (Id + A + A?*)(Id — A) | montre que Id — A est inversible

d’inverse Id + A + A% Idem pour Id + A = f si on veut mais on a mieux ici : f a pour inverse

P(z) — P(z —1); d’ou linverse de la matrice du triangle de Pascal de 1.(a) aisément !

24.4 Avec le cours bien connu sur les projecteurs [corrigé|

1. Montrer que (fog = f et gof = g) < f, g projecteurs de méme noyau.
[pour la réciproque, ¢(7') — 7 € Ker(g) = Ker(f)].
2. Montrer que (fog = g et gof = f) < f, g projecteurs de méme image.
3. « Puis (*) Si p, q proj., p+ ¢ proj. < poq = gop = O.
. Sigop=0,r =p+q—poq proj. et Ker(r) = Kerpn Kerq; Im(r) =Imp® Imgq.
. P — ¢ proj. < poq = qop = q; alors Ker(p — q) = Ker(p) & Im(g).Im(p — q) = Im(p) N Ker(q).
. Si pogq = qop, poq projecteur et Im(pq) = Im(p) NIm(q), Ker(pq) = Ker(p)+ Ker(q) ...

Corrigé de 1. Déja, deux rappels : [le 2iéme pour 2, qui est analogue]

‘ [f € L(E) et fof = f] < f projection sur Ker(f — Id)//Ker(f) qui sont supplémentaires. ‘

Pour un projecteur, I'image est aussi le sous e.v. des vecteurs invariants I'm(p) = Ker(p — Id).

= On a fof = (fog)of = fo(gof) = fog= f;et flin.: f projecteur. De méme pour g.
Méme noyau : Si v € Ker(f), ayant gof = g, il vient g(w) = g[f ()] = 0:7Te€ Ker(g)

ou Ker(f) C Ker(g) et par symétrie de ’hypothése Ker(g) C Ker(f) aussi; donc égalité.

< Déja assurons nous que g(2') — @ € Ker(g) : glg(Z) — 7] = 0 car gog =g ! Puis
Ker(g) = Ker(f) donne f(g(7') — 7') = 0, ceci VZ € E. Ou fog(Z) = f(Z') ou bien
fog=f ! Et par symétrie de ’hypothése : gof = g.

24.5 Rang : Soit f € L(E,F), E, F de dimensions finies; g...
L. Montrer : rg(f) < dim(E);  rg(f) <dim(F);  rg(gof) < min[rg(f),rg(g)]-
2. Montrer : rg(f +g) < rg(f) +rg(g); puis |rg(f) —rg(g) [<rg(f+9) <rg(f)+r9(9).
3. Soit f € L(E) tel que rg(f) = 1. Montrer : 3k € K tel que f2 =k.f (si k #0, %f projecteur).
Corrigé : (1) rg(f) = dim(E) — dim(Ker(f)) < dim(E). Im(f) C F'=rg(f) < dim(F).
Pour gof, donc g va de F dans G, ici. f(E) C F = g[f(E)] C g(F) : rg(gof) < rg(g). Enfin le
th. du rang appliqué & g, (g donne dim|[f(E)] = dim[Ker(g) N f(E)] +rg(gof) : rg(gof) < rg(f).

(2) Déja (f + g)(E) C f(E) + g(E) est clair. [Par contre I'inclusion peut étre stricte : f = Id = —
(f+9(E)= {6)} tandis que f(E) = E = g(FE) car f,g bijectifs E — E; d'ou f(E)+g(F)=F 1(31.]
Donc : rg(f + g) < dim[f(F) + g(E)]. Par propriété : dim|[f(F) + g(F)] < dim[f(E)] + dim[g(F)]
=rg(f)+rg(g). La fin, classique, est a voir: f = (f+g)+ (—g) = rg(f) <rg(f+9g) +rg(—g)
=rg(f+g) +rg(g); doarg(f)—rg(g) <rg(f+g) et permutter f et g. (3) laissé 25.5.
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24.6 Sur le rang d’applications linéaires : quelques ajouts (...)

1. Soit E, F' de dimension finie. Montrer que sont équivalents :

a) rg(f +g) =rg(f) +rg(9)
b) Im(f + g) = Im(f) ® Im(g)
c) Ker(f+g) = Ker(f)nKer(g) et E= Ker(f)+ Ker(g).

2. Soit E et F' quelconques. Montrer que gof(E) = g(F) < F = Im(g) + Ker(f).
—
Et que f(E) isomorphe a g[f(E)] < Im(f)NKer(g) ={0 r}.
24.7 Soit E un e.v. de dim. finie : n. Montrer les équivalences

(*)  Ker(f) = Ker(f?) & Im(f) = Im(f?) & E = Ker(f) & Im(§).

Notes initiales . Hypothése "dim finie" ? En fait, indispensable : P +— x.P dans R[x| ou P +— P’
. Bien sar éviter la FAUTE : Ker(f?) = Ker(f) = f> = f. Contre exemple : f = 2.Id dans R

. Un cas ot des affirmations n’ont pas lieu [donc aucune n’a lieu, dit 'exercice] : f € L(R?) et f # O
(donc Ker(f)# E) et f2=0 (d'ou Ker(f*) = FE). |[f nilpotent d’indice 2].

. L’inclusion Ker(f) C Ker(f?) est toujours vraie. Donc Ker(f) = Ker(f?) dit Ker(f?) C Ker(f).
. Idem : Im(f?) C Im(f) a toujours lieu. ~ Donc Im(f) = Im(f?) dit, en fait : Im(f) C Im(f?).

Corrigé en dimension quelconque quand c’est possible :
1. Ker(f) = Ker(f%) = Ker(f) N Im(f) = {0} :
Soit W € Ker(f)NIm(f): f(u) = 0 et w = f(?) donc t € Ker(f%) = Ker(f)...
2. Ker(f)ynIm(f) = {6)} = Ker(f) = Ker(f?) :
Soit w € Ker(f?); il suffit de voir (comme dit au dessus) que @ € Ker(f) et ce cera fini.
Posons v = f(w);ona f(v) = 0. Donc ¥ € Ker(fynIm(f) = {6)}, donc u € Ker(f).
3. Im(f) = Im(f?) = E = Ker(f) + Im(f) :
Soit W € E: f(uw) = fof(¥') pour un certain v. Alors u = [u — f(v)] + f(7).
4. E = Ker(f) +Im(f) = Im(f) = Im(f?). Il suffit de voir Im(f) C Im(f?)
Soit f(u) € Im(f) 7w = v + W € Ker(f)+ Im(f) : Donc f(u) = f(w) € Im(fof).
5. |Enfin, en dimension finie (seulement), E = Ker(f) + Im(f) < Ker(f)NIm(f) = {6)}

(Ceci équivalent a "sous espaces supplémentaires", grace au Théoréme du rang !)

24.8 Quaternions de Hamilton et une note sur GA = F x GL(F)
2 I N o fioN , (0 1\ . (0 i
1. (*) Soit H= {M : (—5 a) ,a=a+ib,f=c+ide C}, 1=1L,I= (0 _Z_) JJ = (_1 0) VK = (Z 0).
(a) Vérifier que H est un R e.v. de dim 4, et un corps non commutatif (M # O, M~ = 1/det(M).M").
(b) Vérifier que 'équation X2 = —1 posséde une infinité de solutions dans H = Vect(1,1,J, K).
(c) Et aussi que {£1,£I,+J,£K} est un groupe non abélien a 8 éléments pour la "loi" x.

2. (*) Un exemple de produit "semi-direct" : le groupe affine :

— —

On rappelle que f est affine associée a 7 linéaire si f(M) = f(O)+ f(OM), YO,M ou VM.
— — — — = _, — .
Pour f [OOy, f], g [0Oy, ¢}, affines £ — £, on a donc gof [O0, + ¢ (00y¢) , go f]. Dou,
avec de plus des bijections, on a alors le groupe, produit semi-direct : GA = E x GL(FE).

En effet, plus généralement G x, G’ concerne (g,9¢') . (k, k') = (g.0y(k), ¢'.k') : loi de groupe

si on a une action de G’ sur G, (¢',g) — ¢y (g) telle que : () = Idg, o(g' k') = o(g")op(k')

en notant ¢(¢') = ¢y € Aut(G), automorphisme de G : ¢y(g.k) = ¢, (9).04 (k). On observe

—

ici que g~ (g,€), ¢ ~(e,¢') et G distingué dans G x, G'. Dans I'exemple ¢ =g
(Si H et K sous-gr de G avec : HK =G, HNK =1, H<G, H x K possible : (k') = k.0 k71)
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25 Calcul matriciel

25.1 Utilité du calcul des puissances d’une matrice.

1. Soit (uy), (vy) { Unt1 = 3t + 20p , X :(Z”) . Trouver A : X,,11 = A.X,,; doun X,, = A". X, !

Unt1 = Up + 20y n
2. On cherche A™ par changement de base ici. Supposons A = Matr[f, (7, 7)], f endomorphisme.
Calculer f(7° — ) et f(27 + 7). Déduire : 3P inv. / P".AP = D, D diagonale. Conclure.
Corrigé : (a) Xni1 = (“"+1> - G g) . (“): AX,: |A :("f 2) A Xy =AXn = AAXy o= ..

Up41 Un 2

= A" X (A° = I, ici méme si A non inversible ; mais elle I'est !) | Ainsi, tout revient a calculer A™.

() £27 +7) 7 matrices A4.(7) = (§) =1.(}) 24T+ 7) =407+ ) ST -T) =TT

Puis (4 =7 — 7,9 =27 + 7) est une famille libre de 2 vecteurs [non colinéaires| et ceci en

. . N . . — —
dim. 2, donc une autre base. La matrice du méme endomorphisme f, mais en base (', v'), est

D = ((1) 2) ¥.S81P :< 11 f)z , matrice de changement de bases,
v - J
FEDFV) v v

A=PD.P ' A2=pD P PD P =pD2P! . |A"=ppr.pt|pt =] (1 7?): Finir !

3\1 1

P~LA.P = D|[Th]; D" facile;

25.2 D’autres méthodes pour le calcul de M" (...)

b b—a a c 1 2 3 0 1 1 1
Soit A = ;o T = ;. B=[o 1 2]; J=|1 0 1|; C=|1
(‘“ —b b > (0 b> (0 0 1) (1 1 0) (1
1. Calculer A? puis A", n € N*. Calculer T2; T3; puis T", n e N*.
2. En écrivant B = I3 + N [Binoéme de Newton, N nilpotente commutant avec I], calculer B0,
3. Calculer J? en fonction de I = I3 et J; en déduire que J est inversible et préciser J 1.
Préciser le reste de la division de X™ par X2 — X — 2. En déduire J". Casn € Z, ici?
4. Montrer que 3.C™ = a,.C' +b,.C* et préciser a, et by,.
2
% 6?2> =a’l,: cestlaclé! Donc:
A2 = (AP — (02 )10 = 4292 ] tandis que A%% = 4202 A = a®2 1. A = a®" A, Etc.

n
Pour T : essais (T2, T3...) T" = aO gz>, en=c(@a" '+ a"2b+ ...+ 0" 1), Récurrence ...

o o=

o O =
v

Corrigé : (a) Pour A : A%= .. =

b) Pour B : Ici, B=I3+ N, N = nilpotente et commute avec I : N = O. Binome !
(b) Pour B : Ici, ) p

~
o oo —

o O N
S N W

2

Par exemple B1% = (I + N)100 = 100 (1(1)()) .199.N+<100> 1% N? =1+ 100.N + 50.99.N2 ...
(¢) Pour J : Méthode du polynome annulateur, guidée par ’énoncé. Déja J* = 21 + J (a voir) !

.Dou J(J—1I)=2I ou J.% (J—1I)=1. Ainsi J, carrée, est inversible a droite donc par Th.

1 1/-1 1 1
J est inversible, J ! = §(J—I) = 5( 1 -1 1 ) J annule le polynome x?-x-2 (J?—.J—2.I = O).
11 -1

. Faisons ici une division |x"=[x?—x—2].Q(x)+a.x+b| car degré(Reste) <1 : exercice essentiel.

Prenons 2 valeurs de x pour trouver 2 inconnues a,b : les racines de x>—x—2, qui sont —1 et 2.

(-1D)"=—-a+b 22— (=)™ 2" +2(—1)"
Alors { o — a4 et Reste = gy X + —
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.| Idée : substituer Jaxet I al]= J"=0+a.J+0b.I :%[(2" — (=)™ J + (2" +2(-1)")I].

~ Le peut-on ? Un exemple-test : dans x?=(x-1)(x+1)+1, si on met une matrice M, a-t-on :
(M—I)(M+1)+I=..M*?. OUI! Etvérifions J", n=1,n=0n=—1..

— Remarques : 1) L’expression de J" doit étre valable ici, méme sin € Z ...

2) Si M non inversible, il faut étre prudent avec M 0,

(d) La derniére question est assez facile ...

25.3 En dim. 2, f end. : Im(f) = Ker(f) = Vect((1,2))
— Solution. L’énoncé dit ' (1,2) : donc on a une base. Donner f par sa matrice dans cette base.

— Vu que u base de Im(f) forcément : f(7') =a.w, f(7) =b.u. A cestade A= (22 2bb).

— Maintenant A(;) = <8> donne a = —2b. Donc A = b(:i ;), b # 0, infinité de solutions.

25.4 Trois questions concernant la trace [corrigé|

1. Prouver que pour un projecteur, en dimension finie, Tr(p) = rg(p).
2. Montrer qu’on ne peut pas trouver deux matrices A, B telles que AB — BA = I,,.
3. Soit A, p,Bpn. Montrer que : AB projecteur de rang p = BA = I,,.

Solution (a) : Soit p un projecteur en dim. finie [pour parler de Trace| et une base adaptée de
E = Ker(p — Id) ® Ker(p), savoir (U 1,...u ) base de Ker(p — Id) qui est aussi Im(p) [donc 7 :
Ir Or,nfr >

n—r,r On—r,n—r

nombre de vecteurs = ici rg(p)| réunie & (V',41,...v,) base de Ker(p) : A :<O

Tr(A) = r et on sait que la trace ne dépend pas de la base : r =T7r(A) =Tr(p) = rg(p).

(b) : Tr(AB — BA) =Tr(AB) —Tr(BA) =0 par Théoréme; # T'r(l,) = n. Fini.
Remarque : Mais en dim. infinie, fog — gof = Id est possible : ¢(P) =x.P, f(P) = P’ dans R|x] !

(c) Avec rg(AB) < inf(rg(A),rg(B)), forcément rg(B) = p. Puis BABAB = BAB donne (B surj.)
BABA = BA: BA projection. Alors : rg(BA) =Tr(BA) =Tr(AB) =p et donc BA = I,

25.5 SiAcM,derang 1: 3k, A>=kAet k="Tr(A)

— Solution. Ici, il est bon d’avoir en téte des matrices de rang 1, c’est-a-dire le sous e.v. engendré par les

oo (2 1) (0 1) (21 -1 Que
Vecteurs Colonnes est de dimension 1 : <4 2), (0 0>, (‘61 § :g), (des 1)

— Méme en dim. quelconque : f € L(E), de rang 1 = fof = k.f pour un certain k fixe !
Car si ¢ base de Im(f), f(@) =ky. €1, fof(T) =kpke,. €1 = ke f(T).
~ Ici dim(Imf) =1 de base €7, dim(Ker(f)) =n —1 par le Théoréme du rang.
soit Ker(f)NIm(f)= {6)}, alors supplémentaires ; soit Im(f) C Ker(f), fof =0, k=0

1. Si supplémentaires, soit €s,..., € , une base de Ker(f) : €1, €2... €, base de E et la matrice est
a 0 0 .. 0

A=]0 00 .0 :cas fini: (A2 =ad, a=k=Tr(A) #0. (p= %f proj. de rang 1.)
0 O
2. Quand Im(f) C Ker(f), €1,€2,... €n_1 base de Ker(f) D Im(f) complétée par un vecteur
0 . 0o 8
puis que des 0

@ pour avoir une base de E. A’ = Ici aussi: k=Tr(A) (=0).

0 de partout 0
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25.6 Dans My, deux sous e.v. supplémentaires [corrigé|

Montrer que les sous e.v. des matrices symétriques et antisymétriques sont supplémentaires. Généraliser.

Solution. Notons S et A les ensembles des matrices symétriques et antisymétriques.

. Déja My o = Vect( <(1) 8) , <8 (1)> , <(1) 8) , <8 (1)>) e.v. (connu) sur R de dimension 2.2=4.

.S = {(Z ZC)> ya,b,c € R} = Vect( <(1) 8) , <(1) (1)> , (8 (1)>) est un sous e.v. de dimension 3

car les 3 matrices indiquées sont libres. (Rappelons que M € § < ‘'M=M ).

) _f(a b t _ a c\ _ a b
. Ensemble A (non vu pour S) : M—(C d>€A<:> M = M@(b d)__(c d)@

a=0,d=0,c=—b donc A= Vect( (_01

1 . . .
o)) ainsi A est un sous e.v. de dimension 1.

. Les deux sous e.v. S et A sont en somme directe car siona ‘M = M et *M = —M alors M = O.

Donc SNA={0} et dim(S®A)=3+1=4. Dot S® A= My, (par égalité des dimensions).

Autre solution et généralisation pour ’sous e.v. supplémentaires’ : la décomposition d’une

matrice en somme d’une matrice symétrique et antisymétrique ? Déja, M3 3 est de dimension 9 et
f: M~ 'M est un endomorphisme (clair) de M3 3 vérifiant fof = Id. Par Théoréme, f est la
symétrie vectorielle / Ker(f — Id) // Ker(f + Id) et ces 2 sous e.v. sont de plus supplémentaires !

L'un est Ker(f —Id) = S (on exprime exactement que ‘M = M) l'autre : Ker(f + Id) = A. Dimen-

a b c
sions : les matrices sym. sont de la forme (b d e) sous e. v. de dimension 3+2+1 = 6. A de dimension
c e f
1 1
2+1=3. (6+3=9, correct) et : M = S+ A, ‘M =S—-A: S= §(M +'M), A= §(M ~t'M) [// ch, sh.
. . . . n(n+1) n(n —1) 9
(Dans le cas général, idem : S,, ¢ A,, = M,, , avec dimensions ) et ) de somme n*.)

25.7 Dérivées intermédiaires bornées si les extrémes le sont
Soit f 2 fois dérivable sur R : f et f” bornées, My = sup | f |, My = sup | f” |. Si h > 0, on rappelle
I'égalité (T-L) : Fey € [z,2+h] avec f(z+h)= f(z)+ h.f’(ac)—k%2 f7(c1)  notée (1)
Et: e €[z,z—h] avec f(x—h)= f(z)—h.f'(x)+ h;f”(cQ) notée (2)

1. Avec (1) — (2) et I'inégalité triangulaire, montrer que 2h. | f'(z) |< 2My + h%. M,
. 2Mg + h? My

2. Minimum de ¢(h) = —n h >0 ? En déduire | f’ | bornée : sup | f' |= My < \/2MoMo.
3. Casn > 2. Soit f declasse C" R —R. Si f et f(") sont bornées sur R, prouvons que f(k) aussi.
On peut utiliser : |a|—|b| < |a—b| < |a|+]|b | et la+b| <|al+]0b]

Fi(z) hi  hij2! hi/3! f'(x)
Sol. Traitons le cas n=4. On pose | Fo(x) | = | ha h3/20 h3/31| .| f(z) |.
Fs(z) hs h2/2! h3/3! £ (x)
(a) Si hy,ha, hs sont non nuls distints, montrer que Hs 3 est inversible avec det(H).
(b) Et que I'égalité de (T-L) pour f de classe C* sur [z, z 4 hy] donne :
7 h4
g € [z,x 4+ bl = flx+ ) = f(@) = hif'(x) = B f () /20 = B fP) (@) /30 = O (ex).
A . h4
Déduire : | Fy(w) | — | f(z+ ) — F@) | < | £+ ) — f@) — (o) | < 2,
: hii hi
Puis que : | Fp(z) | < | flx+hg) — f(z)]| + 4—]!“ My < 2.Mo+ 4—’!“.M4.

(c) Conclure sans préciser un majorant.  [(*) My < 2k'("_k)/2.M5_k/n.M:f/" et cf. 34.12.|
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25.8 Un probléme sur la dérivation discréte (cf. 24.3)

Soit : P(X) — P(X +1)=T(P)(X) et A=T—1Id: P(X)— P(X +1)— P(X). Note.l

1. Iei E = Ry[X]. Si P =a +bX + cX?, calculer P(X +1) = a + X 4+ vX? et montrer : T € L(E).
Matrice A ? Montrer que T est inversible et T~ : P(X) + P(X —1). En déduire A4, (*A)~!.

2. Ici E = R[X]. T endomorphisme de E est supposé acquis. Ona T =Id+ Aou A=T — Id.

P
(a) Justifier que TP : P(X)+— P(X +p),p€eN et P(X +p) Z() (P). Casp=27

k=0

(b) Et aussi que : i( > )P* P(X + k). Cas AXP)(X) et A3(P)(X) ?

(¢) Avec A™(X™) =nl, puis k < n = A"(X¥) = O, déduire : n! :Z <7;> (=) (z + )",
=0

n n

=" (’;) (=1"7j" (x) et 0 Z(?) )i (2 + ), o:j; (?) (=15 (1),

Jj=0
(d) Soit f C*°(R); n fixé. Avec f(a+ j.h) Z f khk +o(h™) et (x, *x), déduire que :
k=0

i() )" fla+j.h) =" fT (@) +o(h") et : h”z<) "”f(a+jh)—>f )(a).

J=

3. Sin €N, soit Ny(X)=X(X—-1)...(X —n+1), de degré n, (Ng =1) : ‘Polyn@mes de Newton. ‘

crifi H(X) =2 T~ F) : AHy = 0, A Hy fof () -
(@ Verifer aue,si Hu(X) = TTX =)+ Ao = 0. M(Husn) = Hy [t (&) -5
(b) On suppose : degré(P) <n,n >0. On Considére a fixé. On pose Q(X) = P(a+ X).
Montrer que oy, : P(a+ X) Zak Hp(X) (car: (Hg)ogk<n libre dans R, [X])

. : A*(P)(a) AR

(c) Justifier que A*(Q)(0) = ;. Et que Pla+ X)= Z —a Np(X) = ZA (P)(a)Hg(X).
k=0 ) k=0
(d) Dans la formule 2. (a), sion remplace X par a, qu'obtient-on 7 Commentaire ?
: Ni(X AP » N~ (P

(e) On rappelle : Hy(X) = "m ; ZA" 0).Hp(X); AP(P)(0) = (1) kZ:O (k) (=1)*.P(k).

Montrer que : (i) = (i) = (i) = (z) = (iv) = (i), avec

i. P prend des valeurs entiéres quand la variable est dans Z

ii. P prend des valeurs entiéres quand la variable est dans {0, 1,...,p}
iii. Les coordonnées de P dans la base Hj, sont des entiers

iv. P prend des valeurs entiéres sur p 4+ 1 entiers consécutifs.

4. Formule d’inversion de Pascal et utilisations : on reprend la question 1), mais dans E = R, [X].

Préciser A, 41 avec les images de la base : (1, X, ..., X") et son inverse An}rl Note!!

10 . . . N . .,
On note T' comme translation mais translation sur I'indéterminée. T est linéaire !

" ecture. Voici, en compléments difficiles, deux utilisations classiques de A7t
(a) SiCard(X)=p=>1, Card(Y) =n, on sait qu’ily a n” applications de X dans Y.

Si Sp,r désigne le nombre de surjections de X dans un ensemble de Cardinal k, on déduit :
n n

n’ = kz_l (Z) .Sp,k- Et donc par inversion de la matrice de Pascal : Sy, = kz_l(—l)”*k. (Z) KP.
(b) SiCard(X) = n, on appelle d,, le nombre de dérangements de X, a savoir de permutation sans aucun élément invariant.
Par convention, do = 1; et comme exemple, d3 = 2 (Sur les 6 permutations, 2 seulement sont des dérangements).

. = o . dn <= (=1)F 1

On obtient, par comptage : n! = Z <n> .di. Donc par inversion, on arrive & : — = Z (G20 — =
k=0 K

n! k!l n—+oo e
k=0
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25.9 E.v. et Anneau (algébre) de matrices [corrigé]

a—b a+b 11
Montrer que A est un sous e.v. de My(R). Calculer U2, V2, UV,VU; structure de (A, +,.) ?

. a+b a—-2> 1 1 1 -1 .
) . !
. Sol. Ecrire naturellement : <a b oa b) =a. < 1 1> +b. <_ 11 > : reconnaitre U et V' !

Donc A= {a.U+bV}=Vect(U,V) :sousev. et .. dimpA=2.

. Ensuite pour (A, +,.) : comprendre que la 2éme loi est ici la multiplication des matrices de A (et
non la loi externe connue, vu que A e.v.). Calculs : U?2=2U, V?=2V, UV=0, VU=0;
donc (aU +bV)(d'U +V'V) = ad'U? +bb'V? + O + O = 2(ad’U +bb'V) : loi interne dans A.

Puis produit commutatif vu le calcul, ass. (toujours), neutre a + b = 1,a — b = 0 possible : donc I
dans A; et distributivité de ./+ : toujours vraie. Ainsi (A, +,.) : anneau commutatif; non intégre
car U# O, V#0, mais UV =0. [(A,+,.,.) : algébre commutative, non intégre, de dim. 2.

Soit A I’ensemble des matrices du type (a +b a- b) ,a,beR; U= <1 1> , V= < 11 _11>

25.10 Question au sujet des matrices a trace nulle (# 48.4)

1. (*) Montrer que si V@', f(7')=ky. 7 alors 3k: f=k.Id.
2. Déduire, si Tr(A) = 0, que A semblable 4 A’ de diagonale nulle (avec q.1 et récurrence).

3. Si D = diag(dy, ...,dy), dj distincts et f: M — MD — DM, montrer que f est un endomorphisme
de M,,(R) avec Ker(f) = {Matrices diagonales} et Im(f)= {Matrices a diagonale nulle}.

Conclure : . Tr(A) =0« 3R,S: A= RS — SR (déja pour A’ puis changement de base).
. Si 9 est une forme linéaire avec Y(AB) = ¢(BA), alors IX: ¢ = A\.Tr (dim Im(¢) < 1).
25.11 Matrice symétrique, conique z° + 2kzy + y*> +2x +2y =0

1. Une courbe de degré 2 est une conique, parfois dégénérée. La forme quadratique a pour matrice

M = (1 ]1€> symétrique : diagonalisable sur R avec changement de base o.n. si on veut : P~ = P,

k
2. Avec CpyNC1 : on trouve O(0,0) A(—2,0), B(0,—2); puis toutes les coniques contiennent O, A, B.
3. Avec M = P. <€)\ 2) P!, le type de la conique est : si Ay = det(M) =1 —k? > 0, type ellipse ; si
Ap = det(M) =1 —k* <0, type hyperbole; si A.pu = det(M) =1 — k* = 0, type parabole.
Le cas ¢) :

2+ 2axy+yP+2+2y=0 Or X = PX" ou X'= P 1. X. Posons (*);) =

% (_11 i) (;) _ p! (5) P71 rotation d’angle _Tﬂ; P d’angle Z; donc (7,?) = Z
L'équation est : X2 ++/2X =0, 2 droites paralleles X =0, X = —/2 : (A, B) normalement.
2 —2ay4+ 12 +224+2y=0 ou (z—1y)*+2(zx+y)=0. Méme changement de

base (pas d’origine 1) Y2 ++v/2.X =0 : vraie parabole de sommet O (en vert, contient A, B).

Dessin : Lieu des centres laissé ...
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26 Déterminants 2x2 ou 3x3

26.1 Exercices de cours sur les déterminants dans R? ou R?
-1
1. Rappeler la valeur de <(Z Z) quand elle existe.

2. Montrer les formules "de Cramer" pour un systéme linéaire 3x3 inversible.

3. Une réciproque non vraie (assez facile) :
(a) On sait que A semblable & A’ (id est A’ = P7YAP) = Tr(A’) = Tr(A), det(A’) = det(A)
et rg(A’) =rg(A). [Et méme: rg(Q 'AP) =rg(A), pour P,Q inversibles].

(b) Ces 3 égalités ensemble n’entrainent pas la réciproque. A = I, A’ :(1 1) non semblables.

0 1
lére facon : Pendomorphisme Id a pour matrice I dans toute base; jamais de matrice A’

2éme facon : PL.P'=nL.PP =1 # A" car I, commute avec toute matrice.

4. Avec le produit mixte et un endomorphisme : Soit f € E(R?’). Justifier que :
N [f(@),y, 2] + [z, f(y), 2] + [2,y, f(2)] = Adetp(x,y,2) et A= trace(f).

5. Calculer le déterminant 2x2 "de Cauchy" :

ot (*) puis idem 3x3, (**) puis nxn.

6. (a) Rappeler la valeur (et la définition !) du déterminant de Van Der Monde.

(b) On prend le déterminant n,n [commencer par n =3, n =4, n =5 Dn = det(V,) ou

Vi = (aj%) = WU (=1) oy — ¢#27/m - Calculer V2 puis V4. En déduire | D, |= n™/2,
k

]
(c) Avec un dét. de Van Der Monde, déduire que Arg(Dy,) = > ArgZ—~

1<j<k<n w
(d) (*) Avec l'égalité (a voir) w* —w/ = ei'“/n‘(k+j).2.i.sin(%(k — 7)), justifier que :
_ 2rn(n-1) wnn-1) =« o T 3. k
Arg(Dy) = —=0 M P TS e = —ﬂ.(n—l)—l—z.n(n—l)+7.2(2)

ou, avec Z(g) = (n;— 1),que Arg(D,,) = %.(n—l).(3n—2). Et D,, = n"/?.¢1-(n=1)-Bn=2)

26.2 Deéterminants et géométrie, (*) "probléme de Napoléon"

Soit un triangle direct A, B, C, d’affixes a,b,c € C. Construire pour z € C*, 2 # 1, P, @, R d’affixe
p,q,r:b—p=2z(c—p),c—q=z2(a—q), a—r = z(0b—r). [Des triangles semblables BPC, etc.]

1. Par ajout des 3 relations, vérifier que (1—z)(a+b+c) = (1—2)(p+q+r). Sachant que I'isobarycentre
de A, B, C est tel que 3.0G = OA + OB + ()—C>’; et donc d’affixe (a+ b+ ¢)/3, que conclure ?

2. (a) Soit ici z = 4. Justifier que BPC est isocéle rectangle. Vérifier que : p —a = i(r — q).
(b) En déduire que (AP) est une hauteur de PQR; et donc (AP),(BQ), (CR) concourantes.

3. On suppose maintenant que P,Q, R et z sont donnés; et A, B,C inconnus. D’ou le systéme

Qatb-ze=p( - 2) 0 Lo a, b, c existent
—z2a4+0b+c=¢q(1—-%2) SiD=|-z 0 1], onsait que: D750<:>{ t’ ’t i
a—z2b+0.c=r(1-2). 1 —2 ol — et sont uniques.

(a) Vérifier que D =0 se produit 2 fois seulement. (On rappelle que z # 1.)
(b) Soit ici z = j = *7/3. Préciser le point P (et Q et R de méme). Dans le systéme 3),
que dire de Ly + jLs + j?Ls? Conclure que P,Q, R est équilatéral direct. Cas z = 527

o7



26.3 (**) Eq. barycentriques, déterminants, matrices (lecture)

1. Si (A,A—B>,14—C>'). M : cart. (“) = bar. ( A B C). Bar. <A B C) =cart. (—L — =
v l—-u—v u v T Yy z r+y+z xt+y+z
. Interprétations de x +y+2=0 (z,y,2) # (0,0,0). 1) : un point a 'infini; 2) : un vecteur
T =z MA + y]\ﬂ?> + 2 MC = yzﬁ 42 AC indépendant de M ; (pas de cte multiplicative ici).

. Droites. Do, : X +Y +Z = 0. Sinon : aX + Y +~vZ =0, en affine a«(1-U — V) + U +~V =0,

(B=a)U+(y=a)V+a = 0; (B—a,y—a) # (0,0), vect. dir. (EIQEE en bar. (;Eg) - @ (5)

z z X . R 1 B m
. Eq. baryc. de M, M’ : |, , y/=0. 3 droites concourantes ou paralléles < |az fom| = 0.
P A a3z 3 73

Donc : aX+8Y +cZ = 0par. & aX+8Y +yZ+ANX+Y+Z) =0car (aX+3Y +7Z =0, ' X+5'Y
++'Z = 0) doit avoir méme sol. que (aX +3Y +7Z =0,/ X +BY +9'Z =0, X +Y + Z = 0)."2

2. Homologies, élations du plan projectif P(R?) = P?(R) : droites vect. de E = R?; plan affine z = 1.

Les autom. conservant strict. un plan de R? : de matr. sembl. a ((1) 1 8) A # 0, ou ((1) 1 (1)) (aisé) :
0o 0 A o 0 1

dilatations et transvections [qui engendrent GL(E) car les transv. engendrent SL(E)" d’ou] Homologies et
Elations de P(E) engendrent le gr. projectif linéaire de F : groupe des transf. projectives de P(E).

(a) cas 1) = homologie du plan projectif : une droite de points fixes D, un sommet fixe S ¢ D. Si
AgD w— A alors: M — M avec S, M, M" alignés et (A, M)N(A',M") € D. (Si M € (S, A),
faire 2 fois ceci). Si My = (SM)ND : [S, My, M, M'] = k; k = —1 : homologie harm. involutive.
L’homologie conserve alignement, birapports, contacts ; donc DH, polarité : Cercle — Conique.

(b) cas 2) Ici 3 .S € D tel que les droites passant par S soient globalement invariantes. [Vect(7].
SiAgD — A alors: M +— M’ avec M, M’ S alignés et (A, M) N (A, M') € D. Elation.

(c) En affine ? cas 1) si D = o0, [S, 00, A, A'] = SA/SA’ =k, hom. affine; k = —1 : sym.-point ;
si § = oo, dilatation de rapport k, d’axe D; k = —1 : symétrie oblique. cas 2) et D = o0,
translation; si S = oo seul, avec D = Oz, «’' =z + a.y, ¥y =y : transvection affine.

3. (a) Par homol. harm. (O ¢ D), cercle — conique : si § = homothg 1 /5(D) tangente au cercle en T,

parab.(axe//OT, D invariant) ; si § sécante, hyp. ; sinon, ellipse. Si O “““*'centre, 2d : dist(O, D),
U,X,V,proj O, M, My, (L D)y, OMy = 2.0Ky, D.H.[(a + b)(z + 2') = 2(ab+ 22'), a = 0] :

no__ / ’r /. o . MO R (foy. O
OMy(OM +OM') = 20M.OM', OM KoM’ = OKo.OM'; OM = R : &0 = & ( foy. ¢ )
(b) Si homolologie de centre A, AcC; A¢D, M,N € C,AM L AN : AM' L AN', A,M',N’ € Con,

O = FT(pOi”t‘dc)e M'N', AFr 1 Cona <m”9“"”“4> (Michel Guillerault). [Si #?/A 4+ y?/B = 1,1

Frégier conservée

F'r décrit une conique homothétique kK = g—;f‘ : mais si y? = 2px : parabole translatée (aisé).]
Th.(Frégier). O + F'r, pol(O/C) = Do + pol(F'r/Con) =, homoth 1 /5(D). A =D, invar.,

— _ AD — _ Al / c.¢cr = c.courb. 4
ANC=0b, ANCon =B < AB=—-A4bh, B € CsymA(cWCO"B:;,M contact x3 en A (AFrﬂMed[AB]>'

12("‘) Ceci car, en géom. du triangle, A, B, C jouent le méme réle en coord. barycentriques; calculs, dessins par logiciels.
Coniques. Az®+py* +v2°+2X yz+... = 0. Tang. en My € C |dl1, f homog., f. d’Euler ou polarité] (Azo+"yo+u z0)z+... = 0.
Si a,b,c affixes de A..., les coord. bar. des points cycliques sont Z(c-b,a-c,b-a), Z, [isogonaux : a.a’ = a*, cf. 5.30] car :
7 € Deo et (a—c)A_B>+(b-a)m: X +14Y =0, isotrope. Conique circonscrite & ABC Ayz + pzx +vay = 0. Ellipsecirc : avec
MDooy A= (A+p— u)2 — 4p, donc < 0 ssi A = o?, w= 8% v = 72 et a, 8,7 cotés triangle non plat ; coord. bar. du centre
|=pole -dédoubl. des termes- de Doo] : (A(u+1—A), ..., ...). 2 ex. cf. Cape. Polaire de L(a®, b, ¢*)/Capc : axe de Lemoine
:—2 +...=0; d'isog. yz+ zx + zy = 0 : Ellipse, tang. en A //BC : Steinercire.. Con. non dég. inscrite : [z = 0, racine double
... matr. inv. de Con.circ. || A2z? + 12y? + 1222 = 2(uv.yz+vh.zz 4+ Apay) = 0. Ellinse : MDoo, A < 0 ssi Auv(A+p+v) >0
[vérifie, Maple| centre (p +v,...). Steinerinse : A = = v [contient A’(0,1,1)...], Cercleinse : A = b+ ¢ — a [centre :(a, b, c)].

'3 Car Dilatation : T — Z +¢(7) W ol ¢ est une forme lin. avec a = () # 0 et 14+a # 0; transvection : w € Ker(p),
@ # O. Soit A avec det(A) =1 : avec Tj;(N\) = In + AEij, i # j, Ti;(1)Ty:(—1)T35(1) remplace L; par L; et L; par —L;.
Supposons donc a;1 # 0, i > 2, avec ce qui précéde ; puis se raméner & a1 = 1. Ensuite, avec des matrices de transvections,

ona My,..M;.A.N1..N; = (é Xl), etc. D’ou GL,(K), K =R ouC, est engendré par les matr. diag. inversibles : voici le cas

d’une transvection (clair si dilatation). Si D diagonale avec coeff. diagonaux tous distincts et non nuls, T;; = Dil.(D.Tij)
la seconde matrice étant elle aussi diagonalisable (inversible) car triangulaire avec valeurs propres toutes distinctes.

1 Gi hyperbole équilatére, Fr est rejeté a l'infini dans la direction de la normale. Calcul : Norm. N(P(z,—y)Q(—z,y));
Equations : Bz(Y —y) = Ay(X —z), (Y +y)+y(X —z)=0,dou: (A+ B)X =(A—B)z, (A+B)Y = —(A— B)y.
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27 Espaces vectoriels euclidiens

27.1 Une famille de vecteurs orthogonaux non nuls est toujours libre

.o, ., — — . N .. . . . e, .
Corrigé : Soit v'q,... 0 p, ... la famille. Méme si infinie, on prend une combinaison linéaire nulle;

donc une sous famille finie : a1. 71 + ... + ap. U p — 0. Le produit scalaire par v’y # 0 donne

a1.|]71|]2+0+...+0: 0.71 ou ar.|?1]|*=0; donc a; =0. Idem les autres. Fini.

27.2 Dans E =R? e.v.e. usuel, décrire ’endomorphisme de matrice B

L[-2 6 -3
B=-|6 3 2]|.
“\23 2 6

— Corrigé : Les vecteurs colonnes étant ortho-normés, on a B € Q3. Puis det(B) = —1.

— Solution 1: —B € OF, en fait demi-tour axial autour de ﬁ de matrice, en base judicieuse diag(1,—1,—1).

D’out B semblable a diag(—1,1,1) : reconnaitre la symétrie orthogonale / Kt (les invariants).

— Solution 2 : On a car B orthogonale et ‘B = B par observation. D’ou B = B~

Mais alors, par Théoréme, B est la matrice d’une symétrie qui est aussi une isométrie : celd entraine

symétrie orthogonale ... (& voir). On cherche les vecteurs invariants (sans erreur) : un plan vectoriel.

27.3 Sur M5(R), un produit scalaire classique et norme de Frobénius

b d d
My (R) étant isomorphe a R* en tant qu’espace vectoriel, on reconnait le produit scalaire canonique !

Il s’agit de |< A, B >=Tr(*A.B).| On obtient : Tr(( C) (a/ b:)) =aad' +cd + bV +dd'.

Et donc les 4 matrices ((1) 8) , (8 (1)) , (? 8) , (8 ?) forment une base orthonormée pour ce p.s.

— La norme d’une matrice, déduite de ce p.s. vaut donc : N(A) = +/Tr(tA.A).
— On a, par conséquent, I'inégalité de Cauchy-Schwarz : | Tr(*A.B) |> < N?(A).N*(B).
Par exemple | Tr(A) | < N(I)N(A) = V2.N(A) = \/2.Tr(tA.A); et égalité < A = a.l.

— Vérifier, pour finir, que S3(R) et A3(R) sont des supplémentaires orthogonaux .

27.4 Inégalités : produit scalaire et matrices orthogonales (...)

1. Montrer I'inégalité : (a1 + ... + an)? < n.(a? + ... + a2).

a1 1
Soit W =| " | et v = avec le p.s. usuel de R". ‘L’inégalité de Cauchy-Shwartz | termine.
an 1
a1 + a2 + ... +ain 1
2. Pour une matrice orthogonale (Z aij)? <n? Soit v =| tanttan o 1 ona
an1 + an2 + ... + ann 1
(VW) Zaw I Tl ne reste plus qu'a dive : || 7|2 = |0 1|2+ |0 2)> 4 ... + | T nl|? car ces vecteurs

sont orthogonaux I Et ceci vaut 1+14...41 car aussi unitaires ! Et inégalité de Cauchy-Schwartz.

1
3. Si A, B, §(A + B) € O, vérifier que: teR =t.A+ (1 —t).B € 0. Déduire que A = B.

(Pour "déduire" : sinon, un vecteur de ¢.(A — B) peut devenir "grand").
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27.5 Symétrie par rapport 4 un hyperplan en dimension finie (...)
Soit f€ L(E): W +— u +a.(u.d). @, a unitaire de E, espace vectoriel euclidien.

1. Montrer qu’on a un endomorphisme symétrique. Puis trouver ses "éléments propres".

2. Trouver a pour que f soit une isométrie (|| f(@)| = || ||) & décrire. Enfin vérifier :
3. Dans R3, si s(@) = sym(@ /Plan 7 1) : @ — s(w) = 2.p(w) on p(w) :(rr_,||7;)_>
n

27.6 Le Th. du parallélogramme caractérise une norme provenant d’un p.s.

L. Soit f(z,y) = & +yl* — =l — |yl Verifier que f(2z,y) = 2.f(z,y) (avec [z +y+z|* ..)

. +z
2. Puis que g = [e+y+2[2 = [lz+yl> + ly+ 202 +l|z 4l — > [¢]2~[|=]? (avec g = ||lz+2 5+
Y+ z 1 1 1 1
Sl = =l + G2 4y 2P Sy 2l = <2l Sy Sl @ )+ @) = )

3. (a) Déduire que f est additive / ler vecteur. Pour montrer que f(A.z,y) = \.f(x,y) :
(b) Vérifier que c’est vrai si A € N;  puis que f(—A.z,y) = —f(A.x,y) avec I'additivité.
(¢) Puis pour A :é avec f(q%.x,y) ; puis A € Q. Enfin A € R (avec la continuité, inég. triang.)

4. Conclure que f est un p.s. (Posant f(z,y) = 2.(x.y) : |z||* = z.2. (*) (Th. de Von Newman.)

27.7 Applications symétriques ou antisymeétriques en e.v.e. (...)
On dit que f est sym. (antisymétrique) si f(w).v = u.f(v) (respect. f(u). v u.f(0)).

1. Montrer qu'une telle application est linéaire. Matrice en base orthonormée 7

— — — —
2. Dans R?, on dit qu’un champ de vecteurs est équiprojectif si MN.V(M)= MN.V(N).
En posant f(MoM) = ‘_/2(M) - V(MO), vérifier que f est antisymétrique;

— — — - —
puis qu’il existe Q telque: V(N)=V(M)+ QAMN.

27.8 Sur les applications conservant le produit scalaire (...)

Soit £ un e.v. muni d’un produit scalaire. Montrer que f conserve le p.s. = f linéaire

[Indication : développer ||f(W + @) — f(u) — f()|* ... ]

27.9 (*) Dans R,[x] avec un p.s. donné par une intégrale (...)

1. Orthogonaliser : 1, x, x> pour le produit scalaire ¢(P,Q) = /WP(t).Q(t).sin(t)dt.
0
(Réponse : 1, x-11/2, x> — mx+2)

2. Minimum de / (2% — ax — b)%.sin(z)dr 7 (P3.Ps=x>.P; = 0% =40 — 4.7%)
0

1 2 1 1
Plus usuel mf/ (t? — a.t — b)2.dt = % Analogue ¢(X,Y) ='XAY ou A= (1 1 1) est un
0 - 11 2
produit scalaire sur R?. Orthogonaliser la base canonique. [Rép.: 72, =7 /2+ 7, -7 + ?]
27.10 (*) Matrices 3,3 circulantes et rotations vectorielles (...)
p g r 4
Montrer que A= |r p ¢|€0f < p,q,r racines de X® — X?4+a =0, a€[0,2—7].
q T P
Préciser alors A. [0 = (7 + 7 + ?)/\/g, 2.cos(0) =2p—q—r, 2.sin(d) = V3.(r —q) .
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27.11  Suite de Fibonnacci, nombre d’or ; matrices 2x2 et produit scalaire

Léonard de Pise, dit Fibonnacci, étudia le probléme de la reproduction des lapins (1202).
Un couple de lapins, au mois 1, donne naissance au bout de 2 mois, chaque mois, & un autre couple.
Idem pour tout nouveau couple. Donc au mois (n+2), il y a : ceux du mois (n + 1) augmentés des

nouveaux couples, autant qu’au mois (n) = Upt2 = Upt1 + Uy (%) avec ug = ug = 1, ug = 0, ug = 1.

1. a) Montrer que (%) permet de calculer u,, pour n € Z~ ; Valeurs pour —5 <n <8 ?

n+1

b) Prouver que u_,, = (—1)""'.u, note'®, en voyant les cas n =0 et n=1. Note'®

2. a) Désormais n > 0. Montrer trés simplement que que : w, —+> + o0.
n—-+0oo

— 7 —1=0 en notant ® < ¢ les racines. Préciser ¢ + ©; ©.¥; Y — Q.

b) Résoudre I'équation 72

Connaissant les suites vérifiant une relation de récurrence linéaire d’ordre 2, préciser u,,.
n
L1 @ ., Un
c) Déduire que u,, ~ —= et que la suite
n—-+

+
/5 y
d) Montrer que v; = 1; v,4+1 =V/1 + v, converge en croissant vers ¢. (¢ = \/1 +4/1+4/1+ /7))

e) Soit la suite wy; = 1; wyy1 = 1+ —. Vérifier que | wp41 — ¢ |[< k. |w, —p |, avec 0 < k< 1
Wn,

converge vers le nombre d’or ¢ (~ 1,618...).

no‘ce17

Un+1 ( 1 )

Up <,0—1+1+%

a préciser. Conclure et faire le lien avec

On veut retrouver la valeur exacte de (u,)n>0 par une méthode matricielle, en prouvant la réponse.

) o up (0 1Y\ (1 1Y\ (¢ O
On pose : U"_<un+1>’ A_<1 1>, P_<90 @), A—<O E).

1. a) Vérifier que P est inversible et que P'AP = A sans calculer P~

Veérifier que U,11 = AUy ; que U, = A".Uy et retrouver la valeur de wu,,.

c)

d) Justifier sans calcul que A" est symétrique et que : A" = Un=1 Un )
Up, Un+1

e) En déduire : tpy0.un — (uny1)? = (=1)", pour n > 0, note'® et aussi (*) note

b) Calculer ensuite : P7!. et A™: et en déduire la premicre ligne de A™.
)

19

2. Vérifier que A? — A—T=0. Déduire 3 Qn, B+ A" = i I + Bp A et que a1 = Bn = Uy,

Note®.
/ /
Un produit scalaire dans My (R). Pour M = <(c1 Z) N = <Z, Z,), on considére Tr(*M.N).

1. Vérifier qu'il s’agit du produit scalaire canonique faisant de M2 (R) un espace euclidien.

1 -1
3. Pourquoi a-t-on A" L Vect(B,C) 7 Qu’obtient-on en exprimant que A" L (B+C) 7

2. Montrer (Vect(I,A)*t = {M : Tr(*M.I) = Tr(!M.A) = 0} = Vect(B,C), B = <1 0 > =,

n

n n n
15 k
° De plus : E Uk = Un+2 — 1; E U2i—1 — U2n E U2 = U2n+1 — 1; E (—1) U = (—1)”.un,1 — 1.
k=1 =1 =0 k=1

n
16 . . ) . . 2
On peut également démontrer qu’on a la relation suivante : Ul = Un Unt1-
k=1

" On peut encore observer D'égalité : w, — o = (=1)"/(¢™.un) o ¢ est le nombre d’or.

18 "L (—1)k 1 i (=1)* o .

Donnant : E — — — et | |(1—|— 5—) — ¢ (avec des simplifications télescopiques).

prt Uk - Uk+1 n~»+oo(p bt uk n—-+oo
% On a aussi Unt+1.Up + Un Up—1 = Untp, d'OU ... pged(Un,Up) = Upged(n,p); ainsi uiﬂ + ui = U2n41-
2
. . w”—1 P .
20 Bt encore, avec w = 6”/5, on obtient : % = ¢ (cf. pentagone régulier du chapitre C).
W —
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28 Espaces affines/Affines euclidiens

28.1 Composée de 2 symétries affines orthogonales dans & = R?

Si D: (z.sin(a) —y.cos(a) =0)N(z=h); D' : (z.sin(a)+y.cos(a) = 0) N (z = —h), décrire sprosp.

‘Solution (Dessin !) ‘ « D est une droite affine comme intersection de 2 plans affines non paralléles.

uand donc : 2 plans affines ax + by +cz =d, (a,b,c 0,0,0) et... sont-ils paralléles ?) D’ idem.
(Q P Y , (a,0, ,0, p D' idem

. . , . 7. / L, L N . . .
: la perpendiculaire commune | O équidistant de D et D’. L’énoncé donne ce repére judicieux !

. Sp est une isométrie affine. Ici sp € 85')'. L’Application Linéaire associée, notée sp, est la symétrie
Vectorielle par rapport & une droite Vectorielle : Vectu (cos(a), sin(a),0) ou demi-tour : dans O3 .
(Attention en sens inverse : si ¢ Linéaire de @;‘, est un demi-tour autour de Vect(), il n’est pas str

que g, affine, soit une symétrie / une droite Affine de direction Vect(w') - et donc, droite affine du
type (P, W), P a chercher- car en général, g est un Vissage : des translations se "rajoutent" !)

N
. Puis f =5posp Linéaire dans OF (une rotation Vectorielle axiale) se voit assez bien :

— —
C’est la rotation autour de Vect( k) (car k invariant) d’angle —4.« ... D’ou f = sprosp Affine est

. Un d’angle —4.c, d’axe Affine (P, ?), P a chercher, ainsi que le Vecteur de Translation.

N N
Mais, rappel de cours : P € Axe-affine = PP’ colinéaire & k. D’ou la Tentative qui réussit :

[N - —
SiH=DN(0z), K=D'N(0z), ona H+ H+ H* avec HH" = 2.HK colinéaire & k. Donc
H est sur I’Axe-affine cherché, qui est (Oz) et Vecteur de translation 90.HE = 4.HO = —4.h. k.

28.2 Dans £ =R® e.a.e., décrire M — M 2’ =2 -2,y =z, 2 =y

. L’application linéaire associée, f, de matrice A = est dans Q3 selon

z’ 0 0 1\ [z
. (Corrigé) Ona: (¢ ]|=(1 0 o) |y]|+ O donc f est affine.
2’ 0 1 0/ \z 0
. 0
1
0

_= o O
S O =

un Théoréme, vu que les vecteurs colonnes forment une base ortho-normée.

. A ce stade, on sait que dét 7 =+1; en fait, +1.

N
Donc f € (O); est une rotation vectorielle axiale par un autre Théoréme. On trouve ...

1
. Axe (vectoriel de 7) =Vect| 1| =Vect(W); ce vecteur choisi pour orienter l’axe.
1
s 2w — .
. Angle : 2cos(0) + 1 = Tr(A) par propriété. 0 = :l:?. Et comme f (%) = "), lére colonne de A,
6= —|—23—7T a vue. (et donc A™1 est ala fois: A et A?).
. Revenons a f :|Par un troisiéme Théoréme, ayant f € %s;, f est un vissage :|. Angle : § = 4+27/3;
¥ —x=90
. Axe affine D de f et Vecteur de translation : M € D= MM’ =674 oul ' —y=25 D'ou (laissé)
Z—z=6
= —— i : !
0 3 vecteur de translation et D:{ Yo z——2/3 " Vérification : D { yoz=0

62



28.3 Applications affines. Note sur la projection conique (Th de Désargues)
1. Préciser f affine: M +— M', o' =5z +2y —22+2; ¢ = —do —y+22—2; 2/ =8z +4y — 32 + 4.
2. Expression de la projection (affine !) de & = R? sur le plan affine z +y+2 =1 //Vect(1,0,1) ?

3. Rem. une proj. affine :
et Hilbert (*) : Th. de Pappus 29.1 = Th. de Désargues dans R?: dans R® Th. de D. toujours vrai !

28.4 Dans £ = R?, des ensembles de points tels que (...)

1. Quel est 'ensemble des points M tels que : MA.(MBAMC)=0 ?
2. Quel est 'ensemble des points M tels que : MAAN(MBAMC) = 07 [et une note :
‘A, B, C alignés, VM | BC.MA? + CA.MB? + AB.MC?+ AB.BC.CA = 0 relation de Stewart. 32.3]

28.5 Au sujet des torseurs. Un exemple classique

—
1. Soit un systéme de "pointeurs" (Ay, uj) : de résultante R = Zﬂ)k; et de moment en M :

— —_— . N
My :ZMAk/\ Uk, ; on peut prendre des vecteurs "glissants" : remplacer Ay par By, sur D(Ag, u'g).

— —
Montrer que My = Mo+ R AOM. (Donc si méme Mo et méme R, méme moment partout).

2. Déduire que R.Mjs est invariant : invariant scalaire du torseur (R, Myp).
' ' v v 7
3. Moment / un axe (OO') : Sion a un axe (0,0") vérifier que Mgp .00 = My, . 00"

N
(Mo .w)w, w unitaire, est dit moment par rapport a I'axe).

4. Exemple. Montrer que les vitesses d’un solide forment un champ des moments d’un torseur :

- —_— — — —

(a) Avec : A(t)B(t) = cte, vérifier qu’on a un champ "équiprojectif" : AB.dB/dt = AB.dA/dt.
— — — — — —_— — — —

(b) Soit O fixé, f(OM) =V py— Vo ; montrer : OM . f(OM) =0, f(ON).OM = —-ON.f(OM).
(c¢) En utilisant qu’une application antisymétrique est forcément linéaire 27.7; de matrice anti-

o — A = 147..: Y, A A A

symétrique en base o.n.; donc du type w —— Q A W, déduire que : f(OM) = Q ANOM.

— — - — —
Vérifier alors que : VM, N, VN —Vy=Q AMN (ou bien Q indépendant de O).

5. Classification

(a) Sien un point, le torseur se réduit a : (1—%, 6)) on dit "glisseur".
Sion a (W, ﬂo), on dit "couple" (moment indépendant de O). Inversement, montrer que
(b) Si ./\—/l)(] B =0:0naun couple (ﬁ = ?) ou, avec "la division vectorielle", un "glisseur".
(c) Dans le cas général, le torseur peut étre vu comme somme des deux précédents (ou encore
comme systéme de 2 vecteurs glissants. Les torseurs peuvent étre vus comme e.v. de dim 6).

.

6. "Axe central" d’'un torseur : On cherche {A tel que ||M 4] soit minimum. }

— —
(a) Montrer que : {M : My soit colinéaire & R} est une droite affine. Et que les points de cet
"axe central" sont les solutions cherchées (avec le Théoréme de Pythagore). Dessin en voyant
— —
que l'angle entre R et M4 varie ente 0 et /2 si A s’éloigne de angle central.
7 DR, si R# 0.

(b) Remarque : En tout point A de 'axe central, le moment vaut (
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29 Cercles et coniques (et cf. 30.3,5,6,8)

29.1 Trois questions de barycentre. Note sur le cercle [Pascal]
1. L’isobarycentre de 3 points A, B, C, est 'intersection des médianes G : connu.

2. Celui de la plaque homogéne est G aussi; découpons la plaque en lamelles paralléles a (A, B) :
chaque lamelle a son centre de gravité au milieu; or ces milieux sont alignés sur la médiane
CC"! Dot Gprague € (AA)YN(BB)YN(CC') : Gplague = G.  Par contre, montrer que

3. L’isobarycentre du fil triangulaire homogeéne est le centre du cercle inscrit au triangle "médian" !

— Corrigé de 3. Tout point M de ce plan est barycentre de A, B, C avec des coefficients judicieux :

—_— — —
1. lére démonstration : M A, M B,MC du plan vectoriel de dim. 2, sont liés. Ja, 3,7 non tous nuls :
— — — — —
aMA+ BMB+~yMC = 0. Id a+pf+v#0 sinon aMA+ MB — (a+ )MC = 0 ;
— — - = —
aCA+pBCB =0 : CA,CB liés, car « = 3 = = 0 exclus. Impossible : A, B, C non alignés.

\ o= (1—A—p) AA+ AAB + pAC A B O,
2. 2¢me. I\, pu: AM = XNAB + n.AC = TES I ES vy ; bar (1—>\—u A u)'

— Voici des coefficients barycentriques en toute généralité. D’abord un rappel :

1. M = bar (é g>j A, M, B alignés et par ex. « = MB,3 = MA; "lalongueur d’en face ..."

A B C . . .
M = bar (Aire(MBC) Aire(MCA) Az’re(MAB)) , Aire(M BC) = Aire triangle.

2. Propriété

Car a.MA+BMB +~MC =0, donne MAA (. MA + BMB +~MC)=MAANTQ = 0.
— —_— — — _— — —
Dott: B.MAANMB +~MAAMC =70, B[MAAMB.%k]=~[MCAMA.%]. Or

[MANMB. ?] représente le volume algébrique du solide de base le parallélogramme construit

— —
sur M A, M B, de hauteur 1; donc 'aire algébrique du parallélogramme MA, M B : 2xAriangle

. . . 5 _ Y _ « A ) "
Si «, 8,7 > 0, pour simplifier, oM CA = AireMAB = AireM BO I’aire d’en face ...
Q R )

. . . s P
— Coefficients barycentriques du centre du cercle inscrit & PQR. I est donc bar. de (r‘ OR rRP rPQ

P Q R\ . P . o s
ou de ( OR RP P Q) I barycentre de chaque sommet affecté du coefficient = longueur d’en face.

B . e e, / / / , . ’ _ 10N Al B, Cl
Cas du fil. Par associativité A', B', C" affectés des coefficients (A’, BC = 2B'C") : bar (B’O’ o' A A’B’)'

C’est donc le centre du cercle inscrit au triangle A’B'C’ : "centre de Spieker" du triangle.

Théoréme de Pascal, dit Th."de ’hexagramme mystique" (et Th. de Pappus si la conique
dégénére en 2 droites) 5.18 28.3 :
Le génie de Pascal fut -aussi- de prendre ce résultat comme Théoréme de départ et "d’en tirer
plus de 400 corollaires qui renferment I’essentiel des Coniques d’Apollonius”, selon le Pére Mersenne.

‘Ayant 6 points ABC, A*B*C* sur un cercle, on a AB*NA*B, AC*NA*C, BC* N B*C alignés.

— Un cas particulier (avec le cercle) est le cas ou on a des paralléles, donc 2 points sont a U'infini

(et on peut (*) se ramener a ce cas facile, d’aprés Perrin, justifiant Poncelet ...) !?

— (*) Une preuve usuelle utilise les birapports : car on peut définir le birapport de 4 points d’un cercle

(et méme d’une conique). Ce résultat s’étend par projection centrale (perspective) a toute conique.
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29.2 (*) Triangle inscrit dans une Hyperbole équilatére H [corrigé]
1. Si H d’asymptotes Oz, Oy; A, A", B € H, A’ = sym(A/O); (A, B) N Asymp = {P, Q} vérifier que

—_— — — —
K = milieu[A, B] = mil[P,Q] et OK = KP; puis avec 20K = A'B: Ox,AB = —Ox, A’B (m).
2. Si maintenant A, B, M sont sur H, de : OﬁB = —Ox/,IB (7) et: Oz, AM = —Oz, AM (),
(JAA] encore diamétre) déduire que : AB,AM = —A'B, A’M (r) et réciproquement. Si M = C,
3. A'BCH cocycliques [AB, AC = —HB, HC = —A'B, A'C' (7). h(Aé) : O centre de ‘H € Cercle d’Euler

K, J = miljgc), @ = mil 4 p) Th. de Brianchon-Poncelet, H € H. [AﬂH = CH,CB = —A’ﬂH.]

—
E=0 H G g

1. (a) Notes (Géry Huvent). Le cercle ABCH a méme taille que le cercle ABC : c’est son
sym./(B,C). En particulier A* = sym(A4’/(B,C)) € Cercle ABC; Aﬂc = A*ﬁkc.
(b) Sym(H/O) = H' = F se trouve sur ‘H N Cercle-ABC. [Car B sur ‘H de diam. [HH'] donne :
HﬁB = —Hﬁ’B; mais HﬁB = —C@B car cotés L et Th. de larc capable, etc.]
La parabole de foyer F' de directrice Steinerp (H € Stp) : est tritangente au trianglepc.

(¢) Notant Ay, By, Cy les pieds des hauteurs et ici Ay, Bo, Co les milieux des cotés, le Th. de Pappus
pour A, C1,C5y et C, Ay, Ay montre que G, H et (C1A2) N (C3A7) sont alignés : la droite de
Pascal de I’hexagone inscrit A, B1, C1,As, Bo, Cs dans le cercle d’Euler est la droite d’Euler !

(d) Si A,B,C,D € H [il existe une telle hyp. équilatére ; une infinité si quadrangle orthocentrique]

alors O, centre de H, est sur les 4 cercles d’Euler : O = E, centre d’Euler du quadrilatére.

(e) (Poncelet™) proj, (D € H) =p,q,r, Y = m[BD]: OK,Or=YK,Y7 =8D,84 - r8, Ry AD, AB+
BD,BA=AD,AB+pD,pr. OJ,0q = AD,AC+pD,pq. OK,0J+0q,Or = AC, AB+pq, pr
or OK,0J =1K,IJ = AC,AB : O;p,q,r cocycliques. Si p,q,r alignés : centregp € Simson.
Idem O;l,m,n triangle cévien de D = [, m,n autopolaire/conique ; On,lm diam. conj.; (HE)
méme inclinaison/asympt. nm,nl = Om,Ol. [Ou (I,m,n); (O,points cycliques) autopolaires ...|

2. (a) Si ABCD cocycliques (centre €2, R), les centres des 4 cercles sont cocycliques (q.3, O = E) :
001 = 003 = 003 = 004 = R/2. Et G isobar. de ABCD : QF = 2.0G car par homp 1o
Cercle ABC'D +— cercle passant par ) et les milieux de DA, DB, DC : son sym./G passe par
les milieux de BC, AC, AB : un cercle d’'Euler; = symg(€2) = O = E car sur les 4 cercles !

(b) Le cercle est de diamétre [DS)] (centre S,R/2) et RS = AD/2 (cf. Fig. 2.3); le sym /G est
e —— —

IJUE : [O30:] homothétique de [AD] par sgohq1/2 = hy,—1/2, 3.GH = —GQ, QH = —2EH :
Par hy _y /9, le quadrilatere des centres des cercles d’Euler (bleu) : homothétique de ABCD.

Retrouver que les mi-hauteurs de ABC'D inscrit sont concourantes en £ = O = sym(2/G) :

D(I,L CD) est L 010 c’est donc I'axe radical (IE); = chaque mi-hauteur passe par E.
(¢) Si M = hg,poi12(D): M€ (IJU), MV//BHapc L AC; or E € (IJU) et EV//QU 1 AC

(symg, G=U V) donc M = E : le quadr. des orthocentres (sur H) est sym.de ABCD/ E.

29.3 (*) C.N.S. pour que ax® + 2bxy + cy® = 1 soit une ellipse. Aire ?

Sol. géom. [et 59.1.] Soit le faisceau linéaire de coniques az? + 2bxy + cy® — 1 — )\(xz + 9% — R2) = 0.
Forme quadratique dégénérée < A v.propre de la matrice. Et (coniques passant par O) < \R?=1;
on a 2 droites doubles (det(*) = 0) sécantes en O : les cas de tangence des 2 coniques initiales. D’ou :

ellipse "ssi" \,\' >0 ou (a+c¢ >0, ac— b > 0). Et Aire =7.R1.Ry = /\/A1.M2 = 7/\/ ac — b2.
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29.4 Ellipse 2?/a® +4?/b* = 1 : construction de Rytz si diamétres conjugués

1. Soit OP, P alignés, P, € C(O,b), P, € C(O,a): P = (Py,y)N (P2, x) décrit une ellipse. [HP/HP; :g]
2. Si OP, OQ donnés, diameétres conjugués (i.e. OP; L OQ1), on cherche les axes. Pappus, Euler.
(a) Vérifier que rotp r/9: O, Po, P1, P— O, Q2, Q1, P* et: Q1, Q, Q2, P* rectangle.
(b) Si on prolonge P*@, vérifier qu’elle coupe les axes en X, Y tels que QX =b, QY = a.
[Q, Q2 projetés en R, S sur Ox et T sur Oy, )TQ?% = S/QQ\O; triangles ORQ1, QTY égaux.]
3. Une construction : C(Unitien P*Q; “;r”,O) N (P*,Q) donne X,Y ; donc: Oz,0y; et aussi:—a,b.
[PR=PS =0Q, (PRS) L (0Q) = Biss.OR,0S : axes; U € (OR),UP//Ox = OU = b,UR = a. R, S cercles de Chasles.]

29.5 Faisceau linéaire de cercles C : 2% — 2a¢z + y2 +co=0,Cy #C)

Soit le faisceau de cercles de base Cp, Cy ; Cy : 22 — 2apz 4+ y> + co + k‘.(:z:2 —2az 4%+ c1) =0, a1 # ap.
1. Vérifier si k = —1 que c’est 1'axe radical D, ensemble des points d’égale puissance/Cy, C].
2. On fait dorénavant une translation de repére de fagon que 'axe radical ait pour équation z = 0.

Vérifier que la famille a pour équation z2 + y? — 2.\ + ¢ = 0. Et que P(O,y) a méme puissance /
chaque cercle. Nature du faisceau selon le signe de ¢ (a points de base ; points-limites ; tangents).

3. Vérifier que les trajectoires orthogonales sont 22 4 4% — 2u.y —c =0 (Faisceau conjugué).

4. (*) Dans le plan complexifié (~ C?), si le faisceau F est a points limites U, V : 2° +y* —2\.x+¢ = 0,
¢ > 0 [points limites (£+/c,0)], vérifier que les points du complexifié : (0, £i.1/c) appartiennent a
tous les cercles du faisceau F qui a ainsi 2 points communs imaginaires conjugués (et distincts).

Un faisceau linéaire de cercles est donc une famille de cercles ayant 2 points communs :
réels et distints; ou réels et confondus; ou bien imaginaires conjugués !

5. (*) Points a l'infini : Dans le plan projectif {(X,Y,T) # (0,0,0)} (redonnant le plan affine, T'= 1),
cherchons avec : X2+ Y2 —2aXT —20YT + ¢T? =0 N T = 0 (éq. homogéne :%, Y :§) les
. "Points a 'infini" : aucun réel; 2 dans le complexifié : I(1,4,0) et J(1,—4,0), "les points cycliques",

points a l'infini des "directions de droites de pente ¢ et —i", dites "directions isotropes".

. Le fait de passer par les points cycliques du plan projectif complexifié caractérise les cercles dans
I'ensemble des coniques du plan car équivaut au fait que la forme quadratique est A(z? +y?).
X2 2 _ _ 2 _

P

centre) admet le point cyclique correspondant comme racine double = une asymptote (tangente

en un point 00). Ces 2 droites isotropes sont donc les asymptotes du cercle. [Une droite isotrope

. fait le méme angle avec tout autre droite mais avec elle, angle indéterminé ; on peut dire L & elle-méme !

montrer que : Cercle N (droite isotrope passant par son

. La dist. de 2 points d’une isotrope vaut 0. On a aussi T; NT} réel car conjuguées. Pole de Dy, : centre.]

6. (*) Une conique étant définie par 5 points avec 3 quelconques non alignés, un faisceau de coniques est
défini par 4 d’entre eux dits points de base ; donc un faisceau de cercles est un faisceau de coniques
tel que 2 points de base sont les points cycliques. Cette présentation englobe le cas du faisceau sin-
gulier de cercles concentriques : constitué de cercles ayant les mémes asymptotes, c’est-a-dire de
cercles bitangents a U'infini en I, J, points cycliques, qui sont points de base, et ici points doubles !

Ny=iz+ X et 22+’ =e%(z—d)? ou 22 +y?=(ex —p)? p=ed, d=dist(O=F,D).
On a Iéquivalence : (A = 0, Droite isotrope tangente) < (e? — 1)A? + 2p.e.i.\ = 0.

‘Déﬁnition (Pliicker). Foyer : un point duquel on peut mener 2 tangentes isotropes a la conique. ‘

Sie=0,p=ed#0:\=0, droite isotr. tang. en I(1,4,0)€ C passe au centre du cercle, seul foyer.

sie=1,A=0 (y = ”) : 1 seul foyer aussi pour la parabole. [T'= 0 ou (I, J), autre tangente a P |

y = —ix
e # 0,1 : 4 foyers (0,0); [~2pe/(1 —€?),0]; [-pe/(1 — €*), +i.pe/(1 — €%)]; N de 2 tang. isotropes.

D’ou la déf. monofocale. Si: 2 isotropes issues de F' sont tangentes en U,V € Conique et (M, N) sur Con. coupe
(U,V) polaire de F (directrice) en P; si Q tel que (MNPQ) DH et (UV)N(FQ) = R : (UVPR) DH car P est
conjugué de Q et F'; (FI,FJ,FP,FR) faisc.H donc FP 1 FQ (car conjugués/isotropes), donc biss. de FM,FN !
D’ou FM/FN = PM/PN = dist(M, A)/dist(N,A) (proportionalité) et fixer N. Cas M = N, tangente : FM | FP!
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29.6 Sur un Théoréme de La Hire (sur I’Ellipse) [corrigé]

On connait la méthode de "la bande de papier" : étant donnés deux axes orthogonaux Oz, Oy, et une
tige rigide mobile par deux de ses points : A sur Oz et B sur Oy (donc AB = cte) alors : un point
de cette tige décrit une ellipse (qui peut étre applatie, comme la trajectoire du point A, par exemple).

L’exercice suivant considére 2 axes non forcément orthogonaux : Oz, OX ; ainsi qu’un solide S lié a
la tige rigide A, B. On montre quun point P, fixé sur ce solide, décrit une ellipse (parfois applatie) :

1. Dans le triangle O AB, montrer que %

Le cercle Cy de rayon R fixe, passant par A, B (et O), de centre ) variable, peut étre vu comme
faisant partie du solide mobile. Considérons aussi le cercle fixe 'y de centre O, de rayon 2R.

Comme OAI et OBI sont L (mouvement de A sur Oz ; B sur OX) [ est le centre instantané de
rotation ; donc le petit cercle roule sans glisser dans le grand. Soit P lié a ce solide (P = A permis)

= 2.R; et donc R est le rayon fixe du cercle OAB?!.

2. (a) Tracer la droite QP coupant Cs en E et F. (P, E, F appartiennent au solide mobile li¢ & AB)

(b) Montrer que E et F' décrivent des segments cette fois orthogonaux [théoréme de 'angle inscrit

pour @] Conclure pour P ("Méthode de la bande de papier").?? (Note?3)
[ENGRENAGE DE LAHIRE] ~ b

Y.

29.7 Sur la double génération des coniques (ex. ellipse)

Soit un repére orthonormé Oxy et une tige A € Ox, B € Oy de longueur [ > 0 et M solidaire avec cette

. . _— - — . . N — — —_— _—
tige prolongée tel que AM = b. W, v unitaire de méme sens que ABetbeR | Ona OM = OA+ AM.

2 2
x = l.cos(0) — b.cos(0); y = b.sin(0) sif = (7, m), I milieu de [A, B]. Donc : (lfib)Q + Z—2 =1.Cp

oy
Clpy=Cry 7 Sib=—b possibilité en plus b= % Ex.: (I=6,b=-1); (I=8,b=1).

/
Ll 0 Bx:(l=3b=4) (1=5b=4).

Si b = b une possibilité en plus b =

Remarques

— On peut se limiter au dernier cas : grand axe sur Oz.

— (*) De méme on a une double génération des courbes cycloidales. 15.5.5.

21 . s . c1L . s
Le point O n’est pas un point lié au petit cercle, considéré comme solide animé.

22 . . . N . . . . . . N . s .
Ceci constitue le Théoréme de La Hire. Un cas particulier est : si un disque roule sans glisser & l'intérieur d’un cercle
double, un point de la circonférence tel A décrit un diamétre ! Mouvement circulaire transformé en mouvement rectiligne.

3 Sur le nom "La Hire" : les joueurs de cartes doivent savoir que La Hire est le valet de © ...
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29.8 (*) Puissance d’un point/une conique [Jean de Biasi]

Soit une conique de foyer F'; M se projetant en Hy; sur la directrice A 1 7 : si une droite (A4, W)

coupe la conique en My, My : | [1 — e®.cos?(0)].AM, . AMy= cte = AF? — 2AH% ou 0= (7,7).

. . , . , < 1 . RV — T2 277 72
(Arriver & une équation de degré 2, a l'intersection : AM = \.u N FM* — e“HpM* = 0; de terme en
2 2 .2 T M — T AL AP AP2 2 .2 2 24772
A1 —e®.cos*(0) car HyM = HyA+ AP, AP* = X\.cos“(0); et de terme constant : AF* —e“AHZ.)
D’oti le Théoréme de Joachimsthal. 2 sécantes en A coupent une conique en My, ..., My : une CNS
pour que les M; soient cocycliques est cos®(61) = cos®(6s), #a = —61(r) : inclinaisons sym. /Directrice ou
sa perpendiculaire.?* (Si droites// : (4, B)//Oz ou Oy, un rectangle.) [ si a;, angles sur le cercle, 3 a; =0 ].

. Cas 32 = 2px et 22 + y? — 24z — 2By + C = 0; trouver y; + y2 + y3 + y4 = 0 : centre de gravité €Axe.
. Cas z = acos(t),y = bsin(t); avec T = e et 22 4y*>—2Ax—2By+C = 0 trouver t; +to+t3+t4 = 0(27).
.Casz=a(T+1/T),y =b(T —1/T) |hyp.| : TZT>T3T4 = 1. Cf. 30.3,25 Th. de J. vrai aussi : normales a H,
T\ T5T5Ty = —1. [Toute conique a une éq. : y? = 2p.a+q.a?, g =e*—1, p = ed paramétre, F(lL—?-e’ 0),d = §(F,D).]

29.9 (*) Polynome de degré 3. Convexité. Ellipses de Steiner

1. Deux questions liées : Ayant P(x) = (x — a)(z — §)(z —7) de racines complexes «, (3,7, affixes
du triangle A, B, C, peut-on "voir" ou sont les deux racines de P’ ? Soit S ou St I'aire du triangle.

2. (a) Montrer qu'il y a une et une seule ellipse circonscrite & ABC d’aire minimum.

(b) Montrer qu’il y a une et une seule ellipse inscrite & ABC d’aire maximum.
Et que ces deux ellipses [de Steiner| sont de centre G et homothétiques de rapport 2.

Pour 2) et 1) : ‘ les racines de P’ sont les affixes des 2 foyers de ’ellipse inscrite dans ABC' ! ‘

1. (a) On a 2S = ab.sin(C) = be.sin(A) = ca.sin(B) donc : 85% = a?b?c?. sin(A)sin(B)sin(C).

(b) f(t) = —In[sin(t)] convexe sur |0, 7[ (f” > 0); donc f( #) = [f(A)+f(B)+f(O)] et

égalite & A= B = C. Donc : sin(A)sin(B)sin(C) < 3.v/3/8 et égahte & A=B=C=n/3.

Dou: S3< %a%%{ S < ?(abc)z/?’ et égalité si et seul. si Triangle équilatéral.
2. (a) Onsait que: Jzyz < (r+y+2)/3 et égalitée @ x=y=2 Dou:
(b) S < \1/2_(@ +b? + %) et égalité < a =b=c (inutile ici; inég. de Weitzenbock).
(c) S< ?(%M)Q , égalité < Triangle équilatéral. Soit p = %b—i—c demi-périmeétre.
abc 3. \/— 2 "
3. (a) 1b) et 55 = = 2R (rayon du cercle circonscrit) : S < R* et égalité "ssi" T équilatéral.

(b) 2c) et S = p.r (rayon du cercle inscrit) donnent S > 3.\/§.7’ et égalité "ssi" T' équilatéral.

4. TIci, on utilise qu’une bijection affine du plan multiplie les aires par une constante [comme 'applica-
tion affine sera composée de 2 affinités, clair]. Et qu’une application affine conserve le barycentre.

(a) Soit E une ellipse d’aire Sg, circonscrite au triangle 7"; on tranforme I’ellipse en cercle par une

. . SE . R?
application affine ossible|. Alors : == >
PP Jlp ] St 3.\/§.R2/4 3\f

Nouveau triangle équilatéral < Centre du cercle = Centre de gravité du nouveau triangle
A'B'C" < [par f_l] Centre de 'ellipse = Centre de gravité ancien triangle ABC.

(b) Nombre de solution(s). Au moins une : Si g affine, ABC — A”B”C” équilatéral de cercle

circonscrit I : g_l(F”) convient. Unicité : Avec f du a) fog™! est une similitude ¢, car un

triangle équilatéral — un autre ; comme g = ¢ lof, g(E) =le cercle circonscrit car f(E) cercle.
S 2
5. De méme F' étant une ellipse inscrite & un triangle, on a — LR et égalité & .

3\/37«2 3\f

< Centre de lellipse = Centre de gravité ancien trlangle ABC. Ellipse unique encore.

Et égalité < [par 3a) encore|

Et E homothétique de F' dans le rapport 2, puisque R = 2.r pour le triangle équilatéral image.

24 Sans lien mais : si zy = zoyo est équilatére A, B(—zo, —yo) un diameétre ; AP, BP inclinées sym/Asympt < P € H.
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6. Foyers. Soit P(z) = (z—a)(x—3)(x—y). Par translation [centre G| on peut supposer a+ 5+~ =0
et par rotation, a.ff 4+ 8.7 +v.c € R™ (a voir). Qui raméne & : P(z) = 2> +pzr+¢q, p€ R™.
ud 403 = —q

wo = —p/3 ,ona:

(a) Les formules de Cardan donnent ainsi les racines : Ayant u,v tels que {

a=u+4v, B=uj+vj% v=uj’>+vj, cequise traduit encore par (*):
h: affine z+— u.z +v.Z transforme {1,7,52} équilatéral en A, B,C d’affixes o, 3,7.
it ef a pour image ’ellipse d’équation

; _ . . 1
(b) Notons u = r.e",v = s.e™™,r > 5. Le cercle inscrit z = 3

® sur Oy. D’ou les

1. . . . _
z ==[r.e’ %) 4 5.7+ de centre O, de demi-axes "5 sur Oz, =

2
foyers ici sur Oz, tels que : x?oyer :(T—;SF g ; V= pg = v :%pe RT : ay=4/-p/3.

(*) Ce sont donc les racines de P'(z) = 32% 4 p : Théoréme de Siebeck-Marden !

P'(x) 1 1 1 3(x—2)(x—2") .,
Notes : 1 = + + = . Avec z = z on a aisément : les
' Fo) “r—a a8 vy G-
racines de P’ sont dans le triangle ABC : (Théoréme et points de Gauss-Lucas 11.4).
_ !
(a—2)la-7) = l, arg(%) = 0 d’on des égalités d’angles avec les foyers : Théoréme de Poncelet.

(a=pB)a—=7) 3

2)

3) Si P décrit une ellipse homofocale, M’ P + P M +grand.arcM M’ =cte : Graves. '
—
[Avec 1), d/dt(PM'+PM) = PM'/PM'«(V ap =V p)+ PM /PMo(V 3=V p) = |V sl = |V ar | = —dL/dt]

29.10 Polarité / a un cercle, réciprocité, quadrangle harmonique
1. Définitions. Déja soit deux cercles C [2% 4+ y? = R?] et T.
(a) C et T sont orthogonaux < R? + p* = 0% < puiss(Q/C) = p* & puiss(O/T) = R2.
—_
Vérifier, si [MM’] est un diamétre de ', que ceci équivaut a : OM.OM' = R?.

(b) |On dit que M et M’ sont conjugués / C si le cercle de diametre [MM'] est L a C.

. Si la droite (M M') coupe C en P, P', vérifier que MM’ PP’ est une D.H. (cf. 4.6 ; etc.)

« (Idem) Si (OM) coupe C en A, B; et I' en M, u, vérifier que (A, B, u, M) est harmonique.
(¢) Avec la définition, montrer que si My (28) # O, le lieu de ses conjugués est la droite d’équation

zxo+yyo = R? (orthogonale & OMj ; calculs a éviter) : polaire de M. M, est dit son pole.

La droite de l'infini est la polaire du centre O ; pour tout diamétre [P, Q] : (P, Q,0,00) = —1.

2. Conséquences.

(a) Si My est sur C montrer que sa polaire, notée (my), est la tangente en M.
(b) Si My extérieur, tracer les tangentes MoT, MoT" : justifier que sa polaire est (T,7").
(c) Si My intérieur, soit A L. OMy en My; S,8' =CNA; U=Tang.s NTangs. Polaire ?
3. Réciprocité polaire. La relation de conjugaison étant symétrique (O—)M.OM’ = R?), si la polaire de
M passe par M’, celle de M’ passe par M : droites "conjuguées" ; et (O—/LO—B)) = (a,b) (m). D’ou:

(a) (1) Si un point décrit une droite A; O ¢ A, sa polaire pivote autour du pole de cette droite;
(2) et si une droite pivote autour d’un point I # O, son pole décrit la polaire de ce point.

(b) (3-3") Des points sont alignés sur une droite ne contenant pas O (respectivement contenant O)
< les polaires sont concourantes au pole de cette droite (resp. paralléles).

(c) (4-4) A,B,C, D sont en D.H. < les polaires (a), (b), (¢), (d) forment un faisceau harmonique.
Plus généralement : A, B,C, D alignés sur une droite ne contenant pas O < (a), (b), (¢), (d)
concourantes — au pdle — : comme ces polaires sont resp. L a OA,OB,O0C,0D, le faisceau
des 4 polaires est isométrique a celui des 4 droites OA, ... : méme birapport. FEt:si A, B,C, D

sur une droite contenant O, les polaires sont paralleles; avec )y = R? /xar : méme résultat.
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4. Exercices avec indications
(a) Soit (O, R) un cercle et M un point. Si MUV et MU'V’ sont sécantes au cercle issues de M
et si P=(U'V)N(UV'), Q= (UU)N (VV’') alors la polaire de M est la droite (P, Q).
[En effet, M et P sont conjugués par rapport au couple de droites UU’ et VV’ : Si on a
une D.H. PP,UV’ les droites QU, QV’, QP;, QP sont un faisceau harmonique donc les conju-
gués de P forment une droite passant par @ ; et idem par M avec UV et U'V' : c’est MQ;
M PQ triangle autopolaire. (D’ot si UVNPQ = M’', MM'UV harmonique, M’ conjugué de M
par rapport au cercle : le cercle de diamétre [MM'] est L (O, R). Idem avec M” = PQNU'V’).]
(b) Soit un triangle ABC, dont les bissectrices intérieures coupent le cercle circonscrit en AgByCp.
Si M est sur les tangentes en A et Ag, etc., alors: M, N, P sont alignés.

[Biss. int. concourantes = poles alignés. Idem avec les médianes (AA’), hauteurs AA1, etc.]

(¢) Soit ABC' de cercle inscrit Z(i,) touchant les cotés en 41,149,173 ; la polaire de A /T est (ig,i3)
donc le pole de (A, H) est M = (ig,i3)Na, a L (A, H) passant par ¢ ; idem avec N, P : M, N, P
alignés, car hauteurs conc. Idem : pole de (Aiq)... conc. (point de Gergonne) ...

(d) Enfin si deux courbes sont tangentes en un point, les polaires aussi 29.11 (exercice).

5. Birapport de 4 points réels cocycliques : réel. 4.6... (cas de points alignés : connu).
(a) Montrer : VM € C, [M; A, B,C, D] = cte-réelle. (Avec le Th. de 'angle inscrit : une rotation
affine transformant ce faisceau en [N; A, B,C, D] N € C : on dit birapport [A, B, C, D] et bien
str, on peut faire tendre M vers A, ce qui donne une tangente : birapport (74, AB, AC, AD).

(b) et cte =birapport des affixes complexes. (Un changement de repéres — qui ne modifie pas le
birapport — raméne au cas oit O € Cercle et centré sur Ox ; avec une inversion 2’ = 1 /Z, le
Cercle est transformé en une droite et le birapport réel, est seulement conjugué, donc conservé).

(c¢) Inversement, birapport des affixes complexes réel = points cocycliques, si non alignés.

6. Quadrangle harmonique et conjugaison. 4.7. (A, B, M, M") (QH) si birapport = —1. Ici (A, B,C, D).

Si C(C, R) est un cercle; D(A, W) une droite : ||| = 1; si @ varie en direction, DNC = {M, M’}

(a) Th. on a: AM.AM’ constant et vaut puiss(A/C) = CA*> — R*> = d* — R* : "puissance du point A/C".

Démonstration par calcul vectoriel, sans repére ! Pour D: AM = A\.%. Pour C: CM? = R*. Donc
AL A2 P2 s 12 — S AN L A2 2 — ‘. . .
(CA+ AM)* =R dou A" 4+ 2 .(w .CA)+ CA* — R° =0 (||| =1 choisi). Le produit des racines vaut
’ — 1= Y 7 A2 2 .. . .
AN =AW). N W)=AM.AM =CA” — R". Fini | 3 cas: 1) A€, 2) A intérieur < puiss(A4/C) < 0.
3) A extérieur au cercle < puiss(A/C) > 0 : avec une tangente AT au cercle, on a aisément AT = d* — R”.

(b) Utilisation. Ensemble des points du plan M :% =k, A# B, k> 0; courbe notée Ci. (k = 1 : médiatrice).

‘ Si k # 1, Ci est un cercle (d’Apollonius) centré sur (A, B). (*) Et Cx L a tout cercle I" passant par A et B. ‘

Démonstration (k # 1 sinon clair ; A et B points communs du dessin). 1) On a donc MA®> —k*>.MB* =0 ou
— — — — — — —
(MA+k.MB).(MA—k.MB) =0. SiU : baryc.(A,1)(B,+k),V : (A,1)(B,—k): 1+k).MU = MA+k.MB,
(1—-k).MV = MA—kMB. Doa MU.MV =0, MU L MV : M décrit le cercle de diamétre [UV].

2) (*) Pour l'orthogonalité Z—; = X—; = % =k == 732_; (1) : on dit que A, B, U,V sont
en division harmonique. [= U et V pieds des biss. de AM B]|. Cela entraine la relation de Newton 4.6 :

Si Q est milieu de [U, V], QU? = QV?2 = M@‘ (2) : écrive UA =TUQ + QA, etc, pour passer de (1) a (2).

Si maintenant T’ passe par A et B : QA.QB = puiss.Q/T'; ici,  est extérieur (puiss > 0); si T est un point

d’une tangente a T issue de €, puiss(Q/T) = QT (Th.); et aussi QU” avec (2). Ceci indique que Cp L T' !
(¢) Montrer : A, B,C, D, situés sur le cercle C forment un QH < (AB) et (CD) conjuguées.
(= [B;C,D,A,w| harm.; w € (C, D) conj. de P : pole de (A, B); (AB),(CD) conjuguées.

< : Sile pole w de AB est sur CD, [C,D, P,w] = —1 et [B;C, D, A,w| harm.; Bw étant
tangente, on a [A, B,C, D] = —1 : Q.H. Voir aussi le cas ot AB, CD diamétres, w = oo !)

Rem. Q, pole de (C,D)/C : Q € (A, B), centre de ' L C; wP{) autopolaire, d’orth. O centre de C.

|5
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29.11 Polarité par rapport a un cercle, Théoréme de Salmon, tppr
1. Théoréme de Salmon. Soit A, M de polaires (a),(m); «,p les proj; de A, M respectivement
sur (m), (a), A", M’ celles de O sur, respectivement (a), (m); A la bissectrice de [OA),[OM).
(a) Justifier que : OA.OA’ = OM.OM’ = R*. En déduire que :
(b) dans la similitude inverse composée de la réflexion/A et h(O, OM/OA) : A M, M’ — A’

(c) Par conservation de 'orthogonalité, justifier que : « — pu et |Aa/Mupy=0A/OM :
‘Le rapport des dist. & O de A et M vaut celui des dist. de A et M & la polaire de lautre. ‘

(d) Ou bien : voir que OA.Op = OM.Oa = R?*; donc O—IZL(O—)M—i—]\T;;) = (7/[(0—/1 + 1@)

2. Définition. La tppr de cercle C(O, R) est la bijection pole-polaire. (Transf. par polaires réciproques).
A toute figure F' formée de points et de droites correspond f formée de droites et de points.
(A des points alignés avec O, correspondent des droites paralléles.)
A toute propriété de F' correspond une propriété de f dite "corrélative". F' est dite autopolaire
si F'= f : c’est le cas d’un triangle conjugué (chaque sommet est le pole du c6té opposé).

3. Courbes polaires réciproques. [Calcul avec le cercle C(O,1).]

On suppose une Courbe C'! donnée comme ensemble de ses points ou enveloppe de ses tangentes.
Lorsque M décrit la Courbe (u(t),v(t)) le pole § de la tangente A, x.v'(t) — y.u'(t) + u'v —uv' = 0

décrit une courbe [d’équation ci-dessous|; et la polaire (m) de M : z.u(t) + y.v(t) = 1, enveloppe

aussi cette méme courbe décrite par J; (en prenant 2 tangentes en M, M’ proches, de points de

-/ 1/v) / 1/u) T .
Courbe ou par calcul) : z = v (1/v) , Y= Y = (1/w) . Application involutive !
N — wv—uv'  (u/v) wo—uv  (v/u)

4. ‘Transformée du cercle (A4,r) décrit par «, id est : Ao = 7. ‘ [Revoir le Théoréme de Salmon.|
MO d

Notons d = OA, le théoréme de Salmon donne : —— = —, (m) étant tangente variable au cercle.
woor
La tppr par rapport au cercle (O, R) du cercle (A,r) est la conique de foyer O ; de

directrice (a), polaire de A par rapport au cercle (O, R) ; d’excentricité e :g = %

D’ow, si r = d, c’est-a-~dire si O € cercle (A,r), la tppr est une parabole (courbe non fermée) !

‘Toute propriété du cercle a une propriété corrélative focale pour la conique obtenue. ‘ Ainsi :

(a) Comme (m) tangente au cercle est orthogonale en o & Aa on aura OM L OT, T pole de Aa
mais T est intersection de (a), polaire de A = directrice, et de celle de @ = Tangente en M.

Donc la portion de tangente a une conique comprise entre M et T sur la directrice est vue du
foyer correspondant sous un angle droit. Et points M, F, M’ alignés donnent le méme 7.

Si on a une parabole, MTM' = 7/2 et si (M,M')//Tangente en E € P, (TE)//Aze :

(Si Ox = Axe; I,I' = Tang.N Oy : y; :%; milieu I’ = milieu TF : yr = ZH'TZ/; c'est yg.)

(b) Deux tangentes (m) et (m') en a, o’ sont symétriquement inclinées sur la droite (a, ).
Donc (0,S) S : pole de (a, ), est bissectrice de OM, OM'; or le pole S de (o, ') est
I'intersection des tangentes en M, M’ ; (O foyer). D’ou le ler théoréme de Poncelet.

(Le 2éme fait intervenir les 2 foyers; chacun peut se démontrer avec le cercle directeur).

5. Autre démonstration de 29.10.3.(c)
‘A,B, C, D alignés sur une droite A dans le plan projectif : (A, B,C, D) = (a,b,c,d). ‘

Si A # Dy, ne contenant pas O : (a), (b), (c), (d) concourantes au pole §; si A’ = (OA) N (a) etc,
ona (A,B,C, D) =(0A,...) = (A", B',C’, D) ici cocycliques ! ceci vaut (64’,...) ou (a,b,c,d).

Si O € A, les polaires sont paralléles; zp = R? /xar et méme birapport (A, sécante possible) !

Si points de Dy, on a 4 directions donnant 4 diamétres, de polaires : les diamétres orthogonaux.
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6. Lien avec la podaire. Soit un point O et une courbe 7 ; la podaire de = le lieu v; de H noté P en
15.3 30.6, pied de la perp. abaissée de O sur les tangentes & v; v est 'enveloppe des L. OH, en
H : antipodaire de ;. Le pole K de la tangente/C(O, R) vérifie O, H, K alignés et OH.OK = R>.

= | La tppr 7' de ~ relativement a C(O, R) est l'inverse de la podaire v; dans Inv(O, puiss R?).

C’est donc aussi I'antipodaire de I'inverse o de «y, puisque « est la tppr de 7/ (cf. Rem. 2).

Remarques : . Quand la tangente & v en A passe par O, la tppr +' passe par le point & I'infini
dans la direction L (OA); la polaire de A (usuellement tangente a 7') étant Pasymptote a 7.

+ Si A est en O, on a une branche parabolique. Cf. cas du cercle contenant O, p = 2acos(y¢), R = a.
. Soit vy enveloppe des droites x.cos(0) + y.sin(f) = p(f) ; la podaire 71 a pour équation polaire
p = p(#); donc linverse/C(O, R) a pour équation p = R?/p(f) : c’est aussi la tppr de 7.

7. Autres méthodes pour la tppr d’un cercle par rapport au cercle C(O, R)

‘La tppr par rapport au cercle C(O, R) du cercle (A, r) est une conique de foyer O.

En effet la podaire d’un cercle (A,r) est un limacon de Pascal (p = a.cos(0) +r, a = OA, 6 = OA,OP)
et une cardioide si O € «v; 'inverse est donc une conique de foyer O et une parabole si cardioide.

Ou alors l'inverse v de v est un cercle ou une droite si O € . Et on sait que 'antipodaire d'un

cercle est une conique de foyer O (on dit alors cercle "principal") tandis que lantipodaire d’une
droite (ne passant pas par O) est une parabole de foyer O (la droite étant sa tangente au sommet).

Ou encore si C(O,1) et Courbe : A((a.r,0),7) : u=r.(a+cos(t)), v=r.sin(t) donne la courbe :
1 cos(t) 1 sin(t) 1
YT Ty a.cos(t)’ L a.cos(t) r 1+ a.cos(t)’

directrice (a) x = 1/a.r, polaire de A; d’excentricité e = a = d/r. Si O € Cercle, a = 1 : parabole.

ou en polaires : p = conique de foyer O; de

Théoréme de ’angle pivotant, utilisation : [L’arc capable et I’angle pivotant sont duaux.]
Soit un cercle (O,OP = OQ = OM); MP, M@ = 6 (r) avec tangentes (p), (q). Si M, € (p), M, € (q)
sont tels que OM,,0M, = 6 (m), alors (m) = (M,M,) enveloppe le cercle; OP,0Q = 2.6.

Plus généralement :
_—
Si (p), (q) 2 droites, O & (p)U(q); M, € (p), M, € (q) tels que OM,,, OM, = 6(r) : I'enveloppe des
droites (M,M,) = (m) est une conique de foyer O tangente a (p) et (¢) en P,Q et OP,0Q = 20.

En effet : Avec une tppr/ C(O, R), soit P', Q', M’ les poles (a dist. finie) de (p), (¢), (m); on a

—_— e _— —

OM, L P'M' car M, pole; donc (M'P',M'Q") = 6(w). Ainsi M’ décrit un cercle, (Th. de l'arc

capable) et par suite, (m) = (M,, M,) enveloppe une conique de foyer O. La tangente (p) en P
—_— — — —

correspond a : M, = (p) N (q) dou (OP,0O.pNgq)=0; etidem avec OQ, donc OP,0Q = 2.6.

L —

8. Remarques. . Soit P et @ sur un cercle. Si M sur le cercle, 'angle (M, P), (M, Q) est indépendant
de M ; il en est de méme du birapport [M P, MQ, MI,M.J];ily a un lien ! Origine en M€ C(O,R) :

(M, w, Q)=0 = [PQ,I,J] = e 249 I J, "points cycliques" 29.5 : formule de Laguerre.

D'ou (MP) L (MQ) < [P,Q,I,J] harmonique (Laguerre, "candidat & 'X" ajoute-t-on en général !)
En effet, on a les droites M P : y = z.tan(a) et MQ : y = z.tan(f3), elles coupent la droite de I'infini
contenant les points cycliques I(1,4,0), J(1,—4,0) aux points (1,tan(«),0), (1,tan(3),0).

_i—tan(a) —i—tan(a) _ 2i(a—B) _ _—2..6 sin(a
Donc [P’Q’I’J]_i—tan(ﬂ) S tan(d) =e =e wos(@)’ 58.6.

« On peut définir le birapport de 4 points et de 4 tangentes & une conique I'.

Avecz =20+ X,y =yo+Y, T : AX?+BXY+CY?4+D.X+EY =0aune éq. par. [Y = t.X] :
_at’4bt+c  dtP4et+f . . . o .,
= mar il VT il inv. 6 polynomes de Ry[t] sont liés : ces éq. param. donnent I".
L. P Q _ QR-QR __ PR-PR

Sil'u= T V= 5a t.p.p.r./C(O,1) 29.11.3 z = P0-P0" V" PO PO

. On peut encore étudier la tppr relative a une conique : tppr de C 22 + y? = R? par rapport a H

22 — y? = a®? polaire de M(R.cos(t), R.sin(t)) : Rx.cos(t) — Ry.sin(t) = a®; enveloppe : C'(O,a?/R).

, avec tan(a) =

: une autre conique !
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30 Longueur et courbure des courbes planes

30.1 Courbes C' telles que a.R =a?+ s*

1. Souvent, une courbe est donnée; on cherche R et s; ici c’est inverse ! Paramétre naturel : o.

Et si une courbe est solution, si on la translate, ce sera encore une solution (car rien de changé

pour R et s). Idem si on la tourne ... |Les solutions sont définies & un déplacement prés ! ‘
. a.ds . . . o . . o a.ds
2. Puis T a? + s?. Equation différentielle non linéaire mais a variables séparées P = da
e a’+ s

S
Arctan(-) = a — ayp. ‘ Choix de direction de 7" pour que o = 0 et choix d’origine intéressant ... ‘
a

N
dM d d .d
3. On revient a z, y par = T ou d—i = cos(a) d—i = sin(«).| Donc s = a.tan(«), ds = 6;2(?;)
. d d
et: do =2 Zzzg?(i)a = CZS(Z) ... primitive z = a.ln | tan(% + %) | +20 (difficile & savoir)

a w a.sin(a).da a a
r=a.ln|tan(= + — zg=0); dy= , Y= +vo; = )
| (2 4) | (@0 =03 dy cos?(a) cos(a) vos Y cos(a)
4. La courbe semble étre une "chainette" : |y = a. ch(f) a un déplacement prés.  Vérifions !
a
Soit « €] — g, g[ ici: y>0. Alors % + % €]o, g[ (donc valeur absolue inutile ici) :
I a T e/ pemr/e 1/t 241 o
= . t — — K — — )= Z‘/(I. = = ) = — — ).
x aln(an(2+4)), tan(2+4) e 5 5 5 (/)u t tc/m(2+4)
2-t 9 . . 1 1 xr/a —xTr/a
Mais : 1—1—57% = sin(20). Ici T os(a) | L. % !
an ; _ _ cos(x a
sin(2. (2 + 4))

30.2 (*) Quelques autres équations intrinséques

w/4
1. Idem : R = s (autre cas | R = f(s)|) donnant s = k.e®; p= k.eﬁ

(Ici dans un repére lié aux tangentes, lieu du Centre de Courbure : droite Y = X, VY = R, X =s.)

e =K. a déplacement prés.

a
2. Idem : R? =2as ou s= 50[2 donne une développante de cercle de rayon a & déplacement prés.

M =C+\7,d\do=—1 donc A\=—0+ \g. x=-cos(t)+tsin(t), y=sin(t)—t.cos(t).]

3. Autre type d’équation intrinséque : |s = g(a), R = ¢ (a).| Exemple. s = a.a : Cercle.

Utilité : Si C (abscisse curviligne o, rayon de courbure 7) est la développée de T' (s, R) avec

. Nido=dR:lo=R=d()r="_ _do_do _pdR
C=M+RN :do=dR; U—R—g(a),r—da—g(a) carr—dﬂ—da ( 'ds)'

s = k.e“ : développée isométrique ! Ex 2-3, clairs. R = a.cot(«) : Tractrice et sym/Ox, cf. Ex 1.

Donc

—4p. -1 1
4. Courbes cycloidales 15.5. On avait s = P nll.cos(m2 1), a= %.t. D'ou s = K.cos(w.a)
m—
-1
w= m——i-l ; et t=7—179, a=60—0p,siutile. 30.6.8.9. Donc développée semblable (Lahire) !
m

a
Et développée isométrique 'ssi’ w =1 ou m =14 — infini ou a infini : seul cas de la cycloide.

5. Notes. Cycloide R? + (s — 4a)? = 16a”; courbes cycloidales (m + 1)2R% 4 (m — 1)%s% = 16p*m?.
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30.3 (*) Parabole I' ¢+~ M(z = 2t,y = t*), normales

1. (a) Justifier que le foyer a pour coordonnées F(0,1) et préciser la directrice D (ici 2 = 4y).%

(b) Donner I’équation vérifiée par le point (X,Y), décrivant la tangente en M € T'; fig.1.
(¢) SiTangenteNOx = {T}, montrer : OP = 20T ou P(x,0) = proj, (M) sur Oz. [Non demandé :
ceci permet de construire la tangente en M ; ainsi que le foyer car MTF est rectangle en 7).

2. Calculer %4; et ds oits=OM. Soit M7(2,1); interpréter I = /1 2.4/1 4+ i2.dt.
0
n(1+v2)
Avec t = sh(yp) et ch?(p) :%@‘P), relier T a J :/l o ch?*(p).dp = w
0
3. (a) Calculer T = %; et N. Avec a = (7, 7), vérifier que tan(a) =t. Préciser R = j—i.
(b) Vérifier les coordonnées du centre de courbure a transl. prés (X, = —2.63,Y, = 3.t%); fig.2.%°

4. Propriété mécanique de C, isochronisme de Leibnitz.  Nouveau repére encore noté O, z,y; fig.3 :

Trouver les courbes telles qu'un point matériel, soumis a son poids et a la réaction normale (sans
dx

27 28 29

Pour ellipse et hyperbole : (*)

frottement), ait une vitesse verticale constante. On suppose qu’au temps t =0, z =y = = = 0.
On note encore o = (_z),?) € [_TW ,0]. Ayant donc % = —f (B > 0, constant) on a y = —f.1.
Puis : m.g = R.cos(a), m. % = —R.sin(a) (> 0) donnent (acquis) : % = —g.tan(a) = —g.%.
(a) Justifier que %% =g.0 puis que %(‘2—?)2 =g.0.t et z=kt*? k= Cte.
(b) Soit z=k.m3, y=—F.7% (ou 72 =1t >0). On pose u = = : montrer que z = L.u?; y = L.u?,
[ nouvelle constante. Conclusion sur les C, ,: x = p.m3y =q. 12 ("parabole semi-cubique") ?
5. Courbe orthoptique de C. Tangente en My passant par (X,Y) : X +¢9.Y — t% = 0; avec t:_.i{) = -1,

que t"g = —X solution. D’ou l'autre parabole Y = 14 X? (fig. 4) ; tangente a C car a I'intersection :
4.(Y - 2)2.(}/ +3)=0"! Donc en U,V (+1/v2,3/2) passent une tangente double et une normale a C.

% Avec le foyer, justifier aussi que toutes les paraboles sont semblables entre elles.

26 Normales & la parabole y* = 2pz. Menées de N(a,p) : y° + 2p(p — o)y — 2p°6 =0 (x) donc y1 +y2 + y3 = 0. Avec :
cercle (z— A)?+ (y— B)? = R* N parab. : y* +4p(p— A)y® —8p> By +4p*(A® + B> — R?) = 0, 29.8, donc contient My, Ma, M3
= y4 = 0; inversement, le cercle (M1, M2, O) contiendra Ms : M1, M2, M3 pieds des normales < O, M1, M, M3 cocycliques.
Alors, A= (p+«)/2,B = /4, R = v/ A%2 + B2. Trois remarques : 3 solutions pour (1) < N "intérieur" de la développée.
Eliminant y de () et y* = 2pz : &1+ 22 + 23 = 200 — 2p; si N € Oz (=0) My = O et FMy = FMs = FN (22 = a — p).
Enfin avec y1 + y2 + y3 + ya4 = 0 dans cercle N par., le cercle osculateur en A la recoupe en D : yp = —3ya.

27 (%) Si ellipse : 2* — 2a%a/c® a® + a® (a®a® +b° 37 — *) /ct a® + 20 o/ .x —a®a® /¢t = 0. 4 sol. : intérieur de développée.
Ellipse N(z — A)2 + (y — B)? = R? : 2" —4a* A/* 2> +20°[2(a® A> +0° B*) + k%) /2 —4a* K* A/ * x+-a™ (K* —4b* B?) /¢* = 0,
k*> = A* 4+ B® — R® + b [Maple|. Si M; sont les pieds des normales, sym(Ma/O) €cercle(M; 1<i<3) ! (Joachimsthal) : Dém.
N(a, B) € normale.[x = acos(t),y = bsin(t)] < c.asin(t) — ¢*sin(t)cos(t) = B.bcos(t). Produit des racines de 'équation de
degré 4 : tittattsttat™ _ 1 ot 29 .8 D’ow si A;, B; centres : ©1 +x2 + 23 = a2(a + 2A4)/cz, T4 = a2(a — 2A4)/c27 Ay =
a/2 — Ex4/2a%, By = B/2 + Cya/2b°. ZAi = q, ZBi = 3. Hyp : changer b en —b%, HE : ¢* = 2a® changer b® en —d?,
As = /2 —x4,Bs = /2 — ya, Z zi=a et [A= A4;02 = 122+ T123 + 2174 + ToT3 + ToTa + T3Ta, 05 = T1T2 + T1T3 —
T1T4 + Toks — Toxs — x3ka ) 0 4(aP A%+ 0°B?) + 267K — (a*® + 023 — ¢*) = 20°(4A4% — o?), k* = A® + B® — R* — d%;
= 4R? = o’ 4+ #* | En général (voir E. et H.) les M; sur 'HE d’Apollonius : Cay = a’ay — b?B.a passant par N, O ...

28 Steiner : "Par D € Ell passe 3 cercles oscul. en A, B, C € Ell; A, B, C, D cocycl." ; Joachimsthal : "et Isob.(ABC) = O".
Géom. 29.8. Isob(4, B,C) = O = AONBC = A’, conjuguées : Tanga//BC. ConNCapc = D = Ta, AD ég. inclinées/axes
et si Cose.a NCon = D*, idem pour Ta, AD* = D" = D. Et normales en A, B, C, hauteurs = concourantes en N ...
Analyt. D € cercles osc. en A et en B < 3t1+t4 = 2k.m, 3ta+ta = 2l.7w; ta—t1 = +27/3; donc 2 sol. B, C : ta,t3 = t1+27/3.
t1 +ta+t3 +ts =2k = A B,C,D cocycliques et ABC déduit de A’B’C” équilatéral de centre O : O isob.(A, B, C).

2G6i A, B,M € Ell, AM + M B maximum, on a réflexion en M -extremum lié- donc si Biss en M coupent (AB)en U,V :
[A,B,U,V] D.H., (A, B) contient V pole de Norm, = T pdle de (A4, B) € Norm : M € HE d’Apollonius(7’). Si B = sym(A):
T =001y, M =proji(T); Ta,Tar, T, T rectangle € Caronge ; réflexion en M, AM//diag : maz = diagrect = 21/ a® + b2 !
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30.4 (*) Au sujet des courbes de poursuite usuelles (...)

Un maitre partant de O se dirige sur Oy a la vitesse v = k.V, 0 < k < 1. Son chien partant de (a > 0,0)
se dirige vers lui en décrivant la courbe y = f(z) a la vitesse V =v/k, 0 <k <1, z>0.

. . dly — z.y/ .
1. Vérifier que 'ordonnée du maitre est y — x.y et que % =k.V (1) éq. horaire.

Vérifier que : % =V (2) éq. horaire et aussi que Z—S =1+ ¥)%
X

2. En déduire que z.y” = k./1+ (y')?2 (3) éq. différentielles avec coordonnées. Puis que :
3. [on peut poser y' = sh(yp)] y' - ((E)’C - (g)k) (v/(a) = 0.) Et que la position du chien est

a x
o 1 =z 1 1 4. (rattrapage

5. En déduire, avec f(a) = 0, que le temps de rattrapage est 7 = V = (avec f(0), 7 = g)
v

6. On prend k = =. Vérifier que : C = 2.a, 7= 2. % et (y — 2_a) =L (30— 2)2| "cubique

P r) q T3 TT 3y YT T d

de Tschirnhausen" passant par (a,0) a tangente horizontale et (0,2a/3) a tangente verticale.

u?

2a
Angle % au point double. En par. z = a.u?, y = 3 +a.u(l — 7)

Remarque. b.y?=2%(a—z) ou x=a—bt? y=tx: Cubique de Tsch. si b= 3a > 0.
Courbe de Lissajous si a = 3b > 0 ! en effet, © = sin(2t),y = sin(3t +7/4) avec t =7/4 — ¢ :
20+ 1=3—-T22y="T.2x+1) si T = 2.sin(p). Folium parabolique si a = b : p = cos(26)/cos*(9).

30.5 Enveloppes dans R?, R?; cf. 13.4; développée; et 30.6

. , L a(t).x +b(t).y = c(t)
1. m Si Dy :a(t)x+b(t)y = c(t), montrer que I'enveloppe des Dy vérifie { o (D + ¥ By = ¢ (1.

Plus généralement I’enveloppe dans le plan des f(x,y,t) = 0 s’obtient par (1) et (2) f/(x,y,t) = 0.

— —
Si on a par contre u +— M (u,t), Uenv. vérifie ici OM /dt,OM /Ou colinéaires ; relation symétrique.
(Enwv.) : lieu des points ot une courbe de la lére famille est tangente & une courbe de la 2éme.

4 exemples : . Pour 'enveloppe des (Cy) : a(z,y).t*> + b(z,y).t + c(x,y) =0, faire A = 0.
. Pour (C)) : a(z,y).cos(t) + b(z,y).sin(t) = c(x,y), faire a®(z,y)+ b*(z,y) = *(x,y). Pour :

ey b0 = B o = ol ey = b(t) 2t O ) o (alt), b))

.y = z.tan(a) — g.2°/2vkcos? () [tir], 1/cos*(a) = 1+ t2, par. enveloppe : y = v3 /29 — g /2v3.
2. une famille de droites n’a pas d’enveloppe en général : Pour avoir M (t) = A(t)+\(t). 7 (t)

—

et dM/dt colinéaire & v (), |CNS: 3A®),u(t) : A'(t) + AV (t) + ut) 0 (t) = 0.

Donc CN : det(A'(t), (), V'(t)) =0 (x). Supposons () satisfaite :
S TAT £ 0N TAT = A AT ... dM/dt = (N — 1) T (t), pinutile. Dot M(¢), M(¢).
S TAT ( A’ ATV 6) D,, n’a pas de point caractéristique (droite singuliére);
AU = 0, tous les points de Dy, sont caractéristiques (d. stationaire).
Rem. : Vt, X' = p possible : gerbe de droites conc. Vt, v AT’ = 0 possible : gerbe de droites //.
x a(t) a(t) ! !
Cas (y> = ( ()) +z<b(t) CN: o't — Ba' =0. Alors 3z(t), u(t)/... : p(t) =0, z = _ﬁ/ = f,
z 0 a

Tangentes a (Env.) : surf. développable ! 58.2.3, 59.5. (Env.) est appelée ’aréte de rebrousse-
ment’ : car & z = 29, ¥’ = a’29 + o donc 2’ = 0; idem 3’ = 0; d’ott un point de rebroussement.
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30.6 Podaire, enveloppe, coordonnées polaires, courbure 15.5

— La podaire d’'une courbe/un point O est le lieu des pieds des hauteurs abaissées de O sur les tangentes.

Sila podaire a pour équation : OP = p. U, U (cos(0),sin()), la courbe initiale (E) : OM = PU AN

avec % col. 4 1. Donc A= p' et (E) a pour équation O—]\j =pu +p' U1 : enveloppe des droites
Dg : z.cos(6) + y.sin(0) = p(6). Considérons Dy : —z.sin(0) + y.cos(0) = p'(0); Dj L Dy, passant
par M € (E), donc par N, tel que OPM N soit rectangle : ON = p(0).w1. Dj: Normale en M.
— Développée Cy de (E) =Ty : I'enveloppe des D). D"g est 1 u et passe par L : Ol = p”.(= ). Donc
le rayon de courbure de (E) est donc R tel que MC =PL = (0" +p)(=). R=p+p", ppodaire-
— Tangente a la podaire : % = pU 4 puy. [Exemple : p = a(l+ cos(d)) = (E) * — 2az + y*> = 0]
Normale dans (O, w, w1). p'(X —p)+p.Y = 0; la normale passe par N (0, p') ou w milieu de [OM] :

‘Podaire : enveloppe des cercles de diamétre [OM ]‘ Env.cercles ( czeriti;t]v[o )= ho2(Podaire).

— Propriétés : [Si p = b.sin(k.60 — ), (F) est une courbe cycloidale k = :—1, m = % 15.5.5 30.2.]

1. (P) étant la podaire de (E), on dit que (F) est Pantipodaire de (P); et aussi que (E) est 'ortho-
caustique de (P) [Enveloppe des rayons "réfléchis" issus de O, mais ici réflexion a angle droit !|

2. Soit (@) = homothétiquep 2(Podaire). (Q) est le lieu des sym. de O / aux tangentes a (E), on dit
l'orthotomique de (E) fig.1.2; donc aussi I’enveloppe des cercles centrés sur (F) passant par O.

Sa développée C, enveloppe des (M@Q), est la caustique de (E) pour la source placée en O.
[On dit parfois que (Q) = T anticaustique; et (E) caustique inverse de cette développée de (Q).]
—
(E) est encore le lieu des points équidistants de (Q) et O [MQ L (Q)] [Visotele de (Q)] et aussi
la polaire (tppr) de l'inverse de (P) [Si OP.OK = a” : polaire de K/Cercle(O,a) = (M, P)|.
Enfin : Faisant rouler sur (E) fixe, sa symétrique/Tangentes : le point O’ = Q décrit I'orthotomique

qui est donc aussi une "roulette" : ainsi une cardioide est podaire d'un cercle/un de ses points O
et épicycloide de rebroussement O. L’orthotomique d’une Parabole/F : Directrice. Autres cas ?

3. Remarques. e Si O = oo (rayons incidents //) la caustique est aussi une développée : si A droite L
rayons, H = proj, (M,A), S = sym(H/Tang. en M). Le lieu de S est I'anticaustique/A (env. des
cercles : centre M, tang. & A*); sa développée est la caustique a oo de (F), courbe réfléchissante.

Ex. Caustique d'un cercle C. Si O € C, cardioide de sommet O [dév. de card.]; si O = oo, nephroide
car si 2 cercles de rayon R, g, sont tangent ext. en I, (Q, AI) et (U, IM), AT = IM : tang. en M = (M.J),
ou IU = U J, (QJ) biss. de (MJ), (J7'), 7" col & QA : néphroide caustique de oo pour le Cercle (€2, J). Et
6(1,QA) = IM : enveloppe.cercles cntre.1eCo(Q, R).tangent.diam0 A, Déphroide car tangents a (MJ) en M. @
e Cercles C; 1 Cp, Q € Axe-rad.(Cy, Cy), QM.QM’ = R* & env.(C}) : ‘courbe anallagmatique‘ !

e Courbe : env. de ses cercles osculateurs. Et courbes//C : env. des cercles (centrés sur C, r = cte).

[Note : Trajectoires) de cercles centrés sur Oz ; z = A + R()\).cos(¢), y = R(A\).sin(p). Trajectoires L :
dy/dz = tan(p) = dp/sin(p) = dA/R(X) ... R(\) = cte, tractrice; R(\) = A, cercle tangent & Oz en O.]

4. Exercices. . Antipodaires (orthocaustiques) d’une droite D : paraboles, F = O, tang. au sommet D.
Podaire des coniques & centre/un foyer F' : cercle principal C. [Orthot. : hg2(C) = cercle-dir. de F.]
. Podaire d’une hyperbole équilatére/son centre : Lemniscate de Bernoulli [=Aussi inverse HE/Centre.]
[ (*) tppr d’une conique/Cercle(O, a) : ellipse si O €région.foyer, hyperb. si O ext., parab. si O Econique.]
. Podaire d’une par./sommet : Cissoide droite; /pied de dir. : Strophoide droite [inverse HE/Sommet] ...

I'= orthotomique de Ty

v
= - M, B
= NV /
; Vi // ~ . A= Antipodaire
¢ 7 \\\ X nolrale M,
AN e
podaire dq;./& N x \\ 9
N - ,,\\ "
I f ——\\‘,( s \ N |
I TG | =il cawe \
y 7; - % \‘\ = ‘@ :avoir N
o\l--- b S —
\ T, = isotéle de I i N S lede C v
\ / o pira’ ede oruu
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30.7 Equation intrinséque R.s =1 : spirale de Cornu (fig. 4)

1 ? 5
Montrer que les courbes 75 sont, a déplacement prés : z = / cos(u®/2)du, y = / sin(u®/2)du.
0 0

30.8 (*) Au sujet des normales a certaines courbes (...)

1. Une propriété de lellipse. Soit (z = a.cos(t) y = b.sin(t)) une ellipse.
La normale en M coupe Oz en P et Oy en ). Montrer que PM/QM = b2/a2.

2. Sur la parabole. Soit une normale a la parabole y? = 2px en M, coupant la directrice (x = —p/2)
en N et de centre de courbure C' en M. Vérifier que xc+g: 3.(x+§) ainsi : MC = —2.MN.

x — —
3. Pour la chainette y = a.ch(=), si N = Normale N Oz, vérifier 'égalité : MC = —MN.
a

4. La normale en M a une cycloide x = a(t — sint(t)), y = a(1 — cos(t) coupe Ox en P et le cercle
qui génére la cycloide est supposé étre M PM; P, ces 2 derniers points diamétralement opposés.

(a) Vérifier qu'on passe de (M1 Py) a (MP) par une translation de vecteur —2.a”;. Puis que :

(b) M décrit une cycloide translatée de a.7.72 et de tangente en M : (M P;) donc que M est le
point caractéristique de (M;P;) 56.1. Si C point caractéristique de (M P) : ]\Té =—2.a.7,
d’out la développée de la cycloide initiale obtenue par translation et MC' =2.MP =2.MN !

5. Développée de courbe cycloidale 15.5.5. Soit M un point de la 'roulette’ (contact des 2 cercles en P)
M, P, diam. opposés; h : dr(M, P) — dr(M, P;) 'homothétie(O du cercle fixe, rapport %). La
tangente au lieu de M; (Courbe cycloidale décalée d’une 1/2 période) est (Ml, Pl) [normale(P, Ml)] - My
point caractéristique de (M, Pp); = h™ (M) p.caract. de (PM) normale (idem a "Euler-Savary’)

a Pp 1-m ﬂ_ 2m Op m—l)

décrit aussi une courbe cycloidale, la développée. (m=1+=, =2 = ——, = , =
r'  PM 1+m MP m-+1"OM; m—+1

30.9 (*) Enveloppe de droites et courbes particuliéres
1. Soit une tige de longueur fixe P(a.cos(t),0) € Oz, Q(0,a.sin(t) € Oy.
_ 3
(a) Montrer que enveloppe des (P, Q) est une astroide <9yc _ 2210238) t = (7,0—])\4) [C.LR.
(non centre de Courbure) M (a.cos(t),a.sin(t)). Point caractéristique I = proj, (M, (P,Q).]

(b) Et que l'enveloppe des médiatrices de [P, Q] est une méme astroide mais tournée de 45°.

[Point caractéristique J = proj, (M, Mediatr.A) car solide ; si OK =2.0J , (I, M) enveloppe
le lieu de K : astroide 2 fois plus grosse tournée de 45°, développée de 'astroide; d’ou J !|

2. Soit A(a.cos(t),a.sin(t)) et B(a.cos(m.t),a.sin(m.t)), m # 1. Vérifier que :

. +1 . m+1 m—1 .
(a) (A,B) a pour équation : z.cos t+y.sin .t =a.cos .t. (30.6.) Puis
- m41 a - m—1 - m—1 a ; ;
b) Dy, +iD), : ze 2 = e thme™ 2 ) ou 2= et m.ett).
(0) Do m 1 , ,) m+ 1 ( )
[Courbes cycloidales aussi, se raméner & z = p (m.e' —e"™")] avec t =7 — 75. cf. 15.5...
.. 1 1 1 -1
3. Avec les tangentes aux courbes cycloidales : z.sin i p Yy cos ™ + t = a.m——i_lsiant, on a
m—

I’enveloppe des Dy (m 1

t=0+ g) : x.cos(0) +y.sin(f) = b.sin(k.0 — ¢) (courbe initiale) et inver-
sement par rotation de repére k = m—_l, b=al 1
m+1 m—1
enveloppe des Dy, a la méme forme (30.6, k # 1) : c’est donc une courbe cycloidale semblable !

. Par calcul (si on veut aussi) la développée,

4. Sur les droites réfléchies sur y = e”, des droites verticales venant de +o0o dans le sens des y.
-1 e?r —1
: ? gl - — E — = =
(a) Equation ? [si f'(z) = e® = tan(«), pente tan(2 +2.a) ran(2.0) 5o sh(x).]

(b) Enveloppe ? [enveloppe des droites Y — e = (X — z).sh(z); trouver Y =ch(X +1) ||
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31 Fonctions de plusieurs variables : Continuité

31.1 Continuité de f(z,y) = (1 —cos(v/| zy|))/|y| [corrigé]
. La fonction est définie sur R2\A, A étant y = 0; elle y est continue par les théorémes généraux.

. Peut-on la prolonger par continuité au point (xg,0) de A?

|zy|. R | o |
Ona 1-—-cosi/|x. ~ = —]; donc f(x, — —— pourcz 0et xg=0.
VIevD, ) e 2 2 F@Y) e 2 PO ‘
Ainsi |de poser : f(x0,0) = | x20 | prolonge f par continuité sur tout R2.

31.2 (*) Tangentiels de 3 points alignés d’une cubique : alignés

Le titre correspond au cas particulier 2.(d).

1. Soit T une courbe plane algébrique de degré n d’équation F(z,y) = Z(pk(aj,y) = 0 ou ¢ est

k=0
homogene de degré k ; et soit (A;)1<i<p p points quelconques de ce plan. (Exemple : n = 3,p = 4).

Notons M;; =T'N(A4;4i+1), 1< j <n carn points d'intersection a i fixé; Ap; 1 = Ay. Puis :

A+ MAj A
= """ donc
L+ A MA;i

= —A; \;; correspondant aux M; ;, 1 <7< p, 1 <j<n.

n
a) Vérifier que les ();;),1 < j < n, sont racines de Z(l + )\)"_kgpk(ac,- + ATit1, Yi + A\yir1) = 0.

k=0
b) Que le coefficient de A" vaut F(A;+1); et que le coefficient constant vaut F(A;).

A “ M A “r M A
c) Que (— H = i) = H —I ' . et qu'au total : H H Y el
- Aity iy M; ;A P e M;, A2+1

2. On prend maintenant le cas d’une cubique et on suppose connu le théoréme de Ménélaiis.
(a) Soit L, L' deux droites coupant I' en P,Q,R; P',Q",R'; A= QQ N RR', etc. Figure ?
(b) Notons P” = (PP')NT, Q”, R”, idem :

PC'PC P°CQAQAQARBRBRC
(c) Le théoréme de Ménélaiis donne 2 % RA =1 et une autre relation; conclusion ?

PC QA RB
(d) Que peut-on déduire dans le cas particulier : P =P’; Q=Q'; R= R ? (tangentes).

Que dire (avec q.1) de la quantité —.—— ——m. ——. —— . . —— . ——

(e) Cas des points d’inflexions de I". Si la condition d’alignement de 3 points P, @, R est :
(%) a.titots + b.(t1ty + tots + tst1) + c.(t1 + t2 + t3) + d = 0, les points d’inflexions sont

—3b 3 —d
solutions de : at® +3bt? +3ct +d =0, 0y = —, 09 = —c,ag = —. Que conclure ?
a a a

[D’abord, si P = P’ (tangente) t; = to = t, donne P”(t3 = t') trés facilement (tangentiel),

at? 4+ 2bt + ¢ = 0 signifiant que t' = co. Puis il y a en génétal 3 points d’inflexion (degré 3)

et pour voir s’ils sont alignés, vérifions () : a.03+b.og +c.o1 +d =07 Oui, ils sont alignés.|
Notes : . Pour les cubiques, il s’agit du "Théoréme de Lamé".

. Les courbes ayant une paramétrisation rationnelle sont dites "unicursales" ; c’est rarement le

cas, méme sin =3 : y2 = :L'(ﬂj‘z — 1), 2 morceaux. Mais les coniques sont toutes unicursales.
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32 Fonctions de plusieurs variables : Dérivation

32.1 Soit f(z,y) — Z"&) = siny’) =
. ) = S pour (a.y) # (0,0) et f(0,0) =0

Montrer qu’on a défini une application CO(Rz) avec d.p. partout, non C*' en 0(0,0).

Corrigé : La fonction est C'* hors de (0,0) par les théorémes généraux ; donc C°. En (0,0) :
x? sin(z3) 3 x?
T <1 done T - . 0.
z2 4 y? T w00 212 2212 (@)= (00)
Et de méme l'autre terme : Donc f(ac,y)( )—(>0 0)O = £(0,0). f est CO(R?).
m7y - ’
. 3 o
. Existence des dérivées partielles en O(0,0) : f(z,0) = sin(a’) ~ T donc f(@,0) = f(0.0) —1:

z? T 2—0
f2(0,0) existe et vaut +1. Idem f,(0,0) existe et vaut —1.

3 21,2 4 .21 _ N P
. f non C! en 0(0,0). Calculons hors de O : fl(x,y) = cos(a”)-3-a” [z +[ZQ]+;2'T2'[SW(I ) = siny’]

3) 2 2 [) .2
cos( [)2?;]2[235 ] — g = g # 1. fI non continue en O(0,0).

. Continuité : d’abord 0 <

Donc fl(z,z) =

T

32.2 Maximum(zyz), M € triangle ABC, x = dist(M, BC), gradient
. Corrigé (*). Faire une figure. Ensuite, les trois variables x,y,z ne sont pas indépendantes car 2

degrés de liberté. En considérant 3 triangles M BC, MCA, M AB ‘aw + by + cz = 2.5 = cte.

(M) = f(x,y) = 2.y.[2S — ax — by], continue sur un fermé borné, est bornée et atteint ses bornes.
[Le fermé-borné en (x,y) : « > 0,y > 0,ax + by < 2S]. Sur la frontiére, minimum : produit nul.

. Le maximum est donc atteint "a Pintérieur" et ¢’est "un point critique" pour fC. Un calcul a faire

annulant les d.p. donne alors ax = by = 25 — ax — by qu’il vaut mieux lire ainsi, par symétrie du

25
3

Comme on sait que le maximum est atteint en au moins un point, en ce point et en lui seulement, le

probléme : ax = by = cz et donc |ax = by = cz =

ce qui fait au plus un point candidat.

maximum est atteint. (Note : Méme pour une fonction d’une variable C° sur un segment,

le maximum peut étre atteint en plusieurs points : sin sur [0,7/2 + 47].)

Connait-on ce point géométriquement ? Oui. ‘

1) Tout point M du plan est barycentre de A, B, C' non alignés affectés de coefficients judicieux :
Ecrire I\, i : W = )\.A—B> + ,u.A—C>' et (1 — A A\, ) conviennent.
2) Ensuite, MAA [@«.MA + B.MB + v.MC] = MA A 0 = 6), pour M intérieur |[notre cas|, voir que
B

Q@
e MCA =~ A LAB = 4ireMBC ; en un mot, on a des coefficients barycentriques géométriques !
ire ire ire

3) Justement, on a trouvé ici ax = by = ¢z : 3 aires égales donc c’est l'isobarycentre.

Le maximum du produit est atteint au seul point G, centre de gravité du triangle.

Note (*) : autre utilisation habile du gradient
On donne les 2 droites ensemble (y —ax)(y — bz) = 0. Trouver le faisceau des bissectrices.

1. On peut considérer les hyperboles f(z,y) = (y — ax)(y — bx) — k = 0 et exprimer grad(f)(M) col.
4 OM car ce vecteur est orthogonal a la tangente. Trouver |(a + b)[y* — %] + 2(1 — ab)zy = 0.

2. Autre solution possible avec de la trigonométrie ...
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32.3 Minimum de M A% + MB? + MC?, M € Triangle. ABC, Leibniz
Facile # 32.2 : | fonction scalaire de Leibnitz | [et # min(MA + M B + MC) "probléme de Fermat" (*)]
. Soit G quelconque, pour le moment et f(M) = a.MA? + 3.MB? +~.MC? Alors :
= 9 — — — — 9 9 9
f(M)=a.(MG+GA)* +... = (a+B+y)MG*+2MG.(aGA+ GB+~GC)+ aGA® + GB* +yGC~.
. ‘Cas a+pB+v#0: choisissons‘ G barycentre de A, B, C avec coeff. «,3,v; on a, par ex. dans
notre cas « = 3=~ =1, f(M)=3.MG?+ GA? + GB?+ GC? = Quantité fixe + 3MG? :

Il y a donc un minimum, méme si M € au plan ABC' en entier atteint en G et en G seulement.

Rem. : . MA? + 3. MB? +~.MC? =cte =k < MG? = Cte: Cercle de centre G, si Cte >0

.‘Si a+ﬁ+’y=0‘a.MA+ﬂ.MB+’y.MC’: V' indépendant de M ! f(M) —cte = OM .V = Cte :
Droite saufsi V = 0. Ex: (b —)MA* + (¢ —a®>)MB? + (a®> = b*)MC? = 0 : droite d’Euler (O, G.)
Autres : M A?sin(2A)+ M B?sin(2B)+ M C?%sin(2C) :a%c : cercle ABC (contient A). Cercle d'Euler :

2 2 2 2 2 : 2 o _ BB} +CBj} a’ 2
MA*+MB*+MC*+MH* =4.R* (A pied de hauteur : ¢*+CH* = — = — =4.R%).
sin?(A) sin?(A)

{i} ={M : aMA%> + bM B*+cMC? = abc} 2.2.8 | Cercle(i,r) {M : aMA? + ... = abc+ (a+b+c)r?}.

32.4 Soit g C°; et f telle que : f(z,y) = %/U g(t).dt (...)

1. Montrer qu’on peut prolonger f par continuité sur R2.

2. La fonction prolongée fest—elle ct? c?7?

32.5 (*) Une équation aux dérivées partielles [corrigée]

0 0
Résoudre : 2. —f — —f =%y enposant X =z,Y = a4 2y (bien voir les notations déja).

of Oy

On a donc f(z,y) = F(X,Y); écrivons (comme en physique) z = f(x,y) = F(X,Y), avec
F X Y
i désignant or 02 désigne g—X ... régle de la chaine : 0z = 0z 9 0z 0

ox oz X 9r  OX 0z oy oz

Aprés calculs, il semble qu’on arrive & 1’équation 2.68—;( = §X 2(Y — X); wvoila la fin :

. I ne reste qu’a prendre une primitive d’une fonction polynémiale par rapport a la lettre X.

. En notant qu’une constante par rapport & X est une fonction arbitraire d’une variable Y mais dérivable

(ex. : exp, Arctan...) trouver z = — — 4+ ¢(Y), ¢ arbitraire dérivable; et remettre x,y ...

32.6 Sur l’inversion, avec différentielle de f. de deux variables

. oM | - E oo 0T on T OM
1. Avec OM' =k.—— oM’ vérifier que df (M)(w') = OMQ[ —2(t.u). t] ou t = m
Matrice : (:gj;g g _ciz%?))
2. Comme W + U — 2.( t 7)7 est la symétrie orthogonale par rapport a t - [ayant H?H =1]:

déduire que l'inversion géométrique conserve les angles mais change les signes.

(On peut voir que la différentielle de (, v') — o « v est (ﬁ, ?) STk + . v ; celle de
=72 I _ - , . .. . L.

M — ||[OM]]*: h — 2.0M . h ; et déduire que df (M) est une similitude vectorielle indirecte).

3. Déduire que les tangentes aux points A et A’ sont symétriques par rapport a la médiatrice de [A, A].
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33 Fonctions de plusieurs variables : Intégration

33.1 Calcul de l'intégrale de Gauss avec les intégrales doubles [corrigé]

—+o0
Il s’agit de 'existence et du calcul de / e~ dr.
0

. Existence.

¥
Comme f(z) = e > 0, B+— / f(x)dx = F(p) est croissante ; donc l'intégrale converge <
JO

B 1 B
elle est majorée indépendamment de 5. Soit 1 < 3 : écrivons / = / + / =a+ G(f).
0 1

—+o0

. . 2 — s s —

11 suffit de voir, si 1 <z < S que e”™ < e ¥ et de savoir [évidemment| que / e~ “dx converge
1

[celle-ci peut se calculer par primitive !| pour majorer G(3) et donc F([3).

. Calcul. Soit Dp={z >0,y >0,2° +y> <R}, Crp ={0<2 < R,0<y < R} :

Alors// e (@ +y? dxdy<// (2 +y? dwdy<// e (@ +y?) dxdy (pourquoi ?7)
Dgr Cr

Calculer les intégrales extrémes et vérifier que celle du mlheu Vaut [F(R)]?. Puis conclure.

+oo
On a donc / e~ dx = +/m| qui intervient de maniére essentielle en probabilités (par exemple).

— 00

Il y a d’autres maniéres de la calculer; en particulier avec les intégrales généralisées avec paramétre.

33.2 (%) //(:c2 —y?)dzdy sur Pintérieur de ’ellipse = = a.cos(t),y = a.sin(t)

[x = a.p.cos(9), y=b.p.sin(f); jacobien=a.b.p; dou I= W'Z'b (a® — b?)].

33.3 Volume commun a 2 cylindres de révolution (méme rayon) d’axes L

[16.R3/3] [(*) Pour la surface d’¢q. : z = f(z,y), on rappelle que A = //D V14 p?+¢? de.dy.

33.4 Quelques calculs : une aire non plane et un volume [avec réponses]

2

de la "Trompette de Gabriel" (*) [Roberval, Torricelli]. L’hyperbole équilatére (H) y = a_ 0<z<a
oS Tsa

tournant autour de Oy, engendre un volume fini (7.a*) mais une surface non plane infinie.
[Notons qu’on sait calculer aussi l'aire de la "fenétre de Viviani",

la courbe qui la limite portant le nom d’"hippopéde" x = R.cos(t)sin(t),y = R.sin*(t), z = R.cos(t) ||

33.5 Avec les formule de Stockes et d’Ostrogradski, rotationnel, divergence

)
1. Montrer que / ydx + zdy + xdz = \7;; o I':2?+y%+2% =a’Naz+ 2 = a orientée par u (O) .
T 1

—_

2. Flux de : M +— OM au travers du tore décrit par le cercle de centre (a,0,0), rayon R < a 7
a) dw(?(M) =3. b) Volume connu : 2.7%a.R>. Dot : ¢ = 6.71%.a.R%.
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Exercices de programme SPE

34 Compléments sur les Fonctions

34.1 Quelques équivalents a trouver
1. Soit f(x) = — % Montrer que c’est une bijection de [e, +o00[ dans [e, +00.

In(x)

Equivalent de f~!(y) en +oo ?

2. (a) Montrer que : Arccos(x) le/i.\/l —x avec cos(h)—1 ~ —.

Puis avec  h = Arccos(x) lein[Arccos(az)] =+v1-—2a2
(b) Puis avec Arccos(1 —h), h — 0, en posant : h = 2sin®(u), u >0 ... (Idem : Argch)

34.2 Dérivée niéme de : f(z) = n(z) ?

34.3 Limite de (tan%)t‘m(?’z) en %

34.4 Une limite théorique trés classique

n—-+o0o

"k
. L. + . .
Soit f dérivable en 07, avec f(0) = 0. lim kg_l f(m) ?

34.5 Manipulation d’inégalités de convexité (...)

1. Aprés vérification de la convexité de In(1 + €*), montrer : 1 + (H z) ™ < H(l + zp)/" x> 0.
2. Pour x> 0, montrer za/x1 + x3/x2 + ... + Tp/Tp_1 + x1 /T = n. (2}, = exp(ty), exp convexe).
3. (**) Montrer (avec la définition) pour f définie sur ]0,+oo[ : f(1/x) convexe <= z.f(x) convexe.

(0t G0).floa+ B6) S cvafa) + 85 0) & Sy -

1 ) 1
) <ty = A=
. dou=. Et(«) avec (=) appliqué a g(1/x) = z.f(z).]

34.6 Pour f C? dans un voisinage de z;, o1 f” ne s’annulle pas

Montrer que le "8” des Accroissements finis est unique et qu’il tend vers 1/2.

34.7 (f C° sur [a,b], dér. sur Ja,b], f(a) =0, | f|<a.|f]) = f=0

Corrigé : F(x) = e 2% f2(z) est positive, décroissante, nulle en a !

34.8 Au sujet du Théoréme de Rolle généralisé (remarque)

Soit f CY sur [0, 00| dérivable sur |0, +oo[ avec f(0) = liI_P f(x). Montrer 3¢ €]0, +o0[ avec f'(c) = 0.

34.9 (*) Théoréme des Accroissements finis généralisés
f®) = fla) _ f'(e)
9(b) —gla)  g'(c)

D’ou la "régle de I'Hopital" : Ayant f(x)/g(x) une forme indéterminée du type "0/0" en xo,
si f'(z)/g'(z) tend vers X, alors f(x)/g(x) aussi. [Et on peut recommencer avec f” et g” ! |

Soient f,g CY sur [a,b] avec g(a) # g(b), dérivables sur ]a, b[. Montrer 3¢ €]a, b]:
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34.10 (*) Avec les "polynémes de Lagrange"

n
1. Soit zy < ... < xy, réels donnés distincts dans [a,b]. On note : II,,41 = H(ac —x;); et
i=0

Li(z) = jl;[l ((:;EZ _‘ZJJ)) = e xl;ﬁ(:jl @ Montrer qu’on a une base de R, [x].

2. Interpolation : Soit f C* (pour question suivante) donnée ; Montrer qu'il existe un unique polynéme

P, € Ry[x] tel que P (x;) = f(x;) et alors : Py(z) = Zf(xi)'Li($)'
i=0

Hn-l—l(x)

n+ 1) f(n-i-l)(am), ay €lmin(z, xg), maz(x, ,)[.

3. Erreur : Vz € [a,b],3a, : f(z) — Pu(x) =

4. Points équidistants. Posons h = —a,xi =a-+ih; fi=f(xi);et Afi=fix1— fi,0<i<n—1
n

k
Montrer : A*f; = Z(—l)kﬂCgfiH, 0<i<n—k; et, avec : Qn(s) = Py(a+ s.h) = P,(x)
=0
. ~D(s—2)..(s—k+1 —
P,(z) = ZAkfo.S(S (s k‘)' (s + ), s=2 . a) s €[0,n] : formule de Newton.

k=0
Ni(s), polynome de Newton

5. (Autre : Vs € Z, Ni(s) € Z soit avec les C* ou bien avec Ny (s) — Np(s — 1) = Np_1(s).)

34.11 (*) Prouver une existence d’une dérivée (...)

fl@) = fee)

Soit t€]0,1[ et fCY:]—a,a[— R avec ;
x z—

A
1t

Montrer que f est dérivable en 0 et calculer f'(0). (Ind. : remplacer x par z.t, etc. f'(0) = )
34.12 (*) Majoration de dérivée intermédiaire, M; majorant | f* |

M, k.M.
1. Sur R. Montrer que Vk > 0, | f'|< 70 + 2

. Déduire que | f' | est bornée et My < /2MyMs.

2M hM:
2. Sur [0, +oc[. Montrer que : Vx >0, | f(z) |< TO + 72, h > 0. Puis que : My < 2.4/ My M.

(** Cas [a, b] beaucoup plus difficile, Landau ... Sur R, 25.7 : inégalités de Kolmogorov.)

34.13 (*) Théoréme de Darboux (avec le Th. des Accroissements finis)

Montrer que toute fonction dérivée vérifie le Théoréme des Valeurs Intermédiaires.

34.14 (*) Soit f telle que fof(x) =a.x+b, a#0 (...)

1. Montrer que f est bijective. Puis en la supposant CY quelle est monotone ; et que a > 0.
2. On suppose f C! et a # 1. Prouver que f est affine (f(ax+b) = af(z)+b, f' = Cte) et conclure.

34.15 (*) Existence de fonctions C™ régularisante

1. Montrer que f(z) = eV i g #0, f(0) =0 est C* sur R.

1
2. Montrer que g(z) =0si |z |>1, g(z) =e*1si|z|<1 est C™ sur R.

3. Exemple de fonction C*° sur R nulle si | z |> 2, valant 1si |z |<1 ? (Utiliser / g(t).dt.)

-1
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35 Compléments sur les Suites

35.1 Cas Upg1 = f(un), f(SL’) = (1 - LL’)2, Up G]O, 1[ intervalle de stabilité

o5 T is Q o5 T Ts
Dessins ‘ ‘ Le point fixe de f est répulsif! (ugp), (ugp+1) convergentes

[a voir| chacune vers un point fixe de fof. Mais fof a 3 points fixes : « =0 <[ < =1, [ étant point

fixe de f, donc de fof ! (ugp) et (ugp41) sont convergentes mais vers des limites distinctes ...

35.2 Limite de suites en lien avec des intégrales (...)

1
1. Soit f continue en 1. Montrer que : n/ . f(z)de — f(1).
0

n—-+4oo
. 1 ™ sin®(nt/2 1 [™ si Ly
2. Soit I, :_,/ Mdt, n>1;: et J, = —. sm['(n—i— 5) ]dt.
2 J_. sin?(t/2) 2" J_.  sin(t/2)

Montrer que J, = 1; puis que (n+ 1)I,41 —n.0, = J, =1; et que I, = 1.

35.3 Théoréme de Césaro et lemme de 1’escalier
ur +ug + ... +uy

1. Soit une suite (uy,); on pose v, =

n
Si u, — [, montrer qu'’il en est de méme de v,, (I finie ou non). Mais réciproque fausse.
n—-4o00

2. Montrer que la réciproque est vraie si, de plus, (u,) est monotone.

x
3. (Lemme de I'escalier, cf. 1.) Soit (x,) telle que &,,41 — o, — A; montrer que — — \.
n—-+o00 n n—-+oo

35.4 Des équivalents avec le théoréme de Césaro (...)

1. Soit la suite zp41 = =y + zo > 0. Nature de (v,,)? Montrer que zj,; — 23 — 3.

x2’

n n—-4o00
En déduire, avec le théoréme de Césaro, qu’on a 1’ équivalent : x, ~ V3n.
n—-roo
2. De méme avec u, 1 = sin(uy), ug =1 et LS — 1 donc wu, ~ 3/n
’ ui_ﬂ u% 3 ’ n—-+o0o
_ _ 1 1
3. Idem avec zpy1 =2, +e ", 29 €R.  Avec y, = e ™" —— —1; donc z, ~ In(n).
Yn+1 Yn n—-+o0o
. Unp . . . 1 1
4. Soit ug,u; >0 et up1;] = ————— . Etudier (u,). Equivalent de u, avec lim —— — -
14+ upup_1 n—+00 Uy 4 Up
1
5. Soit —1 < up <0, Upt1 = Up + u% Avec vpy1 — Uy, vérifier que v, = — ~ —n.
Uy N—+00
Puis avec vp41 —vp = —1 — S + % montrer que : v, = —n—In(n)+ O(1) + Zn: Sk
n+1 n n n ) . n L .
k=1
Sachant que la derniére somme est négligeable / In(n) déduire que : w, +—  ~ .

n n—+oo n2

35.5 Comparaison des régles de Cauchy et D’Alembert sur les séries

Montrer que si u, >0 et upi1/u, — A, alors: Yu, - A (n— +o00.) [In possible.|
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35.6 Suite bornée en lien avec la convexité (...)
Soit (a,) bornée telle que Vn € N*: a,_1 + any1 = 2.ay.
1. On pose d,, = an—1 — a; montrer que (dy,) est décroissante; puis que dy, i 0.
— 400

2. Montrer que (a;) est décroissante. (On note a sa limite, si utile).

3. Montrer, pour n > p+1: ap —an, = (n —p)(ay,—1 —ap) > 0. En déduire la limite de (n.dy).

35.7 Approximation de nombres irrationnels

1. Siz € Q, n € N* montrer 3 (p,q) avec 1 < g<n |x——|<i.

2. En déduire une infinité de couples (p,q) € (ZxN* tels que | -2 | < iz .
q

Solution : On prend n + 1 valeurs et ki {kx} = k.z — [k.x] sur [[0,n]]; on découpe [0,1] en n

. - . . 1 1 1
intervalles [0,1/n][, ... alors ("tiroirs de Dirichlet") : | g.x —p |< =; et donc | P o P < -
n q n.q q
. n 1 1 n . .
Puis : | - < < = donc les P convergent vers x; si nombre fini de couples distints, la
dn n.qn n

n
suite serait stationnaire a partir d’un certain indice (car convergente) et x serait rationnel ; exclus.

35.8 (*) Equivalent avec le théoréme de Césaro : généralisation

Soit une suite (u,) convergeant vers 07, du type ‘unﬂ =up —g(up); up=a;g continue‘ avec :

1) Sur ]0,al, 0 < g(x) < z; 2) g(z) <<z,2—0"; et 3)u, ~ v,=g(u,) ~ g(vy).
n—+00 n—+o00
Alors :  Si @ ~ h(x) [pour simplifier, éventuellement| et si H est une primitive de h (ainsi par
g(x) a—
xT
exemple en prenant H(z) = / h(t).dt), on a | H(uy) N Et on inverse H selon les cas.
a n—-+oo

e—l/x _1/95

Exemples : g(z) = 2%, a > 1; g(z) :% ;g(x) = [pas de primitive connue ici| ; g(z) = z2.e
- n\x

u . L . . ., . .
Rem. Pour u, 1 = u, —u2, Z In—*L div. (télescopie), donc E uy, div. (aisément, sans équivalent)

Up,
Démonstration : Déja 1) suffit & montrer la convergence de (uy,) vers 0, en décroissant.
Ensuite, I'idée vient d’une analogie avec les équations différentielles ! y_/ =—1 ouh(y)y =-1..
En toute rigueur, voyons que H (up4+1) — H(u,) — —1 : ceci suffit avec le Théoréme de Césaro.
Ona: H(upt1) — H(up) = (Unt1 — upn).h(0,) par le théoréme des accroissements finis.
Et upt+1 <0, < u, sont équivalents avec 2). Donc H(upy+1) — H(uy,) équivalent & —1 avec 3).

Les exemples (exercices) :

2

e Si g(z) = 2%.¢"/* I'hypothése 3) n'est pas assurée [exemple : z ~ETT mais g(x — z°) = g(z)].
T—

Cependant la conclusion est juste.
o Cas g(z) = B n*(up) ~ —n,In(u,) ~ — V2n. Lennui est alors que "u,, ~ e V2"
In(x) = 2 "m0 ’ " n—too o " o0
. " est plus qu'incertain ! (exponentielles d’équivalents en Uinfini). En réalité : wu, ~ e V2In/Ve |
n—roo

35.9 (*) Soit R, = (%)" + (%)” + ..+ (%)". On cherche sa limite (...)
—pP— k p j \/_
Soit p = E(y/n); on considére : —)" et T, = 1—=)". Vérifier que S, < n.e” V"
(V) kZ:: - JZ_%( =)

J

) <e ™, j<p, et que T, By Conclure.

—+00 e —

Puis, avec « —L montrer que e~ %7 < (1 —
\/_
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36 Séries numériques

36.1 Convergence d’une série avec un Développement Limité

1 1
Soit =[(1+—-)"—--]* C d t d -1y, ?
oit u, = [(1+ n) e] onvergence de Zun et de Z( )",
1 1
— Corrigé. On sait que (1 + —)7" tend vers — : on le refait en mieux. Et donc u,, - 0 a>0.
— Si la lére série est a termes > 0, la 2éme est alternée ... Précisons le [...] avec In(1+ h) et e :
. , 1. 1 1 1 e 11 e
511 n> 11' <11+ ol e?’(—”'(lﬁ RETERE T +1ﬁ>> = exp(=1+ 27 32 ;f)
€n €n €n
= - ——+=)=-(14+———+—=+-——=). D ===+ =+ =), k= cte.
e ea:p(zn 3n? +n2) e (1+ 2n  3n?  n? 8n2) onc [ e (271 w2 n2)’ e
tante > 0
1w, =[] ~ contante > ~ . convergence < a > 1. (—=1)".u, sia >0, CN de convergence :
n—+o00 ne
-1" K -1" K. !
2. (=), = ((26.11))0‘ (1+ -~ + %L)a = ((26.13)04( + noz + %") Série alternée qui est somme d’une
(-1)" Ka €,

(

série semi-convergente et d’une série Absolument convergente (o)
en n

+ %) : convergente.
n

36.2 1z +In(z) =n a une unique racine u,. Y 1/un, > (=1)"/uy

Corrigé. C’est un cas ou u, est défini implicitement (sans pouvoir U'expliciter).
On fait un dessin de f(z) = = + In(z); elle est C°, strictement croisante, méme concave

(f7(z) = —1/2* < 0) et posséde une branche parabolique de direction asymptotique y = z (ce

T Notons @ f(1) = 1.

Ainsi : f7! existe, est continue, croissante et bijective de [1,4o0o[ dans [1,4o0o[. Et donc :

qui est f(z)/x tend vers 1 et f(x) — x tend vers +o0 en +00)

Up = f _l(n) est aussi croissante et tend vers +o0o (u, croissante; si majorée, on ne pourrait avoir

Up +In(uy) =n — +00). In(u,) << up et donc n =uy, +In(u,) ~  up. [u, ~ n.
n—-4o0o n—-4o0o n—-—+o0o

D’ou Z 1/uy, est divergente par équivalent pour les séries & termes positifs et

Z(—l)" /uy, convergente par le Th. spécial des séries alternées car 1/u, est aussi décroissant.

(Ajout sans réponse ! Voir que u, =n —In(n) + €,.)

36.3 Convergence et somme de série (par télescopie)
). (Arctan(n + 1) — Arctan(n).)

)- (In(3).)

1. De la série de t enéral : uy = Arctan( 5=
e la série de terme général : u, retan( n+n+1

2

2. De la série de terme général : v, = In(l + ———
& n=In( (n+ 1)(n+4)

1
3. Montrer que g In(1 — —) est une série convergente de somme —In(2).
n
n>2

—1)"
4. Montrer que E In(1+ u) est une série convergente de somme nulle.
n
n>2

2 (—=1)k.in(k 2(9 n B In2
5. kZ::l 7( )kln( ) =7.In(2) — ln2( ) avec ; % — n2(n) conv. vers A, valeur inutile.

86



36.4 Nature de la série de terme général u, (...)

1. up = sin(m.v/n?+1) (Dl3 de /1 + 1/n?, somme d’une série semi-conv. et d’une série abs. conv.)

2. up = In(1+ (\/1_)71) Un, :% Wy = ln(\/ﬁ—'—i %;)n) (Convergence < a = —1)
‘Corrigé de (1 ‘ Ona: mvn2+1=mn.(1+ 2—12 —|—O( )) =rn+ % +O(%),

)
Avec sin(n.m + h) = (—1)".sin(h), et sin(h) = h + O(hg), on déduit : u,, = (—1)"[% + O(%)]

La série apparait comme somme d’une série semi-convergente par le Théoréme des séries alternées

et d’une série absolument convergente ; donc convergente.

Attention

« Uy~ U, = séries E Uy €t E v, sont de méme nature a condition que wu,, soit de signe constant.
n—-+00

. Z(\/l_)n semi-convergente par le Théoréme des séries alternées E Z In 1—1—( \/_) ) diverge, bien

que u,, et v, équivalents. Car In(1+ ﬂ) = % - % O(L) somme de 3 séries respectivement

semi-conv./div./absolument conv. ; donc divergente. | up |, | vn | n”’ont pas la méme monotonie !

36.5 Somme d’une série et comparaison avec 1/n®

Upt1 M +a
Up, n+b
. Trouver « : la suite v, = In(n®.u,) converge. (Equivalent de v, 41 — v, ; trouver a = b — a.)

. CNS sur (a,b) pour que » u, converge. (b—a >1.) Ceci étant on trouve, ici, la somme !
n>1
. Convergence de la série de terme (n + 1)uy41 — n.uy ;3 conclure que S = bauy/(b—a—1).

1. Soit 0 <a<b et uy > 0. On suppose que :

2. Rem. : comparaison logarithmique. Si w, > 0,v, > 0; et Vn > ng: upt1/un < Upg1/vn, alors :

< kvn, k= tpy/Un,. Avec an = 1/n%, apy1/an = 1—a/n+e,/n, d’ou la "Régle de Duhamel" !

36.6 (*) On suppose Z% convergente. Alors : (Z Uk)egn /n— 0

Corrigé : Posons V,, = Z l— — V. Alors u, =n.[V,, —V,—1]. D'ou:
Zuk = Z k.V; — Z kVi_1=—-Vo—Vi—..—V,_1+n.V,. Et Théoréme de Césaro.
k<n

36.7 (*) Si (u,) décroissante et série convergente, alors : n.u, — 0

Corrigé. Faire une | "transformation d’Abel" | (comme une intégration par parties) :
Soupg= > [k=(k=Dup= > kup— Y lLugr +nuppr= Y Fkup —upp1] + nttpgr.
1<k<n 1<k<n 1<k<n 1<I<n 1<k<n

Donc Z E[ug — ug+1] a une limite finie car croissante majorée. Par conséquent n.u,4+1 a une
1<k<n

limite finie A. La convergence de E uy, exige alors que X\ = 0, car la série harmonique diverge.

Autre corrigé. Vu que la série converge, u, — 0; et comme u, décroissante, u,, > 0; d’ou :

0 < p.ugp < Upt... + ugp donc 2p.ugy, — 05 0 < (2p + L)ugpr1 < ugpr1 + 2p.ugy, tend aussi vers 0.

Remarque. si E Uy, est une série & termes positifs, convergente, sans autre hypothése, soit R,, le

reste; alors: (*) E n.Uu, et E R,, sont de méme nature. Et sommes égales si convergence.

n n—1

> kg = Z E(Rgk—1 — Rr) =) Rp —nR,. Si)_ kay conv., 0 <nR, < Y k.ay; d’oil un sens.
k=1 k=0 k>2n+1

Inversement, > Ry convergente = > k.uj conv. (car majorée) ; alors, méme somme est déja vu.
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36.8 (*) Calculs de somme de séries en lien avec des intégrales

1. Mont : _ [ 8>0. Sia=38=1: ~(in(2)+-2)
. Montrer que : :004-”+5_ ; T @ , . ia=3 6=1: z(n 75
1 1 tro—l—a _yno=1-P] q¢
2. Mont : = . )
ontrer que g TR CE) Oé—ﬁ/o T3 , ng>a>pf

nzno

36.9 Montrer la formule d’Euler sur les nombres premiers p,

1
1. Soit s > 1. Montrer la convergence de la suite P, = H 1 et que nEIfooP" = Z vt
0<k<n pz n>1

1
2. (*) En déduire que la série de terme général — diverge.
n

36.10 Série convergente/u, 1 équivalent & u, >0 : u, = o(R,)
Corrigé : (Ex.: u, ~ %, a>1) Soit €€]0,1/2]. AN >0: p> N = upt1 = (1 — €)u,.

Donc sin > N : Uy + Ung1 + Ungo + oo = Uy + (1 =€)y + (1 — €)2up + (1 — €3 up, + ... = uy.=.

Dot : up, =0(Ry—1) donc: u,= ~ upt1 =o0(Ry,).
n—-400

36.11 (*) Sur la formule de Stirling (avec diverses précisions ...)

1. Avec /nil(t—n—%)’.ln(t)dt, st u, = /7:1 In(t)dt— nin — 1; + infn) DUy = Tlnfi-%ng—i-O(%).
2. En déduire que In(n!) = (n+ ;) In(n) —n+ 1—; u, et R,= ;:2:1 Uk N P Ty

3. Précisons : avec q.1, montrer que v, = pn—1 — pn = 12(n1— ) “Ton Uy, + O(%); puis que
4. ul = uy, —vn:O Z u, = O0(— ln(n!):(n+%).ln(n)—n+1—5+ﬁ+0(%).

p>n+1
5. Dot n!=n"t1/2em Kea:p<— —s—O(%)) = ... et K =+/2.7m (par les intégrales de Wallis (*).)

P . 1 1
36.12  Accélération de convergence v =Y un, u,=——In(l+ )
n n
1. Monter la convergence de la série Z u, et qu'on a aussi y = hlf (> l—ln(n)).
=00 Chen
2. 51 v = ! ! + ! ! montrer que ug — v = O( ! ). En déduire que :
SR T o T ok ) 12K 120kt D2 due e = vk = Ul due:

. 1 1 1 1 _ N _ _s
3.y _1£nE In(n+1)+ ST 1)+ 20 1 1)2 +O(n4). [n=4,5;~0,47. 0,57722 : erreur < 2.107° |

36.13 Convergence et somme de la série u,, = (—1)"sin(n)/n 54.7

n

1. Vérifier que : cos(%). ;( 1)¥.cos(kt) = % (=1)"cos( 2Ly — cos(g)] .
-1
2. Montrer la convergence de la série et justifier que la somme vaut : Z Up = —
n>1
[Tout faire en méme temps; ou bien S, = ) (—=1)*.sin(k) borné et transformation d’Abel.]

k<n
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36.14 (*) Développement asymptotique d’une suite grace aux séries

1. Sommation de comparaisons; soit v, =0 :

(a) Si Zvn converge. Siu, <<wv,:R,<<R,. Siu, ~ v,: R, ~ R ; (vraiavec O)

n—-+00 n—-+00

(b) (*) Si Zvn diverge. Siu, <<wvp: S, <<S),. Siu, ~ v,: S, ~ S; (idem)

n—-+00 n—-+o00
2. Convergence de la suite : zg €] —1,0[ et xp41 =x, + :L'?L En déduire, avec y, = —1/x,,
_ . __—1 anU anU
que yn+l_yn—1+yn_1, et que Tp =— + —5= + — e

36.15 (*) Si u, > 0, étudier Zun/Rf{_l si Zun convergente, Zun/S,‘f sinon

Ry,
R H(l — vy,) tend

vers 0, Zln(l — vy div. vers —oo. Si vy, tend vers 0, vy, N In(1 —wv,) div. et sinon div. aussi!
n—-+od

1. Cas Zun convergente. « > 1 : Zvn divergente. Cara=1:1—wv, =

, U, Bt gt Rn-1 gt
Sia<1, Zvn convergente. Car o = o < o et a <1 : convergence.

n—1 n—1
Shp—
2. Cas (uy) divergente. Si 0 < a < 1, Zvn divergente. Cas a = 1 : 1 — v, = 2%, H(l — v tend
Sn
vers 0, Zln(l — vg) vers —oo. Si v, ne tend pas vers 0, divergence! sinon, v, ~ —In(l —vy,).
n—-+400

S w, (5 dt Sndt .
ia>1, Zvn convergente.  Car = — < et « > 1 : convergence.
S S

S_% n—1 S% n—1 t_a
36.16  (*) Somme avec les coefficients binomiaux. L’égalité : ) Oiﬁ = Z%

nzp

1. (”;p) = C£+p; et si u, =1/ (n;—p) , verifier que 1 (n+p+1).upt1 = (n+ 1).uy,.

2. On pose S, =) “uy. Montrer, par télescopie, que (p —1).S, = 1 — (n+ 1).u,. Conclure.

k=1

. . i 4
36.17 (*) Soit L= QnNJ0,1]). Trouver a; < i € N tels que b_ Z a,—'. Cas de =
q q i>2 2
. . 1 1 k-1 4 1 1
Note. ’écriture n’est pas unique : 3= 9= et ==+ —+ 3 + 3 + i Etc.

2! = k7 7 20 40 5 6l 7!

36.18 (*) Un certain développement de z €]0,1] (...)

1
Montrer que = lim (— + ...+ ) avec pg = 2, pp+1 = P Et 1 (p,,) stationnaire = x € Q ...

n—+00 Po Po---Pn

1
(Au départ, montrer I'existence de pg tel que : = €]— |; etc.)

po po—1
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37 Suites et Séries de fonctions

37.1 Etude de la convergence simple et uniforme

1. De la suite de fonctions z +— z™ sur [0, 1].

[\

. De la série de fonctions x +— z™ sur [0,1].
(a) (*) Montrer le Théoréme de Dini :
Si fn C.S. vers f; fn, f C°sur un compact; et si la suite (fn)n est croissante : il y a C.U.

(b) Utilisation de (a) : La suite Py =0, P41 = Pn—l—%(:n — P2(z)) C.U.vers yz sur[0,1].

@

4. Montrer cette question de cours : Si f,, Riemann-intégrable, C.U. vers f sur [a b], alors :

f est R-intégrable et F,,( / fn(t).dt C.U. vers / f(t).dt; meme/ | f— fn | dt —0.

37.2 Suite de polynémes convergeant uniformément sur R* vers P(z)

(A partir d’un certain indice, forcément : P, = P + ¢,

37.3 Est-on, ou non, dans un cas de convergence uniforme ?

1. Polynémes de Lagrange avec subdivision réguliére.

Soit f C*°[a,b]. On suppose les dérivées uniformémeént bornées : IM tel que sup | f (k) | < M.

Alors les polynomes de Lagrange associés aux subdivisions réguliéres convergent uniformément vers
f sur [a,b] (utilité des hypothéses 134.10.)

n FntD)
Cas f a valeurs dans R : Th de Rolle. Avec z; = b , f H #
e (n+1)!
Cas f a valeurs dans C : ce qui précéde pour parties réelles et imaginaires.
1
2. Convergence simple, puis uniforme sur R, de : f,(z) = ———— 7
I+ |z —n|

Vérifier que / f2(z).dx =2. Soit g C” telle que g2 soit intégrable; verifier que I,, = / fn-g
R R

A “+00
existe et que I, tend vers 0 sin — 400 (* avec / +/ +/ )
0o A A

37.4 Echange de symboles : intégrale et somme de série

on. 1 1
ac 5, vérifier que  lim / fn(z)dz 75/ ( lim fn(x))dx
n—-+0o00 0 0 n—-—+00

1. Cas ou c’est faux. Si fp(x) = T
n.2".x

2. Un cas ou c’est juste. Un Théoréme rappelé (*) :

(1) up(x) continues par morceaux (CM)
2) Zun(x) converge simplement et Z up(z) CM

3) Z/1| up(x) | dr converge, alors /Z u, existe et vaut Z/ U

n>0

37.5 Convergence uniforme mais pas "normale"

r.e” ™"

In(n)

2. Donner un autre exemple. |uy(z) = (—1)"/(n + 1), méme sur R |

1. Montrer que la série u,(z) = converge uniformément sur R™ mais pas normalement.
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38 Séries entiéres

38.1 Le Lemme d’Abel. Des exemples

n

1. Si la série entiére E an.2" est telle que a,.r" est bornée, » € R*, montrer que la série

converge absolument pour les z tels que | z [< 7.
a a

|[Ecrire : | ap.2" |=| ap | 7" (—)" < M(—)". Puis R = sup(r) ..]

T r
—+o0
2. Exemples. 1) Rayon de Z p.2" Ol a,= somme des diviseurs de n? [1<a, <n’= .. R=1].
=1
+00 "
2) de Z 3".2?" 7 |Etudier la convergence absolue de cette série considérée comme numérique par
n=1

n 1 o
la régle de D’Alembert, par exemple : Un+tl 0 3.1z ]2 Donc R = 7 Elle est géométrique !|
Uy n—+o0
38.2 Des calculs de rayons de convergence
de E HZ ; de E apz"’ ou a, estlanéme décimale de 7.

38.3 Convergence suivi d’un calcul de somme

n3

de Zan.z" ot a,=2n>-3n2+1; puis an = —-
n!

38.4 D.S.E. avec une équation différentielle
1. Vérifier que f(x) = Arcsin®(x) vérifie : (1 —22)y” — .y = 2.
2. En déduire que f est Développable en S.E sur | — 1,1[. Trouver ce D.S.E. (pair).

38.5 D’autres calculs de rayon de convergence

1. On suppose que f(z) = Z a,.2" a un rayon de convergence R > 0.

Montrer que g(z) = Z an.z" /n! posséde un rayon infini. [Prendre zg # 0 tel que a2z}

. . 1 1,1 oo
bornée.] Montrer ensuite que, si x >E o —=.f(=) = / e "t g(t).dt
x x 0

2. On suppose que Z an.z"" a un rayon de convergence R > 0. Rayon de Z an.2" 7 de Z ai.z" ?

[Réponse : VR; R2|
(=n"

n

2

)"

. e . _ " . _ _ 92p+1 _ 92p+2., _
3. Cas : a, =sin(n); ap=n"/nl; as, =0,a3p41 = 2P azpyo =277, a, =1+

38.6 Une égalité en utilisant le produit de Cauchy

1. Soit A,, = Z ag, une suite convergente. En déduire que Z an.2" a un rayon R > 1.

0<k<n

Et montrer que, sur | — 1,1[ : (1 — x). Z Ap.a” = Z an.x" avec le produit de Cauchy.
n=0 n=0

2. Soit H, :il montrer que R =1 pour ZH " et que : ZH x":—M

: n o n- : n- R

k=1 n>1
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38.7 Soit ag=1, any1 = Z ag-an_k 5 S(x) = Zanﬂjn #+ 39.4
0<k<n
1. On suppose R > 0. Montrer que z.5%(z) +1=S(z) sur | — R, R|.
(2n)!
nl(n+1)!
3. En déduire le nombre de fagons de calculer xq * ... x x,, (par des parenthéses) pour une loi

2. En déduire S(z) et a,, puis R. [Trouver a, = qui est donc entier. Veérifié.|

non associative. (Nombres de Catalan.)

38.8 Utilisation d’une série entiére pour une série numérique
Arcsin(z)

Va2

2. Montrer que les solutions de (%) sont : (avec C3, = (2n) )

n

1. Vérifier que f(z) = est solution de (1 —z?%).y/ —zy=1. (¥)

too 2n
1 2 n
IIJ‘) = Qo E 2%03”172” + E m$2n+l, Ap+1 = Ap—1- Rayon de convergence ?
=i n=0

n+1
+oo =
. 2.2)%" i L _ 36427y
. En déd D Py =y T P Xl T T
3 1 dedulre que f (l’) 7;3 an us que = an 27

38.9 Autre fagcon d’obtenir certaines intégrales de Wallis

/2 dt T
Vérifier, pour | z |[< 1 que : nz>:0x / cos®™ (t).dt = /0 1— 2.cos2(t) T 9=

/2
[Rappelons que le cas génétal des intégrales de Wallis est I, = / cos"(t).dt.|
0

38.10 Quelques développements en série entiére (D.S.E.)

—+00

1. Soit f(z) = 2(295 — 22)". Domaine de définition ? [Clest |1 —v2,1+v2[\ {1}]
n=0

Puis domaine sur lequel elle est développable en série entiére (DSE) ?  [Somme connue; ]1—v/2,1[ ||

1
2. Développer f(z) = Arctan +1 o série entiére (autour de 0).
x
[En (—1)" et (—1)" les limites sont différentes ! Ecrivons si z > —1, f(z) = g—Arctan(x—l—l) =
m /
5 g(z), on trouve que g (avec ¢') est DSE sur ] —v/2,4v2[. Donc f est DSE sur | —1,v2].

1 1 1 1 1
On t (z) = =5 - =Smi =)
(On trouve que g(z) (:L"+1+Z')(3:—|—1—i) 2i<w+1—z’ x+1+z‘> ST

7

) 1)k gk gilk+1)m/4 ko sin((k+1).7/4)
On écrit . : = m N
=)0+ ,g) V2 kZ>O V2!

d’ott g(x) = ... On ne peut pas excéder V2 pour g car le terme général est alors non borné.

Autre note utile : en un point de 'ouvert de convergence : la fonction localement bornée aussi).|

38.11 Une série numérique avec le D.S.E. de la fonction exp
+o0o 1 1 1
Mont : — = —.dz.
ontrer que nEZ:l o /0 e X
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38.12 Montrer que f(:z:):e””z./ e "dt est D. S. E. (E.D.L.)
0

[Corrigé. Trouver : f'(x) =1+ 2.x.f(z). ‘La clé est le Théoréme de Cauchy-Lipschitz | qui dit

que (y —2xy =1, y(0) = 0) posséde une unique solution ! Or f est solution; et par calcul

une solution est D.S.E. avec un rayon R > 0. A finir (...)]

In n I
38.13 Trouver f(x)zz —pat avec In_/1 In™(t).dt

1. Montrer que I, n > 0, est décroissante vers 0; nature de Z(—l)".In ?

2. Vérifier que I,41 = e — (n+1).I,; d’ot un équivalent de I,, et la nature de ZIS‘

3. Rayon de convergence de Z 1—7:3:" ? Vérifier que f(z) — Iy = e.(e* — 1) — z.f(z) ; conclure.
n!

/4
38.14 Trouver f(l’) = Za,ngjn avec a, = / tann(t).dt
0

1. Calculer ag et a;. Montrer que (ay) converge vers [ < 1.

2. Vérifier que a, + a,+9 = —— ; en déduire [.
n

+1

3. Rayon de convergence de Z anx™; puis montrer que (2% + 1).f(z) — ap — ay.x = —z.In(l — z).

x.sin(a)
x? — 2.xz.cos(a) +

38.15 Vérifier que

1= Zx”szn(na) , |z |<1

n>1

38.16  Equivalent de la fonction : f(z) =) 2" , en 17

NZ3

Rayon de convergence ? Puis montrer que f(z).vV1—z — 5 (On donne :

oo o 1
/ et @) gy :%. "_) (**) Note : La limite au point —1 est 3 cf. ici 39.2 fin.
J0

—In(x)

38.17 CNS pour avoir un DSE au voisinage de 0
1. CNS a montrer : 3 M, p, h strictement positifs tels que Va: € [=h, h],¥n : | £ (z) |< M.p".n!

2. Corrigé : CN. Fixons 0<h<r<R: fM(z)= Z(k‘ + 1) (k 4+ Dagypnz®.

k>0
Or (rP.ap) bornée par K (en module); d’ou :
7@ 1< YOt (1) a2 € B S ). (B = B
X k+n . , .7’" B n r n (1 — ﬁ)n-{-l-
k>0 k>0 r
Prendre : M = 1_% et p=——
CS. Avec Taylor avec reste intégral, on obtient : | R, (z) |< M.p" . |« "1,

Donc f DSE sur | — o, avec o =min(1/p,h).
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39 Compléments sur les Séries entiéres

39.1 Formules de Newton pour somme des puissances de racines
Soit P(X)=X"+..+a,=0,a, #0. On utilise ici un DSE.

P'(t 1 . - .
1. Montrer que : P(t)) = Z Py (racines distinctes ou bien non).

(
/ oo
P/t _ z:Sn,t"Jrl (DSE pour chaque | Aj.t [< 1.)
n=0

2. Déduire que : 20

3. Endéduire: Sin=p: S,+a1Sp—1+...+0ap.S—p =0
etsin<p: S,+a1S.-1+..+an_1.51 +n.a, =0.

39.2 (*) Un théoréme sur le bord pour les séries entiéres (Abel)

Soit : Z anz™ = f(x), derayon R > 0. Si Zan.Rn converge, alors

1. Enoncé. n20 .
f est continue sur [0,R|] (et donc f(R hm > apx

n=0

2. [Corrigé guidé] . Montrer qu’on peut se ramener & R = 1, ce que l'on fera.

o] o] +oo
« Soit S = Zak; et R, = Z ag. Montrer sur [0,1]: f(z) — S =— ZRn(x" — 2",
k=0 k=n+1 n=0

(Transformation d’Abel classique, et noter que : R_; = S.)

ng
. Découper Z Z + Z etc. Note : Si a, = (—1)""1.n, la suite des sommes partielles S,, diverge
n=0 no+1
[Son = n, 52n+1 = n + 1], méme au sens de Césaro; mais converge au sens d’Abel vers 1/4 !

3. Deux remarques. Inversement, si f (x)—>L L finie, a-t-on Za" convergente 7
n=0

1

1
([P _ 2 - thénrs
T x) mais "oui" si a,, = O(n) : théoréme

. . . 1 .
taubérien fort de Hardy-Littlewood. Preuve si a, = o(=) (Tauber); soit M, = supg>, | k.aj | :
n

C’est un énoncé "taubérien" : "non" en général (f(z) =

— Montrer que M, existe et converge vers 0. Puis que :

- up=L-— Z ap =L — f(z)+ Z a.-( Z ap.xz®. Et que :

0<k<n 0<k<n k>n+1
M,
— Jup | <|L—f(x)]|+ Z |ak|.(1—$k)—|—n(17fw) et encore que :
0<k<n
— Jun | <|L=f@) [ +(0—2). Y klag|+——— ( 3
0<k<n

— Avec: 1—z =1/n, et la moyenne de Césaro pour le terme central, conclure.

Théoréme (Frobénius, 1880). > an, Césaro-conv.: 0 =( Y s)/n conv. = Abel-conv. de méme somme :
o<k<n—1

Z anz™ = (1-x) Z $,8" [sp2™ — 0ouprod. de C.] = (1—x)? Z(so—l-...—l-sn):c” = S+Z(n+ D(ont1 = Sz

1 n
n=0 n>=0 n>0 Z(TL+ )‘r

et la derniére fraction tend vers 0 vu ’hypothése 0,41 — S quand z — 1 : exercice.

39.3 Un exemple de calcul sur le cercle de convergence (...)

1 —1)"
Convergence et somme de gan.zn ol ap = n+1 En déduire : ZJ in —i—) 1
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39.4 Quelques autres développements en série entiére (...)

1. DSE de tan(x); R 7 (Autre utilisation d’une éq. différentielle). [Solution : suite (a,) # 38.7.]

+00 n
T T
.Sol. de ' =142 y(0) =0sur]— 5 5[ cy(z) = nz::oan!ﬂn, ap =1letapts = nrl Z:ak-an—k-
Alors forcément : | a, [< 1, R > 1. Par unicité de la solution, tan est DSE et R > 1.
. Par la formule de Leibnitz, y("‘|r1 Z C’k (" k) donc dérivées positives sur [0, g[
. D’ou tan(x Z arz® + Ry (z) et sur [0, 5[ : 0 < Ry(z) ou Sp(x) < tan(z); croissante majorée,
7r , , T =
converge : R > 5" Et cette série vérifie I'éq. diff. : c’est tan | R < 5 car tan non bornée en 5

2. Remarque. cot liée aux "nombres de Bernouilli" ; donc tan aussi car tan(t) = cot(t) — 2.cot(2t).

3. Plus généralement, si f C°°] — a, af paire ou impaire, a des dérivées positives sur [0, [, alors
x

y) ()

Comme le cas précédent, sauf qu’il faut montrer que la série converge vers f ou que le reste

fest DSE sur | — o, [ [S1 0 <2 <y, on montre que : R,(z) < (g)an(y) < (

tend vers 0 sur (0, a(. Ecrire R, (x) = / (x_i't)f("ﬂ)(t)dt = / (w2 — )"y — 1) FO @) dt

Tyn [T W=D ) 2y 2y
<Gy [T EE e < G Ralo) < (S 0)]

39.5 (*) Calcul avec la transformation d’Abel 38.15 54.7

X et _n(2)  Infl— (T —
1. Montrer si « €]0, 2.7 : ¢ = n(2) _ Infl = cos(a)] + i{m =) (et la convergence) !
n 2 2 2
n=1
n ,
) 1 — eintl)a 9
2. Corrigé. Si A, = kzoelka, A, = iﬁ donc | 4,, |< m = M. Alors, transf. d’Abel
n ko n—1
. (& . Ak_Akl Akl_An AO 1 1
Sn—]; 2 —27—2 _F_T_‘_kz_lAk'(E_ky——l—l) avec
A
" tend vers 0 et série abs. conv.  Le ler terme vaut aussi : —ln(Q.Sin%.)
n
+oo ei.na eia —
Considérons la série entiére a". R=1letsize|-11[, f'(z)=..= = o
— x? — 2zcos(a) + 1
10 ina
1
f(z) = Z ¢ - = —§ln(ac2 — 2zcos(a) + 1) + 1. Arctan(%?z()a)) + cte. Puis, si a # T,

n=1

cte = i.Arctan(cot(a)). Avec Arctcm(a) + Arctan(b) = Arctan 1a +

b
2 sia.b <1 [z.cos(a) <1]:

%m f(:L') = Arctan(% ou: Z z" S’L?’L n. Oé AT‘CtCL?’L( ZL'-S’LTL(O[)

el—1,1].
1—:1:003 )pour:n ] [

1 — z.cos(a)

Faire ensuite tendre x vers 17 selon le theoreme d’Abel 39.2. Arctan(X) = g — Arccot(X) ...

Quand |z | <1, aw quele. | Autre méthode avec les séries de Fourier. 54.7.
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40 Equations différentielles

40.1

(*) Résoudre (1+2%)y” + 2.y —4.y =0 avec x = sh(t)
Corrigé : y = f(x) = flsh(t)] = g(t);

D’ou

y designe f'(z);

Dérivons & nouveau

Y désignera ¢'(t); |y(z) = Y (#).
avec la dérivation des fonctions composées et des fonctions réciproques —

- 1 - sh(t

, y sh()

)

v _ : Jo |

) Et, en reportant : Y —4.Y =0 qui est facile !

Dot Y = Ae? 4 pe™ = A.ch(2t) + B.sh(2t); et y=A.(222 + 1)+ Cx/a2 +1

40.2 Reésoudre (1 —2?).y" —z.y +y=0 si|z|< 1, z= sin(t)
Corrigé :

Déja des problémes, pour cette éq. diff. linéaire, prévus en x = 1 (cf. coeff. de y”).
Puis on pose : = = sin(t)

avec t €] —/2,7/2]
Et (ci-dessus) : dY/dt = dy/dz.dz/dt

qui donne t = Arcsin(z) si besoin.
donc Y =y .cos(t); puis en re-dérivant / ¢ :

Y =dy /dt.cos(t) — i .sin(t), Y =dy/dz. dz/dt .cos(t) — 1y .sin(t), Y =y’ .cos’(t) —y .sin(t).
Peut-étre faudrait-il inverser les relations soulignées mais tout devrait bien se passer ...
On trouve Y +Y =0 !

donc :

Y = A.sin(t) + B.cos(t)
‘Et sijz|>17 ‘ Sur | — 1, 1[, on aurait pu poser aussi bien x = cos(t)

y=Ax+ B.v1— 22
e==21, t >0, pour | z |>1 (qui donne t= Argch(| z|) si besoin), semble bon !

Ici : z = e.ch(t),
40.3 (*) Au sujet de ’équation différentielle d’Euler (...)

1. Résoudre a.z?.y” +b.x.y +cy =0 en posant x = e.e

¢
2. Casde: 2%y —3zy/ +4y=07

, € = £1 selon l'intervalle ou ¢t =1in |z |

Résoudre : y” +y = tan(x)

40.4 Diverses résolutions avec diverses indications (...)
1.
2.

Résoudre : 3" +y = 1/sin®(z)

(Var. des ctes. y = a.cos(x) + b.sin(x) — cos(x).ln | tan(g + %) |
(sol. particuliére (2.cos®(z) —1)/2.sin(x).)
3. Résoudre : 2%y +ay —y=0, z=uzx.y.
4.

(*) Trouver f C°(R) : f(z) = 2./x\/f(t)dt. (Réponse. ©<0: f(z)=0; pourz>0:
ou bien f(z) =0; ou bien Jc 200 tel que f(z) =0siz <c et flz)=(r—c)?six

Soit I’équation différentielle y” + p(z)y’ + q(x)y = 0. Montrer qu’on a deux solutions telles que

0
> c).
2

u.v = cte (u.v = 1 possible) < 2p.q+¢ =0 et alors : 2= ¢ Casou: ¢(z)= —z2 7

6. Résoudre : o' =y, v/ =2z 2/ =2z (@O ==z@t)!..)

7. Résoudre : (1 +22)y” +2x(1 +2%)y +y =0, t= Arctan(z).
8. Résoudre : z.y” —y —a2dy=0, t=a>
9.

Et enfin :
Trouver f dér. sur R : f'(z) = f(—x)

[Poser f(z) = p(z) +i(x), 2.p(z) = f(x)+ f(—2), etc]
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40.5 E.D.Linéaire du deuxiéme ordre, théorique (...)

X

Montrer que : " +y = f(z), f C° a pour solution particuliére : y(z) :/ ft).sin(x — t)dt.

[C’est un "produit de convolution" qui apparait naturellement dans les Séries de Fourier.|

Etudier ensuite le casou: y”" —y= f(x), f cP.

40.6 (*) E.D.L. du deuxiéme ordre, solution périodique (...)

2

Existence et unicité d’une solution 27-périodique telle que y” —y = —= f(x).

2—et®

— Corrigé : Equation différentielle & coefficients constants et ici

y = A.ch(z) + B.sh(z) = a.e® + b.e”® au choix, pour ESSM, vue I’équation caractéristique 7% — 1 = 0.

Une idée de solution expliscite (avec variation des constantes) est permise. possible que si

c’est facile (exemple : y” —y = cos(x)); pas ici ce qui rend l'exercice intéressant (et classique) :

Existence : Si ¢g(x) solution de EASM (périodique ? on ne sait !) Sol. y = p(x) = ¢o(z)+a.e*+b.e”".

(*) Comment avoir Vz : ¢(x + 2m) = p(x) ?| Notons d(z) = ¢(x + 27) — p(x) [différence] :

Il est assez aisé¢ de voir que d’(z) — d(z) = f(z + 2.7) — f(x) = 0, vue la 2.7-périodicité de f. (Donc
d(x) = \.e®+p.e” : ceci ne va pas forcément servir, c’est pour fixer les idées). Comme d”(z)—d(x) = O

il faut et d’exprimer d(0) = d'(0) =0 pour que d = O : probléme de Cauchy !

On obtient le systéme de Cramer en a,b (pourquoi ?7) : existence et 'unicité sont alors prouvées !

(1) ©o(0) +a+b = po(27) + a.e*™ +b.e™2™, (2) ©p(0) +a— b= y(27) + a.e*™ —b.e >,

40.7 Solution bornée de y” — w?y = f(z); f C°, bornée sur R, w # 0

(*) Montrer qu’il existe une unique solution bornée sur R.

40.8 Erreur dans la méthode de Newton (valeur approchée de racine)

Soit f C?[a—r,a+7],7>0 : f(a)=0 et f' nes’annule pas (donc, de signe constant).

f e]\if\;cfa\ -1 N fa: , f ’
1. Montrer que \7] S——7— ou M = sup \7] [Supposons [’ > 0; avec g(x) =519 = 1-—
Sizx>a: ¢ <1+¢.M;finiravecY =14+¢g.M. Siz<a: ¢<0,¢ <1—g.M,ici Y =1—g.M.
[ (x)
o) -
2. Montrer 3h > 0 : sur Ja — h,a + h[, | z— ]J:/((w))—a | < M(xz —a)® ["convergence quadratique".|
xT

ﬁ
gf/'

Ou avec une éq. différentielle ¢’ + h.g =1 avec h(z) =

Question 2. indépendante :

40.9 Equations diff. non linéaires mais qui s’y raménent (...)

1. ler ordre. Bernoulli : a(z)y’ + b(z).y + c(x).y™ =0. (Poser z=1/y""')
Ricatti : a(x)y’ + b(z).y + c(x).y* = d(z) (avoir une solution y; (z), puis y(z) = yi(x) + 2z(z).)
Lagrange y = A(y').x + B(y') : isoclines rectilignes I, : y = z.A(m) + B(m). Si A(mg) = mg :
droite solution. Cas part. Clairaut, y = z.y/ + B(y'). Aprés les solutions éventuelles A(mg) = mo,
poser 3 = m, nouvelle var. : [m— A(m)].dz/dm— A'(m).x = B'(m), y(m) illico. 13.4. Clairaut :
les droites I,,, et leur enveloppe : = = —B'(m), y = —m.B'(m) + B(m) | Ex:y=uxzy +y>

2. 2éme ordre. Siy” = f(y,y), incompléte en x, poser y' = z(y) [d’abord y = cte?| alors y” = 2.z.
Exemples. vy’ =/ =1/ (y=X\, y=x+p, y=a.e’®—1/3).
2y =y —y?: (y=cte, t=p+y+2XIn|y—X|). 2kyy” = (1+y?) (Ribaucour, 2k € N.)
Si on a une homogéne en y,y’,y”, poser z =4'/y et cf. 40.11. Ex. ¢’ —2.z.y' = y(1 — z?)
devient 2’ + 22 — 2zz =1 — 2? (Ricatti), z = = + u(x) enfin: y=k.(z — )\).emz/z.)
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40.10 Question trés classique mais pas trés facile (!)
Soit a >0 et fC':RT =R telle que f'(z)+a.f(x) [notée g(z)| tende vers 0 en +oo.

Montrer que : f(x) — 0 (z — 400). (Indication : résoudre y' + a.y = g(z).)

40.11  Sur la Transformation de Liouville (...)

1. Soit y” +a(x).y’ + B(x).y = 0. (1) Montrer qu’on se raméne & 2” + g(z).z =0 (I) [équation de

2 O/

1 [*
Hill si ¢ périod.] avec y = u.z : 2u'+a.u=0;alors: ¢=— az 5 u(z) = eacp(T./ a(t).dt).
— 0

2. Autre transformation. Montrer qu’on passe de (1) & une équation de Riccatti réduite :

/

v 4 afz)+v? = —p(x) avec y = emp/v(w)dw, y(x) supposée positive; (ou v = y—).
Y
/
Et qu’on passe inversement de (2) o' + a(x).v + b(x).0* = ¢(x) a (1) avec v :g—().
y.b(x
3. On passe donc de y” + ¢(z).y = 0 (I) ‘Sturm-Liouville réduite’ a (IT) v’ 4+ v = —q et de (II) a (I).
A toute équation de Ricatti, on peut associer une EDLs "sans second membre" et inversement.

/
y—, les sol. d’une équation

Vu que les solutions de cette EDLs sont y = Cy.y1 + Cs.y2, et v =

différentielle de Ricatti dépendent homographiquement d’une constante arbitraire.

40.12 Diverses utilisations du Wronskien
1. Soit y” 4+ g(x).y = 0, g continue intégrable sur RT.
(a) Montrer, si ¢ solution bornée, (avec ¢'(z) —¢'(0) = — /w ©(t).g(t).dt)
que ¢'(z) a une limite en 4+o00; puis que cette limite Vauto().

p1(z)  pa(z)

o () @h(x)| o1(2).05(x) — a(x).¢) (z) est constant.

(b) Vérifier que le Wronskien W (z) =

a

=)
[Si on avait eu (1) ci-dessus, on aurait eu W(z) = Ce 53 e |

(c) En déduire qu'il y a au moins une solution non bornée sur RT.
2. Soit ¢ de classe C%(R,R) telle que : ¢”(z) + ¢(z) > O.
En considérant les variations de la fonction :

g(t) = sin(t — x).¢'(t) — cos(t — x).pp(t) sur [,z + 7], montrer que ¢(z) + p(z + ) > 0.

40.13 Equation différentielle et série

1. (a) Rayon de convergence de : Z<2n) 2™ 7 (Trouver i)

n

(b) Avec une EDL; [(4z — 1)y’ + 2y = 0] montrer que f(z) = Z (2n) (= L
o n 4 1—=x
[On peut aussi voir que a,, = (4 —2/n).a,—1 sur la série initiale.|

2. Résoudre I'éq. diff. linéaire : xy” + 2y’ +xy = O, en cherchant une solution D.S.E.
Sol. Posons : y = Zan.x”,R >0;ona Zn(n — a2zt + 2Zn.an.x”_1 + Zan.x”“ =0.

n=1 nzl1 n=0
Termes en 2° : a; = 0. Ena': 6ay = —ag. Enz* : (k + 2)(k + 1).ag41 = —ag—_1. Donc
flz)= Zagpx2p (agp4+1 = 0) et aisément R = +o00. On reconnait f(z) = ao.sm(:n). Utilisant la
méthode de la variation de la constante, voici toutes les solutions : y = l.sm(:n) — k.cos(:n).

X
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41 Calcul d’Intégrales simples

41.1 On montre que 7 ¢ QQ, résultat d’abord prouvé par Lambert

1. Une conséquence : Soit la suite (em)neN; montrer que tous ses éléments sont distincts.
2. Soit I:/ P(z).sin(x).dx, P polynéme de degré 2n.
0
(a) Montrer que : I = P(r)+ P(0) —/ P (z).sin(z).de.  En déduire que :
0

(b) I = P(x)+ P(0) — P"(x) — P"(0) + PW () + PD(0) — ... + (=1)"[P®(x) + PPV (0)].

a
3. Supposons que T = 7

(a) Montrer que Vj € N,0 < j <n, PY(0)=0. (Ordre de multiplicité de la racine.)

a,b € N*. Soit P(z) = %; I, = / %szn(m)dm
. 0 .

(b) Pour : n < j < 2n, préciser le coefficient de 2™/ dans P(z). En déduire que :

P (0) = %aw.(—b)j €Z et A= P(0)—P’(0)+PW0)—..+(-1)".PE(0) e Z.

(¢) Avec P(r —z) = P(z), montrer que B = P(r) — P”(n) + PW(n) — ... + (—=1)".PC" () = A.
(d) . Justifier que I, € N*. (Montrer I,, > 0, par le Théoréme "aux 4 hypothéses").
. Puis que I, — 0. (Majorer P(z) par (m.a)"/n!sufft.) Conclure.

n—-4o0o

[En fait e et 7 sont des nombres "transcendants".|

“+o0 m—1
41.2 (*) Intégrale généralisée / T obtenue par décomposition
0 xm
+oo xm—l s
*) On montre que I, , = der = —=2 en décomposant la fraction; 0 < m < n.
) d e /0 14 an sin T P

n

1. Vérifier que I, p, = 2.19;,2n,. On calcule I, 9, et, pour la suite, notons improprement m = 2p :

-1 2.z. k) — 2. — 1)t
2. Avec t, = 1 + k.z, vérifier qu’on doit intégrer —. z.cos(m 1) cos(m — 1) k, ke [[0,q— 1]
2q q 2q x? — 2x.cos(ty) + 1
. - _— B 2(x — cos(ty))dx
3. Et [m = 2p] que Z e = Mg Z e = 0, Zcos(mtk)./ 5 — 0.
o<hoi1 o<hoi1 - o x%—2xcos(ty) +1 B—+oo

1 [t sin(m.ty).sin(ty).de  sin(mtp)(m —t;) T
4. Que q'/O (x — cos(ty))? + sin2(ty,) . , car Arctan(t) = 5 Arccot(t), t €]0, 7.

ikt _ . - . . T 2q.sin(2p7/(2q))
5. Avec Zk:.e , [m = 2p] et question 3(a), vérifier que : Zsm(m.tk).tk = U hsin?2pr 2

; et enfin la valeur de I,,,,, attendue.

T/q

6. En déduire, encore avec 3(a), que : Iz, o4 :m
.sin(2p.m/ 2q

41.3 Des calculs d’intégrales conduisant a des intégrales généralisées

dt 7'('/2
@ = 2./ x et, avec u = tan(t), que I(\) =
0

™

VIEx

A # £1. Calculer Iy(\) avec u = tan%. (cf. 44.7(b) et apres.)

14 A2.sin?
. [T cos(n.t).dt
2. Soit In(3) _/0 1—2.\.cos(t) + A2’
1
Vérifier ensuite les égalités suivantes : In(X) = NI\, MIpe1+TL—1)N) — 1+ 2D .I,(\) =0
T A"

1. Vérifier que I(A) :/
0

et, avee I~ 0, déduire que s 1n(\) = 55w
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o » e 1 B boqb
414 fC°([a,b],R™), o subd. -/mf—ﬁ/a o2t = [P [
Ind. : F(z / f(t)dt bijective (sur son image); zx = ’1(%1) o I= /b f(t).dt; et calcul.

41.5 (*) Quelques questions théoriques sur l’intégrale de Riemann

1. On suppose que sa; < I~ < IT < Sao. (Notations des sommes de Darboux, par ex.) Alors :

Quand (le module de A) =6 (max | z; — xj_1 |) tend vers 0, so tend vers I~ .| Idem l'autre.

Lemme pour preuve. Soit € > 0 et choix : I~ — sas < €; soit n le nombre de points de A’.

Alors : saua’ — sa < n.0.(M —m) on, 0 =|A| et M, m bornes de f. [a voir.]
[Ajouter 1 pt : (z* —x;_1).m) + (x; —2%).mb — (2, —xi—1).mo < (25 —xi—1).(M —m) < 6.(M —m).]

Puis : Avec § tel que n.0.(M —m) <e, onaura: I —sa < 2.6, cequi termine.

2. ‘D’ofl le Théoréme‘ : Si f R-int (I~ = I = I), alors les sommes de Darboux, donc de Rieman,

tendent vers I quand le module de la subdivision tend vers 0. Réciproque vraie et assez facile.

3. De la définition, les fonction R-int sont exactement celles qu'ont peut encadrer par 2 fonctions en

b
escalier p < f <4 avec 0 </ (1 — p)dx < e: en fait, il est suffisant que ¢ et 1) soient R-int.

Donc ‘une limite uniforme de fonctions R-int. (pour n > N : f, —e < f < f, +¢€) est R-int.

4. Les fonctions en escalier sont R-intégr. (facile). Les limites uniformes des fonctions en escalier sont
donc R-int. On dit fonctions réglées. Comme la limite uniforme d’une suite de f. continues en zq
est continue en zg et qu'une union dénombrable d’ensembles finis ou dénombrables est dénombrable,
les points de discontinuité des fonctions réglées forment un ensemble fini ou dénombrable.

. f réglée sur [a,b] & f a une limite & droite et & gauche en chaque point ("étagée").

Preuve . (=) Limite a droite en x¢ € [a,b[ : f = Lim — unif(f,) et chaque f,, admet une limite a
droite en xg car en escalier. Par la convergence uniforme de fonct. ayant une telle limite, f aussi.

« (<) Soit € > 0 : Pour = € [a,b] on trouve ay tel que sur |x — oy, x| et |z, + a,| on ait
f(t) — f(t') |< €, grace a hypothése. Comme [a,b] est compact, on extrait un sous recouvrement
fini de o — ag, x4+ ay[ (N [a,b]!) De la, on a assez aisément un nombre fini de points de subdivision
de [a,b] (x — ap, x,x + o, rangés par ex.) et une fonction en escalier ¢ : | f — ¢ |[< €. Avec des
e = 1/n, on obtient alors une suite de fonct. en escalier convergeant uniformément sur [a, b] vers f.

5. On montre enfin (**) que les fonctions R-int sur [a, b] sont les fonctions bornées dont les points de
discontinuité est une partie de mesure nulle. Or on a des parties de mesure nulle non dénombrables :
I'intégrale de Riemann est donc plus générale que celle des fonctions réglées (celle de Cauchy).

6. Développements asymptotiques des sommes de Riemann. Les fonctions sont partout C2.

1 1, 42
(a) Montrer (1) / g(t)dt = 9(1) 42—9(0) —/ t 2t g’ (t)dt. Ind. : Partir du membre de droite; ou du
0 0

membre de gauche par parties avec v’ = 1, v =t — 1/2. (Début de la formule d’Euler-Mac Laurin.)
9(1) +4(0)
2

1, 42
(b) Interpréter : comme aire de trapéze; et, si g° > O, le signe : / % g’ (t)dt > 0.
0

"1 _
(c) Soit I = / (z)dz. On admet les égalités suivantes faciles, la derniére en posant z = koiwe,
n

k/n 3 E—1+t o s .
I = Z /k 1)/n (z)dx = - Z/ f(T) dt. Avec (1) appliquées aux derniéres, montrer :
k - N -
__Zf(_) _W—rm ou : T‘n——(—ka Jk:/ Lt f”(%).dt.
(d) Simg =inf f”, My =sup f” sur [— f] montrer que Jj € [@ %], Jr = =7 Sk) & € [k;1 I:L}

[on rappelle que I'image d'un segment est un segment par f” qu1 est CO] Enfin, avec une somme
F'A) = f(0) | en
LA A pCE

de Rieman, montrer que 7, = o

Exemple : Zi n(2) — - 4 14
n
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42 Intégrales généralisées

42.1 Le cours : a ne pas confondre (...)
1. L’existence des intégrales généralisées = intégrales (semi-)convergentes.  Avec :

2. Fonctions intégrables sur /= absolument intégrables ou : M > 0:VJ C I,/ | f 1< M.
J

On peut avoir I = [a,b], [a,b[,]a,b],]a,b[. Montrer que /5 Vtan(z)dx existe et vaut WT\/i
- o

42.2 (*) Au sujet de la période du pendule simple

Soit # l’angle fait par le fil (sans pesanteur attaché a une masse m) avec la verticale descendante Oz.

. . . . . 1 -2
La conservation de I’énergie fournit I’équation classique : Em.lzﬂ —m.g.l.cos(0) = —m.g.l.cos(6y) ;
o o /2 1.3...2n
ce qui donne la période T = 4. L./ (et sin®"u.du = z.¥ Wallis).
29 s(6) — cos(6o) 0 2 24...2n

in(6/2 l d 0
= M, montrer que : T = 4. —./ —u, k= sin—, (Jacobi).
sin(6o/2) 9 Jo 1 — k2.sin?(u) 2

2
2. Avec I(k) cette derniére, trouver : I(k) = g[l + % + O(k"Y) T= \/7 1 + — +O (69)]-

1. En posant sin(u)

(D’ou : Isochronisme des oscillations & —— prés : pour 6y < 0,4 radians, soit 6y < 23 degrés).

100

42.3 (*) Période indépendante de I’amplitude (isochronisme)

1. Construire la courbe d’équation : x = R.[O —sin(0)]; y=—R[1 — cos(8)] (pendule cycloidal).

1
2. La conservation de I’énergie donne : —m i’ + y +mgy = mgyo. (E, énergie potentielle). Déduire

.2 — —
que § = L L0570 ORT) costbo) = cos(6) . . _ =4 \l'g / \/ s 6. [0 = 7, bas de la cycloide inversée].
0o

R 1—cos(f) cos(6y) — cos )

3. On pose : u? = cos(fy) — cos(h), dott: 2u.du = sin(6).d6. Vérifier qu’on a aussi

V 1+cos(0o) 1 —cos(0p) +u? 2.u.du R l
=4. =4.7m../—=. Conforme avec 2.7m. /-
U/ ) — u? g g

1 — cos(6o) u2\/1+c0390

car au bas de la cycloide le rayon de courbure vaut R = 4R. Comme la développée d’une

cycloide est aussi une cycloide, on a une réalisation de ce pendule cycloidal due & Huyghens.

2
2

4. Réciproque. (*) Soit Oy tourné vers le haut. Pour avoir un "oscillateur harmonique" : — = —wgs,
[t e’ dt2 0
1 d ds d? dE, dE, 1 . ..
3m: (dj) + E, = Ey, md—jﬁg o =0, E = k.s, k = m.wj, on doit avoir E, = §k.52, si choisie

.. . - 1
nulle au fond de la courbe; aussi origine des abscisses curvilignes (et des y). Donc 5]{3.82 =m.g.y.

d
Dion &£ — % Avec ds? = dz? +dy2 cdr = 92 —1.dy, donc : y < Lz = Ymaz- Posant alors
dy wg.s 2.wg.y 2.wj

1-—- . .
Y = Ymaz- cos(u) _ _9 5.(1 —cos(u)) ! trouver z = :L'(]—l-LZ.(’LL + sin(u)) : la cycloide !!
> 102 17 e

5. | Cycloide | : courbe "isochrone" = la période est indépendante de 'amplitude. Ceci provient qu’elle
est aussi : "tautochrone" [tautologic] = on arrive en A, bas de la cycloide, partant de D sans vi-

tesse initiale, avec un temps égal quel que soit départ D, sur une arche renversée. Car s> = 8.R. Y,
2

. d*s
+m.g.y = cte qui donne ) + ﬁs =0.

si origine de s au point A le plus bas. Alors : l .m. (Zi)
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42.4 Existences et divers calculs d’intégrales généralisées (...)
—bt

b dt +o0 dt +ooe—at_e
=T; - = 1+\/§; */ dt.
/\/t—a V(b —1t) " /0 V14 eZ g )i O 0 t

/ (Arctan(x + 1) — Arctan(z)) .dz =7 (Aucun calcul ne primitive n’est indispensable 1)

oo In(x Ve In(x) 1 oo gin(x).dt
? (Fin : sdr et t=— —_—— = .
/ 1+ :L'2 (Fin /6 1+ o200 PO x ) /0 ch(t) 4 cos(x) 7, v € [0,m

400
42.5 Intégrale de Gauss / e~ dt avec les intégrales de Wallis

0

1 1 5 1 1 +o0 1
1. Montrer que : / (1 —t?)".dt < / e "t < / ————dt < / ————dt
0 0 0 (1 +t n 0 (1 + t )n

/2 +oo
2. Avec les intégrales de Wallis W,, = / cos"(x).dx ~ 4/ 21, trouver que / e .dt = g
0 n 0
42.6 Une intégrale classique avec un D.S.E. : / Int )dt
0

1
. In(t . In(t
lim / ln—(idt :  existence et calcul. (111—(1 non bornée en 0).

n

1 t
- —14+t+2+ .+t -

1
S sur [0,1]. Et I)(z) :/ t*.In(t).dt

— Solution. On sait que 7

aut : Ip(z) = [M]l — /1 tk dt. On a donc, en faisant tendre x vers 0 :
% 5 = E+ 1 z i E+ 1 . 5 Vi .

k+1)2

t.n(t)
1-t

VkeN, hm Ii(x) = vu que z.In(z) — 0 (x — 0).

dt, m étant choisi n > 1; aucun probléme en 1.

1
— Reste Jn(:n):/ L

tin(t
g(t) = 1n(t) est prolongeable par continuité sur le segment [0,1]; ainsi bornée : | g(t) |< M ;
N n— 1 tln( ) / :
donc sans aucun probléme : llmJ (x) = t = ——=dt noté J,. Puis:
t.l t. l 1
|J|_|/t"1 n(®) dt| /|t"1 "( | dt < /Mt"ldt<M— = J, — 0.
n—-400
e Fixons n > 1; faisonsx — 0 : / t (1+i+ +1)+J =L; Yn2>
Z 5 v m ) T 2P "=

. . 1 1 2 i :
e Faisons ensuite n — +o00; sachant que — + = + .. s T F [difficile mais connul]

1 22 n—-+oo
—m? In(t Lin(t —m?
et J, — 0,ona: J—— Cequidonne:/ mdt — /mdt:—ﬂ.
n——+00 6 x 1—1t z—0 0 1—1t 6

/2
42.7 Une autre intégrale classique / In(sin(t)).dt (...)
0

w/2 /2
1. Soit I :/ In(sin(t)).dt et J :/ In(cos(t)).dt. Existence et I =J 7
0 0

2. Monter que / In(sin(t)).dt =2.I. Calculer I +J. En déduire que I =J = il An(2).
0

w/2
3. Déduire que / z.de

ies) ; Wac n(sin(z)).de = —n2.
. tan(D) An(2) (par partles),/o An(sin(z)).d

b | 3
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42.8 Limite de série en lien avec une intégrale généralisée

+o0 400
Soit f C°:R* — RY, décroissante, intégrable. Vérifier que hlim+ h. Z f(n.h) = / f(z).dz.
—0 n=1 0

sin x)

42.9 Existence et calcul de l’intégrale de Dirichlet / dx

T/2 o
sin(n.x
1. On considére I, = / ( )dac. Montrer que (I;,41), est constante.

0 sin(x)

T2 opnn2
2. On pose J, = / %dw Vérifier que Jpr1 — Jp = lopy1 et que J, = %
0
/2 sin?(nx) sin? T
3. Montrer que : K, < / 72d:n <J, on K, / 2 =J,— —.
0 T tan 4
+00 o5 2
4. En déduire que : / s 2(3:) dx = T Et que : / sm(:n)dm existe et vaut ~.
0 x 2 0 x 2

42.10 Avec une fonction intégrable (intégrale absolument convergente)

1. Soit f C([0,+oc[, R) positive, intégrable. Montrer que f décroissante = x.f(x) — 0.

T—-+00

[On peut utiliser f(t)dt tend vers 0. Note : ceci entraine aussi 3.(a).]
x

2. Soit f C(]0,+o0[, R) positive, intégrable. Montrer que f uniformément continue = f(z) — 0.

T——+00

1 x
3. (a) Soit f C([0,+o0], R) positive, intégrable. Montrer : —/ t.f(t)dt - 0. [Parties 4+ Césaro.|
€T 1 T— 100
1 T +o00 +o0o
(b) Soit g(z) = —2/ t.f(t).dt. Montrer que g est intégrable et que / g(t)dt = / f(t).dt.
= J1 1 1

n

1
Ceci aussi avec les séries mais prendre v, = ————
[ p n (n + 1) pz;p P ]

42.11 Soit f de classe C? de R dans R avec f* et f7? intégrables (...)
1. Montrer que f.f” est intégrable sur R. (Cauchy-Schwartz).

2. Puis que : f'? est intégrable (parties et si f(x)f’(x) — + 00, f3(x) = 2x +c vers +00;
T— 100
et si f(z)f'(x) — —oo, f(x)> -2z +d vers —00.)
T——00

—+00

r—+00

3. Montrer que (/ f)? < /+OO f2./+oo 2. (Avec finalement : f(z)f'(z) — 0 )

—00

4. Que f est uniformément continue (f(y) — f(z) = /y 1.f'(t).dt et (CS)) et que f(w)wwa.

et —e "

1 T g w2
et Zﬁ'/o Sde =T (DSE)

42.12  Avec sh(z) =

42.13  (*) Montrer que lintégrale sur R* de f(z) = e =@l diverge
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43 Théoréme de la "convergence dominée"

43.1 Des exemples pour retenir ce théoréme

1. Importance de 'hypothése de domination : f,,(t) = n.t" ! sur [0,1[, f,,(1) = 0.

n t2 “+00
2. Ex. I, = /f(l— —)"dt — I:/ e dt et I, = Vn.Wa, 1 (Wallis) donne [ =
0 n n—+oo 0

2

t
[Prendre f,,(t) = (1 — 5)".1[07 vm  (fonction caractéristique).|

3. Applications aux intégrales & paramétre.

43.2 Des limites et des équivalents d’intégrales (...)

1
Limite de I,, = f(z)
0 1 + "

.dzx (n — 400) 7 On suppose f(1) # 0. Equivalent de I,, — L ?

+o0 ;
43.3 Existence et Limite de [,, = / n.sinft).dt , M — 400
, t(1+ n2t?)

Existence ? Montrer que lim I, =

T
n——4o00 2°
+oo e—a.t

\/ﬁ , quand a — 0 [réponse]
0
Montrer que I(a) ~ —lin(a).

a—0

43.4 Equivalent de I(a) =

+oo
43.5 Etude et équivalent de fonction. Soit f(z) = / etd_tl (..r)

Domaine de définition 7 Equivalents simples en 400 et en 0.

Variations 7

43.6 (*) Equivalent de fonction définie par une intégrale [réponse]

- B +00 dt
Soit : f(w)—/w tlexp(VE) — 1]

1. Justifier son existence pour z > 0.

2 2. -
2. Equivalent en 07 ? en +oo ? (77 M)
x x
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44 Intégrales & paramétres

44.1 Des résultats : rappelés et illustrés

2.m
1. Un cas facile. Montrer que :  f(x) :/ I cosdt __n pour z €]0, 7]
0 _

(x).cos(t)  sin(x)
Ind. /27r /4—2/ Puis :

4.du B 4 Ltcos(z) m _ 2
“= tan§ = /(@) /o (1+u?) — (1 —u?).cos(x) (1+cos(x) \| 1—cos(z) 2  sin(x)

2. Continuité de f: z € J |—>/ g(z,t).dt; z € J. fC%sur Jsiona:

(1) continuité de g par rapport a x sur J
(2) continuité par morceaux (CM) par rapport a ¢ sur I (NR)
(3) ¥V [, 8] C J, Jp CM, intégrable sur I, | g(z,t) |< ¢(t) (domination sur tout segment).

[(*) Démonstration avec les suites (x,) et Théoréme de la convergence dominée].

10 In (22 2
(a) f(x) :/0 Z(I_Fi—;t)dt avec J = [0,+o0[, I =]0,+oo[ !

(b) f(x) :/OJFOO < dt  f C%sur]0,400[, flz) ~ 1/x, f(a:)xiox/ﬂ/x.

t+1 T—4-00

X

3. Dérivabilité de f. Formule de Leibnitz : f C! sur J et f'(z) = /%(m,t}dt si (de plus) :
I

: o 0
(1) existence et continuité de 8_9 par rapport a x sur J
T

(2) aussi sa continuité par morceaux (CM) par rapport & ¢t sur I (NR)

(3) V]ev, 8] C J, 3¢ CM, intégrable sur I, | %(w,t) |< (t) (mais une domination "locale" suffit).
z

e 2.x.dt ™
Ex.2.(a). Trouver f'(x) :/0 RO méme six =1; f(z) = m.in(1+2).
Pour x > —1, montrer que :  f(z) :/01 % t*.dt = ln(i I i) [cf. 44.7
44.2 Pour z > 1, soit f(z Olna:+cos )).dt (...)
1. Montrer que f est C* et que f'(z) = ; en déduire : f(z) = min(z 4+ /22 — 1) + C.

2. Montrer que f(z) —m.In(z) — O. Conclure que C = —m.In(2).

T——+00

44.3 (*) Si f C*(R,R), f(0) =0 : U(w) = f(2)/, U(0) = f'(0) C=

(Ind. U(z / f/(tx).dt et donner U™ (0) en fonction de f™+1(0). Si f D.S.E., résultat connu !)

44.4 (*) Au sujet de la fonction : = — f(z) :/+we_t2.ch(2.;n.t).dt
J0

1. Montrer que f est de classe C* sur R et que : f'(z) = 2.z.f(z).

L1 \/E 22 oo em@t” gt
2. Déduire que f(x) =~—."". |(x) g(x) :/ T 0 permet de calculer l'intégrale de Gauss.|
0 xr—
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o Arctan(w.t).dt . . .
m, définie sur R, impaire (...)

44.5 Etudier f(z) :/ TEE)
; .

_rlel-1
2721
2. D’ou pour = > 0, f(a:):g.ln(l—l—aj) (—g.ln(l—:n) si 2 <0)

1. Montrer que f est définie, impaire et C* sur R avec f’ (x)

O Aret 2
3. En déduire que K = / (M> dx = m.In(2).
0

T

‘oo —z.t o 400 -
44.6  (*) Avec f(x) :/ e'fsm(t).dt, calcul de / sintt) g
0 0

t
T e " sin(t) . n L . et
1. Montrer que z +— fdt est continue sur R™ (Primitive de sin(t).e facile).
0
+oo —x.t . _ T +o0o .
9 Bt 7o / e "t.sin(t) g —C - 1 / cos(t) + x.sin(t) o=t est €O sur R
. t r(1+22) 1+22 ), t2

3. Puis que f est Cl'siz > 0; f/(z) = —1/(1 +2?), f(x) = Arctan(1/x). Préciser 1. 44.9.

44.7  f(x) :/ In(z? — 2z.cos(t) + 1).dt , intégrale de Poisson 39.5
0

PP . _ [T 1 7
1. Montrer que f est définie si x # +1; et sur | —1,1] I= /0 T Smeon(d) +1.dt =1
. [ cos(t) L. B 2 o
2. On pose sur | —1,1], J 7/0 T S cos(0) T 7 -dt. Vérifier que —2zJ + (2° + 1) = 7.
Déduire sur | —1,1[, que J = 177—.332; enfin que f/'=0 sur|—1,1] et f=0 sur]—1,1].
—_— —x
3. Vérifier enfin, pour |z [>1, que: f(z)= f(1/z) +min(z?). (*) Cas z=+1 7 42.7.

2n

Autres fagons :  [[ (1 — 2z.cos(km/n) + ) = (z + 1).x

1<k<n

. n 1
Z el-n»t.x_ — —§.ln[x2 — 2x.cos(t) + 1] + i. Arctan
n

n>1

et sommes de R. Ou bien

x.sin(t)

T zeosq S 17I<1. (SE ou SF)

1,z Too
44.8 Etudier : g(x) = / Pl et h(z) = / n(t) .
0 0

In(t) x? + t2
. Lyl 1 , 1 o
1. On prend aussi f(x) :/ I dt . f'(x) ==, f(x) =In(z) (domination pour 0 < a < x < b).
1 Prend ausst ) -
. : [T In() _ _ _ min(x) X :
2. Voir aussi h(x) —/0 mdt, x>0 (t==xzwu, h(1) =0, h(z) = 5 Sur R*, h paire.)
44.9 (*) Intégrale généralisée calculée avec une série entiére
1. Soit o(z) = Z a’;’f et ¥(x) :Zan.x" de rayon R > 0. Montrer que ¢ a un rayon R’ = +o0.
n=>0 n>0

[e'e) —+o0
2. | On veut montrer que / e Lp(xt)dt =) si | x| < R.| Vérifier que / e tt".dt = n!
0 0

+oo tn'e—t
Déduire, si | z |< R, que : E | an.a™ | / dt = E | an.2™ | — 0.
0 n! N —+o00
nzN n>N

Conclure par (**) le théoréme de convergence croissante. En déduire, si |z |<1:

e} e} N -t
3. I(z) = / e tsin(x.t).dt = Lz; J(x) = / e_t.sm(:E ).dt = Arctan(x); casz =17
0 1 + x 0 t
1

1422

el — t 1
K(x) = /0 ctoizs(x).e_tdt = z.Arctan(z) — §.ln(1 +2?) avec K”(z)=
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45 Compléments sur Espaces vectoriels; Applications linéaires

45.1 En dimension finie, des projecteurs associés (...)
Si f et g endomorphismes en dimension finie tels que rg(f) +rg(g) =n et f+ g = Id. Montrer
que E=1Im(f)®Im(g) et gof = fog=0. Et que f et g sont des projecteurs associés.
45.2 Endomorphismes qui commutent et sous e.v. stables

1. Si gof = fog, Ker(f) stable par g ou: g(Ker(f)) C Ker(f)ou: u € Ker(f

)= g(W) € Ker(f).
(En effet : W € Ker(f) signifie () = 0; donc flglw)] = fog(W) = gof (W) = g(ﬁ)) = 6))

2. Et : Im(f) stable par g ou: g(Im(f)) C Im(f) ou encore : v €
(Car : o € Im(f) signifie 3u € E: 7 = f(W). Don ¢g(v) =g[f(uw)] = fog(w) = f

3. En particulier : Ker(P(f)), Im(P(f)) sont stables par f.

45.3 Commutant d’un endomorphisme (cyclique) 48.3, 49.1

1. Soit A, AP = O en dim. n. Vérifier si fP~1(W) # 0 que (, f(W),...fP~1 () libre) donc p < n.
2. Cas d’un endomorphisme nilpotent d’indice n (f* = O, f*~! # O) et dim(E) = n.

(a) Soit U tel que f"~ (W) # 0. Montrer que (@, ..., "1 (W)) est une base de E. Matrice ?
Inversement, vérifier que cette matrice donne un exemple de tel endomorphisme.

(b) Soit g un endomorphisme; notons g(w) = 3 ar.fH(W) (sur la base) et P = 3 ap. X"
0<k<n—1

Si gof = fog, montrer que g = P(f). Soit C'(f) ={g : gof = fog}.

(c) Vérifier que C(f) est une sous-algébre de L£(F) et préciser sa dimension.

Oek<n—1

3. Cas d’un endomorphisme avec valeurs propres distinctes. Soit A = diag(aq, ..., ay,) avec valeurs
propres distinctes. Montrer que dans ce cas (aussi) : (I, A,...A""!) est une base de C(A).

45.4 Endomorphisme nilpotent d’indice n en dim. n; 45.3
Soit f un endomorphisme nilpotent d’indice n (f™ = O, f"~' # O) avec dim(FE) = n.

. Vérifier que : Fj, = Ker(f*) = Im(f™ %), qui est de dimension k, 0 < k < n; et F}, stable par f.

(La suite Ker(f k) est croissante ; posséde un plus petit indice pour laquelle elle stationne - voir,
assez facile-, valant n. Et a chaque pas, la dim. doit augmenter que de 1. Idem pour Im( f"_k)
décroissante et Th. du rang; enfin Im(f" %) ¢ Ker(f*) et méme dimension. f(F}) C Fj, : aisé)

. En sens inverse si F' est un sous e.v. stable par f, soit p le plus petit entier tel que F' C F),.
Avec @ € F tel que fP(d) = ?,fp_l(?) =+ 6: vérifier que dim(F) = p et enfin que F = F),.

3. Soit équation en ¢ : ¢*> = f. Montrer que forcément g € C' (f) puis qu’elle est ici impossible.

45.5 Composition d’Applications Linéaires et étude du rang

L. Avec f/ker(gof), montrer que : dim Ker(gof) < dim Ker(g) + dim Ker(f). [Pareil que :]
2. Montrer que : rg(f) < rg(gof) +dim Ker(g) ou: rg(gof) =rg(f)+rg(g) — dim(F).

45.6 Les idéaux bilatéres de L(E) sont {O} et L(E), si dimFE finie

(Bien que £(E) non corps. Alors que si vrai pour idéaux & gauche et a droite, c¢’est un corps).

Si u # O, D droite et H hyperplan, montrer 3 v, w : Ker(vuw) = H, Im(vuw) = D. Conclure.
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46 Exercices sur les Matrices M, (K) et M, ,(K)

46.1 Dans M, (K), A+ B=AB = AB=BA
Veérifier que (I — A)(I — B) = I. En déduire que I — A est inversible et que AB = BA.

46.2 Inverse de matrices par blocs inversibles !

. A 2A . 1 2
Soit A4,,. On note B = ( A4 A ) Inverser la matrice (1 1).

Montrer que B est inversible si et seulement si A est. Et calculer B~! en fonction de A7

46.3 Un célébre Théoréme d’Hadamard [corrigé]

1 2
3 4
. Voir Im(A4) : On sait que les vecteurs colonnes forment une famille génératrice de Im(A).

2
6

1. Introduction : Soit A = > Comment voir si A est inversible sans dét(A) ?

[Non pas une base ! ex : les vecteurs colonnes de B :(1 ) sont évidemment liés v’y = 27'1].

Im(A) = Vect((il))) , <i>) - Tci vecteurs non colinéaires, Im(A) de dim. 2, dans R? : Im(A) = R?.

. ou voir Ker(A) = {6)} : Résoudre A.X = O. Ici comme les 2 vecteurs colonnes de A sont

non colinéaires (libres : la raison est donc la méme) on trouve X = O ou (;) = (8)

[Ne pas faire les deux par le Théoréme du rang : dim(Im(A)) + dim(Ker(A)) = 2].

2. | Soit A = (ay;) une matrice telle que : Vi, | ag | > > |ay |. Montrer que A est inversible.

i, j=1

(a) On dit que A est a diagonale strictement dominante. Pour une matrice 3x3, cela veut dire :
lan [>| a2 [+ a3 | et [ag|[>[a |+ [as| et [ass[>|as|+ a3l
1 2 247 1 1
A = <3 4> non dans cette hypothése 1 # 2 mais inversible ! Ao =| 2 & 5] oui !
1 2: 4
(b) Vrai aussi pour matrices 4x4 ... On le fait sans déterminant | Cas des matrices 3x3 :

(c) Contraposée. Si A non inversible, Ja, 3, non tous nuls tels que v’y + BV + 703 = 0.
(Les vecteurs colonnes sont liés). Supposons que | 3 | est celui de plus grand module :

| B |=mazx(|al,| 5],|7]) > 0. Alors on va voir que la contradiction vient de Ligne 2 :

On a ainsi «aag) + Bags + yazs =0 donc —age = %agl + %CLQg. D’ou la contradiction :
o v ol o ¥
\a22\=!5a21+—a23\<\ CL21H-!Ba23\<\E!-\a21\+!B\-!a23\<\a21!+!a23\-

g

(07

B
46.4 (*) Projecteurs f, g non nuls : fog— gof = \.f + p.g

1. |Si A #1,0|Avec fg — gfg = \fg + pg, vérifier que (1 — \)fg(Z') € Im(g), d'ou fg(x) € Im(g);
puis Im(f) C Im(g) donc gf = f. Ainsi fg=(A+1)f+ug (1). Deplus: fgf = A+ 1)f+pugf
ouf=f+A+upu)fdoncA+pu=0;et fg=AN+1)f+ufg (2): comme u#0, fg=g; ainsi:

Si A = —1, rien d’autre : proj. de méme image gf = f,fg=9. Etsi X#-1,0,1: f=g.

2. 9f9—9f =pg, fg—9fg=npg: fg—9f=2.u.g donc p=0: proj. qui commutent.

3. fo—g9fg="rg+npg=9f9=—ng:9f9—9f=gf+p.g donne alors gf = —p.g, d'on
fg=f. Puis f=fgf=—pufg=—u.f donc u=-1. fg=f,9f =g : proj. de méme noyau.
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47 Déterminants n x n (et Trace)

47.1 Divers déterminants par blocs

1. Calculer : <IO” Xg”) . <OA f) Que conclure ? (déterminants par blocs).
pn P

2. Montrer que d = det(é _AB> = det(A +iB).det(A — iB) par opérations ¢lémentaires.
Et en particulier, si A, B réelles: d >0. Et si A, B commutent : d = det(A2 + B2).

3. Si D inv., M :(é f;) - (é g) (A ~ppie ‘;) et CD = DC = det(M) = det(AD — BC).

Résultat encore vrai si D non inv. par densité; faux si CD # DC. (Contre-ex. avec B = Is...)
- _(A B\ . -1 _ (A" B'\. I, B\ . no_
4. Soit M —< ) inv., M —< > ; avec M( P D’)’ vérifier que det(M).det(D’) = det(A).

C D ¢ D 0
) _ C X A EX=Z-BD'T, DY=T-CX
D’ou M € Q,, = det(A) = tdet(D). [SiD inv., M<Y> = <T> : (E:A—BD*C + complement de Schw) ]

47.2 (*) Divers autres calculs de déterminants

0 x y oz a —-b —c —d ca b Ilj g g 03 o
e 0 ¢ b d - a cz b

A= 0 o uB=l S0 ] C=e o @ ba#s Da=jo 2 5 s ol En
-z —u —v 0 d ¢ —b a @ a. a cn 0 0. 0 2 5

A= vz —uy+t2)’; B=(a*+0*++d*? ['B.B]; C:o(x)=det(Ci;+z.Ei;)=cax+p ! o(—a), o(—b) connus :
(a—0b).C = aIl(cy—b)—bIl(ck —a). Rem. SiVk,cr = c: v.p. de C alignées ou cocycliques ; avec le polynéme caractéristique :
aX+b—c)"=bX+a—0c)" et {M: MU/MV = cte} : médiatrice de [U, V] ou cercle ... D, =5.Dp_1 —6.Dp_a...;

E, =det(v+ zi€1,....;v + Tnen) : Bn = T1..Tn + 01.22...n + 1.02.23... + ... (¥) : Et voir aussi les dét. "circulants" ...

47.3 Trouver les matrices A, 3x3 : VM, det(M + A) = det(M)

(Ind. Avec M = zI, A admet 0 comme seule v.p. donc semblable & une matrice triang. sup.

stricte ; puis avec des matrices de permutation, ex : E9; + E3s + x1FE13 (...) trouver A =0.)

47.4 Comparer les polynémes caractéristiques de AB, et BA, (...)
1. Polynéme caractéristique de A,1B1, 7 (Indication : rg(...) <1 et Trace.)

2. Qu’obtient-on avec les déterminants pour : (Alg —1A> . (;@L )\OI > et 'autre produit ? Conclure.
- P P

[Sin > p:det(\1, — AB) = \""Pdet(\.I, — BA); voir le cas : A =0, BA,, AB,,.| Note. Si A ou B
carrée, est inversible, AB et BA semblables : AB = A.BA.A™"; fauxsi A :<é 8) , B= <8 é)

det(I, + BA) = det(I, + AB). Si U = (z;.y;) = X.'Y : det(I+U) = 1+ 2.y = 1+ X.Y
1

— . X.'Y [obtenue formellement].
1+ tXY

et si ce déterminant est non nul, (I, + X.'Y)~! =1I,,—

47.5 Reésultant de deux polynémes P et @, p = degr(P), q = degr(Q)
1. Si les polynémes P et @ ont un facteur commun D, de degré > 1, montrer :
JA#£0, B#0: AP = BQ, degre(A) < degre(Q), degre(B) < degre(P).
2. En cas contraire, si P et @) sont sans facteur commun (pged(P, Q) = 1, avec le Théoréme

de Gauss pour la divisibilité, montrer que 1’égalité précédente est impossible.
3. Déduire : pged(P,Q) # 1 < (P, XP,.. X" 'P,Q,XQ, ..., XP~1Q) liée, donc de déterminant nul.

4. CNS pour que X? + pX + ¢ ait une racine au moins double ? [Réponse classique connue].
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47.6 Dans M, (R), si B de rang 1 : det((A+ B)(A— B)) < det2(A)
7).

[Se placer en base judicieuse et calculer : det(w'y, Wa,..., U, +

47.7 Déterminant et rang de la comatrice et ‘com[‘com(A)] ?
1. Soit A carrée inversible. Montrer que le déterminant de la comatrice vaut : [det(A)]" 1.
Montrer, toujours si A inversible, que ¢(A) inversible et c[c(A)] = [det(A)]" 2. A. Puis

(a) Si A non inversible, cas : rg(A) <n—2 7 (= c¢(A) =0).
(b) Puis voir Pautre cas : rg(A)=n—17 (= rglc(A)] =1).

o

3. Enfin : Tout vecteur propre de A I’est aussi pour ‘com(A); et si A diagonalisable, celle-ci aussi.
Etsi rg(A) =n—1, A\ =0, Tr['com(A)] = Xa x ... x A\y. (A2 peut étre nul ...)
1. Corrigé. La comatrice est la matrice dont le terme général aéj est le cofacteur A;.
Rappelons que le Mineur D;; est le déterminant obtenu en supprimant Ligne i et Colonne j et que
A = (=1)".D;;.| On a la formule fondamentale | A.fcom(A) = det(A).I,, et commutativité !
Ay inv. & rg(A) =n & Ker(A) = O < det(A) # 0 : det['com(A)] = det[com(A)] = [det(A)]"".
Si det(A) # 0, ¢(A).te[c(A)] = det(A)" .1, ; or c(A).PA = det(PA).1, : c[c(A)] = [det(A)]" 2. A.

On va voir que les cas ot det(A) = 0, les relations soulignées subsistent (en lisant 0° = 1) :

o

(a) Sirg(A) <n—2,n>2: n—1 vecteurs colonnes quelconques extraits sont liés ; en tronquant
ces vecteurs d’une ligne, ils restent liés ; donc tout mineur D;; vaut 0. D’ot com(A) = O.

La 1lére relation soulignée reste vraie; la 2¢ aussi: A =0 sin =2, det(A) =0sin > 3.
(b) Sirg(A)=n—1,n>2: dim(Ker(A)) =1 et det(A) =0. La 2¢ formule encadrée donne
Im[fcom(A)] C Ker(A) : rg[fcom(A)] = rglcom(A)] < 1. En fait, rg[com(A)] =1, car :

On peut supposer, dans A que les n — 1 premiéres colonnes sont libres par exemple. Soit A’

cette matrice n lignes, n — 1 colonnes extraite de A. On a rg(A’) = rg(*A’); donc dans ' A’
n — 1 lignes, n colonnes, on peut extraire n — 1 colonnes libres; on a donc trouvé un mineur
(un déterminant n — 1 lignes, n — 1 colonnes) non nul; d’ou com(A) # O, donc de rang 1.
Voyons que les relations soulignées sont encore vraies (la lére : facile); pour la 2¢ :
~ Casn =2, enlisant ici 0°=1"! A la main: com(com(A)) = A, si n=2 toujours.
~ Casn >3 :avec rg(A) =n —1, on avu que rg['‘com(A)] = 1, donc rg['com(A)] < n — 2,
rglcom(A)] <n—2; et avec (a) : com[com(A)] = O. Donc 2¢ relation vraie aussi.

3. Cas A inversible ou 7g(A) < n — 2, aisé : ‘c(A) = cte.A™" ou O. Cas rg(A) =n —1, rg['c(A)] =1:
Si AX = AX # 0, \Me(A)X = 0 (car det(A) = 0) = X € Ker['c(A)]; si X # 0, AX =0 :
Ale(A).X =0 donc '¢(A)X € Ker(A) de dim 1, ‘e(A).X = u.X. Et : (sur C) avec A= P.T.P™!,
T triang. sup. et \; = 0, posons Ay = P.T;. P~ Ty = T +t.I, inv. : Tr[tc(Ay)] = t.Jun terme borné
+ (A2 +t)...(A, + t); faire alors t — 0 avec la continuité des déterminants et de la Trace.

Note. On peut approcher une matrice quelconque par des matrices inversibles : M, (K)) est un e.v. de dim. finie
normé avec n’importe quelle norme (elles sont "équivalentes" par Th.) par ex. ||A — B = maz(] ai; — bi; |) : cela
revient a étudier n? suites. Dans la suite Ap = A—lIn7 il y a au plus n valeurs de p, pour lesquelles ces matrices sont

non inversibles (1/p valeur propre). Une fois exclues ces valeurs, reste une suite de matrices convergeant vers A !

47.8 Avec E;; base canonique de M, (R), une forme linéaire

1. Calculer Ej;.Ey. (Trouver §;,E;) [Note : E,-.tEj = FE;ij, Tr(A.Ej; =Tr(E;.A) =a;,;]
2. Soit ¢ une forme linéaire telle que ¢(AB) = ¢(BA). Montrer que ¢ est proportionnelle a la trace.
(Exprimer ¢(E;j.Ey). cf. 25.9.)

3. Variante : Si ¢ est une forme linéaire : p(A) = ¢(B), si A semblable & B (noté A s B), idem.
(Voir que : Ejy s Ejj, Eijjs Eypouri#j, k#1. Puis U=(1) s n.E.)
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48 Reéduction des endomorphismes

48.1 Des questions sur les matrices diagonalisables (dim. finie)

1. Valeurs propres : racines du polynome caractéristique. Et : dim(E)) < wy (ordre de multiplicité).

0 0 0
2. Racines carrées d'une Matrice diagonalisable A : matrices M telles que M? = A = (1 1 0) .
2 1 2

(a) Montrer que A est diagonalisable de suite. [Si matrice triang. les v.p. se lisent sur la diagonale ;

(dét. d’'une matr. triang.) Et une matrice ayant des vp distinctes est diag. (cond. suffisante).

(b) Puis que AM = MA; puis en base nouvelle, que M’ est diagonale; nombre de solutions ?
[Ily a 4 solutions avec M’ = diag(0, +1, +/2)]

@

0 1
. Le SEP(1) est de dimension 1, non 2, sinon on aurait f(7) =7 ! [f(7) =7+ 7]

. Ou sans calcul : Si diagonalisable, P™'AP = diag(1,1) = I donnerait A = I,]
(b) Vérifier que B = (zﬁsggg _CZZ(LE:;/Z?)) = (? _01) est non diagonalisable sur R.

Une rotation de 7/2 fait penser au complexe i | Vérifier que les vp sont : + i !

(44 24\ . . o (=2> =1\ . .. (A O
4. Montrer que B_(—3A —A) diag. & A diag. .P—(gj I)’ C=pr B.P_(O 2A)‘

5. Soit des endomorphismes de C™ tels que gof = a.f. Montrer que f et g ont un vecteur propre

commun. [Si f n’a que des v.p. nulles, f est nilpotent ; prendre @ : fP~1(W) # ?,fp =0

(a) Vérifier que A = (1 1) est non diagonalisable méme sur C. [Corrigé. Plusieurs fagons :

6. Soit B = (/(1) ?)l) . montrer que det(B—\.Ip,) = (—1)".det(A—\2.1,). Si AV =A.V, W :<H‘-/V>

u? =\, vérifier que BW = p.W.  En déduire sur C : (A diag., inversible) = B diagonalisable.

Inversement si B diagonalisable, avec rg(B) = rg(B?), montrer que (A est diag. et aussi inv.) !

7. (*) Sur C, montrer que : A et B ont une v.p. commune < U, , # O : AU =U.B.
[Corrigé : A.X =AX; 'BY =)\Y = U = (X.'Y),, de rang 1 convient. Inversement :
AU =UB = A*U =U.B*; d’on P(A).U = U.P(B). Avec le polynome caractéristique de
B factoris¢ (Cayley-Hamilton), on a : (A — A\ 1,)(...) (A — A\ Ip,).U = O3 et donc forcément

un facteur non inversible; par suite, une valeur propre (v.p.) de B est aussi v.p. de A.]

48.2 f: M =(Cy,...Cp) € Mu(R) — M' = (C},...,C.)), Ci =S"Cy — C;

Calculer det(M').  f est-elle diagonalisable ? (n = 3 pour commencer).

48.3 Au sujet des endomorphismes cycliques ; les cas diagonalisables
1. Si dim(E) =n, f € L(E) est dit cyclique si 37U : f*(U)r>o soit génératrice. Exemples ?
2. Montrer que : 1, ... f”_l(ﬁ) est une base de E'; quelle est dans cette base, la matrice dite

0 0 O
3. Soit f diagonalisable. En déduire f cyclique < les v.p. sont distinctes.

0 1 0 01 0
"compagnon (du po-ca)"? vérifier : po-min=poca. Cas A= (0 0 1) ? B= (O 0 0) ?
0 0 0
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48.4 Endomorphisme nilpotent (d’indice quelconque) en dim. finie (...)

1. Montrer qu'un end. est nilpotent < 0 seule valeur propre dans C. (po-ca scindé = trigonalisable)

2. f nilpotent < IB base, avec matrice triangulaire supérieure stricte (ou po-ca X") <
(*) Tr(f?) =0, p=1..n (< formules de N. 49.2, Y} "X} =0...) & (**) IB: A= B.A— A.B.

[(=) Ona: M e Ker(ya: M — AM — MA) = AM nilp. = M € Ker[ta: M — Tr(AM)]; donc
(Ker v4 C Ker ta) 3¢ :ta = doya; or toute f.l. est un p.s. 3B : ¢ =tp; dou t4 =tpa_ap !

(<) Ona: BAF — AFB = k.AF: mais ~vp n’a pas une inf. de v.p. distintes, c’est que A est nilp. |

48.5 Dans E = C°(R), éléments propres de la Transformation de Hardy

Eléments propres de I'end. f+— T f(x -1 zf t)dt, si x #0 et Tf(0) = f(0). [Indications :
x
- 0

Continuité de T'f en z =0 : i/ F)dt — f(0). Avec une primitive F' de f C° : M
Jo T— e
Linéarité : voir si « = 0. Puis Tf dérivable si x #0. Tf = A.f : E.D.Lin. Et réciproque ... |

48.6 P e FE=R,[z]— u(P)=2(1-2)P'+n.z.P : end.? Eléments propres?
1. Corrigé. E e.v. de dim. : n+ 1. Endo : le risque d°(u(P)) = n + 1 ne se produit pas (...)

2. Puis : u(P) = A.P, P # O conduit a une E.D. Linéaire du ler ordre. [Cas A=0: Ker(u) ...
(a) Pour cette E.D.Lin. une fraction rationnelle & décomposer et intégrer ! (3 intervalles ...)
(b) Trouver P =p. |z |*.|1—2|" . Or au plus n + 1 valeurs propres ! mais P : polynome,
de degré <n! Dou A=k € {0,....,n}: n+1 valeur propres distinctes; ainsi 'end. est
diagonalisable ! (P base de vecteurs propres.) D’ou Ker(u), ... Rang, etc.

48.7 Polyndéme annulateur, par ex. po-ca : Th. de Cayley-Hamilton 48.12
L. Vérifier que : A v.p.de f = P()\) v.p. de P(f); et Ex(f) C Epxy)(P(f)). Cas P(f)=0 7
Puis que : f diag. < Z E) = FE < (en dim finie) Z dim(E)) = dim(E) < le poca est scindé et
dim(E)) = w) pour chaque v.p. < Il existe un polyn. annul. scindé, simple, non nul : Théoréme.
Alors les projecteurs spectraux sont : p; = L;(f), L; polynomes de Lagrange; f’ = Z /\i.pk.

[ 4A 24\ . : (=2 -1\ . .. (A O
2. Montrer que B_(—3A —A) diag. & A diag. Pi(SI I)’ C=P B.Pf(o QA)'

3. Utilisations (a) Si u diagonalisable et FEj stable par u, alors: u,p, est diagonalisable.
(b) Si u est diagonalisable : FEj est stable par u < il est engendré par des Vecteurs propres.

c) doit un C e.v. de dim. n. ontrer que : wu diag. & |u” diag. et er(u) = Ker(u”)|.
Soit F un C de di M di 2 di K Ker(u?

A O 0 C
. Alors : M diag si et seulement si AB diagonalisable. (AB = A.BA.A™1)
.Puis: P(N)=0« P(C)=P'(C)=0. N peut-elle étre diagonalisable ?
(b) (Ex. bizarre). Soit u, v € L(E) : fu(v) =wuov. Alors f, endomorphisme de L(E);
Sp(u) = Sp(fu); SEP(fu,A) ={v: Im(v) C SEP(u,\)};  P(fu) = fp)-
Et, en en dimension finie : f, diagonalisable < u diagonalisable.
[En effet : Voir que P(f,)(v) = P(u)ov. Puis : = Prendre P annulateur de f, v = Id.
<« Prendre P annulateur de u (avec le Théoréme).|

(c) Siwu diagonalisable : v commute avec u < v laisse stable chaque sous espace propre de .

4. (a) Exemples : Soit M :(O B) A, B inversibles complexes. Et N :(C I”) )

(d) Siwv commute avec u et (u, v) diagonalisables, il y a une base commune de Vecteurs propres.
Généraliser. (Des endomorphismes diagonalisables qui commutent sont simultanément diag.)

(e) SifeL(E): fH+asf*+..+apff=0 = E=Ker(f)®Im(f). Et < en dim. finie.
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48.8 Soit f,g,h tels que : ff=ao.g+ [(.h,p=0,1,2; a0 # 3 (f°=1Id)

. Pour d°(P) <2, vérifier que : P(f) = P(a).g + P(f).h.

. Avec II(z) = (x — a)(x — ), montrer que f est diagonalisable de valeurs propres € {«, 3}.
. Avec Il =z — «, vérifier que h =I1;(f) / I11(8), g analogue, sont tels que : hog = goh = O.
. Reste de la division euclidienne de H% par II = II;.IIs ? Déduire que hoh = h et conclure.

= W N

48.9 Comment calculer P(A), quand A est une matrice diagonalisable
1. Pour A", soit on diagonalise : long car matrice de passage a inverser ...
2. Soit avec un polynoéme annulateur : reste de X" dans la division par H (X —=X\N)

3. Soit : avec les polynomes de Lagrange L;(u) projecteur d’image E; de noyau ®FEy;, j # i.
P(u) =Y P(\;)L;(u), par exemple P(u) = u". (L;i(u) base de K[u].)

0 0 1/2 : REIT 1o 42
Ex.: A=(1 o 1/2|. Lim A"? wvp 1, 5 lim A":Ll(A):...g@A +2A+1).
01 0

48.10 Sia#b, f € L(E), f*—(a+b)f+ab.Id= O est diagonalisable
1. Solution. X2 — (a+b)X 4+ ab=0 a pour racines a et b. Et \ valeur propre = X\ = a ou b.
2. Et comme a # b, Ker(f —ald) et Ker(f —b.Id) sont en somme directe ! De plus ici :
f2—=(a+bf+abld=0 ou (f —ald)o(f —b.Id) =0 oubien E = Ker(f— ald)o(f —b.Id),
les 2 sous ev précédents sont supplémentaires : (*) Par analyse-synthése, on voit que forcément

7 :ﬁ [(f(T) - a@) — (f(T) - bW)] = @1 + Wo. Aisément (alors) : w1 € Ker(f — bld) ...

48.11 Sous espaces caractéristiques pour f "singulier" (non injectif)
Soit f € L(E), dim(E) finie. On pose N = UKer(f*), I =nIm(f*), k>0. Montrer que :
1. Ker(f*) est croissante; puis que si Ker(f*) = Ker(f**1) alors elle stationne. Déduire avec ppin
dp e N: N =N, =Ker(fF), I =1, =Im(ff), p<dim(E) (np,=dimN = dim(Ker(f?)) >p).)
(Les suites stationnent & partir du méme indice par le Théoréme du rang ...)

2. N,I stables par f; f,y nilpotent d’indice p, f,; bijectif; E = N & I donc (np = ordre de mult. de).

la vp 0 dans le po.ca

3. Il y a un seul couple N, I vérifiant ces 3 propriétés.  (Si F, G conviennent : f9(F) = {0}, donc
F CN; f(G) =G (f)g bij.) donc G C I; inclusion stricte impossible sinon F @ G C N @ I.)

4. Avec f/y, déduire que dj, = rg(f*) — rg(f**1) (diminution des rg(f*) = augm. des ny) est décroissante.

5. Cas f"=0 (np=n). [k<p=m+k-1<np<km]. m=1(n—np=1)=p=n=n =11

48.12  (*) Quelques résultats divers en compléments (parfois)

1. Montrer que des sous espaces propres en somme directe (donc vecteurs propres libres). [Cours.|

2. Montrer le "Lemme des Noyaux" : P, @ premiers entre eux = KerPQ(f) = KerP(f) @ KerQ(f).
[PQ(f) = P(f)oQ(f) ... Une preuve utilise une "relation de Bezout". (*)]

3. En dim. finie, notion de Polyndéme minimal et Théoréme de Cayley-Hamilton ? (*)
Preuve avec 0, A7, ..., A" 17, base de Vect(A*7') de dim. m < n et "matrice compagnon" ?

[Note. Bien sir, les vp. sont racines de tout polynéme annulateur.|

4. Sous e. caractéristiques : K; = Ker(f — \;.I,)™", m; ordre de mult. de \; dans le polynéme

caractéristique P4. Si P4 scindé, K; stable par f, dim(K;) =m; et F=®K;. D'ou:
"la décomposition de Dunford" A = A+ N, A.N = N.A, A diagonalisable, IV nilpotente.
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49 Commutant, polyn. caractéristique, systémes différentiels

49.1 Dimension du commutant C(A) d’une matrice carrée A
1. Montrer que C(A) est un sous e.v. de M,,(C) et un anneau contenant C[A] (polynomes en A).

2. Si A est diagonalisable avec A\; de multiplicité w; ; ... A\g, wp montrer que dim C(A) = Zw?
(> Zwi =n) Tandis que dim K[A] = k avec (X — A\1)...(X — A\x) comme polyndéme minimal.
Et donc : C(A) =K[A] & Vi, w; =1 < Sp(A) de cardinal n.

3. On va montrer qu’on a toujours : dim C(A) = n. Soit D ={M € M,(C) : card(Sp(M)) =n}.
(a) Déja, montrer que toute A € M. (C) est limite d’une suite d’éléments de D.

(Avec A = PTP™!, prendre T, =T + diag(1/p,2/p,...,n/p) car ti +i/p=1t;; +j/p a lieu
pour au plus un p; donc pour p assez grand, A, € D et A, — A).

(b) Soit ¢4 : X € My,(C)+— AX — XA de matrice ® (de taille n*xn? avec un choix de base). Et
r = rg(®), donc un (déterminant) mineur d’ordre r de ® est non nul; or c¢’est un polynéme
en les coeff. de A, donc C” : D;;(®,) — D;;(®) # 0, d’ot pour p assez grand, rg(®,) > 7.
En déduire que : n = dim[Ker(®,)] < dim[Ker(®)] = dim[C(A)].

49.2 Formules de Newton et application au polyn. caractéristique

1. Avec : xa(A) = x(\) =det(A—\I,) =ap\" + ... + ap = ap(A — A1)...(A — A\p,), montrer que
X' _ 1 M\ 1 Ir(4r)
N 2 Th Ty o Z(T) _/\;) o powr [A > maz(] A ).

1<k<n 1<k<n p=0

Puis (z = 1/)) que : n.ag+ (n—1ar.z+...4+ Lay_1.2" " = (ag+ar.x+ ...+ an.z"). Y Tr(AP).aP.
p=0
2. En déduire (méthode des Traces) que les coefficients du polyn. caractérisque vérifient :

—k.ay, = ag. Tr(A") + a1 Tr(AF Y + . +ap_1.Tr(A) 1<k<n. [Tr(4P)= SN

3. Et donc que : (A nilpotente) < (Tr(4%) =0, 1 <k <n).

49.3 Reésoudre les divers systémes différentiels suivants (...)

1. Résoudre le systéme : X'(t) = A.X(t)

0 —r gq 0 O 0
(a) Avec A=|r 0 -p|. [Asemblablea A" =0 0 -w| et X'=UAX.
-¢ p O 0 w 0

Puis X, X5 solutions = < X;, X9 > = cte donc | X| = cte, si X solution. Puis

< U.X > = cte; déduire que les trajectoires des solutions non constantes sont des cercles.

01 1 1 2 -1
(b) Avec: A=[|1 0 1] ? Avec A=|2 4 2|7 [diagonalisables.]
1 1 0 -1 -2 1

(¢) — En général, montrer que det(e?) = e ; donc e” inversible. (Triang. dans C).

- Si A :(2 _Oa), vérifier que e :(COS(G) _Sm(a)> et enfin

sin(a)  cos(a)

~ Que: X'=AX, X(to) =Xo a pour solution : X = el!~0)4x,.

2. Simple remarque sur un systéme différentiel autonome (NON Lin.). Courbes intégrales de :

2 (t) = 2 — 9%,y (t) = 2zy. [Plusieurs sol. Avec z(t) = z(t) + i.y(t) : 2/(t) = 2%(t); ou bien
u

(#* = y*).y), = 2zy homogene en ,y 1 y = w.x, x = T

En polaires aussi : p = k.sin(6).]
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50 Dualité -formes linéaires- en dimension finie -en général-

50.1 Espace dual en dim. finie (sans fléche parfois sur les vecteurs)

Soit E* = L(E,K) : cestunev.sur K. Si @ € FE, o€ E*, onnote: <, 7 > = (7).
1. Si E de base (e, ...ep,), soit e : (symbole de Kronecker). Montrer que c’est une
base (dite base duale) de E* et donc dim(E*) = dim(E). Note : e; dépend de tous les e; !
Puis que : <Y p.ef, 3 Aj.ej > =" Ay [crochets de dualité]. Egalement montrer que :

2. E™ est naturellement (canoniquement) isomorphe & E, en dim. finie. [z =Y"€}(x)e;, ¢ =) w(e;j)e]].

50.2 Avec: ¢i,..0p, p<n formes linéaires en dimension n

Montrer I'équivalence : (g1, ..., pp) libres < dim (Ker(¢1) N...N Ker(pp)) =n — p.

50.3 Changement de bases dans E*. Un exemple en dim. 2

Sur R?, soit 2 bases (e1,es); (u,v); de bases duales (e}, ¢3); (u*,v*). Si P = (Z Z), pl= (p q) :

T S
Vérifier que es = q.u + s.v, et : u*(ez) = ¢q. Déduire que la matrice de changement de bases dans E*,

avec les vecteurs en colonnes vaut Exemple. Si uv*(7') = 2 —y, v*(7') = 2 4+ y et si en lignes
(1 =1\ . . car col. de Donc chang. de \ Base anté—duale : u, v
L= (1 1 ) ’ M ( P: u, v ) (base dans E*7bis) L= P Vecteurs colonnes de P )’

50.4 En dim. finies, transposée d’une A.L. et dualité; rang

1. Transposée d’une matrice. Soit E et F, 2 e.v. de bases ey, ...e, et fi,..., fn; (€], f;-k bases duales).
Si f € L(E,F) de matrice A; 'appl. linéaire 'f : F'* — E*, ) € F* s vof ='f(¢)) € E* vérifie
Ve e E, e F <y, flx)>=<"f(1),x >‘ et s’appelle : transposée de f. Montrer que sa matrice
en bases duales f7, e;, est : 'A. [Car aj =< fi flei) >5 Bij :<tf(f]’-k),e,- > ; donc f; = aji.|

2. Montrer que 7g(f) = rg(*f), nombre maximal de colonnes (ou de lignes) indépendantes.

50.5 Plan vectoriel invariant par un endomorphisme de R?, avec 'f

Soit (a,b,c) #(0,0,0). Et f de matrice A3z3. Montrer que :

Le plan vectoriel II : ax 4 by + cz = 0 est invariant par f < !(a, b, c) vecteur propre de ‘A.

Solution. Soit ¢ # O de matrice L = (a b ¢) ‘ ou 'L en base duale ! ‘ On veut : p(7') =0 = o(f(T)) =0;
or ¢ base de la droite vect. des formes lin. nulles sur IT, d’ott 3 X : @of = \.¢ ou 'f[p] = \.p par équiv.

50.6 Forme bilinéaire non dégénérée b, en dimensions finies (F = E*)

1. Montrer que (X,Y) € RPxR" — "Y.M.X [de fagon a avoir M, | est bilinéaire.

2. Soit b bilinéaire sur ExF de matrice M. Vérifier qu'on a 2 applicationsu : EF — F*etv: F — E*:
b(x,y) = <u(z),y>pr= <v(y),r>p de matrices M et ‘M. Et [b non dégénérée (b(z,y) = 0, Yy € F)
= 2= 0z, (b(z,y) =0Vz € E) =y = HF] & u, v injectifs. (Avoir M. X =O0p1 = X =0p...)

3. Donc : dim(FE) = n et b non dég. = dim(F) =n. On identifie F* & E; E* a F. (u,v isomorph.)

4. Et, si forme bilinéaire canonique sur E*xE, dim(FE) finie : (p,x) € E*xE — <p,x> = p(x), alors
u=Idg~;v:E — E™ est I'identification naturelle (canonique déja vue) de E** et E. (Non dég.)

5. Cas E = F, b dég. ou non. [bsym.| < b(ej,e;) = b(e;,ej) ou M sym. Ici g(z) = b(x,z) f quadr. :

polyn. homogene de degré 2 (= rel. d’Euler) et b(x,y) = % lq(z+y)—q(z)—q(y)] :i lq(z+y)—q(z—y)].

b définit I'orthogonalité; E+ = Ker(b) = Ker(q) : det(M) (discriminant) # 0 < b non dégénérée.
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50.7 Formes b. symétriques sur F, dim(FE) finie (ex : relativité et 51.13)

1. Pour une f.b.s. on définit :  isotrope si # L z; E+ C I(q) = {x € E : ¢(z) = 0} cone isotrope.
E, isotrope si By N B # {ﬁ)}, et totalement isotrope si b/p, = O ou Ey C Eit ou By C I(q).

2. Cas b non dégénérée. Rappel : ey,...e, base; e],...,e; base duale. Ne pas parler de z* seul !

(a) Si pr: y—blx,y) = <@y, y> €E*, ©€FEw— ¢, € E" est un isomorphisme X +— M.X.

Exercice. Dans R?, si b(z,y) = 2151 — T2y2 et (u,v) autre base de matrice P en base 77,
et u* = @, , trouver a;. [Col.1 de M~1*P~1 en base 77,7 !ici, M = M~ = diag(1, —1).]
(b) Si E sous e.v. de dim. r, dim(Ef) = n — r. |[Ef- noyau de r formes lin. b(e;,.) pas forc. ind. !
Mieux 6 : € Ey +— @, € E*, Ker(d) = Ey N Ker(q), (Im(6))° = Ei, (Im(0))° orthog. E, E*
= dimE; +dimE{ = dimE+dim(E;NKer(q))). b/g, non dég. (E\NEf = {6)}) = E=F 0FE}.
Note : si b non dég., égalité des dim., donc Ef‘J‘ = F; mais F, Ef‘ pas forc. suppl. !
[b(x,y) = x1y1 —w2y2 : E1 = Vect G) : Ell =F|. E=E 69E1L aussi possible avec ElL + B!

(c) F.b.s. & 3 B orthogonale. Si Jx # 0 ,q(z) # 0 : prendre z... Si tout z € E isotrope : ici
q=0,b=0 .. = b :E y ZO[Z ipti- Ex. M 7( ) Décomp. en carrés, méthode de Gauss :

2 ()2 |
q(z) = (21 + 22) 5 (21 = 22) si P! :(jl 1), P :% G ) PMP = (0 7"1> et M ’congruentes’ 52.3.

(d) Si K =C, 3B o.n. ¢ : une seule f.b.s. non dég. sur C". (= M = 'Q.Q; ey +i.e3 isotrope.)
(e) Cas on: K =1R. Pour une f.b.s. positive (pas forcément définie), on a les inégalités de C-S
et de Minkowski. La premiére entraine que Ker(b) = ensemble des vecteurs isotropes !
Déduire que pour une f.b.s. positive : "définie" < non dégénérée (et alors Base o.n.).

Cas général. IBrthogonale : b(€1,€1) =1 = ... =b(er,e,); b(ers1,er41) = ... = b(es,e5) = —1;
b(est1,es41) = ... = b(en,en) = 0. (r,s) indép. de B, "signature de b" : Th. d’inertie de Sylvester.

50.8 Formes b. sym. non dégénérées en dimension finie, car(K) # 2 : adjoint

1. Pour f € L(E), montrer : 3! f* € L(E) [rien & voir avec base duale ici], b(f(z),y) = b(x, f*(y))
dit "adjoint" de f. Et,si b(z,y) ="Y.M.X ='X.M.Y; f de matrice A; f*: A’, alors :
A =M1TIAM [ou idem avec la transposée de F* dans E* : ¢ = ‘A d'oi, avec E*
identifié a F, etc : 'M.Y ='AM.X ou Y = "M PAMX, donc ¥ =M 1IAMX]
Ainsi, dans le cas de base orthonormée pour b, la matrice de f* est donc A’ = *A. [Mais
si on reprend ¢(z) = 27 — 23 et A :<Z Z), alors A* :<_“b _dc> ' Cas q(z) = 2z129 7]

2. Ondéduit : (f+g9) " =..., ANf) =..., (gf)" = f 09", (fF)" =f, et aussi: det(f*) = det(f),
rg(f*) =rg(f), Tr(f*) =Tr(f). Etsi f inversible, f* aussi avec : (f*)7! = (f~H)*.
Enfin, si F est un sous e.v. (ici !) stable par f, alors F- est stable par f*.
3. Groupe orthogonal b(u(z),u(y)) = b(z,y) ou b(u(zx),u(x)) = b(z,z) ou f*f = Idou f~1 = f*;
alors det(f) = +1. (Si une base orthonormée, c’est comme vu avec un produit scalaire.)
4. Application linéaire symétrique relativement a b : f* = f. Cas ot B orthonormée : la matrice est
symétrique. Si K =R, cf. Th. de réduction avec le produit scalaire hermitien ou autrement !

50.9 Reéduction d’une 2¢ f.b.s. b, ayant une f.b.s.d.p. b : p.s. sur K=R. 52.3

1. En base orthonormée B pour b (il y en a ! Une autre possibilité est le "procédé de Gram-Schmidt")
soit A =matrice de go; B’ une autre base on. pour b : go(z) ='XAX ='X'"'PAP.X’ donc
A ='PAP = P71 AP : ainsi A et A’ sont semblables ; méme "poca" de racines forcément réelles Gy ;
appelées suite des invariants de gy relativement a b. [50.7.(c) : 1, —1, avec autre matrice P € Q.]

2. Il existe aussi une A.L. f: E — FE telle que dans B, ba(z,y) = b(x, f(y)) = b(f(z),y) (de matrice
sym. réelle A) qui est par Théoréme fondamental diagonalisable en base B’ o. n. pour la forme
bilinéaire b : B’ est donc aussi orthogonale pour by ; ici: bo(z,y) Z Bi i, Ex. : coniques.
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51 E.v. préhilbertien réel (f.b.s.d.p.) E.v. euclidien (dim. finie)

51.1 (*) Résoudre dans R® e.v.e. orienté

TH+aNT = D (Ind. un syst. lin. A.X = B dépend du fait A inversible ou non; sol: )

_
— Si on fait des calculs, on prend une base o.n.d. judicieuse telle que : @ =a7, b =b; v +byJ.

X = b1
Alors { y—az="by est de déterminant principal 1+a? =1+ ||a’||* #0. Solution unique.
ay+z=0

Mieux : Ker(Z — @ + ad AT) = {6} : end. inj. donc bij. en dim. finie : solution unique, bis.

—
— Essayons une solution géométrique avec : 7 = a.@ + 3y, ¥y :dans @+ ! idem b =37 + ¢.
Alors : a =3 (Méme composante sur a) (1) et Y+aANY =7 (dans @) (2).

On sait qu’il y a une et une seule solution! Faire @ A ...
et avec (2) 3): 1+ ||| 7
~ Cas |@||=1. Si fi(T)=7 +t.a AT, vérifier que f; !

:_,
= b

Y
a A ... dans la derniére : (3) ...
+(

7
a.b)a+ AT

1_|_t2 (f— +t2.p3) et que fio(f)~!
est un paramétrage des rotations d’axe Vect(@) sauf des 1/2 tours (ot il faudrait t = co = tang.)

[Et ¢: W — d A vérifie ¢©® = —p. En déduire un polynéme annulateur de f; de degré 3 et ft_l.]

51.2 Dans E = R? e.v.euclidien (orienté)

1. Montrer que les réflexions engendrent O3(R). Et que les demi-tours engendrent 07 (R).
N —
0.

2. Identité de Jacobi : Vérifier que @ A (? AT+ DA (¢na)y+cn(an b )=

51.3 Au sujet des similitudes vectorielles (...)

1. Montrer que, si ¥, ¢ unitaires: u + v L u — v.

2. Soit f un endomorphisme en e.v. préhilbertien tel que : @ L 3y = f(Z') L f(¥).
(a) Montrer que, si w, o unitaires : ||f()| = || f(7)].
(b) En déduire 3k € R" avec ||f(Z)|| = k.|Z|. (Cas k#0 ? cas k=0 ?)

51.4 Proj. orthogonal en dim. finie, norme de Frobénius 55.7

Soit E euclidien de base o.n. B; p un projecteur (pop = p) de rang r. (p proj, < p* =p cf. 50.8)
1. (a) Montrer que :  p est orthogonal = > lp(ex)||* =) (ex«pler)) =Tr(p) =r. (1<k<n.)
(b) Inversement si ZHp ex)||? =r, M = Matr(p,B), voir que HtMH% = HMH2 :ZHp(ej)HQ =7r
puis : <'M,M > =Tr(M?)=Tr(M)=r etenfin que: |’M — M|?>=0. Conclure.
2. Inégalités avec une matrice de projecteur orthogonal en base on.
Soit A: A=A, 'A=A. Montrer que 0 < Zaij <n et Z | aij |< n/rg(A).
— Corrigé. Si'V =(1,..1), 'VAV = |AV||* et vaut aussi Zaij >0; puis B=1-A.
~Et: Si A'=(lay]), U= 1), ! dans R : (A.U)2 < AU =02 d.
On conclut avec : Za?j =tr(*A.A) = tr(A) = rg(A).
— Remarques. . Pour p, sur V de base on. w1, ..., u,, sa matrice vaut : Z U tU;, i < r

: . A s o 2
. Pour un automorphisme orthogonal, arriver de méme & n _Zaij < Z | aij | < n/n.

3. Matrice de la symétrie orthogonale / H : 1 + z2 + ... + 2, = 0. Et base orthonormée de H 7
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51.5 Droite des moindres carrés, minimiser » (y; — a.z; — b)?

Soit Y = ( ), X = (z ) V= (1) : Montrer que le minimum existe et vaut : dist*(Y, Vect(X,V))
Ym Tm
obtenu pour un seul couple. SiU =aX+bV, Y—-U L X,V équivaut & : < aX4+bV, X >=<Y, X >,
a.<X,V>+b|VIP=<Y,V>, a||X|?+b<V,X>=<Y,X >: ( 12 <V’X>> <“>: (27%2)

<v,x> vz ) \b <Y, V>)

Puis que : a.X +b=Y (la droite passe par G) et a=oxy / ox: (avec la covariance).

51.6 (**) Orthogonalité de polynémes et racines réelles (...)

b
1.t w(t),C%a,b],R*") donnant le p.s. <f,g>:/ f(z)g(z)w(z)dx sur Rz], soit P, o.n. : d°P, =k,

An+1 An—1

coeff. dom. ap> 0. Sia, = t Pogy = an@. P+ B Py = - Prot, 0> 0. [0 Poca = == Po+> kP

an
2. Soit 1 < ... < xp, les racines sur ]a, b ot P, change de signe. Avec P, L Q(z) = (x — z1)...(x — z})
st p < n, montrer que p = n; et par récurrence avec q.1) que les racines de P,,_; séparent celles de P,.
b
3. Et 3 A\ :/ Q)w(t)dt = M..Q(x1), VQ € Ry_1[x]; puis par div. par P,, VQ € Ry, _1[z] ! intégra-
tion de Gauss, A\, = || Lg||> > 0, Ly, polyn. de Lagrange, degré n —1. [i # j :< Li,L; >=<P,,Q >=0
car deg(Q) =n—2>0; | Li||* =< Li,» Ly >—< Lk, 1>, (Vrai sin=1)] SifC?, 3H € Ry, 1[z] :

H(@) = f(@) 1/ (@) = f/@). fla) = H@+EDLZ0 ) [ o) woyte= 3 v o 1< LM,

51.7 Cardinal d’une famille obtusangle, en dimension n (...)

C’est une famille de vecteurs : W, . u; <0 si i# j, avec dim(E) = n. Montrer que :

1. Une famille obtusangle de cardinal p est telle que 'y, ...ﬂ)p_l est libre. Et donc: p<n+ 1.
(Par récurrence sur n > 1 : Sion a u Lyeees 7;0-1—1 obtusangle en e.v.e. de dimension n + 1, on prend
Upi1 et U - Upt1 de fagon & étre dans w1 ; alors ob
U pt1 1= U1— 1. UWpi1, . Up— p.Upsq de fagon & étre dans U,y ; alors observer que

U, ...7p est obtusangle en dim. n; puis vy, ...71,_1, 7;0-1—1 libre et aussi uy, ...ﬂ}p_l, ﬂ)p+1.)
2. Montrer l'existence d’une famille obtusangle de cardinal n + 1 en dimension n. (Récurrence)
3. Si les angles sont égaux pour une telle famille, quelle est sa valeur 7 (Prendre les vecteurs
unitaires ;. w; = cos(0), U1+ ..+ Upt1 = 6); alors cos(f) = _71)
(Note. Avec Y a;u; = 6}, certains introduisent l'astucieux v = Y |a; | W5 : (72 <0

1<i<p—1 1<i<p—1

51.8 Un hyperplan de M, (R)n >3 contient N nilpotente, M inv.

Ind. 3A: M € H < Tr(A.M) = 0, toute forme lin. étant un p.s.; puis A = PBP~! avec bi1=0,i>3.
SiN=FE,:N+#O0, N =0, Tr(BN)=0; M = P.N.P~" convient. (S" n =2 S de dim 3 ne mtiem)

aucune matr. nilpotente non nulle )’

M inversible : A = QJ, P~ M = PNQ ™!, Tr(AM) =Tr(JN), N = FEy + Es3 + ... + Ey1 convient.

51.9 En utilisant f* en question 1, et f"of en question 2 (...)

1. Si f € L(R?) (e.v.e.) laisse un plan P stable, montrer que P est stable par f*. cf. 50.5, 50.8
2. Si f € L(E) (e.v.e.), montrer 3 (w) b.on.: (f(u})) orthogonale [W} o.n. diagonalisant f*f.|

51.10 Calcul d’adjointe (existence non assurée en dim. infinie)

1. Dans l'e.v. euclidien F, montrer que f(u) = U )? a pour adjoint f*(
2. Dans £ =R3 e.v.e. orienté, f(u) =T AW

3. Dans E = R? ev.e. orienté, f(w)=(a A7) A D a pour adjoint  f*() = (
4

. Dans M,,(R), avec p.s. usuel, montrer que M — A.M — M.A a pour adjoint N +— ‘AN — N'A.

(a.

=]
I

a pour adjoint f*(w) = —
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51.11 Liens entre f et f* dans F, e.v.euclidien (ou e.v.h. ...)

Verifier : Ker(f*) = Im(f)*, Im(f*) = Ker(f)*, dim Ker(f — \.Id) = dim Ker(f* — X.Id).
Montrer : Ker(f*of) = Ker(f), rg(f*of) =rg(f). |Dessus les dim; cas A = 0 puis (f — A\.Id)*|
Déduire que : Im(f*of) = Ker(f*of)*t = Ker(f)* = Im(f*). Et donc que :

Ker(fof*) = Im(f)*Y; Im(fof*) =Im(f). [Note. Ligne 1 vraie pour une f.b.s. non dég.|
Vérifier que fof* = f*of & f(@)/f(y) = F'@)/f () & |f@)] = I @) Va.y € B. (4]

noyau !

SN B B S

Autre exercice (*) Montrer que fof*of = f <= fof* proj. orthogonal.

Corrigé. < : fof*of et f égaux sur Ker(f) et sur Ker(f)~ = Im(f*) car fof* proj.
= : proj. facile, orthogonal car fof* de plus sym. ; et si on veut sur Im(fof*) = Im(f)// Im(f)*.

51.12 Inégalité d’Hadamard et conséquences (cf. 52.2 pour fin)

1. Soit E un e.v. euclidien. [...] le produit mixte (déterminant en base o.n. directe quelconque).

Montrer que : | [u1,...,upn] | < [Jui]]....[|[un||. (u; supposés libres | Avec le procédé de Schmidt.)

. Sol. Si matr. de chang. de bases P, oy = Pej—a; - Paj—uy s a1 = uy, a2 = ug + @g1aq ... avec
(a;) orthogonale, det(Py; —u;) = 1 = det(u,uz,...) = det(a;) = £][llarll et [[larll <[Jllurl-

. 2éme point de vue, simple changement de présentatlon : M = O.Ts (on a pris une base o.n. cette
fois, €; = a;/||asl|, ti >0). |det(M)|=det(T) =]Jtu enfin 0 <ty = <wie > < Jug.

2. Soit A symétrique et positive. Montrer que : a;; >0 et que 0 < det(A) <[] ai.

. aii = (e, Ae;) > 0. Puis : A ='M.M (connu 52.2) det(A) = det(M)?* < ||m1H2 Amnll® = T air-

. Ousi A > O ! Multipliant Ligne i et Colonne j de A par ~;, 7j on a encore une matrice symétrique
positive; on choisit ~2.a1; = Y2.a00 = ... = 1; [det(A)]Y/" < 711 Tr(A") (cf. 52.1) termine ...

. Ou toujours si A > O ou det(A) > 0, avec D = diag(1/\/axy), det(DAD), Tr(DAD) = n, conclure.

A='M.M > 0= A='T.T dite déccomposition de Cholesky t% < a; <1et, :Sfrzi;gTﬁeT{p)-

3. = Si A, réelle, avec tA.A, montrer : det(A)? gH(Za,ﬂ.). Décomposition "Q.R" ou d’Iwasawa ? :
7 k

4. Si A€ GL,(R) : A= 0O.T de facon unique, O € O, Tyriang.sup,coeff.>0- [fAA='TT: 0 =AT "]

51.13  (*) Propriétés de 'orthogonal. Quelques contre-exemples

1. Montrer que (dim. quelc., f.b.s. dég. ou non) : F C F*+ (F+G)t = FE NGt ici F,G sous e.v.

2. Et en dim. finie, si b non dég. : montrer, avec le résultat précédent, que (F' N G)J‘ = Ft+ Gt
[Solution : (FNG)t = (FHEneth)t = (FL +GHH = FL + G| Mais attention :
SiM= (0 O) (Vect(W)NVect(7 + 7)) =R?; Vect(7 + 7)*F = Vect(7)t =R.7 : D stricte.

3. Méme avec un produit scalaire, un cas ot E # F @ F+ et F # F++ .

(a) SiE=R[X], F = X.R[X], <P,Q>= 1 P(H)Q(t)dt, montrer que F+ = {O}. Donc: F # F++,

—1

(en dim. infinie !)

(b) Montrer que E = {suites réelles,Zui converge} est un e.v. (2 | ug.vp |< us +v}) avec > up.vy,
p-s.; si F sous. e.v. des suites nulles & partir d’un certain rang, vérifier que Ft = {O}.
4. Uncasot E# F®Ft et F=F: Soit E =C(]-1,1],R), F=l'c.v. des f. dont la restriction a
[0,1] est nulle, G celles dont la restriction a [—1,0] est nulle. Méme p.s. Montrer F+ = G, G+ =
ot E#F®Ft (Exemple de 2 sous e.v. fermés de somme non fermée : son adhérence vaut E).

5. 81 (f/g) = —l—/ f(t).g(t)dt F, G idem, montrer ici que F @ F* est fermé ; donc non dense.
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52 Endomorphismes symétriques. Formes quadratiques.

52.1 Si A symétrique, positive, montrer : det(A)Y" < 1/n.Tr(A)

Pour f endomorphisme symétrique, f est positif (défini positif) si (f(w). ) > 0,Vu # 0 (ou >).
Ceci équivaut a valeurs propres > 0 ou strictement > 0. Pour A en b.o.n., axr = f(eg).

1. Ci-dessus : Comparaison moyenne arithmétique-moyenne géométrique des valeurs propres (= 0 ici).

. , o tXAX EXAX fl@).x
2. Si A sym. réelle, montrer : inf S d =inf(Ag) < app < Sup Xx - SW = sup(Ag)-
3. (*) Soit A symétrique réelle avec A\; = Ao > ... > \,,. Montrer Vk,1 < k < n que dag < D N
i<k i<k
[B on., B' o.n. diag. A. ¢; —Z ej.€;).€; = a;j = u(ej).e; Z)\ ej.e))> <Y+ (1= 3.
i<k i<k

Dot a;; < A+ > (N — )\k)(ei.e])2; avec ej.el) < 1, conclure.|

i<k i<k

4. Soit A, B symétriques, C'= AB + BA (symétrique) et A définie positive.

Si A :(3 (1)), B :G 1) sont positives, vérifier que C n’est pas forcément positive !
Si C est définie positive, avec ' XCX = 2! X ABX, X vect. propre de B, vérifier que B aussi.
51.12 : 4T triang. sup. inv.)]

5. A sym. réelle, \j, > 0 < det(Ag) > 0,1 <k <n (critére de Sylvester). [« < A —TT: ot rée. sur .

52.2 (*) Diverses inégalités avec les matrices symétriques réelles

1. Si A, B sym. réelles, montrer que : 2. | Tr(AB) | < Tr(A?)+Tr(B?). |ind.: |[A—B|?>0]

2. A, B sym. positives : 0 < Tr(AB) < Tr(A).Tr(B). [B=D = Tr(AB) = Tr(VDAVD) > 0 avec
TXMX, ete. Bt Tr(AB) = Tr(‘AB) < |A|L|BI|; [A]? = Tr('A.A) = Tr(4%) =33 < (S 02

3. Si A symétrique réelle, A\ > 0 : 3 ! matrice C' symétrique réelle, A = C?, pup > 0. A=!C.C !
[Unicité (*) : Si A= C?: Cl commute avec A donc sous e.p. de A stables par C; (P~ =!'P)
NI, 0 . My 0 ..
A= P.( 1... ) P~ C’l ( ..1 ).P_l. Puis Mi2 = M1, donc vp de M; :
AoIn, e My

++/\; seulement. Enfin !C; = C; = M; diagonalisable. Donc M; = ++/ Ai.Ip, obligée.] D’ou la

Décomposition polaire de Cartan : Si f automorphisme, avec g = f*of sym., défini, positif et

h l'unique racine symétrique définie positive de g : f = roh [r = foh_l] ou r orthogonal, uniques.
. Idem f =h'r', W2 = ff*;r=1"< f7'Wf =h; or vrai : carrées égaux et h, h’ positifs !
4. (*) A, = A, B sym. positives : det(A+ B) > det(A) + det(B), det(A—i—B)% > det(A)% —l—det(B)%.
(a) Si vp. strictement positives pour A, soit A = C?, C sym. réelle, a vp. strict. positives. Alors

M = C7'BC™! est sym., positive. A+B = C(I+C~'BC™)C = det(A+B) = det(A).P(—1),
P()) polynome caractéristique de M, de vp v; € RT. Voir que [I(149) = 1+]]v termine.

Et si det(A) = det(B) = 0 avec ‘X (A + B)X >0, vérifier que le résultat subsiste.
(b) Montrer : JJ(1+ )V > 14 H%.l/n [In(1+ e”) convexe| et la 2¢ inégalité.

5. (*) Ay, B, symétriques, positives. o, 8>0, a+ 3 =1: (det(A))*.(det(B))? < det(aA + BB).
Sin =1, inégalité de convexité. Pour n > 1: si A =a.l, a > 0, diagonaliser B et cas n = 1.
cas A inversible : A = H?, H symétrique; oA+ 3.B=H(al+SH 'BH Y)H et
<X,BX>="'"YBY >0, Y=H'X.. cas Anon inversible : «.A + 3.B positive !

Autre solution. Si e base o.n. diagonalisant a. A + 3.B de v.p. pup = a.a(e) « ex + 5.b(eg) « ek,
alors pig > (a(er) « ex)®.(b(eg) « ) ; Vinégalite d’Hadamard I1 @i > det(A) termine (51.12).
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52.3 Réduction, en simultané, d’une f.b.s.d.p. b et d’une f.b.s. b,

Soit A = G é) Montrer 3 P : 'P.AP=1,. [P= (1/8/5 ;1/%6) décomp. de Gauss de "X AX. Atten-

tion : non semblables mais "congruentes"|. Et en b.o.n. pour b, réduire by de matrice B :(32 :i)

[M :(jﬁ *ff):tPBP = P~Y(A'B).P| s. diag(2,—-2), I"! =1 : 3Q 'QAQ =1I,,, 'QBQ = D

52.4 (*) A, B sym., cas AB diag. sur R (en plus de AB = BA < AB sym)

1. Aest avp.>0: Ex.52.3 avec A7}, 'QA™'Q =1,, 'QBQ =D ... [G 1) . (_21 _01) non diag. !|
ou : AB autoadjoint pour le p.s. *X.A7'Y | ou encore : AB = VA.[VA.BVA.(VA)™!, [..] sym.
2. A, B sym. positives : si A # 0 de C = VABVA, vérifier : X € E\(C) — VAX € E\(AB) inj.
si A =0, vérifier : 'Y BY =0 = BY =0 et avec X € Ker(C),Y = VAX, Ker(C) = Ker(BVA);
puis Im(BA) C Im(BVA),rg(AB) = r¢g'(AB) < rg(BV'A), dimKer(AB) > dimKer(C) et finir.

52.5 Valeurs propres et vecteurs propres de X'X (sym., sous e.p.l)
1. Soit X # O; observer que 7g(X.!X),, =1, tr(X.'X)='X.X =2? et Im(Xt ) = Vect(X).
2. SiA€GL,(R) : det(A+X.'X) = det(A).(1+' X.A7'X). [SiPecQ:C) = —X_ PU,'U = (1,0,...0)

A=PBP7 ' det(A+ X.'X) = det(B + 2°U.U) = det(A).det(I + 2*.B~ 1U. U); ce dernier dét.
valant aussi A = 14 k.2? = 1 + 22'U.B7U, (k : ler terme de B™!). Enfin A =1+ X.A71X ]

52.6 Quand a-t-on deux projecteurs orthogonaux qui commutent ?

1. Si f =pgopr = propg, montrer que f est un projecteur, puis autoadjoint : f = ppy.
En utilisant que F = {u : [|pr(W)| = |||}, montrer que H =FNG.
2. En considérant F' = (FNG) @, F1, G = (FNG) @, G, montrer qu'une condition nécessaire et
suffisante (C.N.S.)est : F =(FNG)® (FN GL) (et par symétrie G=(GNF)®(GnFh.
[Cond. Suffisante. Nécessaire aussi. u € F, U =da+ b +7¢C ¢ F NG GBL G1 @, G, donne
?+?:p(;(u) pgopr(uw) € FNG = b eFNG (par diff.), B =0ect<CeFNGt Fini.|

52.7 (*) Question intéressante partant d’une base quelconque (...)

Soit €1, €9 une base quelconque et f(w) = (€1.uw)€1+ (€2. u)€2.

1. Montrer que f est un endomorphisme, symétrique, défini, posmf. Matrice A 7

2. Par diagonalisation en base o.n. de f, montrer que : 3ge St : ¢?> = fL.

3. Montrer que g(€1), g('€2) est orthonormée [mais # 7,7 ou ?, 7]
[Corrigé. Soit une base initiale By : 7,7 on. Si P est la matrice de changement de bases :
A ='P.P (matr. de Gramm), Ao = P.A.P~' = P!'P en base o.n. : d’ott end. sym. positif défini. En
dlagonahsant f en base o.n. I I g existe, est umque de matrice By en base 7, : Bg = Ay !

et "By = By. g(€1), g(€2) ont pour matrice en base 7, J : Bg.P = U ; alors tU.U = I5 est aisé.
Sans matrice : g(e;).g(e;) =€ « fH(e;) et f1(ef) = ﬂ) tel que W.e; =1, U .e; =0sii#j)]

52.8 Matrice et déterminant de Gram. Des calculs de distance (...)

Soit E un e.v. muni d'un produit scalaire (préhilbertien). G = Matr(u;. @;), g = det(G) i,j <p.
1. Montrer que : W1,... U, libre & g #0.  Meéme : rg(ux) = rg(G).
2. On suppose U1, ...ﬂ)p libre; V = Vect(U,..., ﬂ)p). Pour @ € E, montrer que :

— —
(v, V) = g(l(ti; o Ue ;)) 0 désignant la distance (avec la proj;). [Ind. prendre une base o.n.
g(W, ..., U

€1y, ey de V' OV alors G='P.P. Idem avec ej,...,ep, € de Vect(Wr,..., up, v)si v € V]
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52.9 Avec ‘A, Ae M, ,(R): Ker(*A.A) = Ker(A), 51.11, 53.4, 55.7
1. Montrer que ‘A.AX =0 = 'X'A.AX = ||AX| =0 et donc A.X = O. Déduire que :
Ker(*A.A) = Ker(A) et Tr(*A.A) =Y a};, norme de Frobénius : cf. 55
Note. (*A.A = A'A et A nilpotente) = A = O. ['A.A diag., nilp. donc nulle; Tr(...) =0 ... |
2. Déduire que : Im(A'A) = Im(A). (Avec rg(A) =rg(*A) = rg(*A.A) = rg(ALA).)
3. Maintenant n = p; et donc ‘A est la matrice de I'adjointe f* de f. cf. 51.10 s.
Avec E = Ker(f) ®* Im(f*) (rappelé, mais a voir) montrer que : f2 = fof* = f = f*.
(W € Ker(f) = f2 (W) = fof*(@) = 0 donc ff(w) = 0 avec 1). Puis: (f*)? = fof*; donc
v e Im(f*) = () = (W) = fF(f*(d)) = f(v). Avec sous e.v. suppl. L laissé : fini.]

4. Toujours avec n = p. Montrer que ‘A.A et A'A sont orthogonalement semblables.
(En général : AB,, , et BA,, , ont méme polynome caractéristique : cf. 47.6. Et ici - matr. sym- etc.)

52.10 Produit d’Hadamard. On pose ici A* B =C ou c¢; = a;;.b;; (...)

Vérifier que M,,(R) est ainsi une algébre commutative, associative et unitaire.

Que A, B symétriques positives = C aussi. (Théoréme de Schur).

Idem avec strictement positives.  [Voir aussi Wikipedia.]

Déduire: O <K AL B, O<K A <B = AxA <Bx*B'. (ie. B— A sym. positive ...)

Ll

Corrigé de 2) 3) : Posons A = U?, U symétrique positive, B = V? idem. On a ici :
cij = (O _ugiugg) - (O w.vy). D'ou ‘X.(AxB).X :Z(Zukivliaji)z) > 0, etc*. Autre sol. :
k 1 k,l

7

a% 0o ... a1
2): A=P. (0 ) 'P=P (0) (a1 0 ..).'"P+..=al.U01.'Us + ... (Uy, lére col. de P.)

A=0oiU'Ui+... B=3iVi'Vi+.. AxB =Y "a; 7 (U;.'U;)* (V;.'V))= Y a7 B3 (Ui V;) L Ui+ V)
- -~

2, s
[UU = ("U.U).I0, L proj,.] 3):SiA,B>0,'XCX =0= (U*V;). X =0=U;.(V;*X),X = O.

52.11 Enew.e,si feL(E), ||| fllle <1: Ker(f—1d) = Ker(f*—1d) # 53.4

1 Montrer que |/*(%)I = (@-fof*(T)) < ITIIF @I (F@) < ITN). Dow [ £ Il < 1.
2. Puis que Ker(f — Id) = Ker(f* — Id) (= Im(f — Id)*Y). [Ind. Si f(W)="u, ||f(@)-«|? =
1P+ T2 =27 f (W) <2.||7)?=2.f(W).w =0; donc f*(&) = u ; réciproque, idem.]

L L. . 1 k
3. Avec E = Ker(f — Id)aIm(f — Id), déduire que lim = Y f%(z) = p(z) sur Ker(f — Id).
p—)

0 P och<p—1

52.12 Paramétrisation de Cayley, exponentielle d’une matrice antisymétrique

1. Soit A antisymétrique (= seule v.p. réelle 0, I + A inversible). Montrer que R = (I — A)(I + A)™*
est orthogonale directe et —1 non vp. (I — A, I+ A et inverses commutent, (I +A) = I — A : méme

; : 0 —t 1 (1-t 2 7r
det.);[AX:O@RX:X;etSJA:(t 0)’R:m(—2t l_tz)(t:tan(gp),|g0|<§...]

Inv. : © étant orthogonale, avec —1 non vp. (donc € OF) : T 4 Q inversible et (I —Q).(I + Q)" est

antisymétrique (c’est A). [Noter que f(z) =

T " est involutive et transforme U — {—1} en R.i.|
T

2. On pose |[|[M|| = n.sup | my; | (pour que [|[MN| < | M|.|[N]|) et on prend exp(A) avec la série.
Si ‘A= —A, vérifier que : ‘exp(A) = exp(*A) = exp(—A) = exp(A)~" donc orthogonale et

méme directe (avec une forme triangulaire sur C). Et, si AX = O, alors exp(A).X = X.

SRR T 0 —t\ _ [cos(t) —sin(t) 1 ) N
Enfin, de I'égalité exp (t O) = (Sm(t) cos(t) )’ déduire que exp n’est pas injective.

Mais exp bij. S, — S+ [e4 = eP : F ss e.p de A stable par e? et B (e®.B = B.eP); mémes V.pr|
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53

E.v. préhilbertien complexe

53.1 Forme sesquilinéaire (K = C). Forme sesquil. hermitienne

1.

On garde la notation b(.,.) pour les formes sesquilinéaires, sesqui=1 et % contraction de semisque.

Une forme sesquilinéaire est linéaire/ler vecteur et semi-linéaire/au 2éme : b(z, A\.y) = A\b(z,y)

(par ex.). Elle est dite hermitienne si : b(y,z) = b(z,y); il suffit que ce soit vrai sur une base.
Exemples. Sur C" : 'Y.M.X,'Y.X; Sur M,(C): Tr(*B.A); SurC(I,C) : /f(t).y(t).w(t)dt.
S— I

(Premiére notation : cf. 50.6, M’ ="PM P. Hermitiennes < ‘M = M, t — w(t) & valeurs réelles.)

. Montrer que : Une forme sesquilinéaire ‘est hermitienne <= b(z, ) est réel tout le temps. ‘

(avec 4.b(z,y) =b(z+y,z+y)— bz —y,x —y) —i.b(x + iy,x + iy) + i.b(x — iy, — iy).

Donc au passage |si b sesquilinéaire : b(w, W) =0, V" € E = b= 0 (# cas des f.bilinéaires).

. Orthog. pour b s.h., vecteurs isotropes, Ker(b) = E+; Si B+ = {6}}, on dit b "non dégénérée" ;

det(M) appelé discriminant, en dim. finie : cf. forme bilinéaire symétrique en dim. finie.

. Existence de base orthogonale : b(e1,e1) =1=... =b(ey,e.), blepr1,6r41) =—-1= ...,

blest1,es41) =0=...=b(en,e,). (r,s)indépendant de la base. Par contre : x — @, = b(z,.)
lin. de E dans E* [(\,¢) — A\.¢)]; isomorphisme en dim. finie si b non dégénérée. Dans ce cas :
pour F sous e.v. de E (encore !) dim(Ft) = dim(E) — dim(F) et (FH)t =F
(En général, dim(F1) > dim(E) — dim(F); et égalité des dim. % Suppl. | cf. 50.7.4 )

. Que f soit dégénérée ou non, si F' sous e.v. de E ici : f,p non dégénérée (qui est FiNF = {6)})

& F non isotrope (pas de vecteur # 0 de F orthogonal & F) < en dim. finie F @& F+ =FE.

.. . . . e s . e . s s s . . =%
. Adjoint en dim. finie si b sesquilinéaire hermitienne non dégénérée. L’isomorphisme entre F et F

permet de définir I'adjoint de f € L(E) (noté f* s’identifiant & un élément de L£(E)).
Si f de matrice A, la matrice A* de f* est telle que A* = M LYAM (car M ='M); et

si on a une base orthonormée, A* = tA, trans-conjuguée. Note : (A.f)* = \.f*, det(A*) = det(A).

53.2 Cas particulier essentiel de produit scalaire hermitien. Ex.

1.

2.
3.

Quand la forme hermitienne est positive, on dit e.v. préhilbertien. Montrer les inégalités de (C-S)

et de (Minkowski). En déduire dans ce cas que Ker(b) = {Vecteurs isotropes}. Et :
"définie" < non dégénérée : "e.v.p. séparé". Si dim(F) finie (e.v. hermitien), on a une base o.n.
enbaseon.: |W+70|P= W+V.U+V)=|T|>+|v|>+ ©/v + ¥/7.
[Ldentités a voir] |l +y|* = o[ + [lyl* + 2Re(z/y) Il +iy|* = |2l + y|* — 2Im(x/y)

4.(x/y) = llz +y|*> = |z — y||* —il|lz + iy||* + iz — iy||* et Théoréme du parallélogramme.

. Groupe unitaire si b non dégénérée en dim. finie : b(u(x),u(y)) = b(z,y) ou b(u(x),u(x)) = b(x, )

ouu*u=Idou .. u ' =u* et alors | det(u) |= 1. Sibase o.n. (p.s.h.), A* =4, et : {AA=1,.
Montrer que toutes les v.p. complexes sont de module 1. (En particulier avec coefficients réels).

. Application linéaire hermitienne relativement a b p.s.h. : f* = f; cas f sym. réelle ?

(a) Cas d’une base orthonormée : la matrice A de f dans une telle base est "hermitienne" : {4 = A.
(b) Avec le produit scalaire hermitien, montrer pour un endomorphisme hermitien de valeur propre
Ak, vérifie - Nj(x/y) = Aj(z/y); d’ott vp réelle; et sous espaces propres orthogonaux.

(c) Méme hyp. : Montrer que si F sous e. stable, alors F* aussi; en déduire Pexistence :
(d) D’une base o.n. et d’une matrice diagonale réelle telles que U™ AU = D avec U™ = tU.
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53.3 Au sujet des projections et des symétries orthogonales (...)
1. Vérifier que 'hyperplan (Y a;a; =0) est L & Vect(Y @ie)). Et pr(x) =" (x/er)er =>_ (ex/x)ey.

2. Si F e.v.h. (dim finie et p.s.h.) et si & # y vérifient ||z| = ||ly||, montrer que [il existe une réflexion

s s(x) =y] < (x/y) € R (ou Im(z/y) = 0). Dans ce cas s est unique : sym. / Vect(y — z)*.

53.4 Si f normal (fof* = f*of) en e.v.h. Ker(f — \.1d) = Ker(f* — \Id) ...

Lo (a) Avec || f*(u)=Xul® = [|F* @)+ | A 2 -Jlul® =X f*(w) fu=Aau/ f*(u) = || f(w)=Aul* conclure.
(b) Mieux. f normal = Ker(f) = Ker(f*) 51.11 et f — A.Id est normal. |[M. vect. propres.]
(¢) En déduire que deux Sous espaces propres associés a deux vp. distinctes sont orthogonaux.
2. (a) De E) stable par f et f*, déduire que Ef est stable par f* et stable par f** = f. Puis que :
(b) f normal < diag. unitairement. Et A = H+i.H’ (hermitiennes) : A normale <& HH' = H'H.
)

(c) Sur C: f normal "&" VF stable, F- stable < 3P : f* = P(f) & tr(fof*) =% | A [*.

53.5 Décomposition de Schur : trigonalisation unitaire. Conséquence

1. Soit A une matrice complexe. Montrer que A est trigonalisable par une matrice unitaire.

2. Solution et remarques : On trigonalise A : T'= P~'A.P. Puis : par le procédé de Schmidt, on

orthonormalise les colonnes de P : 3 S triangulaire supérieure : P.S = II soit unitaire : IT* = [T~ L.

Alors : S™LT.8 =TI71. Al est triangulaire supérieure et elle est unitairement semblable & A.
Si A réelle scindée ou non, A semblable orthogonalement & A" = fi g;z :ﬁ:) . R;; bloc 1,1 ou 2,2

avec deux vp € R conjuguées. Et sur C: A normale AA* = A*A <:> A unitairement diagonalisable.

53.6 Décomposition en Valeurs singuliéres sur un exemple (‘4.4 ...)

o 0 0 1 0 \f
1. SiA=L. |1 -3 *\/@ , vérifier: A*A={ 0o 9 —PD?P*, P- ( W (1)) . D = diag(0,2,3).
(R ErA V3 0 3 12 V32 o

2. SiM = A.PA, A =diag(0,1/2,1/3), vérifier que M*M = diag(0,1,1); déduire que les 2 derniers
vecteurs colonnes de AP s’écrivent (2g2,3q3), g2, q3 orthonormés de C*. On compléte en une base
n. : q1,q2,q3,q4 de C*, de matrice Q € Uy; (alors que : P € Uz et 0%2%,3% : les vp de A*A).

3. En déduire que Q*.A.P = <dwog(8’20’3)> = A; dite SV D pour "singular values decomposition".
4,3

4. Avec AA™, que A et A* ont méme valeurs singuliéres, cf. 47.4 et A, ,, inv. < valeurs sing. # 0.

53.7 Pseudo inverse A" de A, ,, en e.v.e. : éq. de Penrose (et autre ps-i)

1. X est dit "pseudo solution" de A.X = B si AX =p, (B) sur Im(A) [¥]. Montrer que [*] <
(B—AX).AY =0,VY < 'A.A.X ="A.B, possible! Si X; sol., les autres : X = X; + Ker(A).
2. Parmi les X sol, montrer 3! S de norme minimum (sol. normale). [Avec les suppl. orthogonaux :
Im(*AA) et Ker(*AA)|; et que cette solution est exactement de plus orthogonale & Ker(*AA).
a) Veérifier avec q.2 que B +— S est linéaire. S = AT (B), A" ps.-inv. au sens des moindres carrés.

3.

(
(
(c
(d

b) AvectA.A =Y piIl;, 0 < p1 < pa..., II; matrices des proj | associées, vérifier que AT =y 11, LA.

p>0 Pj
Exemple : si Ay, # O, vérifier que AT =1/a®.'A ou a® = A'A.  En général, vérifier que :
ATA = =y 11, AT A, AAT Sym., AATA = A, ATAAT = AT, [AT A, AAT proj., sur Im(*A), Im(A).]

p>0

(e) Unicité si MA, AM sym et AMA=A MAM = M : "AAM = ("A'M'A)'M'A ="A'M'A ='A :
MB p-sol. et M = MAM ="A'MM : MB € Im(*A). Donc M =A*. Et (AT)t = A, (*A)* =(AT).

[Notes.| +8i %@ Vop. de "A.A pour pi =07, A=y AU'U; =y 00.Vi'Ui, A* = 5 L U5 SVD.

p>0 p>0 p>0 7

«Sif€L(E,F),gfg=g,fgf = [ gf proj., Ker(gf) = Ker(f),Im(gf) = Im(g), § ' =f; OU §=g/1m(s). EtsiAnn:
MAM = M,AMA = A, AM = MA : autre ps-i. AM = M'AMA = M'A= M =MAM =M'; .. Ker(A)NIm(A) ={0} !

)
)
)
)
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54 Séries de Fourier

54.1 Notations. Divers résultats généraux rappelés

a+2m
1. On prend (f/g) = / f(t)g(t)dt : p.s. sur Car e.v. des f. 2m-périod., continues de R dans C.

‘Mais on prendra aussi C Mo ‘

Soit : P, = Vect(e*t, —n < k < n) = Vect(1, cos(t), sin(t), ..., sin(nt)), C-e.v. Pour f € P, :
: _ - ikz _ 40 - . _ag —ibg _ag +ibg
Cflx) = Z cre™ = o + Z(ak.cos(k:w) + by.sin(kx)), cx = — o k=T

k=—n k=1
et ap=cp+c_p, bp= i.(ck — C_k), keN (b() = 0)

- 1 (7 ap > 1
e TRy MFCTRES ST SRS SR ESTAC NS

- ao
2. ‘En général, notons‘ Uy = ¢ = >

Zun normalement conv. < Z | an, \,Z | by, | conv. < Z | cn \,Z | c_p | conv. Et:
si S(z Zun Cp = L S(t).e”"™dt, a, = 1 S(t).cos(nt)dt, b, = l/ S(t).sin(nt)dt.

2r J_» L - m

L Up = C_pe” ™ 4 e = a,cos(nx) 4 bysin(nz). Alors

3. Inversemment, partant de f, 2m-périod., on pose ay, by, c, comme ci-dessus : série de Fourier.

.(Ona: c_,(f)=cu(f); donc) fréelle= ay,,b, réels.
. (Si: g(x) = f(—x), cnlg) =c—n(f); donc) f paire = b, =0; f impaire = a, =0.
« f(z+m) = f(x) entraine agpt1 = bopy1 =0;  f(z+ m) = —f(x) entraine ag, = bgy = 0.

. Pour f CM*!, on note Df la fonction dérivée, la ou elle existe et sinon : 0.  Alors

Si f est 2m-périod., continue et C' par morceaux : ¢, (Df) = i.n.c,(f).

(a) On a donc vu que si la série converge normalement, c’est la série de Fourier de sa somme.
(b) La proj, de f sur P, est égale a S, (f), somme partielle d’ordre n : || £||3 = [|Sul3 + || f — Snll3-

54.2 Théoréme de convergence en moyenne quadratique

1. Ona: Pour f CMs,, la suite S, converge en moyenne quadratique vers f.

Corollaire :  Formule de Bessel-Parseval. Clest (%) avec n = 4o0.

2. Notes : a) Soit f(z) = w

b) On déduit que f continue, 2m-périod. est nulle si et seulement si ses coeff. de Fourier sont nuls.

, appelée régularisée de f. Ceci va servir ensuite.

Analogue : Egalité de deux fonctions continues si et seulement méme coeff. de Fourier.

54.3 Les Théorémes de convergence ponctuelle (...)

1. Convergence normale. Si f est continue, 2r-périod., C! par morceaux, la SF converge normalement

1 1.1
sur R et a pour somme f. | ¢, (f) |=| —.ca(f') |< 5(—2 + o (f")?) et Th. de Parseval pour f.
in n

2. Théoréme de Dirichlet. Si f est 2x-périod., C'! par morceaux, alors la SF converge sur R et a

pour somme f (x) : la régularisée !
sin(n+1/2)u
sin(u/2)

est appelé noyau de Dirichlet. Une telle intégrale est appelée produit de convolution.)

(Démonstration (*) : On arrive a S, :%/ f(z —u)Dy(u)du ou D, =Y et =

—n
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54.4 Exemple avec f(z) = x sur [0,7[, f impaire 54.7
1 2

(=1 (=r (=1)"*'sin(n)
T Dby =2. ; =—; ? et (Parseval — = —.
rouver - ;2104— 1= 1 Z - et (Parseval) Z:l 5=
b=z nz
54.5 Exemple avec f(z) = x sur [0, 7[, mais ici, f paire
1 m

T 4 cos(2p+1).x 1
Trouver : f(z) = - — — E . Retrouver : E — et trouver : E — = —
2 1
2 = (2p+1)2 n n 90

) 1 ol e .
sin(r-t) en produit infini

54.6 Autres ex. et développement de

ch(A.xz) sur [—m, 7] et 2.m-périodique. Montrer que :

1. (a) Soit f(x) =
F(z) = ch(\z) = sh(A.m) n 2.\.sh(\.m) Z (=1)".cos(n.x) (—r7].  En dédui
= r) = —— - PRt sur [—m, 7). En déduire
A Amch(Aw) — sh(A.) — _ a?
B 2t _ . 1., sin(mt) t?
(Avec g¢ (t) = Z:l ! €] — 1,1[ et une Conv. Unif., on déduit = nl:[l(l — ;).)
_ (—1)".2%  Aw —sh(\) . Y B
et : 2.72 RS A vy e (On peut aussi prendre f(z) =e™* sur [—m,7[).
2. Avec f(z) = e*" sur [—m, 7|, o € Z.i, en déduire : Z (Z);(i—f;? et Z 22(7_:&';2).
n>0 n>0
-1" 2 2. 2k
3. Avec f(z) = sup(sin(x),0), déduire : Z 11(7127)—1 Et | sin(z) |= ;(1 + Z %)
n>0 k>1

(Dans cette derniére relation, on ne peut certainement pas dériver terme a terme 2 fois

54.7 Quelques autres relations bien remarquables (...)

Soit a €]0,7[. Et f 2.7 périodique, paire : f(x) = 1 sur [0,a] et 0 sur |a, 7]

sin(n.a) _r—a Casz=07 a=17

cos(n.x) =

pour z € [0, al.

Montrer que : Z
n>1

) _
Et sin”(na) = (r—a)a Ici f(z) =1 sur [0,al; 0 sur [a,27[ ou Th. de Parseval.
2 Y Y Y

)
n>1
—1)".s1 — in (2

Déduire ZMZTG t ZMZE—G (Ligne 1 avec x = a, = = 7).

54.8 Comment avoir f m—périodique ? cf. 54.1.3 (...)
Soit f C°, 27r-périodique telle que Vk € N : aoi+1 = bak+1 = 0. Montrer que f est m—périodique

[Ind : Les coefficients de Fourier de g(x) = f(x 4+ m) — f(z) sont nuls et Th. de Parseval.|

54.9 Pour une certaine série entiére, on montre que a, — 0

Soit la série Zan.z" avec R=1. Si | Zan.z" |I<K M, Vz:|z|<1, montrer que a, — 0
n=>0
Pour 0 <r <1, f(z Z Qp.2 Z an.r™.e"™? est convergente ; a,.r™ sont les coefficients de Fourier

1 2. )
Par le théoréme de Parseval, E | a, |> 72" = 2—/ | f(re?) |*.d6 < M?. On fait tendre r vers 1
T Jo

(*) par Théoréme de convergence croissante : E | ay, |? convergente; donc a, — 0 (n — +00)
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54.10 Deéveloppement en série de Fourier sans intégrales (série entiére)
2.X

1. ler exemple. (a) Décomposer en éléments simples : XT3 2 Xch(a) 71 a>0. Puis:
) . 1 ir 1 Ek>1( 1)*2.cos(k.x)
(b) Déterminer la SF de f(z) = cos(2) + ch(a)’ avec X = e'”. [sh(a) (14 ha )]
cos(nt) _(=D)mem

Dédui N -
(c) Déduire pour n € /0 cos(t) + ch(a) sh(a)

1— a2

1 —2.z.cos(0) + 22
. ) s 1—a? . .

3. Si on développe en 'S.F.” : 6 — , on se sait pas calculer les a,, ; mais avec ce

1 —2.x.cos(0) + x2

qui précede ((*) a voir permutation de symboles... ) : a9 =1, a, =2.2", pour x €] — 1,1[.)

“+oo
=1 —|—2.Z:Ek.cos(k‘.9), |z |< 1]

k=1

2. Autre exemple. Développer en 'S.E.” : x —

1 sin(0) 1 et — ,
4. DSF d _— 7 = —(—5 — = ", 1).0.
SF de 6 — 5 Lo 0) [1—2.x.cos(6)+a:2 22'(1—95.@“9 ) 7Z;)a: sin(n+1).0
1—z.etf

on peut faire 2) et 4)fin ensemble avec 0 2e (1 ze® |

sin(n.x)

vn

tout segment de ]0,2.7[, donc somme g(x), C° sur R\2.7.Z). Existe-t-il f C.p.m., 2.7 périod., de

] . 1
S.F. Z %\/%a:) ? [Rép. Non, avec le th. de Parseval b, = %

6. Si f CO(R) 2.7-périod. avec ¢, > 0, Vn € Z, alors f est la somme de sa S.F. :

2. 2
.S10<r <1, vérifier que  lim Z cprlFl = i/ (1= r).f(t).dt

5. Montrer par une transformation d’Abel que Z est convergente sur R (conv. Unif. sur

ne peuvent étre des coeff. de F.]

Soo L 27 1 — 2r.cos(t) +r?’
. Avec f = cte, en déduire la valeur de 'intégrale ! et avec | f|< M, lil}_l Z crr!® < M
n—-+0oo
—n<k<n

et que la série de terme ¢, + c¢_,, n € N* converge. Conclure.

(La SF est normalement Cv et a méme coeff. de Fourier que f, donc sont égales).
7. Remarque. Si f C°(R) 2.7-périod. : (f est C™) < (nP.c, et nP.c_, tendent vers 0, Vp € N).
2m 2m
54.11 Au sujet de l’inégalité de Wirtinger / | £1? (t).dt </ | £ % (t).dt
0 0

2T
Soit f C! 27 périodique, telle que ft)dt =
p— 0
1. Montrer que : Vn € Z, ¢, (f') = in.cy(f); et co(f) =co(f)=0.

2. Avec la formule de Parseval, en déduire que : /0 ” | £1? ().dt < /0 ” | 12 (t).dt

3. Variante. Pour f C'([0,1],R), f(0) = f(1) = 0, on va trouver : /1 f?>n? /1 Iz
(a) Vérifier que : /01 f'(t).f(t).cot(r.t)d / f'(@).f(t).cot(m.t)dt + . / F2(t).(1 + cot?(m.t)).dt.
(b) Et donc que : —2 /01 f’(t).f(t).ar.cot(w.t)dt+7r2./0 f2(t).cot? (m.t).dt = —7r2./0 F2(t).dt
(c) Puis que : /0 (20 — g2 0) = /0 (' = mcot(mt).f(8))* dt. Conclure et cas d'égalité ?

On peut aussi déduire q.3 de q.2 en posant : g impaire, 27-périod. et sur |0, 7| g(t) = f(t/m).
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55 Espace vectoriel normé (réel, de dimension finie souvent)

55.1 Topologie sur R, R* et obtention de Théorémes (connus)

1. Soit f injective, C°, d’un intervalle I dans R. Sur A = {(x,y) : © > y} convexe, donc connexe par
arcs, ¢ (z,y) — f@) - f(=)
y—x

2. = Preuve du Th. de Rolle gén. : Si f a méme limite aux bords de I, f non monotone si non cte ...

ne s’annule pas : Im(¢) C RT* ou R™* et f strictement monotone.

3. = Preuve du Th. de Darboux : Si f'(z1) <0, f'(x2) > 0, f non monotone; donc non injective ...

4. D’Alembert-Gauss. d°(P) > 1, | P | a un minimum en zq (| P |— 400 en 0o, {z,| z |< r} compact).
Q(2) = P(20 + 2) = co + cm.2™ + 2™ L R(2), co,Cm #0; 0 min. : avec \.d : d™ = —co/cp, finir.

55.2 Topologie sur R, R? etc. Intérieur, Adhérence, Frontiére (...)

. (E,d) est un "espace métrique " ou encore d est une distance si : d est & valeurs dans RY et

dP,Q)=0&P=@Q, dQ,P)=d(P,Q) enfin d(P,R)<d(PQ)+dQ,R).
. Une distance permet de définir les "voisinages" d’un point My : toute partie contenant une boule
ouverte de centre My et de rayon > 0; puis les "ouverts" : voisinages de chacun de leurs point
(0 aussi), et les "fermés" : complémentaires. d dist. = Arctan(d), inf(1,d), d/(1 + d) aussi.

. Plus généralement, une topologie est définie par la donnée des ouverts. Cas "métrisable" ?

0
2. . L’intérieur d’une partie A noté A est 'ensemble des points intérieurs de A : un point est dit
0
"intérieur" si A voisinage de ce point. Montrer que A est le plus grand ouvert inclus dans A.

. L’adhérence d’une partie A noté A est I’ensemble des points adhérents & A : un point est dit
"adhérent" & A si tout voisinage de ce point rencontre A.

_ 0 —— — 0
Montrer que : A est le plus petit fermé contenant A; que CA=(0A4 et CB=CB; que:

O o o _% o0 o0 0o T

ANB=ANB, AUBDAUB. Si A=[-1,00U]0,1[ U {2,3}, préciser : 21, A, A, A

. Frontiére : Fr(A) = AN CA= Fr(CA) donc fermé; Fr(Q) =R = Fr(R\Q), (& =0, @

Ex. CFr(4) = AU Efax; Fr(A) = A\A:  Fr(A), Fr(A) C Fr(A). (ANB =0, B ouvert) =AnT = 0.
A ouvert & ANFr(A) =0, Afermé < Fr(A)C A. [4): AcCB,ACCB, %ﬂ =0..]

3. Une partie A (de R par ex.) est "rare" si A=0. (Une partie finie, Z : rares.) Montrer que :

— , — 0
A rare & Arare & A= Fr(A) & (A dense. Et qu'une réunion finie d’ensembles rares est rare.

4. Distances équivalentes (a.d2 < di < b.da, a,b > 0) = Topol. unif. équivalentes (Id bi-unif. Contmue)
= topol. équivalentes (Méme topologie ou Id bi-continue). Sur R, di et da(z,y) =| 22 — > | ?

55.3 Convexité dans R" par exemple. Si C' convexe, adhérence, intérieur

Montrer que C convexe = C' (facile) C' convexes. [a,b € T, ¢ = ta+ (1—)b,0 < t < 1; ¢c = tac+(1—t)b....|
Si C convexe, a € (07, b € C; montrer que [a, b[C C. [Boule(a,r > 0) C C, Cone(b, Boule) C C...|
Si C convexe, a,b € C, alors : [a,b] C Fr(C) ou Ja,b[C C. [Avec q.1 et le Lemme d’intériorité q.2.|

o o

o o ) o —
SiCconvexe et C#£0: C=C (q2), C=C (siceC,IbeC:c=tb+(1—t)a sit— 1" ;et q.2.)
Donc Fr(C) = Fr(C) = Fr((%’) En général : (8’1 =, 8’2 =0)=C4 GCQ =0. [SiB(a,r>0)C CL1UCs

et Cz =0, on peut trouver n + 1 points affinement libres de C1 N B ; comme C7 convexe, on en déduit : C1 #10.] Enfin :

5. Aff(C)=€&= C # (. €= {Z )\kmk/z At ={z+ Z A (xg — x)/z Ak} = 3z, z dans C affinement libres; etc.]

-~ W =
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55.4 Suites et topologie en espaces métriques. Cf. aussi ’suites de Cauchy’

1. Montrer que : a est adhérent & A < Il existe une suite d’éléments de A convergeant vers a.
2. Montrer : A fermé (vide aussi) < Toute suite de A convergente (limite finie), converge dans A.

3. a est dit valeur d’adhérence de (up)p>0 si V V voisinage de a, 'ensemble des indices n : u, € V
est infini. Valeurs d’adhérence de (—1)" ? d’une suite convergente ? de ((—1)".n) dans R ?
(Par contre une suite bornée avec une seule valeur d’adhérence converge vers elle ; avec la compacité).

4. En espace métrique, on peut définir de maniére équivalente (*) la compacité par la propriété de
Borel-Lebesgue (avec les recouvrements ouverts) ou de Bolzano-Weierstrass (avec les suites).
(B-W) est, au choix : De toute suite de A, on peut extraire une sous-suite convergeant dans A.
ou : Toute suite de A posséde au moins une valeur d’adhérence dans A. (() est compacte)
Exemples de compacts : Toute partie finie. Segments de R (par dichotomie). Rbarre = [—oo, +00o]. Une
partie fermée d’une partie compacte est compacte. Les compacts de R (R™) sont les fermés-bornés.

Mais dans E = C°([0, 1], R), ||...||cc, la boule unité fermée Bj est fermée, bornée, non compacte :
fn valant 1 sur [1/n,1 —1/n], 0 en 0 et 1, affine par morceaux : sans valeur d’adhérence dans By.

5. (*) Si f uniformément continue sur ]0, 1[, montrer que f a des limites en 07, 17. (Suites de Cauchy.)

55.5 Partie ni ouverte ni fermée de M5(R). Image de fermé/ouvert !
1. A={A e M3(R) : A" bornée } est ni fermé [((1) 2), 0 < a < 1;puisa=1| ni ouvert [(1—50‘ 8) ]

2. L’'image de F fermé de C par P € C[X] est un fermé (si P = C'te, clair). Et d’'un ouvert est un
ouvert si P # Cte. [a) Si P(zy,), (2, € F'), converge vers Z € C et P non constant, forcément (z,)
bornée ; compacité : on extrait une sous-suite converg. vers z € F. Et Z = P(z) € P(F) forcément.
b) Prenons P unitaire, b = P(a), z € D(0,¢); si P(X) — b — z s’annule en u;, Pla — X) —b— 2
s'annule en a — u;, Aot I(a — u;) = —z; donc Ji :| a — u; |< €/™; ainsi D(b,e) € P(D(a, /™))

55.6 Au sujet des diverses normes dans un espace vectoriel (...)

1. Caractérisation de ’équivalence des normes avec les suites.

Montrer : [T a,b:a.N(w) < N'(u) <bN(u)| < Mémes suites convergentes et mémes limites.
—

(Pour < : Sinon, 3, # 0 : N'(Wp) =2nN(Uy); Vy= \/ﬁ;\Lfigﬂ’n) est contradictoire).
Note. Dans R[X], (X") tend vers O pour les 2 premiéres normes; vers 1 pour la derniére !

_Ok | P*(0) | a
ma:v(k+1)k>0, Z ") et maz(] P(1) |’—k—|—1)k>1'

2. Norme et boule unité. Soit C' une partie convexe, fermée bornée, symétrique / O, contenant une

boule ouverte de centre O. On pose E, = {\ > 0, ; € C}; jlz) =inf(Ey).

(a) Montrer que E, non vide. Puisque: A€ E;, p€ Ey = A+ pu € E,y,. Puisque:

(b) Eor =| a| .E;. (casa=0 7) Conclure que j est une norme de boule unité fermée C.

3. En dimension finie, dans E = R? e.v.e. orienté usuel, série (normalement) convergente dans £(E).
Soit f(W)="d Au. Onposea=|al| #0. Montrer I'existence de : = exp(f) (ce qui est :

sin(@) 1= ng(a),fz; ror* =1Id ...)

4. En dim. infinie. Norme dans E e.v. des suites réelles bornées : soit ||ul| = sup | u, |,n € N

1 ) . )
r= Z Efk) Puis préciser la rotation r. (r =Id+

Pour f:uw— v avec v, = up+1 — u,. Montrer que f est continue et calculer sa norme.

5. Applications contractantes en dimension finie. (Cf. espace métrique complet et suite de Cauchy)
(a) Dans F de dim. finie, soit f contractante : | f(y) — f(z)|| < k.|y — z|| avec k < 1.
Montrer que la suite (uy,) : up+1 = f(uy) converge; de plus vers I'unique point fixe de f.
(b) Dans R[X] avec f(P)=1+ X.P/2, montrer que (uy) peut diverger.
6. Cas de compacité. Si K compact, f: @ # v = ||f(W) — f(V)| < |7 =7, 3'i:f() =1
Ind. u +— ||f(¥)— | aun minimum en I. Sinon nul : ||f[f()] — f()| < ||f(w) — || ...]
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55.7 (*) X — AX, Ae M,(K). Norme subordonnée (...)

Une norme matricielle vérifie | B.A| < ||B||.]|A||. Exemples : normes subordonnées (mais ici ||Id| = 1)
sup|| f (@) <1 ou bien le plus petit & : | f(@)|| < k|7 Alors [lgof|| < Igll-IfIl et |f5[l < IIFII*.

1. Sion prend || X||oc = max(| z |) et ||| ... ||| la norme subordonnée : ||| A |||oc= sup; 3 [ ai; |)
2. Si on prend [|X[l; =3"(| 2 |}, montrer que : ||| A llh= sup; (% lags = Il A° [l
k i
3. Sion prend | X2 et A symétrique, montrer que ||| A |||2= maz{| A |, A valeur propre}.
Généralisations. A normale, ||| A ||l2= p(A); et YA € Mu(C), ||| A ||2=]]] A*.A ||la= p(A*.A) =||| A* |||2.

) s JAX|?P  X*A*AX
En effet : ||| A||3= sup BE = SUp——-~

= p(A*A) et les valeurs propres de A* A sont positives.

4. Vérifier que N(A) = sup(| a;j |) est une norme (M matriCielle> A= < !

-1 2 2

non subordonnée 1 1 )’ N(AT) £ N(A)".
5. Etudier la norme matricielle de Frobénius (ou de Schur) : (T'r(*A.A))"/? (provenant d’un p.s.)
(C-8) : | eij P< ||ILi de BJj5.|C; de All3 =N (C)* < N(B)*>.N(A)*. Non subord. : N(I,,) = v/n.

6. Exercices : p(A) < ||A]| si norme matr. A3 < I|A]|1- | Al o M2 < |M||F < Vn.||M||s.

Solutions : (1) Si Av = A, | A.|||v, ..., ||| = ||| Av, ..., Av||| < I|All v, - vll]. (1) = (2) avec A*
(3) ||M]|3 : plus grande vp. de M*M (dite carré d’une valeur singuliére > 0 de M); | M|%=leur somme.

55.8 Soit F de dim. finie, f € L(F) : ||| f? ||| bornée 52.11
1. Montrer que E = Ker(f — Id) & Im(f — Id).
[Siz=f(z), 2= f(t)—t, x= f*(t) — f(t)... donc (télescopie) n.x = f*(t) —t; forcément z = 6)]
2. Pour W € E, calculer ngrfoo[ﬁ—i-f( @)+ ...+ 7N (W)]/n. |Proj. sur Ker(f —1d) // Im(f —Id).|
3. Si dim(E) infinie, montrer que c’est faux : P — X.P € R[X] avec ||P| = max(]| ay, |) vérifie
Ker(f —1d) = {6}} et Im(f—1Id)={Q:Q(1) =0} sont non supplémentaires.
. Pour A € M,,(C), A™ bornée & | A | <1 etsipueU, dim(E,) = w(u).

. En e.v.e. si projecteurs orthogonaux ou endomorphismes orthogonaux : somme orthogonale.

55.9 Hyperplan non fermé en dimension infinie; cas : H fermé

1. Dans E = R][z], soit la norme : ||Zak3:k|| = mazy | ar |. (Nombre fini de coefficients non nuls)
et By = {P € R[z] : P(1) = 0}. Montrer que E; = E. (Calculer lim P,, P, = 1—7 > X",
1<k<n

2. Soit ¢ une forme linéaire. Montrer que H = Ker(yp) fermé = ¢ C°. [Autre sens : vrai et connul

Corrigé de = Soit ¢ # 0, ¢(7) = 1. Comme E\H ouvert, Ir > 0: B(7',7) C E\H Par transl.
de vecteur — 7', B(O,r) C E\Hy, Hy = — 7 + H. Montrons : Yu € B(O,r), | p() |< 1; ceci
suffira. Sinon ¥ = W /(W) est dans B(O,r) et vérifie ¢(v) =1: qui contredit B(O,r) ﬁHl 0.

55.10 Dans M, (K) : montrer que exp(A) est un polynéme en A

En général : si Z ar,.A¥ une série entiére convergente. Montrer que S (somme) est un polynome en A !
Corrigé. Soit d = d°(IT), polynome minimal de A. F = {P(A),d°(P) < d— 1} est un sous e.v. de M, (K)
de dim. finie. VQ € K[X]: Q(A) € F. Si S, = > A" S, € F, fermé; sa limite S est dans F.

0<k<n

55.11 Distance a une partie A # (), en e.v. normé E (...)

1. Soit dy(w) = inf{||w — @|, @ € A}. Montrer : | da(wW) —da(?) | < |W = 7. (da C°sur E).
2. Si A est convexe, montrer que d4 est une application convexe.

3. Si A est fermée et E de dim. finie, montrer : 3@ : da(W) = | & — @' ]||; @ est-il unique ?
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56 Courbes de R?, R®. Fonctions R — R"

56.1 Cas R? : centre de courbure, C.I.R., développante

Rappel de ces notions sur un exemple.

— Prenons le cas d'une cycloide I', décrite par un point A fixé & un cerceau de centre ) roulant sans glis-
ser sur un plan, le point de contact étant P. La normale a la cycloide en A est la droite AP car P est
le centre instantané de rotation (CIR) du solide cerceau. Mais P n’est pas le centre de courbure !

Soit le solide AXY (AX Tangente a la cycloide en A, A lié au cerceau et décrivant la cycloide) :
le centre de courbure de la cycloide est le C.I.R. de ce solide-ci (connu) et cf. ce qui suit.

— Développantes : Le centre de courbure C' en un point M d’une courbe I" est tel que M = C + )\.7, t
: dM L . d
en C € C, en exprimant que %, o sur C, est colinéaire & 7, on obtient d—/\ =—-loul=—0+ )\ ou

- . g
bien 0+ CM = Cte avec o = Arc-CoC. Si MMy = cte, M et My décrivent des "courbes paralléles"
appelées : ‘développantes de C. ‘ En imaginant un fil fixé en Cy, épousant 'arc Cy-C', de longueur C'te

on voit que |C est le CIR du solide (M, —7, —7), celui-ci roulant sans glisser sur C.

: A = — rayon de courbure sur la développante ! D’ott Arc-C1Co = Ryry — Ryry -

y = Rsin(0) y = R(sin(0) — 0.cos())
Voir les points stationnaires de I' (cas précédent); et en général 7

— Exercices. Vérifier qu'une développante de cercle { v = Reos(0) est I': { T = R(cos(0) +0.5in(0))

R(t —sint) teR

RO=po = = soit 0§ = ﬂ,{ﬁ’
™
2
AXY (dont C est le CIR) tourne de d;; ce qui fait que CA =2.PA! De plus, soit A’ le point

La cycloide { -
y

— Retour a la cycloide initiale

_—
I’élément de longueur est ds = PA.df d’une part. D’autre part PA, PS) =

— g(w) et donc le solide

SN .
diamétralement opposé & A : ona A'C =2QP = —2R7j. Ainsi: C décrit une cycloide translatée

de la cycloide initiale de vecteur m.R7 — 2R ) (car A’ décrit aussi une cycloide) !

Autre solution géométrique : Soit @) diamétralement opposé a P.

A'Q est tangente en A’ & son lieu (car tangente | PA’); et paralléle & AP. Si I est le sym. de A par
—
rapport a P, 67)3 — 20P = A'T : I translaté de A’ décrit donc une cycloide et Al

est tangente au lieu de I (car QA’ tangente au lieu de A’) : I décrit donc 'enveloppe des normales en A !

— Remarque. Inversons la figure haut-bas; les arches de C tiennent lieu de joues donnant un pendule

cycloidal T'; sa période est indépendante de amplitude des oscillations ! (Th.dd & Huyghens.)

— Exercice. Une caustique par réflexion.

Des rayons venant de —oo dans le sens des y se réfléchissant sur la cycloide en A passent par 2.
La caustique est donc I'enveloppe des droites (A4,Q) : X.cos(0) — Y.sin(8) = R (6.cos(8) — sin(9)).
Montrer par calcul que leur enveloppe est une nouvelle cycloide déduite de l'initiale par Hom(O,1/2).
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56.2 Courbes de R? : exercice sur les développantes
Soit I le centre de courbure en M € C; P €I', I développante, sur la tangente en M.
1. Soit @ le milieu de [MP]. Dessin ? Cas particulier des développantes de cercles ?
2. Montrer que la tangente en ) a la courbe décrite par (@) est perpendiculaire a (PI).

— — — — — —
(s abscisse curviligne sur C; 2.0Q =2.0M + (k—s)T ;et PI =R.N — (k—3s)T.)

56.3 Exemple de courbes de R3. Plan osculateur

x = cos*(t
1. Soit t+— { y= cos(t).s(ir)a(t) la "fenétre de Viviani". Projections sur les plans de coordonnées 7
z = sin(t)
[On dit que M est bi-régulier si F'(t), F”(¢) libres : ils déterminent le plan osculateur en M (t)].
2. Cas général. On suppose que t — O—]\/[(t) € R? est telle que FP) (to), ler vecteur non nul; F@ (to),
ler vecteur non colinéaire au précédent. (Mo, F®)(t), F9(ty)) est alors appelé plan osculateur.
(a) En général, F'(tg),F” (to),F® (to) base : vérifier que la courbe traverse le plan osculateur.

(b) Et que, pour tout autre plan tangent, la courbe reste localement d’un méme cété du plan.

56.4 Courbure et Torsion pour les courbes de R*

—

dT dT N

1 — — = .
(a) Courbure dans R3. Par définition R ||—|| >0et R B =T AN : vecteur binormal.
s
-~ — — — — —
o . . 1 dN — AN T B dB  -N|_ .
(b) On définit le rayon de torsion algébrique =5 B ; alors - R + et —5 = | & Voir.
Certains prennent le signe opposé pour 7'
2 h2 2,2 h2
1. Hélice circulaire 56.5. Montrer que R = rw +h. T = Lt > 0, si h > 0. [Note : les courbes

rw? h.w
de R? tournant dans le sens trigonométrique ont un rayon de courbure R > 0]. Vérifier aussi que

— = — —
angle(k,B) =cte=7/2-V, V= (T, k). Lieu du centre de courbure ? (autre hélice).

. - = . = dvo VP

2. En pratique utiliser e les formules de Frenet si T' assez simple ; e ou V = . T I' = R T+— i N ;
7 = ’U =g 3 . .
VAT = 7 B : R, B N=BA T, S = *T+*N+ﬁB (suraccélération) : 7 avec le produit
mixte [‘7)7 ?7 ?] ‘R— %7 T M Si_)dﬁ z_)ang_l)e de_2> biniv:malis procﬁesz,’T_iM F_:} Z AT
[V AT [V,T,S] \dw =V A Sdt,w AW +dw) = |[w|?dBT = [V, T, S|Vt ...

3. En général : sphére osculatrice & une courbe ! ‘Son centre P est-il centre de courbure 7 non ... ‘
— — — - 2 D) —_— D)
Sol. Posons MoPy = AN + u B ; avec s au lieu de As : POM — PoM§ = 2Py Mo . MoM + MoM* =
As?  AsPdR p.s® 9 3 22N s -T 1dR— B
-t —.— — e [MoM =sT — (= — = —N+— 3% -
7t amas srr To e BN =T+ S e~ g N+ )+ 577

. dR . . . d
Choisir A= R et p = T.d— ! Tangente au point P en écrivant maintenant MP=RN + Td—R§
S s

— —

—=[=+—(7—)]|B.| Et = —[R°+T(—)|=2.—T.[=+—(T — ou ¢ [ ixe

ds [T i dS( ds )5 Et ds ds[ T ds /] ds [’Z'+ds( ds ) (:> Rayon ﬁxe-)
4. (*) Soit O, M, N, 3 points d'un arc C* d’un e.a.e. Montrer que :  lim OMONMN _ 4.Rp.

M,N—0,0 AOMN)

(Paramétrage normal : OM = °7 ).

[Voir aussi le cas OM N sur un cercle !

5. (*) Soit Mi(s) = M(s) + /\(s).ﬁ(s) ; on suppose que courbure ¢(s) et torsion #(s) ne s’annulent pas.

i &M
dt ( dt dt?
AN | | est confondue avec celle de M, montrer que : A = Cte et A.c(s)+ k.0(s) =1 ou k = cte.

Si la normale principale de M; [qui est L & la tangente et voir VM, ¢ : ) colinéaire
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56.5 Définition, caractérisation des hélices [corrigé]

1. Définition. 3% (unitaire) fixe tel que : (HI) (?(s), ?) =V fixe. (g —V : angle de I'hélice)
x = r.cos(w.t) = r.cos(d)  aussi k r
. V = —, t V = -, T =
e Hélice circulaire, pas 2mh y=rsin(wt) =r. sm(&) idem CO;( ) K, an{V) k
w _ _h Npwe] S -
z=ht=Fk0;k= K e+ cos2(V)  k.sin2(V)  cos(V).sin(V)

2 i
Lieu du centre de courbure 6 +— (chos(O), Tksm(ﬁ), k.0), autre hélice circulaire H' et H” = H !

(la notion de ’développée’ est plus compliquée ici ; en général, 2 droites de R? sont non coplanaires, pas d’enveloppe de droites)
r =m.e ".cos(t)
e Une autre hélice { y=m.e " .sin(t) ici tracée sur le cone de révolution : 22 + % —m?2.22 = 0.

Z=e€
x =31 2\2 — 77 2
1+ 2t k —2t,1 —2t*,2¢
e 3¢me hélice { y = 3.t2 IciR:T:M;anglezavec s ;ﬁ:( ’ 5 )
L _94 2 4 V2 1+2.¢
2
e En général, axe Oz; si o absc. curv. dans Ozy, x = x(0),y = y(0),2 = p.o+q; cos*(V) = %
p

Donc ds? = do?.(1+p?); s =k.o, k=+/1+p?; s:g(z—q). ‘Ainsi:

. . . L. — = . —
et inversement ici, en dérivant les 2 membres /s, ona: K.T =1; |hélice d’axe K/(a,b,c).

Par ex., si = = a.t, y = 3t2, z=~t3, a-t-on une hélice ? ds? = (adx + bdy + cdz)2 conduit &
b=0 et o?+46%> + 9%t = (a.a + 3c*yt2)2 oud a=1,c% =1, 6cay =48%; ou encore A

2
c=¢ 3e.ay =202 Axe= (1,0,€); v= b : on retrouve, en particulier, le 3¢ cas ci-dessus.

2. Autres caractérisations.
N

(H1) = (H2) La normale reste perpendiculaire a s [Dériver ( k T = cos(V).]

(H2) = (H3) La binormale fait aussi un angle constant avec s

dB 1
[? d,s’ T( ]’{7 N) =0 donc (?ﬁ) = cte et angle (k’ §

~—

constant. |

— =

—
.N)=0donc (k.T) = cte.

=|

(H3) = (H4) rapport g constant. [Avec ( ) = cte, dérivant : (

= o — . _cos(V) sin(V) |R _ ou + si\ | m )
Si k = Tcos(V)+ Bsin(V), 0= i T T = cot(V). (autre ?> Th. de Lancret.|
R R — —
(H4) = (H1) (J. Bertrand) [Ayant 7= cot(V), V = cte, soit k = T cos(V)+ Bsin(V); alors ...
d? — — — — —

I 0 d’ou k constant. Puis (k.7) = cos(V) donc (k, ?) = cte. D’ou équivalences.|

‘ ,6, 1 2z =p.0+q ci-dessus, p = cot(V) = tan(a), a = g —V] et HS:
2

d
d—si =0) & ds = cte.\/dz? + dy? = cte.do, o abscisse

/1 2
curviligne de m(z,y,0) < dz = cte.do noté : dz = p.do, ds =+/1+p?.do, ds= %.dz.

. H5,6,7 (Hélice d’axe ?) & dz = cteds (

. Egalement : H8 ‘ Hélice < (R/r = cte, ’T/r = cte) ‘ ot r est le rayon de courbure de m(z,y,0).
—

il - - = 1 —~ dT 1dt N 17 — _ »

:>E:t—|—pk‘,T (t —I—pk‘)E \7%:\/.E:\—/7:>N:n;[onach0181
1

r > 0 avec une bonne orientation de o] — = (14 p?); et ﬁz?/\ﬁ:—(?—kp?)/\ﬁz
— r
1 - iB _—p@w  -N —pN T 149 /
—(k —p.?) = —:—p—; .—:—p—; donc — = iy Et < :c’est (H4)
v du v T VA r P

Remarque. (Puiseux) Si R et 7 sont constants, on a une hélice circulaire (avec (HS).)
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3. Hélice sur une surface de révolution : x = r.cos(), y = r.sin(f), z = f(r); courbes 6 = 0(r).

(a) Vérifier que : cos*(V) = " T29’];/(27F;)4— 20k (%)

. . g 1
(b) Par exemple, si f(r) = L cone de révolution 22 + y? = m?.2%, trouver que : k;.d— ==;
m T T
k.0 =lIn TL et donc : x = ro.e"%.cos(0), y=ro."?sin(), z =roe®?/m (don 1.Ex 2).
0
Les projections orthogonales sur Oxy sont ici des spirales logarithmiques.

2
(c) Cas f(r) = ;— . hélices tracées sur un paraboloide de révolution (*).
p

2
L’égalité (*) donne : (§)2 _ tan vy 1
r

P
. Lci (**) vérifier que c’est I'équation diff. des développantes de cercles, qui sont ainsi les proj .

sur Ozy : si = R(cos(t)+t.sin(t)), y = R(sin(t)—t.cos(t)); = tan(d) = %

r? = R*(1+t%); dou L _go— 2 dE mais cos?(0) = _ r.dr = R%(t.dt)
N ’ cos2(6) a2 COR2(1+t2)) T '
t.dr do t? do 11 P
donc: df = — et (——)°=—; finalement (—-)*=— -, R= .
onc et (5)7 =5 finalement (25)* = 75—, (V)
. D’autre part si on prend le cone circonscrit de 1/2 angle V' & son sommet (0,0, —z,), on a :
r r
tan(V) = — P est exactement le rayon R voulu, celui du cone circonscrit !

2zT:W:r

56.6 Courbe tracée sur une sphére; une surface (...)

d? dR dT
1. Soit I" un arc C*°. Montrer que : I est tracé sur une sphére < T.—R —R— + E = 0.
ds?  ds ds T

2. Montrer que si le centre de la sphére osculatrice est fixe, la courbe est tracée sur une sphére fixe.

dR
3. Montrer que : (T est tracé sur la sphére de rayon a) = R? + 72.(d—)2 = a®.  Réciproque ?
5
. — dﬁ —
Solution. a. I' tracée sur une sphére de centre Q2 < QM (s). - = 0< FJu,v,C°: QM =
S
u(s)ﬁ(s) + U(S)E(s). En dérivant, on obtient : T =u.N + u(—% + ?) +0.B . %

Donc u=—R,v=+T., u=—T.2 et I'égalité. Réciproque vue en 56.4.4, refaite en b).

d
b. Si la Sphére osculatrice 56.4 a un centre fixe, avec a) : R*+ T2(d_]:)2 = cte = a®> = PpM? !

Y = dR— e 1e : :
c. Ayant QM = —R.N(s) — ’T.d—B(s), on en déduit I'implication. Réciproque fausse : hélice
s

circulaire & pas constant (on a seulement M P? = cte) ; mais elle est vraie si dR/ds # 0.

4. Des remarques sur la "fenétre de Viviani" 56.3 : I' z = sin(2.t), y =1 — cos(2.t), z = 2.cos(t).

(a) Vérifier que I" est inclus dans une sphére de centre O.

(b) Puis que I' est inclus dans le cylindre : 22 + (y — 1)? = 1.

(¢) Puis dans le cylindre 2.y + 2> =4.  Puis encore que :

(d) a.(z®+9y*) + .22 +2.(B—a)y—4.8=0 et,avec a = —f = 1, que T' € Céne a préciser.

_
5. Courbe M ?, ﬁ, B) tracée sur une surface | — (¢t = T,g=7A ?, 7); ¢ normale géodésique.
1n g g g

0 —vg —m\t
Courbure normale, géodésique, torsion géodésique (1/R,,1/R,,1/T,) vérifient : [~ 0 —74]7.
Tn Tg 0 w
dt /ds dg/ds d7 /ds

Triedre de Darboux-Ribaucour (N, %) = ¢ : N = g sin(p)+ 1 cos(p) : Yn = v.cos(p),vg = v.sin(p).
B = —gcos(p)+msin(p): 7y = T—i—Z—f. Cy, C, c.de.courbure-sections M, ?, w M, ?, N : cercle de

Meusnier p = po.cos(go). vg = 0,V M: géodésique ; 7y = 0,VM: ligne.de.courbure ; cos(p) = 0 : ligne.asymptotique.

134



57 Fonctions R? — R". Continuité. Surfaces

57.1 Les quadriques; cf. formes quadratiques

1. R? : Voir I'étude des coniques dans R? affine (euclidien). [En particulier : centre de symétrie].

2. R? : Ellipsoide ; Hyperboloide a 1 ou 2 nappes; Paraboloide elliptique ou hyperbolique ; Cone de
degré 2; Cylindres : parabolique, elliptique ou hyperbolique ; ou connu (ex : point w2y 422 = 0).
57.2 Les cylindres (plus généralement)

—
1. Un cylindre est donné par (u,v) — M (u,v) = m(u) + v.Kp ot m(u) décrit une courbe. Dessin ?
2. Vérifier que le plan tangent en un point régulier du cylindre contient la "génératrice" de ce point.

3. Vérifier que l'on a un cylindre < ’équation est du type f(P,Q) =0 ou P =0 et @ = 0 sont deux
plans sécants selon une droite donnant la direction du cylindre. [P = X\, @Q = u : droites paralléles].

57.3 Les cones (plus généralement)

—
1. Plus généralement, un cone est donné par (u,v) — M (u,v) = Q4+ v.Qm(u), Q étant son sommet.

2. Vérifier que le plan tangent en un point régulier du cone contient la génératrice de ce point.

. . . . P
3. Vérifier que 'on a un coéne si et seulement si I’équation est du type f(}—%, %) =0o0uP=0,Q=0
Yy z

R = 0 sont 3 plans sécants (au sommet du cone). Exemple : f(=, =) = 0, cone de sommet O.
r' T

Ex. Cone se sommet Sy circonscrit a 22 4+ 32 4+ 22 — 2Rz =0 ? [zxo 4+ yyo + 220 — R(z + 20)]* =
(z2 4+ 92 + 22 — 2R2) (2% + y* + 22 — 2Rz). Ombre au flambeau portée sur 2Oy ? Faire z = 0.

57.4 Les surfaces de révolution (...)

1. Une surface de révolution est obtenue en faisant tourner une courbe I' autour d’une droite A.
2. (a) Vérifier que zy+yz+zr—x—y—z+1 = 0 est une surface de révolution [avec 01 = x+y+z =P
oy =xy+yz+zzr, So=2>+9y*+22=%, amrivera: P> —% —2P +2=0.] Dessin ?
(b) Montrer que : (z —y)?> 4 (y —2)?> + (2 —2)? =1 est un cylindre de révolution a préciser.
(c¢) Vérifier de méme que det.circulant(z,y, z) = 0 est aussi une équation de surface de révolution.

3. En général montrer qu’'une surface de révolution a une équation du type f(P,X) =0 ou P = 0 est
I'équation d’un plan, 3 = 0 'équation d’une sphére (’axe passant par son centre, orthogonal a P).

57.5 Rappels au sujet du plan tangent (...)

x = z(u,v) 8—1"2' a—F)’
Si <u> = F(u,v) =|y=y(u,v) | C!vérifie —(u,v), =— (u,v) libres, on dit que M (u,v) est
v z = z(u,v) du v
régulier; ces vecteurs définissent le plan tangent en M.

Si la surface est définie par f(z,y,z) =0, f(My) =0, f C* avec gradf(My) # 6), le plan
tangent en My est L gradf(Mo) = (f,(Mo), f,(Mo), f.(My)). Equation ? Cas de la sphére ?

57.6 Position de la surface par rapport au plan tangent

1
On suppose ici : z = p(z,y), ¢, C%. Sachant que (a+ h,b+k) = p(a,b) + p.h+ q.k+ §[r.h2 +2s.hk +

t.k%) + o(h? + k?) avec les notations de Monge et la formule de Taylor-Young a P'ordre 2, en déduire que

— Si s —rt <0 : la surface au voisinage du point est sur (si 7 > 0) ou sous (si 7 < 0) le plan tangent.

— Si 2 —rt > 0 : la surface au voisinage du point traverse le plan tangent.
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58 Surfaces particuliéres (*)

58.1 Surface réglée M(u,v) = m(u) + vG(u), G(u) vecteur ne s’annulant pas

1. Vérifier que le plan tangent en un point régulier d’une surface réglée contient sa génératrice.

2. Et que cylindres, cones et I’hélicoide droit x = v.cos(u), y = v.sin(u), z = h.u, sont "réglées".
58.2 (*) Les surfaces réglées développables (dont cénes, cylindres ...) 59.5

1. Si génératrices }f zOy : ¢ = av + a,y = bv + 3,2 =v; a,b, o, § fonct. de u. Plan tangent Py :

Y-bZ-F=m(X—-aZ—a),m= Vet B g homogr.(z) indique que Py pivote autour de la gén.

a'z+ o

Si 2 — oo, plan asymptotique relatif a la génér. : (X —a) —a' (Y — 8) + (ba' — ab')Z =0, P,.
Quand Pj; L P,, on dit 'point central’ de la gén. et leur ensemble est ’la ligne de striction’ de S.

(S) développable si en tout point rég. d'une gén. quelc. Py est le méme (< o'b’ — 3'a’ = 0). 30.5.

2. Sigén. || zOy, x = v,y =m.w+mn,z=h;m,n,h fonct. de u. Pprs:Z—h= W (Y —mX —n).

m'x +n’/

P, (x — 00) : Z = h; plan central Y = mX + n obtenu si Zcentral :_rfl

Y = mX + n : la ligne de striction n’est ici que son contour apparent, || Oz. (m = cte : cylindre).
Une surface réglée a plan directeur dont les gén. rencontrent une droite fixe est un "conoide" (droit
si Droite L Plan); ci-dessus n = O, donc : z = gp(%) Exemples : I'hélicoide droit 58.1; et (**) le

conoide de Pliicker : surface réglée, de degré 3, z.(z® 4+ 9?) = a.(z® — y?); aucune développable.

= Zeny., dans Oxy des dr.

3. Ex. Sib58.1et m/(u),a(u) libre (Si “éc), montrer que : (la surf. est dév.) < T_ri/(u),a(u),a)’(u) lice.

apres

58.3 Surface engendrée par les tangentes 4 une courbe gauche C? biréguliére

1. SiT : u+~ m(u) est bi-réguliére, la réunion des tangentes est (S) réglée : (u,v) — m(u) + v.m’(u).
Alors, plan osculateur=plan tangent, hors de I' oul les points sont non réguliers. S est développable.
2. (*) Réciproque. Soit (S) développable : (u,v) — m(u) +v.G (u) avec ' (u),G (u) et G (u), G'(u)
libres [cone, cylindre exclus|. (S) développable : m'(u) = /\(u)a)(u) + ,u(u).a)/(u), A\ p O
oM oM
. Avec deta(u)ﬂa/(u)(a, E) , -
de reboussement" A : u — Mu, —p(u)] = m(u) — p(u) G (u) = g(u), env. des droites de S :
=
. Vérifier que : g’ (u) = [AMu) — i/ (u)].G (u), et g7 sont libres. Et enfin que :
. (9') engendrée par les tangentes a A (u,w) — g(u) +w.g"(u) coincide avec (S). Avec hyp. :
Si (S) C?, (S) développable < 3 A tracée sur S : S = U des tangentes a A. 59.5.

vérifier que (u,v) non régulier < v+ u(u) =0. On dit "aréte

58.4 Cone et cylindre circonscrit a une surface d’équation f(z,y,z) =0

N
1. Contour apparent cylindrique dans une direction donnée. Cylindre circonscrit. U= av+b7 +ck
donnant la direction, exprimer que 'équation en ¢, f(x + a.t,y +b.t,z+ct) =0, (x,y,2) € S,

—
a une racine double (droite tangente). Exemple avec la sphére ? Cas ou la direction est k ?

Remarques : . Cas d’une quadrique : le contour apparent est une courbe plane, donc une conique.

« Si contour apparent de direction OZ_) (dit "horizontal"), de f(z,y,2z) =0 : le plan tangent est
paralléle & Oz, d'ou grad f(M) L k : f(z,y,2) =0 et f.(z,y,2) =0. En project. sur 2Oy
(horizontale) éliminer z entre ces équations. De méme, on dit "frontal" si direction est Ox.

. Si on a la surface en paramétrique M = F'(u,v), on exprime que : (U,8F/ou,0F/dv) est lice.

2. Contour apparent conique issu d’un point donné 2. Cone circonscrit. Exemple avec la sphére 7

a X=a+Az—a)
Si Q (b, poser Y =b+Ay—b) et exprimer que I’équation en A\ a une racine double. 57.3.
c Z=c+Az—2¢)
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58.5 Equ. différentielle des lignes de niveaux ; et de plus grande pente

1.

Les lignes de niveau d’une surface S : ses sections par les plans horizontaux ; lignes de plus grande
pente : les trajectoires orthogonales. Si z = ¢(z,y) et (notations de Monge) p = ¢.(z,y), etc.

Lignes de niveaux z = ¢(z,y) et z = 2y donc (35) col. & <_pq> ou z=p(x,y) et p+qy =0.

. Lignes de plus grande pente : z = ¢(x,y) et (dz,dy, dz) col. a (—q,p,0) A (p,q, —1) = (p, ¢, p* + ¢*).

Il suffit de dire :  z = ¢(z,y) et <3Z> col. & <Z> . ou  z=o(x,y) et py —q=0.

Deux exemples. (P.H.) 2pz = z? — y2 ?  rép: 2pz=a’— y2; zy = p. 13.3.

Cylindre : = cos(u) + v.c, y = sin(u), z =v.y 7
proj. sur Oxy des L.de p.g.p. : tractrices x —xg =In| tang | +cos(u), y = sin(u) !

A7 Ty I 2 "2 2 2
. Hélices : z = ¢(x,y) et angle V = cte entre dM et k. [1+y~+ (p+ qy')?].cos*(V) = (p+ q.y/)

ou [1+y?+(p+qy)sin®(V) =1 +y?) 0 X¥(Q+y?) =p+ay)’ et 2=p(y).
Loxodromies du grec loksos=oblique, dromos=course : coupent les lignes de niveau a angle constant.
[Sur terre, donc avec les méridiens et le pole]. (p 4+ ¢*)[1 + 42 + (p + q')?].cos*(a) = (py’ — q)?
0° + @) Jsin?(@) = (p+ ay)*.(L+ P> + ¢%); (' — @)*tan®(@) = (0 + ¢.4)*.(1L+ P> + ¢*).

[Hélices et loxodromies coincident dans le seul cas des surfaces cylindriques verticales. L.de p.g.p. || Oz.]

58.6 De la formule de Laguerre au 1/2 plan de Poincaré 4.6, 29.11

—

1. Soit A et B sur un cercle C. Si U € C, 'angle (U, A), (U, B) est indépendant de U ; de méme le

. ‘Soit le demi-plan H : y > 0;

birapport [UA,UB,UI,UJ], I,J points (cycliques) du cercle : il y a un lien ! Si O centre de C :

—

(U, A),(U,B) = ;—il.ln([UA, UB,UI,UJ|) (

I, J : points cycliques — B —
UI,UJ droites isotropes et (0,4),(0,B) =2.(U, 4), (U, B).

Ayant A, B,I,J € Cercle, on peut dire aussi birapport [A, B, I, J] : indépendant de U € Cercle.
D’ou: (UA) L (UB) < [UA,UB,UI,UJ] en D.H. (formule de Laguerre, "candidat a 'X" !)
[Car la droite UA : y = z.tan(a) (ou y = z.tan(a) + a.t, dr. paralléle en coordonnées homogenes)
et UB : y = x.tan(B) coupent la droite de I'infini contenant les points cycliques I(1,4,0), J(1,—1,0)

aux points (1,tan(a),0), (1,tan(8),0) : [4,B,1,J] ZE:ZLLZEZ; : :z:iﬂgi = e2iaf)= 7240

si A, B € H, on nomme "droite A, B" le demi-cercle (ou demi-droite

1 Oz) passant par A, B centré sur Ox (exclu). Si z,2' € H, soit dy = k. | In([z, 2/, ,w]) |; a,w
bords du % cercle, dj(i.t,it") = k. |in( §)| C’est une distance ! (**) En effet : avec un D.L.

[z, z4+u, o, w] :1—u.< LI >—|—0(u) d'ou: di(z,z+u) ~ k. [a=w| |u| ~ km
Z—a  Z—w u—0 |z—a|.|z—w| u—0 Yy
car y. |la—wl|=|z—a|.| z—w| (2.surface-triangle). D’ou un "espace de longueurs" (Gromov) :
s V ‘rl(t)Q + y,(t)2 "z , . n . . az + b
dr(A,B) = k:/ - .dt (sur une "géodésique") [invariance de H par: z — T(z) = l
e Ccz

a,b,c,d € R,ad — bc = 1 et angles euclidiens préservés car T'(z) = 1/(czo + d)?, similitude directe.]

Géodésiques : avec la formule des variations d’Euler / ? flz,y,y)dz extrémale < 2—5 - %ggj =0,

— o

vérifier quon a I’éq. diff. incompléte en z : —y.y” =14+ y?; et avec ¢/ = o(y) : % = —Tdy’
2 /

de solutions : 1—|—<p2(y) :% ; donc \/]i'iy—_lﬂ: +1; dou —v/k2 — y2 = e.x+C. Et ainsi trouver :

(x —x0)%+ 9% =k : ce sont les % cercles du début, auquels on doit joindre les % droites z = cte.

L’aire est Aire(D) = k‘z// dx'jy d’ott pour le triangle hyperbolique d’angle a, 3,7 (Gauss-Bonnet)
y

Aire(T) = E*(r — o — 3 — 7). Cas A(a, VR? — a2), B(b, V/R% — b2), C(*, ) : /"dx/“’ 5.
a V/ R2—z?2
Aire = ...=k*(m —a —f3); cas A, B,C : tracer les paralleles a Oy en A, B, C, additivité (Gauss).

137



59 Fonctions R” — R". Dérivation. Extremum des f. numériques

59.1 Soit la conique d’équation a.2* + 2.b.x.y + c.y®> =1 (¥) cf. 29.3
T
Vac — b? )

2. Et aussi avec les extrema de 22 4 y? sur Dellipse (extrema liés), trouver la longueur des axes.

1. CNS pour que ce soit une ellipse ? [a + ¢ > 0,ac — b > 0]. Réduction et aire ? (

59.2 Chercher f C' : les normales a z = f(z,y) rencontrent Oz

Trouver : z = @(x? + %) ; ce sont les surfaces de révolution autour de Oz.

59.3 Soit f de classe C' : R* — R; question théorique (...)

1. Dérivées partielles de :  (z,y, z) b—>/zf(ac,t)dt ?
Yy
v(x)
2. Soit u,v de classe C'. Dérivée de : x flz,t).dt ?

u(x)
59.4 Des dérivées partielles mixtes : & comparer (...)

2 2
1. Soit f(x,y) = z.y. ;—152 et £(0,0) =0. f est-elle continue ? de classe C' ?

=2y
2 + y2 :

2. Existence et calcul de f7.,(0,0); f74(0,0)7 Conclusion ? [Idem g(z,y) = ]

59.5 Quelques équations aux dérivées partielles

1. Résoudre : x.f,(x,y) +y.f,(x,y) = Vx> +y% x>0, en passant en polaires.
(Trouver f(z,y) = V2% +y? +H(y/z) ot H est une fonction dérivable.

En effet en posant g(p,0) = f(p.cos(8), p.sin(#), obtenir : g—i =1.)

2. Trouver f C? telle que : ¢(x,y) = f(y/z) soit solution de ¢”,2 + ¢”,2 = 0. (Laplacien.)
3. Avec u=uz.y, v=a/y,y >0, résoudre 2°.¢"2(z,y) —y*.¢"2(2,y) =0, ¢ C*(]0,400[?).

4. Surface enveloppe d’un plan variable dépendant d’un paramétre : développable !

Soit A.xz+ B.y+ C.z = D (1) une famille de plans (P) : A,..., D dépendant de A. cf. 30.5 58.3.

— Comme 'éq. dérivée est un plan A"z + B'.y+C'.2 = D' (2), la "courbe caractéristique" est une droite
(G) et la surface enveloppe (D) est une surface réglée. Et VM € (G), le plan tangent a (> ) est (P)
[cf. cas R?| qui reste le méme quand M varie le long de (G) : c’est une surface développable.

— Son aréte de rebroussement, A, est telle que (1), (2) et (3) : A’z + B’y + C”z = D”. En effet :
la courbe des fonctions z(\), ..., obtenue avec (1,2,3), vérifie en dérivant (1) avec (2); puis dérivant (2)
avec (3), éq. : (4a,b) Az’ + By’ + C2' =0, A'2’ + B'y' + C'2' =0 : la tangente est donc bien (G).

— Et le plan osculateur & A n’est autre que (P); car dérivant (4a), avec (4b), Az” + By” +Cz” =0:le
plan vectoriel associé contient 2M /dx?. Donc toute surface engendrée par les tangentes & une courbe
gauche A, est une surface développable, enveloppe des plans osculateurs a la courbe A.

— On dit "aréte de rebroussement"” car si M € A, M = O, (G) = Oz, (P = Oxz), section dans Oxy :
z=tx~at’y~bt’ cart=0= 2’ =y =y’ =0; d’on rebroussement dans Ozy ! Enfin :

— (S) z = p(x,y) est enveloppe de ses plans-tangents : Z = pX + qY — (px + qy — z), dépendant de 2
paramétres x,y. Dépendance de 1 seul [ramenant & (1)] < rel. entre p et ¢ et entre p et pxr + qy — z;
annuler 2 Jacobiens : D(p, q)/D(x,y), D(p,px + qy — z)/D(x,y) et trouver : surf. dév. < rt — s> = O.
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60 Fonctions R’ — R" : Intégration. Champs de vecteurs

60.1 Un calcul trés astucieux avec une intégrale double

1
, In(l+x) m.In(2)
Il s’agit d t I = dx = .
s’agit de montrer que /0 el 5
Lo
1. Vérifier que : In(l+x) = /0 T w.ydy'

L1 x Yy . "
2. Déduire que I = // 0221 +9) dxdy = // A+ +y) dxdy sur le carré unité.

. Tty
3. Déduire encore que 2.1 =
a // (T+22)(1+y?)

dzdy et conclure (Fubini).

60.2 Angle solide ducarrée 0<xr<a; 0<y<a; z=h, vude O

—
OM
1. Montrer, en général, que c’est le flux de : OME
[Qui est la surface correspondante -par vision conique de centre O -sur la sphére unité.|
—_—
oM _, h
2. Montrer dans le cas de 'exercice que : —— - n = .
4 OM3 (2 + 42 + h2)3/2

h
3. En passant en polaires *montrer que cet angle solide vaut pu = T_ 2. Arcsin———.
2 V2(a? + h?)

Veérifier si : h — +o00; h — 0 (ici, 1/8 de la sphére); h =a : ici c'est 7/6.

60.3 Les intégrales de Fresnel calculées aussi grace a une intégrale double

+o0 +oo
Existence et calcul de C' = / cos(t?).dt et S = / sin(t?).dt.
+o00 0 0 +00 V%
On va calculer F = / exp(i.t?).dt; on rappelle que / exp(—t?).dt = 5
0 0

1. Montrer 'existence de C' et S.

2. On note I(a) = // e(i_“)(m2+yz)dx.dy, pour a > 0.
R+ xR+

Montrer en passant en polaires et en posant u = p2 que I(a) = H.
+oo 9
3. En posant F(a) = / =% dy. - vérifier que I(a) = [F(a)]?.
0

4. Montrer la continuité de F' en 0.

1 400 too . 2 1
On pourra écrire / —l—/ = G(a) + H(a) et, par parties : H(a) = / (=08 o ~ dy =
0 1 1 x
_ei—a

+ L(a); puis appliquer une conséquence du Théoréme de la convergence dominée.

2(i —a)
oo ; oo V2
5. De : (/ e d)? = %, ou de : / e dy = iTﬂ.(l +1), déduire que :
0 0
V2

T
C =8 = 4" 1a 2¢ étant positive [u = t* et par parties, 1 — cos(u) primitive de sin(u)].
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‘Histoire et citations de scientifiques (souvent mathématiciens) ... ‘

[De Marcel Berger, IHES + 15-10-2016.] C’est avec Frangois Viéte (Fontenay-le-Comte 1540, Paris 1603) que la France
entre dans les mathématiques modernes. Mieux, elles commencent avec Viéte ... Cependant, il faut mentionner
brievement Nicolas Oresme (~ Bayeux 1325, Lisieux 1382) : on tend & l'oublier car surtout connu comme théologien ;
mais un historien soigneux comme Pierre Duhem a su montrer que dans ses écrits se trouvent en germe les notions
de coordonnée, de représentation graphique, de série convergente, d’exposant fractionnaire ; c’est aussi un théoricien
de la mécanique car il découvre ’expression mathématique du mouvement uniforme et uniformément accéléré.

Viete est avec Descartes le fondateur des notations algébriques modernes et de la mise en équation d’un probléme ;
on lui doit aussi d’importantes contributions en trigonométrie et géométrie ... Il introduit les signes plus et moins et
c’est le premier a considérer un produit infini de nombres. Il arrive aussi & bout du probléme d’Apollonius : construire
des cercles tangents a trois cercles donnés. Pour cela, il utilise les propriétés de U'inversion (connue également de
Descartes) mais ne considére pas cette transformation de fagon systématique comme le fera Steiner au xixe siécle
... En trigonométrie, il trouve la formule pour cos(nx) et sin(nx). Il est aussi le premier a introduire la notion de
triangles sphériques réciproques (premier exemple explicite de dualité qu’elle soit algébrique ou géométrique).

Avec Descartes arrive une maitrise de la géométrie avec coordonnées qui lui permet de résoudre d’un seul coup un
trés vieux probléme, celui du « lieu a quatre droites » : les Grecs avaient réussi & démontrer que, pour 3 droites D,
E, F, le lieu des points m tels que dist (m,D).dist(m,E) = k dist?(m,F), k constante était toujours une conique. Mais
Pappus n’avait pas trouvé la solution du probléme pour 4 droites dist(m,D).dist(m,E) = k. dist(m,F).dist(m,G) :
encore une conique ! La recherche de ce lieu est emblématique du génie de Descartes : il montre d’abord que toute
équation du second degré est ’équation d’une conique ; puis que la distance d’un point & une droite est une fonction
affine des coordonnées. La définition du lieu entraine alors que la courbe cherchée est une conique. Il est amusant
de noter que Descartes se trompait (en partie seulement) et que c’est Roberval (1602-1665, physicien lui aussi,
I’homme de la balance qui porte son nom) qui lui fit remarquer que le lieu se composait en fait de deux coniques.
En effet, la distance d’un point & une droite est la valeur absolue d’une forme linéaire ; donc choix entre 2 signes,
d’ou 2 coniques. En réalité, Descartes prenait bien soin du signe, de sorte qu’il résolvait le probléme en précisant de
quel coté de la droite on se plagait (ensemble constitué d’une ellipse et d’une hyperbole pour un k convenable). On
doit aussi a Descartes la fameuse formule qui énonce que pour tout polyédre (convexe), le nombre des sommets plus
celui des faces et moins celui des arétes vaut toujours 2. Mais I'attribution & Euler de cette formule est justifiée,
car Descartes ne la donne pas de maniére explicite et, surtout, a la différence d’Euler, il n’en « fait rien ».

Mais examinons en quoi Descartes, avec sa « dictature des coordonnées », a nui a Desargues. Gérard (ou Girard)
Desargues (Lyon 1591-1661) est le prophéte de la géométrie projective, le premier a commencer a fondre dans une
théorie les propriétés de perspective pratiquées heuristiquement par peintres et graveurs. Architecte et ingénieur
militaire (a-t-il participé au siége de La Rochelle en 1628 aux cotés de Descartes 7) Desargues rencontre certainement
ce dernier & Paris et gagne vite son estime. Il crée de toutes piéces la géométrie projective en introduisant les «
points a l'infini » : communs a toutes les droites paralléles. Dans un ouvrage fondamental "Brouillon project" (50
exemplaires en 1639) il révolutionne la théorie des coniques : « toutes les mémes » car pour lui hyperbole et ellipse
(voire cercle) c’est la méme chose si on les regarde du bon point de vue! Ce dont Pascal ne manquera pas de se
servir pour son « hexagramme mystique ». On a pu dire que le livre de Viéte contenait en germe la géométrie
moderne ; 'oeuvre de Poncelet, continuateur de Desargues et Pascal, semble plus encore mériter cet éloge.

Mathématicien complet, géomeétre, fondateur du calcul des probabilités, algébriste, physicien, philosophe et penseur
chrétien, Blaise Pascal (ClermontFerrand 1623, Paris 1662) est 'un des mathématiciens les plus géniaux, méme
si sa mort prématurée, son dilettantisme, son mysticisme et ses passions multiples I'ont empéché d’étre parmi
les plus féconds. Pascal partage avec Ramanujan et Galois le titre de « greatest might-have-been in the history
of mathematics ». Doté d’une énorme capacité de travail et d’une rapidité hors du commun, il est 'un des plus
doués parmi les savants universels. Aprés son Traité des coniques, publié & 16 ans, il fonde avec Fermat le calcul
des probabilités, construit sa machine a calcul. Algébriste, il est I'un des premiers a utiliser systématiquement le
principe de récurrence, cela pour les propriétés du fameux triangle. Il crée la brouette et les transports en commun.
Joueur invétéré avant sa conversion, il a aussi inventé et produit industriellement une machine & calculer en 50
exemplaires. Impossible ici de ne pas mentionner a nouveau qu’il fut un grand physicien (comme presque tous les
grands savants jusqu’au xxe siécle), doublé d’un philosophe. Apreés sa conversion du 23 novembre 1654, il abandonne
pratiquement toute recherche scientifique. Il est alors écrivain dans Les Provinciales et philosophe chrétien dans
Les Pensées (oeuvre inachevée). Cependant, il publie encore des travaux, débouchant presque sur Iinvention du
calcul infinitésimal, Leibniz écrivant : « C’est en lisant Pascal qu’une lumiére me vint » (lisant ses travaux sur
la cycloide, entamés durant sa période mystique, alors qu'une rage de dents 'empéchait de dormir). Il s’est aussi
adressé a Fermat au sujet des probabilités, car il n’était pas str de lui : bel exemple de modestie scientifique. Pascal
est pourtant aussi sur le point d’inventer le calcul intégral, comme Fermat 1’était pour le calcul différentiel. Pour
les géometres, Pascal est aussi célébre par son théoréme sur les coniques, qu’il appelait hexagramme mystique. Sa
preuve rameéne par projection le cas général au cas du cercle ; mais pour le cercle, elle reste un mysteére ...

Clairaut n’a certes pas la méme envergure que les précédents, mais fut le premier & s’attaquer & la théorie des
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courbes et des surfaces de I'espace. Pour les courbes, son oeuvre est riche, entre autres par ’expression analytique
de leur courbure. On lui doit la notion de plan osculateur. La notion de torsion ne viendra qu’a la suite des travaux
de Monge ; mais, pour les surfaces, c¢’est un précurseur de I'oeuvre de Monge. Clairaut est le premier & avoir abordé
I’étude du subtil mouvement de la Lune (suivi bientdt par d’Alembert), par des calculs du second ordre (c’est-a-dire
en négligeant les puissances d’ordre supérieur du rapport de la masse de la Lune a celle du Soleil), & avoir calculé
I’avance du périgée. Il prévoit aussi le périgée de la cométe de Halley avec moins d’un mois d’erreur, alors méme
que les masses de Saturne et Jupiter étaient mal connues & I'époque. Ainsi Clairaut constitue-t-il une transition,
et 'on a pu dire a juste titre que, si le xviie siécle fut celui des courbes, le xviiie fut celui des surfaces.

Que s’est-il passé avant la Révolution ? Entre « Le temps de Descartes et de Fermat », et la Révolution francgaise,
on trouve : « Newton et Leibniz » (calcul infinitésimal) « L’ére Bernoulli » « L’age d’Euler »... avant que Cauchy
ne résolve définitivement les questions infinitésimales avec la notion de limite. En effet, sans elle, les Anglais
travaillaient avec les « fluxions », les Allemands avec les infiniment petits, toutes choses maniées habilement avec
des résultats remarquables, mais sans définitions précises. Euler (né a Bale, mais qui fit la plus grande partie de
sa carriere en Russie, appelé par la grande Catherine sur la recommandation de Bernoulli, et & Berlin) se sert du
calcul infinitésimal pour résoudre un nombre immense de problémes; la dynastie des Bernoulli contribue aussi a
cette évolution (on n’oubliera pas non plus le Frangais Guillaume de L’Hopital). Si ’on ne devait retenir qu’une
des innombrables formules d’Euler, la voici : ™ = —1 (mais aussi Dzeta(2) ...) Euler domine le début du xviiie
siécle, mais, pour la suite, il doit partager cette gloire avec Lagrange ... Le calcul intégral se développe aussi mais,
a ces époques, l'intégrale est simplement con¢ue comme 'opération inverse de la dérivation. Il faudra attendre en
particulier le 20éme siécle et Lebesgue pour clore pratiquement ces questions essentielles ...

— "D’o0 vient qu’un boiteuxr ne nous irrite pas et un esprit boiteux nous irrite ¢ A cause qu’un boiteux
reconnait que nous allons droit et qu’un esprit boiteux dit que ¢’est nous qui boitons. Sans cela nous en
aurions pitié et non colére. (...)

— Car enfin, qu’est ce que I’homme dans la nature 2 Un néant & 'égard de linfini, un tout a [’égard du
néant, un milieu entre rien et tout. Infiniment éloigné de comprendre les extrémes, la fin des choses et
leur principe sont pour lui invinciblement cachés dans un secret impénétrable, également incapable de
voir le néant d’ot il est tiré, et l'infini ou il est englouti”. Blaise Pascal (Pensées) né le 19 juin
1623 o Clairmont (aujourd’hui Clermont-Ferrand) en Auvergne ; et mort le 19 aodt 1662 o Paris.

— "Nous avons raison de penser que les nombres premiers sont un mystére que [’esprit humain ne pénétrera
jamais..."  Léonard Euler (1707 Bale - 1783 Saint Pétersbourg)

— "Il emiste pour ces sortes d’équations un certain ordre de considérations métaphysiques qui planent
sur les calculs et qui souvent les rendent inutiles ... Sauter & pieds joints sur les calculs, grouper les
opérations, les classer suivant leur difficulté et non suiwvant leur forme, telle est selon moi la mission des
géometres futurs. Je réve d’un temps ot [’égoisme ne régnera plus dans les sciences, ot on s’associera
pour étudier, au lieu d’envoyer aux académiciens des plis cachetés, on s’empressera de publier ses
moindre observations ... et on ajoutera : «je ne sais pas le restey.” Galois (1811-1832).

— "En mathématiques, nous sommes davantage des serviteurs que des maitres ... " Hermite (1822-1901).

— Cauchy (1789-1857) un des plus grands mathématiciens du 19¢ siécle :

" Je crois en la divinité de Jésus-Christ avec Tycho Brahé, Copernic, Descartes, Newton, Fermat, Letb-
nitz, Pascal, Grimaldi, Euler; Guldin, Boscovich, Gerdil ; avec tous les grands astronomes, physiciens,
mathématiciens des siécles passés... Ma conviction ne se nourrit pas du lait maternel des préjugés héri-
tés, mais provient de recherches profondes... Je suis franchement catholique comme le furent Corneille,
Racine, La Bruyére , Bossuet, Bourdaloue, Fénelon, comme beaucoup des plus éminents de notre temps
... Je partage la foi profonde que : Ruffini, Hauy (le fondateur de la théorie des cristaux), Pelletier et
Laénec (les inventeurs de la quinine et du stéthoscope) Freycinet (la navigateur immortel de la corvette
« Uranie ») Ampere (le célébre révélateur de l’électro-dynamique), Coriolis et tant de savants éminents
de nos jours, confessérent de vive voix, par leurs écrits et leurs actions.”

— Mais ... Gauss, Euler, Pfaff, n’étaient pas moins dévots que Cauchy. FEuler faisait la priére du soir
avec toute sa famille (...)  Carl Friedrich Gauss, surnommé : "le Prince des mathématiciens” (« le
plus grand mathématicien de tous les temps » ¢) dans une lettre adressée a Parkas Bolyai :

" A présent, adieu, mon bon ami! Qu’il te soit doux, le réve que nous nommons vie, ce godt précurseur

141



de la vie véritable qui mous attend dans notre vraie patrie. La, les chaines du corps paresseuz, l’espace
limité, les coups de fouet des souffrances terrestres, l’amas de nos besoins et de nos désirs puérils ne
peseront plus sur l'esprit ressuscité... Bt lorsque la derniére heure aura sonné, ce sera une joie de pouvoir
déposer notre fardeau et de voir disparaitre le voile épais, qui couvrait nos yeux".

Voir aussi en Italie la tombe d’un de ses étudiants, le trées grand mathématicien Bernhard Riemann !
— "Jai beaucoup étudié, beaucoup appris et j’ai la foi religieuse du paysan Breton.
St apres avoir étudié davantage, je parviens a savoir plus encore, j’arriverai, je le sens, d avoir
la foi de la paysanne Bretonne ! Louis Pasteur 2020 "rues Pasteur”, en France (1822-1895).

— "La science (...) est contrainte a admettre 'existence de lois physiques a titre de postulat primordial
et préalablement a toute démarche, afin de pouvoir vivre et se développer.” Max Planck (1858-1947).
Signalons un autre grand physicien contemporain (CNRS,CERN) : Bernard d’Espagnat, +2015.

— Pascal encore : "l’homme n’est qu’un roseau ... mais c¢’est un roseau pensant”"! Et analogue a ses "trois
ordres”, de Frangois de Sales (saint patron des journalistes) : "L’homme est la perfection de l'univers;
lesprit est la perfection de [’homme, ['amour celle de ’esprit, la charité celle de 'amour”. Enfin :

— "An equation for me has no meaning, unless it express a thought of God." Ramanujan (1887-1920).
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12 Fonctions élémentaires
12.1 Proche du cours. Diverses études [corrigé| . . . . . . .. ... ... ... ...
12.2 Equation fonctionnelle de la fonction th (...) . . . .. .. ..o o000
12.3 Courbes et géométrie (exercices remarquables) . . . . . . . ... ... L.

13 Equations différentielles
13.1 Trouver les polynoémes P(x) € R[z| : P/ divise P . . . . . . . . ... ... . ....
13.2 Trajectoires orthogonales (de courbes planesici...) . . . .. ... ... ... ...
13.3 Trajectoires orthogonales (de courbes non planes ...) . . . . ... ... ... ...
13.4 E.D. Lagrange y = z.A(y') + B(y'), Clairaut A(y')=v¢" . . . . ... ... ... ..
13.5 Résoudre y' = /1 +y. Ne pas oublier la solution : y=—1. ... ... .. ... ...
13.6 Equations différentielles avec utilisations de la parité (...). . . . ... ... . ...
13.7 f C° 2.7- périodique. CNS pour que F' (primitive) soit 2.7w-périodique . . . . . . . . .
13.8 Si f C° 2.7 périodique, y' + y = f(z) a une unique solution 2r-périodique . . . . . . .

14 Développements limités
14.1 (*) Une suite avec un développement limité (...) . . . . . . .. ... .. ... ...
14.2 DI de fonction réciproque avec f(r) = x4+ —x* . . . ...

15 Courbes en paramétriques [hors coniques], fonctions R — R"

15.1 Une courbe orthoptique (avec diverses indications ...) . . . . . . .. .. ... ...
15.2 Cinématique : composition des vitesses et des accélérations . . . . . . . . . .. ..
15.3 Exemples de mouvement particulier trés important (...) . . . ... .. ... ...
15.4 (*) Etudier les mouvements de A, B, C, telsque (...) . .. ... ... ... ...
15.5 (*) Mouvement plan sur plan. Podaire, développée 30.6 . . . . . . ... . ... ..

16 Courbes en polaires [hors coniques]|
16.1 (*) Sur les limagons de Pascal (Etienne, pére de Blaise ...) . . . .. .. ... ...
16.2 (*) Tracer une courbe donnée par une équation polaire (...) . . . . . . . . . . . ..
16.3 (*) Accélération en coordonnées polaires, Formules de Binet . . . . . . .. . . ..
16.4 (*) Avec I’hodographe, mouvements a accélération centrale . . . . . . . .. .. ..
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17 Suites : généralités
17.1 Des études de suites assez faciles (...) . . . . .. ... oo o oL
17.2 Suite impliscite comme racine de polynémes . . . . . . . .. ... ...
17.3 Accélération de convergence : méthode de Stirling . . . . . ... .. ... ... ..
17.4 Accélération de convergence : méthode de Richardson . . . . . . . . . . ... ...
17.5 (*) Fractions rationnelles convergeant vers un irrationnel . . . . .. .. ... ...

18 Suites u,1 = f(u,). etc.
18.1 Suites avec beaucoup de radicaux (...) . . . . . . ...
18.2 Soit Upi1 = Up +u2, ug € R :un équivalent . . . . .. ...
18.3 (*) Méthode de Newton avec f(z) =x— ¢(z)/¢'(z) . . . . . . . ... .. ...

n

18.4 Vitesse de convergence de suites convergeant vers ¥/a . . . . . . . . .. ... ...
18.5 Suite Upi1 = V2 — Uy, ug € [=2,2] et uy, = 2.cos(ppn) - - . ..o
18.6 Des suites couplées (étudiées sans matrice ici ...) . . . . . .. ... L.
18.7 Questions autour du Théoréme du point fixe (...) . . .. ... ... .. ... ...
18.8 Suites pour le calcul approché de 7 (Archimede ...) . . . . .. ... .. ... ...
18.9 Méthode des isopérimeétres : périmeétres constants a2 . . . . . . .. . .. ... ..

19 Intégrales simples

19.1 Six petites questions initiales (...) . . . . . . .. ... o o o
a m—+1

19.2 Comment Fermat calculait A = ———
m—+1

0
19.3 Une équation différentielle avec une primitive (...) . . . . . .. ... ... .. ...

19.4 £C°([0,1]), /1f(t).dt:0; a=inf f,B=sup f: /lfQ(t).dtg—a.g ...........

0 J0
19.5 (*) Quelques calculs de diverses intégrales |avec ici les réponses| . . . . . . . . ..
b

19.6 (*)a<b, A\>0,gC"; par parties / g(t)sin(\t)dt - 0si A — 400 . . . . ... ...

19.7 (*) Une intégrale classique par limite de somme de R. 44.7 . . . . . ... ... ..
b

19.8 (*) Limites et intégrales [dont (/ @) de)™ L]

20 Calcul de primitives

20.1 Les primitives de z — e¥® sont-clles calculables ? . . . . . . . .. ... .. ...

20.2 Primitives de fractions rationnelles en sin(z), cos(x) . . . . . . .. .. ... ...
dx

Vazr? +bx +c
20.4 Une primitive hors série de : f(x) = 1/[ch(x).\/ch(2x)] . . . . . .. ... .. ...

20.5 Calculs de limites (seulement) d’intégrales irrationnelles . . . . . . . . .. ... ..
20.6 Intégration des "différentielles bindomes" / 2" (ax" +0)Pde ...

20.7 (*) CNS: /%dz soit rationnelle (a,b,c,d distints) . . . . . . .. .. ..

20.3 Avec des fonctions irrationnelles ( CONNU) v v v v e e

21 Groupes, anneaux, corps
21.1 Diverses questions d’Arithmétique (...) . . . . . . ..o
21.2 Avec la division euclidienne, préciser les sous-groupesde Z . . . . . . . . . .. ..
21.3 (*) Au sujet des Groupes quotients (...) . . . . . .. ...
21.4 Un groupe admettant un nombre fini de sous groupes est fini . . . . . . . .. ..
21.5 (*) Groupe G opérant sur un ensemble F (...) . . . . ... ... ... ..
21.6 Le centre Z(G) d'un p-groupe (fini) n’est jamais réduit a {e} . . . . . . . . .. ..
21.7 (*) Le groupe G des isométries du cube (...) . . .. ..o Lo
21.8 Non unicité de la décomposition dans un anneau non factoriel . . . . . .. . . ..
21.9 (*) Au sujet des Anneaux quotients (...) . . . . . .. ..o
21.10 (*) Avec A = Z][il], si p premier, p =1 (4) : p somme de 2 carrés . . . . . .. ...
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22 Espaces vectoriels
22.1 Donner des exemples de sous e.v. supplémentaires . . . . . . . . ... ... ...
22.2 (*) Reésolution de systémes linéaires |[corrigé| . . . . . . . ... ... ... .. ..
22.3 Des exemples de combinaisons linéaires [corrigé| . . . . . .. ... ... ... ..
22.4 (*) Complexifié¢ d’'un e.v. réel (comme le passage de RaC) . . . ... .. .. ...

23 Espaces vectoriels de dim finie
23.1 Sur-famille, sous-famille [facile; corrigé| . . . . ... ... ... ... ..
23.2 Dans E = R?, dimgR®=3, famille libre, génératrice . . . . . .. .. ... ... ..
23.3 Famille libres / liées dans £ = R, [z] ou R[x) [corrige] . . . . ... .. ... ...
23.4 Quelques autres exemples de famille libres / liées [corrigé| . . . . . . . . . . . ..
23.5 Somme directe. Supplémentaires et dimension finie [énoncés| . . . . . . ... L.

24 Applications linéaires
24.1 En dim. finie, une équivalence importante pour f € L(E) . . . . . . .. ... ...
24.2 Soit f € L(F) : noyau et image parfois non en somme directe . . . .. . .. ...
24.3 Dans F = Ry|x], sur la Dérivation discréte (et cf. 25.7) . . . . . .. ... ... ..
24.4 Avec le cours bien connu sur les projecteurs [corrigé] . . . . ... ... ... ..
24.5 Rang : Soit f € L(E, F), E, F de dimensions finies; ¢g... . . . . ... .. ... ...
24.6 Sur le rang d’applications linéaires : quelques ajouts (...) . . . . .. ... ... ..
24.7 Soit E un e.v. de dim. finie : n. Montrer les équivalences . . . . . .. . .. .. ..
24.8 Quaternions de Hamilton et une note sur GA = ExGL(E) . ... .. ... ...

25 Calcul matriciel
25.1 Utilité du calcul des puissances d’une matrice. . . . . . . . . . .. ... ... ...
25.2 D’autres méthodes pour le calcul de M™ (...) . . .. .. ..o
25.3 En dim. 2, f end. : Im(f) = Ker(f) = Vect((1,2)) . . « « o v v v v v i v vt
25.4 Trois questions concernant la trace [corrigé| . . . . . .. ... ...
255 Si A€ M, derang 1 : 3k, A2 =kAetk=Tr(A) . . ... ... .. .. ... ...
25.6 Dans Mo 5, deux sous e.v. supplémentaires |[corrigé| . . . . . . . ... ... L.
25.7 Dérivées intermédiaires bornées si les extrémes lesont . . . . . . ... ... ...
25.8 Un probléme sur la dérivation discréte (cf. 24.3) . . . . . ... ... ...
25.9 E.v. et Anneau (algébre) de matrices [corrigé] . . . . . . .. ...
25.10 Question au sujet des matrices a trace nulle (#£48.4) . .. ... ... ... ...
25.11 Matrice symétrique, conique x? + 2kzy +y> +224+2y=0 . . . . . . . . . ... ...

26 Déterminants 2x2 ou 3x3
26.1 Exercices de cours sur les déterminants dans R ou R®* . . . . . .. ... ... ..
26.2 Déterminants et géométrie, (*) "probléme de Napoléon" . . . . . . ... ... ..
26.3 (**) Eq. barycentriques, déterminants, matrices (lecture) . . . . .. . .. ... ..

27 Espaces vectoriels euclidiens
27.1 Une famille de vecteurs orthogonaux non nuls est toujours libre . . . . . . . . ..
27.2 Dans E = R3 e.v.e. usuel, décrire 'endomorphisme de matrice B . . . . . . .. ..
27.3 Sur Ms(R), un produit scalaire classique et norme de Frobénius . . . . . . . . ..
27.4 Inégalités : produit scalaire et matrices orthogonales (...) . . . . .. . ... .. ..
27.5 Symétrie par rapport a un hyperplan en dimension finie (...) . . . . . .. ... ..
27.6 Le Th. du parallélogramme caractérise une norme provenant d’'un p.s. . . . . . . .
27.7 Applications symétriques ou antisymétriques en e.vee. (...) . .. ...
27.8 Sur les applications conservant le produit scalaire (...) . . .. .. ... ... ...
27.9 (*) Dans Ry[x| avec un p.s. donné par une intégrale (...) . . ... ... ... ...
27.10 (*) Matrices 3,3 circulantes et rotations vectorielles (...). . . . . . .. .. ...
27.11 Suite de Fibonnacci, nombre d’or ; matrices 2x2 et produit scalaire . . . . . . ..
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28 Espaces affines/Affines euclidiens

28.1 Composée de 2 symétries affines orthogonales dans € =R* . . . . . ... ... ..
28.2 Dans € =R3 eae., décrite M — M' 2/ =2 -2,y =z, 2 =y .. ... .. ...
28.3 Applications affines. Note sur la projection conique (Th de Désargues) . . . . . . . . . . .
28.4 Dans £ = R?, des ensembles de points tels que (..) . . .. . ... ... ... ...
28.5 Au sujet des torseurs. Un exemple classique . . . . . . . .. ... ... ... ...

29 Cercles et coniques (et cf. 30.3,5,6,8)
29.1 Trois questions de barycentre. Note sur le cercle [Pascal]. . . ... .. ... ...
29.2 (*) Triangle inscrit dans une Hyperbole équilatére H [corrigé| . . . . . . . . . ..
29.3 (*) C.N.S. pour que az? + 2bxy + cy? = 1 soit une ellipse. Aire? . . . . ... . ..
29.4 Ellipse 2%/a® +y?/b* = 1 : construction de Rytz si diamétres conjugués . . . . . . . . .
29.5 Faisceau linéaire de cercles Cy : 2® — 2a0x + 1y +¢co=0,C1 #Co . . . . . . . . ..
29.6 Sur un Théoréme de La Hire (sur 'Ellipse) [corrigé] . . . .. ... ... ... ..
29.7 Sur la double génération des coniques (ex. ellipse) . . . . . . . ... .. ... ...
29.8 (*) Puissance d’un point/une conique [Jean de Biasi| . . . . . ... ... ...
29.9 (*) Polynome de degré 3. Convexité. Ellipses de Steiner . . . . . . ... .. ...
29.10 Polarité / a un cercle, réciprocité, quadrangle harmonique . . . . . . . . . . . ..
29.11 Polarité par rapport a un cercle, Théoréme de Salmon, tppr . . . . . . . . . . ..

30 Longueur et courbure des courbes planes

30.1 Courbes C! telles que a. R =a*+s> . . . . . . . . ... .. ... ... ..
30.2 (*) Quelques autres équations intrinséques . . . . . . . ...
30.3 (*) Parabole I' t+ M(z = 2t,y =t?), normales . . . . . . ... ... .......
30.4 (*) Au sujet des courbes de poursuite usuelles (...) . . .. .. ...
30.5 Enveloppes dans R?, R?: cf. 13.4; développée; et 30.6 . . . . . . . . ... . ...
30.6 Podaire, enveloppe, coordonnées polaires, courbure 15.5 . . . . . . . . . . ... ..
30.7 Equation intrinséque R.s = 1 : spirale de Cornu (fig. 4) . . . . . . . . . . .. .. ..
30.8 (*) Au sujet des normales a certaines courbes (...) . . .. ...
30.9 (*) Enveloppe de droites et courbes particuliéres . . . . . . ... ...

31 Fonctions de plusieurs variables : Continuité

31.1 Continuité de f(z,y) = (1 —cos(v/| z.y|))/ |y | |[corrigé] . . . . .. . ... ... ...
31.2 (*) Tangentiels de 3 points alignés d’une cubique : alignés . . . . . . . ... .. ..

32 Fonctions de plusieurs variables : Dérivation

32.1 Soit f(x,y) = sm(fc;) -T- Séﬂ(gﬁ) pour (x,y) # (0,0) et £(0,0) =0 . . .. ... .. ...
32.2 Maximum(zyz), M Eytriangle ABC, x = dist(M, BC), gradient . . . . . ... ..
32.3 Minimum de M A% + MB? + MC?, M € Triangle. ABC, Leibniz . . . . . . . . ..
32.4 Soit g C"; et f telle que : f(x,y) = é/zy gt)dt () « . ..o
32.5 (*) Une équation aux dérivées partielles : [corrigée| . . .. ...
32.6 Sur l'inversion, avec différentielle de f. de deux variables. . . . . . .. ... .. ..

33 Fonctions de plusieurs variables : Intégration
33.1 Calcul de l'intégrale de Gauss avec les intégrales doubles [corrigé| . . . . . . . ..

33.2 (%) //(x2 — y?)dzdy sur lintérieur de ellipse z = a.cos(t),y = a.sin(t) . . . . . . ..

33.3 Volume commun & 2 cylindres de révolution (méme rayon) d’axes L . . . . . . ..

33.4 Quelques calculs : une aire non plane et un volume [avec réponses|. . . . . . . .
33.5 Avec les formule de Stockes et d’Ostrogradski, rotationnel, divergence . . . . . . .
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34 Compléments sur les Fonctions

34.1 Quelques équivalents & trouver . . . . . .. ..o

34.2 Dérivée nicme de : f(z) = @ v

34.3 Limite de (tan?’;)m@ﬂ en T
34.4 Une limite théorique trés classique . . . . . . . . . . ... oL
34.5 Manipulation d’inégalités de convexité (...) . . . . . . ... ..o
34.6 Pour f C? dans un voisinage de x¢ ol f” ne s’annulle pas. . . . . . .. ... ...
34.7 (f C%sur [a,b], dér. sur Ja,b], f(a) =0, | f/ |<a. |f)=f=0. ... .. ... ...
34.8 Au sujet du Théoréme de Rolle généralisé (remarque) . . . . . ... ... ... ..
34.9 (*) Théoréme des Accroissements finis généralisés . . . . . . . ... .. ... ...
34.10 (*) Avec les "polynomes de Lagrange" . . . . . . . ... ... L.
34.11 (*) Prouver une existence d'une dérivée (...) . . .. .. .. ...
34.12 (*) Majoration de dérivée intermédiaire, M, majorant | f® | . . . . . ... L.
34.13 (*) Théoréeme de Darboux (avec le Th. des Accroissements finis) . . . . . . . . ..

(*)

(*)

*
*

34.14 (*) Soit f telle que fof(x) =ax+b, a#0 (...) . . ...

*

34.15 Existence de fonctions C° régularisante . . . . . . . . . . .. ... ... ...

35 Compléments sur les Suites
35.1 Cas U4y = f(u,), f(x) = (1 — 2)%, ug €]0, 1] intervalle de stabilite . . . . . . . . . . . .
35.2 Limite de suites en lien avec des intégrales (...) . . . .. ... ... ... ... ..
35.3 Théoréme de Césaro et lemme de lescalier . . . . . . ... ... ... ... ....
35.4 Des équivalents avec le théoréme de Césaro (...) . . . . . . ... ..o oo L.
35.5 Comparaison des régles de Cauchy et D’Alembert sur lesséries . . . . . . . . . .. ..
35.6 Suite bornée en lien avec la convexité (...) . . . . . ...
35.7 Approximation de nombres irrationnels . . . . . .. ...
35.8 (*) Equivalent avec le théoréme de Césaro : généralisation . . . . . . . . . . . . . ..

35.9 (*) Soit R, = (%)" + (2)” + .t (%)" On cherche sa limite (...) . . . .. . ... ...

n

36 Séries numériques
36.1 Convergence d’'une série avec un Développement Limité . . . . . . . . . . . .. ..
36.2 =+ In(x) = n a une unique racine tn. Y /un, > (=1)"/un . . . oL
36.3 Convergence et somme de série (par télescopie) . . . . .. ... ... ... .. ..
36.4 Nature de la série de terme général w, (...) . . . . . . ... .. L.
36.5 Somme d’une série et comparaison avec 1/n® . . . .. ...
36.6 (*) On suppose Z u—: convergente. Alors : (Z up)k<n /m— 0 © oo

36.7 (*) Si (u,) décroissante et série convergente, alors : n.u, —0 . . . . . . ... ...
36.8 (*) Calculs de somme de séries en lien avec des intégrales . . . . . . . .. ... ..
36.9 Montrer la formule d’Euler sur les nombres premiers p, . . . . . . . . . .. .. ..
36.10 Série convergente/u, 1 équivalent a u, >0 :u, =0(R,) . . . . . . . . ... ...
36.11 (*) Sur la formule de Stirling (avec diverses précisions ...) . . . . . . .. .. ...

36.12 Accélération de convergence vy = Zun, Up, = 1 In(1+ l) ..............
n n

36.13 Convergence et somme de la série u, = (—1)"sin(n)/n 547 . . .. . .. ... ..
36.14 (*) Développement asymptotique d’une suite grace aux séries . . . . . . . . . ..
36.15 (*) Si w,, > 0, étudier Zun/Rf{_l si Zun convergente, Zun/Sf{ sinon . . . . . ...

36.16 (*) Somme avec les coefficients binomiaux. L'égalité : > % = Ll ........
n p -
nzp
36.17 (*) Soit g € Qn0,1]. Trouver a; < i € N tels que b_ Z a—: Cas de % ........
2.

36.18 (*) Un certain développement de x €]0,1] (...) . . . . .. .. ...
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37 Suites et Séries de fonctions
37.1 Etude de la convergence simple et uniforme . . . . . . . ..o
37.2 Suite de polynomes convergeant uniformément sur RY vers P(z) . . . . . .. ...
37.3 Est-on, ou non, dans un cas de convergence uniforme ? . . . . . ... ... ...
37.4 Echange de symboles : intégrale et somme de série . . . . . . ... ... ...
37.5 Convergence uniforme mais pas "normale" . . . . . .. ...

38 Séries entiéres
38.1 Le Lemme d’Abel. Des exemples . . . . . . . . . . . . . ... ...
38.2 Des calculs de rayons de convergence . . . . . .. . ...
38.3 Convergence suivi d’un calcul de somme . . . . . . .. ..o
38.4 D.S.E. avec une équation différentielle . . . . . . .. ..o
38.5 D’autres calculs de rayon de convergence . . . . . . . ... ...
38.6 Une égalité en utilisant le produit de Cauchy . . . . . . ... ... ... ... ...
38.7 Soit ag =1, api1 = Z ag-an—j; S(x) = Zanw" #£394 ... ...

0<k<n
38.8 Utilisation d’une série entiére pour une série numérique . . . . . . . . . . . . . ..
38.9 Autre fagon d’obtenir certaines intégrales de Wallis . . . . . . . ... ... .. ..
38.10 Quelques développements en série entiere (D.S.E.) . . . .. ... ... ... ...

38.11 Une série numérique avec le D.S.E. de la fonctionexp . . . . . . .. ... .. ..
38.12 Montrer que f(:v):emz./ edt estD. S E. (EDL) . o oo o
0

38.13 Trouver f(x) = Z %:ﬂ" avec I, = /8 In™(t).dt . . ...

. 171'/4
38.14 Trouver f(x) = Z a,x" avec a, = / tan™(t).dt . . ...
0

L. x.sin(a) B n
38.15 Vérifier que T 2acosa) 11 ngl:v sin(na) , |x|<1l. .. 0000000000
38.16 Equivalent de la fonction : f(z) =Y 2™ ;en1™ ... ... ... ...,
n=0

38.17 CNS pour avoir un DSE au voisinage de 0 . . . . . . . . ... ... ... ... ..

39 Compléments sur les Séries entiéres
39.1 Formules de Newton pour somme des puissances de racines . . . . . . . . . . ...
39.2 (*) Un théoréme sur le bord pour les séries entiéres (Abel) . . . ... .. ... ..
39.3 Un exemple de calcul sur le cercle de convergence (...) . . ... ... ... ....
39.4 Quelques autres développements en série entiére (...) . . . . . ... ... .. ...
39.5 (*) Calcul avec la transformation d’Abel 38.15 54.7 . . . . . . . .. ... .. ...

40 Equations différentielles
40.1 (*) Résoudre (1+2%)y” + 2.y —4y=0 avecx =sh(t) . .. ... .. ... ...
40.2 Résoudre (1 —22).y” —ay/ +y =0 si|z|<1l,x=sin(t) .. ... .. ... ...
40.3 (*) Au sujet de I'équation différentielle d’'Euler (...) . . . . ... ... . ... ...
40.4 Diverses résolutions avec diverses indications (...) . . . . . . . ... L.
40.5 E.D.Linéaire du deuxiéme ordre, théorique (...) . . . . .. ... ... ... ...
40.6 (*) E.D.L. du deuxiéme ordre, solution périodique (...) . . . . . .. .. ... ...
40.7 Solution bornée de iy’ — w?y = f(x); f C°, bornée sur R, w#0 . . . . . . . . ...
40.8 Erreur dans la méthode de Newton (valeur approchée de racine) . . . . . . . . ..
40.9 Equations diff. non linéaires mais qui s’y raménent (...) . . . . . ... ... . ...
40.10 Question trés classique mais pas trés facile (1) . .. ... ...
40.11 Sur la Transformation de Liouville (...) . . . . ... ... ... ... ... ...
40.12 Diverses utilisations du Wronskien . . . . . . . .. ..o 0000000
40.13 Equation différentielle et série . . . . . . . . ..o Lo
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41 Calcul d’Intégrales simples
41.1 On montre que 7 ¢ Q, résultat d’abord prouvé par Lambert . . . . ... ... ..

+oo . om—1

41.2 (*) Intégrale généralisée dz obtenue par décomposition . . . . . ... ..

14 2m
0
41.3 Des calculs d’intégrales conduisant a des intégrales généralisées . . . . . . . . . ..

Tp b b b
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45 Compléments sur Espaces vectoriels ; Applications linéaires

45.1 En dimension finie, des projecteurs associés (...) . . . . . . ...
45.2 Endomorphismes qui commutent et sous e.v. stables . . . . . . . .. ... .. ...
45.3 Commutant d’un endomorphisme (cyclique) 48.3, 49.1 . . . . . . . . . . ... ...
45.4 Endomorphisme nilpotent d’indice n en dim. n; 453 . . . . . . .. ... ... ..
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47.5 Résultant de deux polynémes P et Q, p = degr(P), ¢ =degr(Q) . . . . . . . . ..
47.6 Dans M, (R), si B de rang 1 : det((A+ B)(A — B)) < det*(A) . . . .. ... ...

48 Réduction des endomorphismes
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48.3 Au sujet des endomorphismes cycliques; les cas diagonalisables . . . . . . . . . ..
48.4 Endomorphisme nilpotent (d’indice quelconque) en dim. finie (...) . . . .. .. ..
48.5 Dans E = C°(R), éléments propres de la Transformation de Hardy . . . . . . . . .
486 P € F =R,[z]— u(P)=2z(1 —2)P'+ n.z.P : end.? Eléments propres? . . . . . . . .
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48.9 Comment calculer P(A), quand A est une matrice diagonalisable . . . . . . . . ..
48.10 Sia #b, f € L(E), f*— (a+b)f +ab.Id = O est diagonalisable . . . . . . . . ..
48.11 Sous espaces caractéristiques pour f "singulier" (non injectif) . . . . . . . . . ..
48.12 (*) Quelques résultats divers en compléments (parfois) . . . . . . ... ... ...

49 Commutant, polyn. caractéristique, systémes différentiels

49.1 Dimension du commutant C(A) d’une matrice carrée A . . . . . .. ... ... ..
49.2 Formules de Newton et application au polyn. caractéristique . . . . . . . . . . ..
49.3 Résoudre les divers systemes différentiels suivants (...) . . ... . ...

50 Dualité -formes linéaires- en dimension finie -en général-

50.1 Espace dual en dim. finie (sans fleche parfois sur les vecteurs) . . . . .. ... ..
50.2 Avec : 1, ...0p, p < n formes linéaires en dimensionn . . . . . ... ... .. ..
50.3 Changement de bases dans E*. Un exemple en dim. 2 . . . . .. . ... ... ...
50.4 En dim. finies, transposée d’'une A.L. et dualité; rang . . . . . . . ... ... ..
50.5 Plan vectoriel invariant par un endomorphisme de R®, avec 'f . . . .. . ... ..
50.6 Forme bilinéaire non dégénérée b, en dimensions finies (F = E*) . . . . . ... ..
50.7 Formes b. symétriques sur E, dim(F) finie (ex : relativité et 51.13) . . . . . . . . .
50.8 Formes b. sym. non dégénérées en dimension finie, car(K) # 2 : adjoint . . . . . . .
50.9 Réduction d’une 2¢ f.b.s. by ayant une f.b.s.d.p. b: p.s.sur K=R. 523 . . . .. ..
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51 E.v. préhilbertien réel (f.b.s.d.p.) E.v. euclidien (dim. finie)
51.1 (*) Résoudre dans R® e.v.e. orienté . . . . .. ... ... ... ...
51.2 Dans FE = R? e.v.euclidien (orienté) . . ... ... ... ......
51.3 Au sujet des similitudes vectorielles (...) . . .. .. ... ... ...
51.4 Proj. orthogonal en dim. finie, norme de Frobénius 55.7 . . . . . . . . .
51.5 Droite des moindres carrés, minimiser » (y; — a.z; — )
51.6 (**) Orthogonalité de polynémes et racines réelles (...) . . . . . ..
51.7 Cardinal d’une famille obtusangle, en dimension n (...) . . . . . ..
51.8 Un hyperplan de M,,(R)n >3 contient N nilpotente, M inv. . . . . . .
51.9 En utilisant f* en question 1, et f*of en question 2 (...) . . . . ..

51.10 Calcul d’adjointe (existence non assurée en dim. infinie) . . . . . .
51.11 Liens entre f et f* dans F, e.v.euclidien (ouewv.h...) ... ...
51.12 Inégalité d’Hadamard et conséquences (cf. 52.2 pour fin) . . . . . .
51.13 (*) Propriétés de orthogonal. Quelques contre-exemples . . . . . .

52 Endomorphismes symétriques. Formes quadratiques.
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Si A symétrique, positive, montrer : det(A)Y™ < 1/n.Tr(A) . . . . .
(*) Diverses inégalités avec les matrices symétriques réelles . . . . .
Réduction, en simultané, d’une f.b.s.d.p. b et d’'une f.b.s. by . . . . .
(*) A, B sym., cas AB diag. sur R (en plus de AB = BA & ABsym) . . . .
Valeurs propres et vecteurs propres de X'X (sym., sous e.p.L) . . .

(*) Question intéressante partant d’'une base quelconque (...) . . . .
Matrice et déterminant de Gram. Des calculs de distance (...) . . .

Avec A, A € M, ,(R) : Ker(*A.A) = Ker(A), 51.11, 53.4, 55.7 . .

52.10 Produit d’'Hadamard. On pose ici A B =C ou ¢; = a;j.b;j (...)
52.11 En e.vee,, si f € L(E), ||| fll2 <1: Ker(f —Id) = Ker(f*—1d) #53.4 . . ... ..
52.12 Paramétrisation de Cayley, exponentielle d'une matrice antisymétrique . . . . . .

53 E.v.

préhilbertien complexe

53.1
53.2
93.3
53.4
93.5
23.6
23.7

Forme sesquilinéaire (K = C). Forme sesquil. hermitienne . . . . .
Cas particulier essentiel de produit scalaire hermitien. Ex. . . . . .
Au sujet des projections et des symétries orthogonales (...) . . . . .

Si f normal (fof* = f*of) en e.v.h. Ker(f — A\Id) = Ker(f* —Xd) ... . . . . . . ...

Décomposition de Schur : trigonalisation unitaire. Conséquence . .
Décomposition en Valeurs singuliéres sur un exemple (*A.A...) . . .
Pseudo inverse A* de A, ,, en e.v.e. : éq. de Penrose (et autre ps-i) .

54 Séries de Fourier
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04.4
54.5

54.6

4.7
24.8
54.9

Notations. Divers résultats généraux rappelés . . . . . . . . . . ..
Théoréme de convergence en moyenne quadratique . . . . . . . ..
Les Théorémes de convergence ponctuelle (...) . . . . ... ... ..
Exemple avec f(x) = x sur [0, 7[, f impaire 54.7 . . . . . . ... ..

Exemple avec f(z) =« sur [0, 7[, mais ici, f paire . . . . . ... ..

sin(m.t)

Autres ex. et développement de en produit infini . . . . . ..

Quelques autres relations bien remarquables () oo
Comment avoir f m—périodique ? cf. 54.1.3 (...). . . .. ... ..
Pour une certaine série entiére, on montre que a,, — 0 ... . . . . ..

54.10 Développement en série de Fourier sans intégrales (série entiére) . .
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0 0
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55 Espace vectoriel normé (réel, de dimension finie souvent) 128

55.1 Topologie sur R, R? et obtention de Théorémes (connus) . . . . . . .. ... ... 128
55.2 Topologie sur R, R?, etc. Intérieur, Adhérence, Frontiére (...) . . . ... ... .. 128
55.3 Convexité dans R™ par exemple. Si C' convexe, adhérence, intérieur . . . . . . .. 128
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56.5 Définition, caractérisation des hélices |corrigé] . . . . . . . ... ... 133
56.6 Courbe tracée sur une sphére; une surface (...) . . . . .. ... 134
57 Fonctions R” — R". Continuité. Surfaces 135
57.1 Les quadriques; cf. formes quadratiques . . . . . . . . . . ... 135
57.2 Les cylindres (plus généralement) . . . . . . . . .. ... ... L. 135
57.3 Les cones (plus généralement) . . . . . . . .. ..o 135
57.4 Les surfaces de révolution (...) . . . . .. ... Lo 135
57.5 Rappels au sujet du plan tangent (...) . . . . . . ... ... ... L. 135
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58.2 (*) Les surfaces réglées développables (dont cones, cylindres ...) 59.5 . . . . . . .. 136
58.3 Surface engendrée par les tangentes & une courbe gauche C? biréguliere . . . . . . . . 136
58.4 Cone et cylindre circonscrit a une surface d’équation f(z,y,2)=0 ... .. .. .. 136
58.5 Equ. différentielle des lignes de niveaux; et de plus grande pente . . . . . . . . .. 137
58.6 De la formule de Laguerre au 1/2 plan de Poincaré 4.6,29.11 . . . ... .. ... 137
59 Fonctions R” — R". Dérivation. Extremum des f. numériques 138
59.1 Soit la conique d’équation a.2? +2.b.x.y +cy? =1 (%) cf. 293 . . . ... ... .. 138
59.2 Chercher f C' : les normales & z = f(x,y) rencontrent Oz . . . . . .. ... ... 138
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60.1 Un calcul trés astucieux avec une intégrale double . . . . . . . ... .. ... ... 139
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