
Lycée E.Mimard, Saint-Etienne

M+ Exercices de Mathématiques Sup/Spé

En 2 parties. Table des matières p.142s. Exercices avec indications et lecture :

de niveau Sup, mais avec pas mal de géométrie (00-33)

et Spé, avec diverses questions culturelles (34-60).

� exemples : une "Lemniscate de Bernoulli" (symbole de l’infini) ;

� deux "Cardioïdes" (la petite étant dite "développée" de la grande) ; enfin

� la "Tractrice et sa développée, la chainette" : c’est aussi l’enveloppe des normales !
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à Clément-Marie, à mes parents et ma famille,

aux nombreux étudiants, collègues et à divers amateurs,

M. Henri Chambon, 19 rue Saint-Joseph, 42000 Saint-Etienne.

2021/revu en 2026

Ces pages doivent beaucoup à Lucien Sportisse, ancien collègue en Spé-PT, m’ayant appris aussi le TeX et à Jean-Pierre

Jouvinroux, ancien collègue en Spé-PSI, qui a relu les exercices de Spé. Qu’eux et tant d’autres soient tous, ici, remerciés !

——————————————————————————————————————————————

"Pourquoi y a-t-il quelque chose plutôt que rien" ? Leibnitz (Leipzig 1646- Hanovre 1716) ;

"Pourquoi y a-t-il de la musique, plutôt que du bruit" ? Hubert Reeves (astrophysicien 1932-2023)
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Exercices de programme SUP

0. Ensembles N, Z, Q. Raisonnements

0.1 Plusieurs questions concernant les nombres entiers (...)

1. Montrer que : 106n+2 + 103n+1 + 1 est divisible par 111. [Réc. ou 111=3.37 divise 103 − 1.]

2. Idem n.4n+1 − (n+ 1).4n + 1 divisible par 9. [Réc. ou (x− 1)2 divise n.xn+1 − (n+ 1)xn + 1.]

3. Découpage en parts indivisibles. Comment acheter 100 volailles avec 100 écus si 10 poussins coûtent
1 écu, 1 coq : 2 écus, une dinde : 3 écus ? [10.π poussins, c coqs, d dindes ; réponse : 60p., 26c.,14d.]

4. Nombre minimum d’objets si "comptés par lots de 3 : il en reste 2 ; par 5 : il en reste 3 ; par 7 : 2" ?
[Th. chinois, > 23] et cf. (21.1,9) Th. de Fermat ap ≡ a(p), p ∈ P ; Th. de Wilson p ∈ P⇔ (p− 1)! ≡ −1(p).

0.2 (*) Comparaisons (cf. les tailles d’un groupe en rectangle)

1. Pour aij ∈ R, montrer que : maxi[minj(aij)] 6 minj[maxi(aij)] ; 1 6 i 6 n, 1 6 j 6 p.

2. De même, montrer l’inclusion entre parties : ∪i(∩jAij) ⊂ ∩j(∪iAij).

0.3 (*) Pgcd et ppcm (nombres, polynômes, nombres de Fermat)

1. a, b ∈ N : (15a + 4b) ∧ (11a+ 3b) = a ∧ b ? Ici polynômes : (Xp − 1) ∧ (Xq − 1) = Xp∧q − 1 ?

2. Avec Fn = 22n
+ 1 = x+ 1 [Fermat], déduire que : Fn+k − 2 = Fn.(entier) ; et Fn ∧ Fn+k = 1.

3. Fn/(2
2n+1 − 1)/222n

− 1 =
2Fn − 2

2
car (x− 1)/(xp − 1) mais m/(2m − 2)⇒ m premier si m < 341 = 11.31.

0.4 (*) Résoudre x2 + y2 = z2 dans N∗. Les solutions sont (...)

pgcd(x, y, z)=1 : x = a2 − b2, a ∧ b = 1, parité différente ; y = 2ab ; z = a2 + b2 ; autres : ∗d ∈ N∗.

0.5 (*) Décomposition des nombres en facteurs premiers (...)

Si n = pα1
1 ...pαk

k , pk distincts, α1 = νp1(n) : valuation en p1 de n. [ν2(18) = 1, ν3(18) = 2, ν5(18) = 0].

1. Montrer que : νp(n!) =
∑

k>1

E(n/pk). En déduire le nombre de 0 à la fin du nombre : 1000 !

2. Soit a = pα1
1 ...pαn

n . Montrer que le nombre de diviseurs positifs de a est : (α1 + 1)...(αn + 1)
et que leur somme vaut : (pα1+1

1 − 1)/(p1 − 1). ... .(pαn+1
n − 1)/(pn − 1).

0.6 Théorème de Johnson 1916 : 5 cercles de même rayon (...)

1. Soit 3 cercles de rayon r sécants BHC, CHA, AHB ; tracer les losanges AJHK, KHIB, IHJC.

2. Avec O = t−→
JC

(A) justifier que ABC, de centre O, donc a aussi pour rayon r ; et d’orthocentre H.

3. Puis AI, BJ , CK,OH, même milieu : IJK, sym. de ABC, aussi de rayon r ; et d’orthocentre O.

0.7 Relation RST (D,D′) ≡ (∆,∆′) antiparallèles=bissectrices.même.dir.

Montrer que (D,D′) ≡ (∆,∆′)
?⇔(D,∆) = (∆′,D′)(π)

?⇔(D ∩∆,D ∩∆′,D′ ∩∆,D′ ∩∆′) cocycliques.

Ajout : Si A,B,C,D sur un cercle, (AB), (CD) est antiparallèle à (AD), BC) et aussi à (AC), (BD).

Exemples : (D,D′) resp⊥ (∆,∆′) ; Triangle de tangente AT : (AB,AC) ≡ (BC,AT ) ≡ (AH,AO).

Quand les couples de droites sont antiparallèles et de plus concourantes, on dit "isogonales". Cf. 5.3.

2



1 Arrangements, Combinaisons, Injections, Surjections

1.1 (*) Divers calculs difficiles de dénombrement (...)

1. Montrer que :
∑

X,Y

| X ∩ Y |= n.4n−1 si | E |= n. Idem :
∑

X,Y

| X ∪ Y |= 3.n.4n−1.

2. Montrer que :
∑

i+j6n

i.j = C4
n+2 =

(
n+ 2

4

)
. Et :

∑

16i6j6n

i.j =
n(n+ 1)(n+ 2)(3n+ 1)

24
.

3. (Problème d’Euler.) On prend un polygône convexe à n+ 2 côtés A1, A2, ..., An+2 ; soit Tn

le nombre de découpages en triangles. On pose T0 = 1 et on a : T1 = 1; T2 = 2; T3 = 5.

(a) En prenant le triangle A1A2Ak+2, montrer que : Tn =
∑

06k6n−1

Tk.Tn−1−k.

(b) Vérifier (avec anciennes notations des coeff. binômiaux, cf.2) que : Cn
2n − Cn−1

2n =Cn
2n/(n+ 1)

(dit "nombre de Catalan", Belge 1814-1894) (**) et que cet entier vaut Tn. [Ind. Posant

C(x) =
∑

06k6∞

Tk.x
k, C(x) = 1 + x.C2(x), C(x) =

1−
√

1− 4x

2.x
et
√

1− 4x = 1−
∑

06k6∞

2Ck
2k

k + 1
xk+1.]

4. (*) Dans N2, on étudie les trajets partant de O(0, 0) en se déplaçant de +−→ı ou +−→ à chaque pas.

(a) Nombre de trajets reliant O et M(p, q) ? Déduire qu’il y a 2n trajets de longueur n, n > 1.

(b) Soit A(1, 0), A′(0, 1), D la droite : y = x ; et p > q ici.

– Montrer que le nombre de trajets [AM ] rencontrant D est le nombre de trajets [A′M ] ;

– que le nombre de trajets [OM ] sans rencontrer D est Cp−1
p+q−1 −Cp

p+q−1 ; et que le nombre

– de trajets de longeur 2n sans rencontrer D est : 2.
∑

n+16p62n

Cp−1
2n−1 − Cp

2n−1 = 2.Cn
2n−1 = Cn

2n.

(c) Avec Γ de longueur 2n, 0 6 k 6 n, k max. : (k, k) ∈ Γ, en déduire
∑

Ck
2k.C

n−k
2n−2k = 22n = 4n.

1.2 Sur les applications (f−1 appliquée aux parties de F )

1. Pour f : E → F , montrer que A ⊂ f−1(f(A)) ; et : égalité ∀A⇔ f injective.

Idem : B ⊃ f(f−1(B)) ; de plus : égalité ∀B ⇔ f surjective.

2. Avec toujours f−1 : P(F ) −→ P(E), montrer que :

f injective ⇔ f−1 surjective. f surjective ⇔ f−1 injective.

3. Puis : f(A1 ∪A2) = f(A1) ∪ f(A2) ; mais par contre :

f(A1 ∩A2) ⊂ f(A1) ∩ f(A2) ; et égalité tout le temps ⇔ f injective. (Si f−1 égalité)

4. Pour f : 0 7→ 1; f/N∗ = Id, on a f(CN∗) 6⊂ Cf(N∗) et Cf(N∗) 6⊂ f(CN∗) ;

Et 1ère égalité vraie (tout le temps) ⇔ injectivité ;

2ème égalité vraie (tout le temps) ⇔ surjectivité. (Avec f−1 égalités vraies)

5. Si | E |= n+ 1, | F |= n, justifier qu’on a : n.
(

n + 1
2

)
.(n− 1)! =

n.(n+ 1)!

2
surjections.
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2 Avec les nombres réels

2.1 A + B + C = π ⇒ cos2(A) + cos2(B) + cos2(C) = 1− 2.cos(A).cos(B).cos(C)

1. Solution 1) G =
1 + cos(2A) + 1 + cos(2B)

2
+cos2(C) = 1+

cos(2A) + cos(2B)

2
+cos2(C). Or :

cos(2A) + cos(2B) = 2.cos(A+B).cos(A−B), d’où G = 1 + cos2(C)− cos(C).cos(A−B) et

cos(C)− cos(A−B) = −2.sin
C + A−B

2
. sin

C + B − A

2
= −2.sin

π − 2.B

2
. sin

π − 2.A

2
, etc.

2. 2) Soit l’éq. de degré 2 en cos(C) : cos2(C)+2.cos(A).cos(B).cos(C)+cos2(A)+cos2(B)−1 = 0.

∆ = 4.cos2(A).cos2(B)− 4.cos2(A)− 4.cos2(B) + 4 = 4cos2(A).[−sin2(B)] + 4.sin2(B) ; ou :

∆ = 4.sin2(A).sin2(B). Eg. vraie si cos(C) = −cos(A±B). Enoncé : C = π − (A+B).

2.2 Triangle toujours : a + b + c = 2p, i : centre du cercle inscrit 5.4

1. tan(A) + tan(B) + tan(C) = tan(A).tan(B).tan(C) (Ici on isole : tan(C))

2. sin(A) + sin(B) + sin(C) = 4.cos(A/2).cos(B/2)cos(C/2) = p/R (fin a = 2Rsin(A))

3. a.sin(B − C) + b.sin(C −A) + c.sin(A−B) = 0 (idem ici avec a = 2Rsin(A))

4. sin(2A) + sin(2B) + sin(2C) = 4.sin(A).sin(B).sin(C) = 2S/R2 (abc = 4RS)

5. sin(A/2).sin(B/2).sin(C/2) = r/4R cf.(4)/(2) ⇒ tan(A/2).tan(B/2)tan(C/2) = r/p

6. a.cos(A) + b.cos(B) + c.cos(C) = abc/2R2 = 2S/R (avec : a = 2.R.sin(A) ... puis avec 4)

7. Vérifier hors abc = 4.R.S : S = p.r = (p− a).ra = ... et avec 5.10 S2 = p(p− a)(p − b)(p− c) :

8. Montrer également les relations : ab+ bc+ ca = r2 + p2 + 4Rr ; ra + rb + rc = r + 4R, dite

formule d’Etienne Bobillier, 1/ha + ... = 1/ra + ... = 1/r. (rarb + ... = p2; rarbrc = rp2= S2/r aisé)

9. (
−→
OA+

−−→
OB+

−−→
OC)2−3R2 = 2R2(cos(2A)+cos(2B)+cos(2C)), cos(2A)+cos(2B)+cos(2C) = −4cos(A)cos(B)cos(C)−1

⇒ OH2 = R2(1− 8cos(A)cos(B)cos(C)). [Voir aussi a2 + b2 + c2 = 3(GA2 +GB2 +GC2) = 9R2 − OH2].

10. *Carnot cos(A)+cos(B)+cos(C) = 1+4.sin
A

2
sin

B

2
sin

C

2
= 1+

r

R
; [gauche = 2.cos

π − C
2

.cos
A−B

2
+

1 − 2.sin2 C

2
= ...] ou avec OA′ = R.cos(A) : OA′ +OB′ +OC′ = R+ r ; Ai2 =

bc(p− a)

p
[car S2/p2 =

r2 = (p− a)(p− b)(p− c)/p]. x = p− a, y, z zéros de T 3− pT 2+r(4R+ r)T − pr2 (
terme trouvé

avec T = p

)
. Eq.

en λ = Ai2, ... : λ3 + (8rR− r2 − p2)λ2 + 8r2R(2R− r)λ− 16R2r4 = 0
(

avec λ = r
2

x
2

= Ai
2 − r

2

)
d’où

∑
1/iA2.

2.3 Montrer que
√
a2 + b2 +

√
c2 + d2 >

√
(a+ c)2 + (b+ d)2, a, ..., d > 0

Géométriquement : inégalité triangulaire ! (Autre note géométrique : Si ABCD est un trapèze

avec (AC) ∩ (BD) = I et JIK//(AB) : IJ/AB + IJ/CD = 1, etc. D’où
1

AB
+

1

CD
=

2

JK
. 4.6).

2.4 (*) Le théorème de Beatty (p, q > 0) [corrigé]

(p, q > 1 et E(n.p)n∈N∗ , E(n.q)n∈N∗ forment une partition de N∗) ⇔ (p, q irrationnels et
1

p
+

1

q
= 1).

[(*) 1) Assez aisément pour a > 1, lim
n→+∞

{E(k.a)} ∩ [[1, n]]

n
=

1

a
: densité de la partie. D’où :

1

p
+

1

q
= 1.

Puis p irrationnel obligatoire ; sinon p et q rationnels et parties non disjointes.

2) Pour n ∈ N∗, le nombre de multiples non nuls de p, 6 n, est E(
n

p
). Idem pour q. Mais p et q sont

irrationnels :
n

p
− 1 < E(

n

p
) <

n

p
; idem pour q ⇒ n− 2 < E(

n

p
) + E(

n

q
) < n ; donc E(

n

p
) + E(

n

q
) = n− 1,

ceci ∀n ∈ N∗ ; aussi pour n+ 1, d’où un unique multiple de p ou bien de q dans ]n ∈ N∗, n+ 1[. Fini.]
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3 Nombres complexes

3.1 Avec la conjugaison [on indique ici seulement la réponse (...)]

Soit : p, q ∈ N∗. Trouver M(z) tel que zp et zq soient conjugués.

(Réponse : Si p = q, 2 droites passant par O ; si p 6= q, O et Up+q.)

3.2 CNS : les racines de z4 − az3 + bz2 − cz + d forment un parallélogramme

Quitte à re-numéroter les racines, on peut traduire l’énoncé par :
−−−−→
M1M2 =

−−−−→
M4M3 ou :

z2 − z1 = z3 − z4 ou bien z1 + z3 = z2 + z4 noté s = z1 + z3 = z2 + z4. (∗)
(Au passage

z1 + z3
2

=
z2 + z4

2
est une équivalence : les diagonales se coupent en leur milieu.)

1. Corrigé, 1ère solution : (le cas a = b = c = 0 doit convenir !)

L’idée est d’utiliser les relations de Viète qui, avec (∗), vont devenir manipulables !

Notons : p = z1.z3 (non pas z1.z2) q = z2.z4 (z2, z4 associées)

On a : z1 + ...+ z4 = a qui est donc 2.s = a ;
puis : z1z2 + ...+ z3.z4 = b qui (calcul laissé) devient p+ z1.s+ z3.s+ q = b ou p+ s2 + q = b
puis : z1z2z3+...+z2z3z4 = c qui devient p(z2+z4)+(z1+z3).q = c ou (p+ q).s = c
Enfin p.q = d : 4 équations pour 3 lettres p, q, s ... normal : la contrainte du parallélogramme !

On obtient : s = a/2, p+ q = b− a2/4. Avec p.q = d, on pourrait alors trouver p et q.

[Connaissant la somme et le produit de 2 nombres, ces nombres sont solutions d’une équation du

second degré] et on voit qu’il reste donc une et une seule contrainte : (b− a2/4).a/2 = c.

2. 2ème solution. (*) On peut faire un changement de repère par translation en prenant une nouvelle

origine le point d’affixe : (z1 + ...+ z4)/4 = a/4 centre de gravité ! en posant (simplement)

Z = z − a/4. On aura une nouvelle équation du type : Z4 + 0.Z3 + α.Z2 + β.Z + γ = 0.

� Pourquoi 0.Z3 ? car (Z1 + ...+ Z4)/4 = 0 barycentre=nouvelle origine !
� Trouver α, β, γ ne doit pas être un souci : ceci peut avoir lieu dès que c’est utile ...
� Si β = 0, on a une équation bicarrée de racines ±Z1, ±Z2 donc on a un parallélogramme ! la
condition est suffisante. Inversement, pour avoir un parallélogramme, la condition β = 0 est
nécessaire car : à ce moment, la nouvelle origine serait centre, donc milieu des diagonales d’où les
racines seraient ±Z1, ±Z2 ; dans ce cas, Z1Z2Z3 + ...+ Z2Z3Z4 doit être nul ( laissé).

Ainsi donc partant de l’énoncé et remplaçant z par Z + a/4, on exprime tout simplement que

le coefficient de Z (le seul à calculer) est nul ! Et trouver à nouveau ... (b− a2/4).a/2 = c.

3.3 Complexes et polynômes : une majoration (inégalités de Cauchy)

1. Soit P (z) = a0 + a1.z + a2.z
2.

Calculer les 3 coefficients à l’aide de : P (1), P (j), P (j2), j et j2.

En déduire : sup | ak | 6 sup|z|6 1 | P (z) |.

2. (*) Généraliser pour un polynôme de degré au plus n, avec : ω = exp(
2iπ

n+ 1
).

(On calculera 1 + ωp + ω2p + ...+ ωp.n selon que n+ 1 divise p ou bien non) ...
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4 Complexes et géométrie

4.1 Chercher M(z) de façon à avoir des points alignés (...)

1. {M(z) : A(1), M(z), M ′(1 + z2)} soient alignés. [y = 0 ou x = −1/2.]

2. {M(z) : A(1), M(z), M ′(z3)} soient alignés. [y = 0 ou Cercle (A(2), R = 2).]

4.2 Fonction argument d’un complexe de C\R− continu avec Arctan

Si z = | z | . eiθ 6∈ R− [pour ln], avec (x/ | z |, y/ | z |) et le Th. de l’angle inscrit, vérifier que :

tan
θ

2
=

y/ | z |
1 + x/ | z | . Donc si θ ∈]− π, π[ : θ = 2.Arctan(

y

x +
√

x2 + y2
). [⇒ ln(z) = ln(ρ) + i.θ possible].

4.3 Composition de rotations planes (et cf. aussi le ch. suivant 5.21)

1. Si θ + ϕ 6= 0(2π), montrer que rB,ϕ o rA,θ = rC,θ+ϕ. Trouver C comme q.2 (ou autrement) :

2. Décomposer rA = sAB o sD1 et rB = sD2osAB en produit de 2 sym⊥ /des droites. En déduire C.

4.4 Centre de similitude directe6=translation, autre construction d’Euler

Soit σ, similitude directe plane A 7→ A′, B 7→ B′ ; angle (
−→
AB,

−−−→
A′B′) ; H = (AB) ∩ (A′B′) ; centre I ?

1. 1ère. I : autre-intersection-cercles (AA′H), (BB′H) 5.28. [Idem A 7→ B, A′ 7→ B′, 4 cercles ! Ex. ABC

triangle, P, Q, R sur les côtés : (AQR)(BRP )(CPQ) conc. en M ; M ∈ (ABC)⇔ P, Q, R alignés point de Miquel.

Fin : MP,MQ = MP, PQ + PQ,QR + QR, MQ ; CB, CA = CM, CA + PQ, QR + AB, AM ; CB, CM − AB, AM = PQ,QR].

2. Deuxième : Euler1 considéra la perpendiculaire en A à AB ; et en A′ à A′B′, se coupant en A”.

(a) Vérifier que AA′A”HI sont cocycliques et que A”H en est un diamètre. Idem pour B”H.

(b) Et que I est la projection orthogonale de H sur (A”B”) ! (angles droits HIA”, HIB”).

4.5 Similitudes directes, cercles et Théorème "de l’angle inscrit" (...)

Si C ∩ C′ = {A,B} ; s la sim. directe(A, C → C′) ; s(M) = M ′ : montrer que M,B,M ′ sont alignés.

[P = MB ∩ C′ ; −→OA,
−−→
OM = 2.(

−→
BA,

−−→
BM) = 2.(

−→
BA,

−−→
BP ) =

−−→
O′A,

−−→
O′P ⇒ −−→

AM,
−→
AO =

−→
AP,
−→
AO′, P = M ′.]

4.6 Birapport et points alignés ou sur un cercle (une conique) DH, QH 4.7

1. Montrer que k = [A,B,C,D] =
c− a
c− b :

d− a
d− b ∈ R⇔(A,B,C,D) cocycliques ou alignés sur D. (Arg...)

2. Montrer k = −1 "division/quadrangle harmonique" ⇔ (a+ b)(c+ d) = 2(ab+ cd)⇔ rel. de Descartes

(C origine)
2

CD
=

1

CA
+

1

CB
[si points non alignés mettre les affixes !] ⇔ rel. de Newton, O milieu de

[AB], OA2 = OB2 = OC.OD (idem Ω milieu de [CD]) ⇔ relation de Mac-Laurin2 CA.CB = CO.CD.

3. Cas alignés : Si U extérieur, vérifier que k =
sin(AUC)

sin(BUC)
:

sin(AUD)

sin(BUD)
. Donc idem si U ′ ou D′ !

⇒ la "polaire" d’un point M/2 droites sécantes en U est une droite (m) passant par U ( //29.10.)
3

4. Cas cocycliques. Si U ∈ C (origine), f(z) = 1/z, g(z) = z, vérifier que [a, b, c, d] = [1/a, ∗, ∗, 1/d] = k

car k ∈ R. Donc [A,B,C,D] = [UA,UB,UC,UD] indépendant de U ∈ C (= ÃC/B̃C : D̃A/D̃B.)
4

1 Note sur le cercle d’Euler : Ayant un triangle ABC avec A′ milieu de [BC], A1 pied de la perpendiculaire issue de A,
A2 milieu de [HA], avec des homothéties de centre A et C, on voit que A′C′A2C2 est un rectangle donc 4 points sur un

cercle de diamètre [A′A2], [C′C2], [B′B2] ; il contient aussi A1, B1, C1. Son centre ω vérifie 2
−−→
Hω =

−−→
HO, 2

−→
Gω = −2

−−→
GO.

2 Et (b− a)2 + (d− c)2 = 4.[
c + d

2
−

a + b

2
]
2. Ex : C, C′ cercles ⊥ et D passant par O les coupant en ABCD, ABCD DH.

3 Cas alignés, le birapport est aussi celui des aires AUC ... des sinus des angles en U ... et des coeff. directeurs de UA ...
[⇒ sin(α− γ)sin(β − δ)/sin(β − γ)sin(α − δ) = (tan(γ)− tan(α))(tan(δ)− tan(β))/(tan(γ) − tan(β))(tan(δ)− tan(α)).]
y = mx ⊥ y = m′x⇔ m.m′ = (±i)2 ⇔ conjuguées/isotropes y = ±ix. Une diag. du quadr. complet div.H. par les 2 autres.

4 Coniques propres : une proj. centrale ramène au cas du cercle ; birapport sur des droites conservé [U ; A,B, C, D] ...
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4.7 (*) Quadrangle harmonique QH cf. Th. de la puiss(M)/Cercle 29.10.6

Soit A,B,M,M ′ z − a
z − b :

z′ − a
z′ − b = −1 ou

z′ − a
z′ − b = −z − a

z − b (1) (QH) Si A,B,M,M ′ alignés, (Div.H).

1. Montrer : (1)⇔ (2) (a+ b)(z + z′) = 2(ab+ zz′) : Relation aux affixes ou de Châsles [a, b, z, z′ ∈ C].

Donc on peut permuter a et b ; z et z′ ; {a, b} et {z, z′} : (A,B,M,M ′) QH⇔ (B,A,M,M ′) QH ...

2. Avec les modules, A,B,M donnés, k =
MA

MB
6= 1, déduire queM,M ′ ∈ Γ : cercle centré en Ω ∈ (A,B),

⊥ cercle C(A,B,M) de centre O [solution en 29.10.6.] Fig. si k = 3, AB = 8cm ? Et si k = 1 ?

3. Et que (
−−→
MA,

−−→
MB) = (

−−→
M ′A,

−−−→
M ′B)+π (2.π). Puis, si θ =

−−→
MA,

−−→
MB 6= 0 (π), que (M,M ′A,B) sont

cocycliques sur C. Compléter la figure et préciser M ′. Que se passe t-il si
−−→
MA,

−−→
MB= 0 (π) ?

[Rem. (A,B,C,D) Q.H. ; ordre A,C,B,D ∈ C : AB.CD = 2AC.BD = 2AD.BC Ptolémée 5.22.]

4. Au lieu d’un repère quelconque, soit ici un repère centré au milieu H de [A,B] ; a, b, z, z′ les affixes :

(a) Déduire ici (b = −a) que (3) z.z′ = a2 = b2 (origine mil[A,B], Relation de Newton) et (arg.) :

(H,A) ; (O,H) = D bissectrices (
−−→
HM,

−−→
HM ′).K = mil[M,M ′] : (K,M) ; (K,Ω) de (

−−→
KA,

−−→
KB).

(b) On prouve que : KA+KB = HM +HM ′ = MM1 = BB1, M1 = (MH) ∩ C, B1 = (BK) ∩ C.
– On note z = u2, z′ = v2 ; on rappelle que : z.z′ = a2 et le théorème de la médiane :

2(| u |2 + | v |2) =| u+ v |2 + | u− v |2. En observant que : | u+ v |2 = | (u+ v)2 | ,

montrer que : | z + z′

2
+a | + | z + z′

2
−a | = | z | + | z′ | et conclure. Ou vérifier que :

– HM.HM ′ = HA2, KA.KB = KM2 ; (HM +HM ′)2 = 2
(
HK2 +KM2 +HA2

)
=
(
KA+KB

)2
.

– Mieux. HA2 = HB2 = HM.HM1 = HM.HM ′ ⇒ HM ′ = HM1 ; ÂMK = B̂MH : médiane et

symédiane de AMB. Idem BK, BH pour MBM ′. M̂BB1 = M̂ ′BA = B̂MM1 termine.

5. Soit P = (A,B) ∩ (M,M ′) et ω = (M,M ′) ∩ D. Cercles ⊥ ⇒ Ω = pôle de (M,M ′)/C. Cf. 29.10.

Idem (H;A,ω,M,M ′) faisceauH., (ω,P,M,M ′) DH., ω = pôle de (A,B)/C : M ′ = (ωM) ∩ C ∩ Γ.

Rem. O ∈polaire(P )/Γ. Ω, ω, P autopolaire/C. (Ω, P,A,B) DH., KP ⊥ KΩ⇒ KP bissectrice !

(B;Bω,BA,BM,BM ′) faisceau H., donc : ∀U ∈ C, (UB,UA,UM,UM ′) faisceau H. !

6. On suppose connu z.z′ ou A, B ; et z + z′ ou K milieu de (M,M ′) 6∈ (A,B). On cherche M,M ′ :

Avec (A,B) ; D et Biss. de (KA,KB), on a : ω et C car (ωB) tangente ; faire alors (ωK) ∩ C ?

Des lieux : � Si M ∈ ∆, dr. passant par H : M ′ ∈ ∆′ ; 4.αK .βK = HA2 : K ∈ Hyp. d’asympt. ∆,∆′

� Si HM = r (cercle de centre H), HM ′ = R (idem) et KA+KB = r+R : ellipse de foyers A,B.
� Si M ∈ C de centre O, M ′ ∈ C et ωK ⊥ OK ⇒ K ∈ Arc-AOB du cercle de diamètre [Oω].
� Si M ∈ Γ, de centre Ω orth. à un (donc à tous) cercle passant par A,B, M ′ ∈ Γ aussi ; la polaire

de P / Γ est D = (OH), donc P est fixe ! Et K décrit le cercle de diamètre [ΩP ].

Rem. puiss(ω/C) = ωA2 = ωO.ωH ; donc O,H,M,M ′ cocycliques. Ω = Bar[A(1), B(−k2)]⇒
P = Bar[A(1), B(k2)]. Relation de Descartes 2/(z− z′) = 1/(z− a)+ 1/(z− b) et [1,−1, z, 1/z] QH.

4.8 (*) Théorème de Mohr-Masheroni (Napoléon l’a importé d’Italie)

1. Tracer un cercle Γ, puis oublier son centre Ω et son rayon. Prendre ensuite O sur Γ, tracer un

cercle C de centre O, de rayon R coupant Γ en A,B ; puis contruire D intersection des 2 cercles

de centre A,B passant par O (donc de rayon R). Tracer le cercle de centre D passant par O

coupant C en E,F (et Ox en J). Les cercles de centres E,F passant par O se coupent en I = Ω.

2. Dém : Soit un r.o.n. (O,Ox = (OD)) : OA = 1 et l’inversion f :M(z 6= 0) 7→M ′(z′ = 1/z = z/| z |2).
(a) Vérifier que

−−→
OM ′ =

−−→
OM/‖−−→OM‖2. Déduire que O,M,M ′ sont alignés et que OM.OM

′
= 1.

(b) Puis que fof = IdC∗ d’où f involutive C∗ → C∗. Et aussi que A,B, E,F sont invariants.

(c) On suppose connu que : droite(A,B) a pour image un cercle passant par O [privé de O] ; si
G = Γ ∩Ox, H = droite(A,B) ∩Ox, déduire : f(droite(A,B)) = Γ, f(H) = G, f(D) = Ω.

(d) Soit K = droite(E,F ) ∩Ox. Montrer : f(cercleOEF ) = droite(E,F ) ; f(J) = K ; et Ω = I.
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5 Géométrie dans R2

5.1 Trajet minimum [hors Problème de Fagnano et de Fermat (**)]

1. Soit A, B d’un même côté de la droite ∆ ; trouver M ∈ ∆ : AM +MB soit minimum [sym⊥(A)/∆].

2. Et avec MA2 +MB2 [cf. théorème de la médiane] ? (MA2 −MB2 = 2
−−→
IM �

−−→
AB, I milieu de [AB]. )

5.2 Sur le triangle rectangle [hors Théorème de Pythagore, inversion]

SiH proj⊥(A, (BC)) : ABC recten.A ⇔ BA2 = BC.BH ⇔ AH2 = −HB.HC ⇔ AB.AC = BC.AH ⇔(
H ∈]B,C[ ;

1

AH2
=

1

AB2
+

1

AC2

)
. Et α contact cercle.inscrit-BC : S = Bα.αC. [2S = bc = (r + Bα)(r + Cα)]

Note. ABC rectA, ABPQ,ARSC carrés ; alors (BS), (CP ), (AH) concourantes ! [avec le Th. de Céva 5.18]

5.3 (*) Problème de Fagnano 1682-1766 et variations cf. 5.8, 5.15

1. Soit un triangle acutangle (angles 6 90̊ ) ABC. X ∈ (BC) quelconque, X ′,X” ses symétriques

orthogonaux par rapport à (AB) et (AC) dans l’ordre. Figure en joignant AX, AX ′, AX” ?

2. X étant le point précédent, Y ∈ (CA), Z ∈ (AB) quelconques, justifier X ′X” 6 XY + Y Z + ZX

et que l’égalité est possible pour Y, Z à placer. Puis vérifier que : X ′X” = 2AX.sin(A).

3. (a) Justifier qu’il y a une et une seule position de X, puis de Y,Z rendant le périmètre minimum.

(b) Soit S l’aire du triangle, a = [BC] etc les côtés et hA la hauteur issue de A. Justifier que

sin(A) = 2.S/ b.c ; ahA = 2.S et en déduire que le périmètre minimum vaut 8.S2/ a.b.c.

4. Sur une autre figure tracer ABC et les pieds A1, B1, C1 des hauteurs [c’est le triangle orthique].

Justifier que Ĉ1A1A = ÂA1B1 =
π

2
−Â. [Ceci signifie que A1B1C1 est une trajectoire de lumière.]

(On peut utiliser le triangle X ′AX” analogue à question 1, avec le point X = A1.)

5. Soit H l’orthocentre de A,B,C (intersection des hauteurs) O le centre du cercle circonscrit à ABC.

Montrer que ĤAB =
π

2
− B̂. Puis que 2.ÂBC = ÂOC = π − 2.ÔAC . Conclure que AH,AO et

AB,AC ont même bissectrices. [On dit : AH et AO isogonales ; ceci est le Théorème de Nagel].

6. Il en résulte que : B̂B1C1 = B̂CC1 =
π

2
−B̂ (ou Th. de l’angle inscrit) ; donc : ÂB1C1 = B̂. Comme

(AC,ATA) = BC,BA) conclusion sur (B1, C1) et (O,A) à tracer ? Note : ÔAA1 =| B̂− Ĉ |.
Rem � ABC et tr. de Gergonne du tr. orthique homothétiques de même droite d’Euler ; ou jkl, i1i2i3 tr.

de G. du tr. orthique hom(S, 2R/r), même droite d’Euler E : O′, OABC ,Hjkl = iABC ∈ E ⇒ S ∈ E .
� Soit L et M , projections orthogonales de A1 sur (AB) et (AC) dans l’ordre et Q = (CC1) ∩ (LM).

(LM)// (X ′X” = B1C1) avec X = A1 ; coupant [A1C1] en son milieu ; et
CA1

CB
=

CM

CB1
=

CQ

CC1
; A1LC1Q

rectangle ! On montre encore que les 6 points L,M et analogues sont sur un cercle : cercle de Taylor.

5.4 (*) Théorème de la puissance d’un point et relations d’Euler

2 cercles (O,R) ; (i, r) sont circonscrit ; inscrit à un triangle ⇔ Oi2 = R2 − 2Rr (Chapple, Euler).

Idem (O,R) et (j, rA) circ. et ex-inscrits⇔ (Oj)2 = R2 + 2RrA. 29.10.6 : puiss(i/Cercle) = iO2−R2 =

iA.iA0, A0 milieuB̂C. Or iBjC ∈ cercle.centre.Méd[BC]∩ ij = A0 : iA0 = BA0 = 2R.sin
A

2
; sin

A

2
=

r

iA
.]

5.5 (*) Quadrilatère A, B, C, D, quelconque et droites parallèles

Si E = (BD) ∩ //(BC) en A, F = (AC) ∩ //(AD) en B, montrer que (EF )//(CD). [I = (AC) ∩ (BD) et hI , h
′
I ,

hom : hoh′ = h′oh. Cas (AC)//BD ?] Rem. Si ABCD trapèze(AB)//(CD) : Moy-harm.(AB, CD) = 2UI = 2IV = UV .

Ex. : BC corde focale de Par. ; V = F ; A, U,D ∈ Dir. ; Isommet ∈ AC ∩BD ! [IV/AB + IV/CD = (CV + BV )/CB = 1.]
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5.6 (*) Triangle pseudo-rectangle en A ; hyperbole équilatère HE

Ayant 1 cas, il y a 4 par symétries ; cas β − γ = π/2. Ici ABC direct, BC = 2.a, γ > π/4, β < 3π/4.

1. Montrer qu’il y a 1 cas de triangle pseudo rectangle isocèle : β =
2.π

3
, α =

π

6
. [1/3 triangle équil. !]

2. Soit O milieu de [BC], −→ı ,−→ orthonormé, −→ı colinéaire à
−−→
BC. Vérifier que (AB) : y = tan(β).(x+a),

(AC) : y =
1

tan(β)
(x−a). Et que A

( a

cos(2β)
, a.tan(2β)

)
décrit l’hyperbole équilatère : x2− y2 = a2.

3. Si D = (⊥ à AC en A) ∩ (BC), montrer que J = mil[BD] est pied de la hauteur issue de A. Et :

JA2 = JB.JC ; Ay tangent en A à ΓABC d’où x2 − y2 = a2. Idem J = mil[EC] [⊥ (AB) en A].

4. Puis H = sym(A/(BC) orth. de ABC [(BH) ⊥ (AC)]. Si A′ = sym(A/Med.[BC]), Ω = mil[A,A′]

ω = mil[ΩH] ∈ (BC) : centre du cercle d’Euler. BissA coupe (BC) à
π

4
[U = mil.arc.BC] et :

ÂCA′ = ÂBA′ = π/2 : sur toute // à l’axe transverse, [AA′] est vue sous π/2 de chaque sommet.

5. Si R est le rayon, vérifier (avec angles au centre) que :
BC

sin(α)
=

CA

sin(β)
=

AB

sin(γ)
= 2.R. Puis que :

CA2+AB2 = 4.R2 (idem ici au triangle rectangle). Si A = 2R2sin(α)sin(β)sin(γ) aire du triangle,

6. A =
BC.AB.sin(β)

2
=
R2.sin(2α)

2
! Puis, ABJ,A′AB semblables (ou ABA′ rectangle, AC = A′B) :

BA2 = 2R.BJ , CA.
AJ

sin(β)
= CA.AB = 2R.AJ , CA2 = 2R.CJ et

1

AB2
+

1

AC2
=

1

AJ2
. Soit A = M :

7. Si C cercle principal de diamètre [BC] : µ = (By)∩ (AC), m = proj⊥(B, (AC)). Vérifier la D.H. :

(C,µ,m,M) [car Bµ,BC biss.]. m ∈ C ↔M ∈ HE sont dites courbes homologiques (homologie

de centre C, d’axe By, 26.3) : les tangentes en m et M se coupent en T ∈ By. Si K = mT ∩Oy,
KmT homologue deMT ; si ν ∈ CK∩By,K mil[Cν] homologue du point∞ de TangM : CK//MT .

8. Et a) XY =
a2

2
si Asympt. b) Si (MM ′)∩(Asympt) = {N,N ′} : même milieu. c) Si Tang. en M :

ON.ON ′ = 2X.2Y = 2a2 [Aire Cte] et OMN,OMN ′ isocèles5. Foyers : Si C2 centré sur Oy passant

par N,N ′, coupe Ox en F ′, F ; N1 = sym⊥(N/Oy) : OF 2 = OF ′2 = ON1.ON
′ = 2a2 ⇒ F ′, F fixes

et OF = a.
√

2. F̂ ′ON1 = F̂ON ⇒ Ox,Oy : biss. de N̂ON ′ ; si E = NN ′ ∩Ox,G = NN ′ ∩Oy,
(NN ′EG) D.H. : G pôle de FF ′ ; pôle de NN ′ conj. de G : ∈ FF ′. Et NN ′FF ′ points où une
tangente coupe les asymptotes ∪ foyers sont sur un cercle partagé harmoniquement (QH). N ′O,N ′N
médianes et symédianes de FN ′F ′ ; F ′M,F ′F idem pour F ′NN ′. Si F ′M ∩ C2 = ϕ, N ′ϕ = NF :

Mϕ = MF ;
(
MF ′ −MF

)2
= MF ′2+MF 2−2MF.MF ′ = 2OM2+2OF 2−2MN2 = 2OF 2 = 4a2.

De plus la tangente en M est bissectrice de F ′MF (QH) et MF.MF ′ = MN2 = OM2. 4.7, 5.18.

β − γ = π/2, ω = H ∗Ω ∈ (B,C) [milieu de H,Ω]. Oxy, OXY : F ′FNN ′ Q.H. ; OF = a.
√

2.

5 Une question plus générale : Si OX, OY non orthogonaux, enveloppe des NN ′ : ON.ON ′ = k2 ? X/t + tY/k2 = 1,
−X/t2+Y/k2 = 0. X = t/2, Y = k2/2t; XY = k2/4 = ”(a2+b2)/4” ; d’où Hyp., OF = OF ′ = k ; F, F ′, N, N ′ Q.Harmonique.
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5.7 (*) Hyperbole équilatère H : des compléments à 5.6 (cf. 29.2)

1. Si M ∈ H projeté en P,Q sur Asympt, M ′ ∈ H, MM ′ de direction fixe coupant Asympt en N,N ′:
A = M0 = M ′

0 point de tangence ; MP.MQ = Cte ⇒ MN.MN ′ = cte = AD.AD′ = OA2 = a′2.

Si I = mil[MM ′], a′2 = (IN − IM)(IN + IM) = IO2 − IM2 : (avec diamètres conjugués

x′2 − y′2 = a′2) et IM2 = IO2 −OA2 = (
−→
IO +

−→
OA).(

−→
IO −−→OA) = IA.IA′, A′ : sym(A/O) ; d’où

(puiss I/Γ∗
M,A,A′) IM tangente à C : H, lieu des points M ∈ Γ∗

M,A,A′ de tangente de direction fixe ;

idem si M1 diam. opposé sur Γ∗ : Tout cercle passant par A,A′, diam. opposés de H, coupe H en
M,M1 d’un diamètre de Γ∗, de direction fixe ⊥ Tang. en A,A′ à H (autre définition ; AA′-TangA

diamètres conjugués de H) : si | H∩Γ∗ |= 4, 2 diam. opposés sur une, les 2 autres aussi sur l’autre !

2. De plus : M̂AA′ − M̂A′A = M̂IA = cte (2ème définition). Et si BissA′MA coupe C en U , on a

2.ÎMU = M̂Ω∗U = cte : Biss a une direction fixe //Asympt (3ème définition). Et 29.2.

5.8 (*) Avec le Théorème de l’angle inscrit, ABC inscrit dans C
1. On trace la bissectrice issue de A coupant BC en iA, C en A0 ; A0 aussi milieu de [ij], j = ∩bisse.

Montrer que les triangles ABiA et AA0C sont semblables. Déduire que : AB.AC = AA0.AiA.

2. Théorème de Reim : Soit 2 cercles sécants en A,B, C,A,C ′ et M,B,M ′ alignés, (A,B,C,M) ∈ Γ,

etc. Montrer que (C ′,M ′)//(C,M). [6= 4.5. Ind. Ĉ+ Ĉ ′ = π ou avec 29.8 : 2 droites=conique dégénérée.]

3. Soit A1, B1, C1 pieds des hauteurs et tangA tangente en A. Avec les angles : (AC,ATA) = (BC,BA)
(AC,B1C1) = (BC,BC1), déduire : tangA//B1C1 et OA ⊥ B1C1 sans plus supposer ’triangle aigu’ !

⇒ TATBTC triangle tangentiel et A1B1C1 triangle orthique : homothétiques. HABC = iA1B1C1
5.3.

ATA : symédiane 5.18. E c.-cercle d’Euler, F point de Feuerbach, EiF alignés 5.23. jkl et le
triangle de Gergonne de son triangle orthique i1i2i3 : homothétiques [(kl) ⊥ (Aij) ⊥ i2i3] ; même
droite d’Euler [Eulerjkl contient i = Hjkl//Euleri1i2i3 contient i, centre du cercle circonscrit]. Idem ABC.

5.9 Intersection de deux cercles. Axe radical et construction (...)

Soit C1 : x2 + y2 − 2a1x− 2b1y + c1 = 0 ; C2 analogue et (a1, b1) 6= (a2, b2), en repère orthonormé ; et
D : 2(a1 − a2)x+ 2(b1 − b2)y = c1 − c2, "axe radical" des 2 cercles ; M ∈ D ⇔ même puiss/C1, C2.

1. Vérifier que C1 ∩ C2 = C1 ∩ D. (Note : hauteur AA1= axe rad. des cercles de diam [AB], [AC].)

2. Vérifier que D est orthogonale à la ligne des centres ; puis construire D si C1, C2 non disjoints.

3. Si disjoints : avec un cercle coupant C1 et C2, construire D. [Ind. Axe(C-C1) ∩Axe(C-C2) ∈ D.]
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5.10 Diverses constructions de cercles ; les points de Poncelet (...)

1. Construire Γ centré en I, ⊥ C de centre O. [Euclide : Γ ∩ C = {T, T ′} : ITOT ′ cocycliques.]

2. Construire les points de Poncelet du faisceau engendré par 2 cercles disjoints non concentriques.
[Γ de centre M ∈ Axe.radical, ⊥ à C et C′, coupe la droite des centres aux points cherchés.]

3. Construire, s’il existe, le cercle orthogonal à 3 cercles donnés. [Son centre a même puissance/3. Si
les centres sont non alignés, un seul point convient : I centre radical, intersection d’axes radicaux.
Si I intérieur à 1 cercle, 0 solution. Si I extérieur, un cercle de centre I, ⊥ à 1 cercle, est ⊥ aux 3.]

5.11 (*) Quadrilatère inscrit (ex : biss de MNPQ)/circonscrit/orthodiagonal

1. Si quadril. quelconque non orthocentrique, centre d’Euler, intersection des 4 cercles d’Euler 29.2 ;
� Si inscrit

−→
ΩE = 2.

−→
ΩG et E ∈chaque mi-hauteur ; si orthodiagonal E = AC ∩BD ; si les deux q.2,3.

� Si ABCD convexe inscrit autre preuve : de P milieu de [AB], abaisser PP ′ ⊥ (CD), etc. Si E :
−→
ΩA+

−→
ΩB +

−→
ΩC +

−−→
ΩD = 2.

−→
ΩE, montrer que ces 4 segments passent par E. [E 6= (AC) ∩ (BD) ici ;

car 2.
−−→
PE =

−→
ΩC +

−−→
ΩD ⊥ −−→CD : Fini ! (E "point de Monge" si tétraèdre et sphère de centre Ω).]

2. Un Théorème de Brahmagupta : ABCD inscrit dans un cercle et à diagonales ⊥ sécantes en X

(orthodiagonal) : P,X = E,P ′ alignés ! [ou X = E car ÂCD = ÂBD = B̂XP ...
−→
ΩE = 2.

−→
ΩG aisé.]

3. Quadr. inscrit orth. � EA2+EB2+EC2+ED2 = AB2+CD2 = AD2+BC2 = 4.R2. (ÂΩB+ĈΩD = π)

� Rayon-cPQRS : 4.PR2 = AC2+BD2 = AE2+EC2+2AE.EC+... = 4(R2−p.(E/CABCD))⇒ 4.ρ2 = 2.R2−ΩE2.

4. Quadr. orthodiagonal, non inscriptible, plus de droite conc. (Louis Brand 1944). Avec le parallélo-
gramme de Varignon (père Pierre Varignon, jésuite 1654-1722) des milieux PQRS de ABCD (de

périmètre AC + BD ; ici c’est un rectangle), vérifier [avec P̂P ′R =
π

2
] que les 8 points Mi,Hj sont

sur un cercle, centré en G. Avec K,L milieux de [AC], [BD] et EKΩL rectangle, G milieu de [EΩ].
Cas de ABCH , H orthocentre ce cercle de 8 points (6 ici) est le même que celui de BCAH (car 3

points communs) : c’est le cercle des 9 points ! de centre milieu de [B′B3], B3 milieu de [HB] et
isobarycentre de PQRS donc de ABCD ; donc le centre ω du cercle d’Euler est Bar(G, 3), (H, 1).

5. Q. circonscrit (tangentiel) : AB+CD = AD+BC (Henri Pitot) puis AireIAB+ICD = AIBC+IAD. Or
{M : 2.AMAB+MCD = AABCD} = D(mil[AC],mil[BD]) (Th. Pierre-Léon Anne) ; ⇒ I ∈ DNewton.

6. Q. ABCD inscrit et circ. t, u, v, w : tangences. (Durrande) : Ati sembl iuC ; At.Cv = Bt.Dv = r2.

7. Pour le quadrilatère inscrit dans un cercle cf. aussi 4.7 ; 5.10 ; et les Théorèmes de Ptolémée 5.22.

5.12 Formule de Héron d’Alexandrie [quadrilatère inscrit : F. de Brahmagupta]

1. Soit ABCD un quadrilatère convexe : AB,BC,CD,DA égaux à a, b, c, d, de surface S, donc
| AB −AD | 6 BD 6 DC +BC ; | CB − CD | 6 AB +AD (∗). Si 2p = a+ b+ c+ d,

(a) Montrer que a2 + d2 − b2 − c2 = 2(ad.cos(α) − bc.cos(γ)), α = B̂AD, γ = B̂CD.

(b) Vérifier que : 2S = ad.sin(α) + bc.sin(γ) (en découpant en 2 triangles). Et

déduire que (a2 + d2 − b2 − c2)2 + 16S2 = 4(ad+ bc)2 − 8abcd[1 − cos(ǫ)], α+ γ = π + ǫ.

(c) Vérifier que : 16S2 = [(a+ d)2 − (b− c)2][(b+ c)2− (a− d)2]− 16abcd.sin2
(
ǫ

2
) (Bretschneider)

et déduire S =
√

(p− a)(p− b)(p− c)(p− d) ⇔ (A,B,C,D) cocycliques, (p demi-périmètre).

(d) Pour a, b, c, d donnés tels que (∗), montrer qu’il existe α tel que cos(α) =
a2 + d2 − b2 − c2

2(ad + bc)
.

Vérifier que ceci traduit cos(γ) = −cos(α) ; préciser ce cas géométriquement.

2. Et dans le cas du triangle ? [Formule de Héron d’Alexandrie : S =
√
p(p− a)(p− b)(p− c).]

5.13 Triangles équilatéraux (ex.1 peut servir au Th. de Fermat 32.3)

1. Soit ABC équilatéral inscrit dans C ; montrer : rB, π
3

: M
petitB̂C

7→M ′ ∈ [AM ] ; et BM+MC = MA.

2. Soit 3 droites D,D′,D” passant par A telles que (D,D′) = (D′,D”) = (D”,D) = π/3 (π). Idem
avec ∆,∆′,∆” et B 6= A. Montrer que : M = D∩∆, M ′, M” forment un triangle équilatéral direct.

(Indication : Voir que M,M” sont sur le cercle ABM ′ par le théorème de l’angle inscrit ! Etc.)
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5.14 (*) Au sujet des cercles : Trois exercices très difficiles

1. Théorème "du papillon" (énoncé facile, solution difficile). Soit une corde [AB] de milieu C d’un
cercle et 2 cordes DE, FG passant par C, coupant AB en M,N . Alors : C est milieu de [MN ].

2. Soit ABCD un carré ; on trace (AE), E ∈ (BC) coupant (CD) en F . Soit I le milieu de [BE].
Alors (FI) ∩ (DE) décrit le cercle circonscrit au carré. Et (FI) est tangente au cercle inscrit.

3. Soit un triangle ABC, I le centre du cercle inscrit, DEF le triangle inscrit : D = projBC(I).
Supposons AC 6 AB. Montrer que la projection orthogonale de C sur (AI) est sur (DF ).

Solutions. 1) Soit E,F sur le petit arc ; les triangles FCD, ECG sont semblables :
FD

FC
=
EG

EC
.

Avec les perpendiculaires OH et OJ , FH/FC = EJ/EC ; donc FCH et ECJ semblables et

F̂HC = ÊJC ; ces angles se retrouvant en MOC (OCMH cocycliques) et NOC : CM = CN .

2) Si M,N sur le cercle avec (AN)//(DM), fig.2 : les triangles ECM,ADN sont homothétiques

car ÂND = D̂MC ; et Arc
C̃M

= Arc
B̃N

, ÊMB = π/2. Donc (MN) coupe (EB) en son milieu I.

En ayant ÎMB = ÎBM , (IM) et (IB) sont symétriques par raport à (OI). D’où les tangences.

3) Si M ′ = CercleCDIE ∩DF ;
−−→
IM ′ ⊥ −−→CM ′ et, fig.3, on a 3 angles x égaux. Si M” = proj(C, (AI)),

fig.4 : x+ u+ v = y + u+ v, x = y ; et comme
−−→
IM” ⊥ −−→CM”, M ′ = M” qui est donc sur (DF ).

Note. D//(A,B) en M ′,M” coupe [AC] en son milieu B′ car B′CM” = B′M”C ⇒ CB′M” = Â ...

5.15 (*) Pieds des bissectrices du triangle orthique 5.16, 5.3,8

1. Soit A,B,C un triangle de centre du cercle circonscrit O ; Oa symétrique de O/ milieu A′ de [BC].
Montrer : OaB ⊥ A1B1 côté du triangle orthique. [Car OaB//OC ⊥ A1B1.] Idem OaC ⊥ A1C1.

2. (*) Et aussi que OaA ⊥ IBIC , IB , IC étant les pieds des bissectrices du triangle orthique A1B1C1.

[Si H orthocentre de ABC, H = I, centre du cercle inscrit à A1B1C1 (non à ABC). On peut noter
A = J ... car centre d’un cercle ex-inscrit à A1B1C1. A1B1C1 est aussi triangle orthique pour HCB
d’axe orthique 5.16. JA = BC ∩ B1C1, IB = HB ∩ A1C1, IC = HC ∩ A1B1 ⊥ Droite d’Euler EA

(car A orthocentre) ! Or (connu)
−−→
AH = 2.

−−→
OA′ =

−−→
OOa et E milieu de [OH] ; d’où

−−→
OaA = 2.

−→
EA.]

5.16 (*) Avec la puissance d’un point/cercle 29.10.6, axe orthique

1. (a) Vérifier que C′(M)−C(M) = 2.
−−→
O′O.

−−→
HM ,H = proj⊥(M,Axe.rad.) O 6= O′, C(M) = puiss(M/C).

(b) Si ω est le milieu des centres, I sur Axe ∩ (OO′) déduire que : 2.OO′.ωI = R2 −R′2.

2. Axe orthique. Soit ABC un triangle, A1B1C1 son triangle orthique, P = (B,C) ∩ (B1, C1), etc.

Montrer que P,Q,R Axe ⊥ Droite d’Euler de ABC. [Ind. : PB.PC = PB1.PC1 donc P a
même puiss./aux cercles (ABC), (A1B1C1), etc. Et axe radical ⊥ droite des centres (O, E).]

5.17 (*) Théorème de Ménélaüs. Les six pieds des bissectrices (...)

1. Avec une projection sur (B,C) pour =⇒ et Cours pour la réciproque, montrer que :

(M ∈ (B,C), N ∈ (C,A), P ∈ (A,B) sont alignés) ⇔ MB

MC
.
NC

NA
.
PA

PB
= 1. Utilisation : on a

2. les 6 pieds des bissectrices (iA, ..., i
′
C) intérieures et extérieures alignés 3 à 3. [

CiA

BiA
=

Ci′A
Bi′A

=
b

c
...]
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5.18 (*) Théorème de Céva. Point de Lemoine (et de Gergonne/Nagel)

1. Avec K barycentre de A,B,C pour ⇒ montrer, pour M ∈ (B,C), N ∈ (C,A), P ∈ (A,B) :

(AM,BN,CP concourantes [en K] ou parallèles) ⇔ MB

MC
.
NC

NA
.
PA

PB
= −1.

(
On peut prendre M ′ :
[B, C, M, M ′]D.H.(...)

)

2. Utilisation. "Symédianes" concourantes au point "de Lemoine" L du triangle cf. fig. 5.8 et 4.7

Soit ABC un triangle de cercle circonscrit Γ, TATBTC le triangle formé par les tangentes en A,B,C
A0, A

′
0 les milieux des arcs BC, A′ milieu de BC. Comme BA0, BA

′
0 bissectrices de (BC) (BTA),

(B;A0, A
′
0, TA, A

′) est un faisceau harm., d’où (A0, A
′
0, TA, A

′) [alignés] en D.H. et (A;A0, A
′
0, TA, A

′)
f. harm. Ayant (AA0) ⊥ (AA′

0), ce sont les bissectrices de (A,TA) et (AA′). (ATA), symétrique de

la médiane (AA′)/biss., est dite symédiane. Avec TAB = TAC... (a′ = TBTC , 2p′ = a′ + b′ + c′),
ATB

ATC

.
BTC

BTA

.
CTA

CTB

= −1 ; ce point de concours est le "point de Lemoine" de ABC ; "point de Gergonne"

de TATBTC si ABC aigu ; si Â obtus (2 cas de fig.) Γ cercle ex-inscrit à TATBTC ; TAA∩... non point
de Gergonne ni "point de Nagel" de TATBTC 5.24 (mais toujours de "Lemoine-Grèbe" de ABC).

Et si x = dist(P, BC), ... P intérieur ; le minimum de x2 + y2 + z2 ayant ax + by + cz = 2S vérifie : 2x/a = 2y/b

= 2z/c = 2(x2 + y2 + z2)/2S ; (ax : by : xz) prop (a2 : b2 : c2) coeff. baryc. c’est donc le point de Lemoine 5.30.

Remarques � On a aussi un théorème de Céva "trigonométrique", avec des sinus (exercice).
Avec lui et l’isogonalité (*) 5.30, on a de suite que les symédianes de A,B,C sont concourantes.

� B1 = projAC(B) : symédA coupe [B1C1] au milieu M car 0.7 (AB,AC) ≡ (BC,B1C1), B1C1//AT .

(Attention T = TBTC .) Et AM polaire de U = AT ∩BC ; donc TA pôle de (BC) est aussi sur (AM).

Et pour A1B1C1, A, B, C sont les centres des cercles ex-inscrits. (A, B1 ∗ C1) ∩ ... est dit "Mittenpunkt").

� U = ∩(TBTC), (BC), (βγ), β = BL ∩AC [(BC) ∩ (βγ) = U ′ : AB, AC, AL, AU ′ Harm. U = U ′] V,W : dr. de Le-

moine 29.10. TA conjugué de U , U conj. de A (tang.) : pôle(ATA) = U , L conj. de U : (U, V, W ) polaire de L.

Ou aussi (*) Th. de Pascal : A,B, C, A∗ = C, B∗ = A,C∗ = B ∈ Conique ⇒ AB∗ ∩A∗B, ... alignés 29.1.

3. (*) En gén. : Aα,Bβ,Cγ céviennes conc. ⇔ α′ = (BC) ∩ (βγ), ... alignés : polaire trilinéaire de M/ABC.

5.19 Coordonnées barycentriques M=bar[A, AireMBC ;B, AireMCA ;C,AireMAB]

1. (*) Pour A,B,C non alignés, montrer que tout point M du plan (A,B,C) est un barycentre de

A,B,C avec certains coefficients ; par exemple Aire(MBC), Aire(MCA), Aire(MAB). 29.1

2. Et que des coordonnées de i, centre du cercle inscrit sont
(

A B C
a b c

)
[ik = proj⊥(i) :

(
i1 i2 i3
a b c

)
] !

Du centre du cercle circ. sin(2A), sin(2B), sin(2C) ; de l’orthocentre tan(A), tan(B), tan(C).

5.20 (*) Inversion isotomique (si 3 points alignés, les inverses ? non !)

C’est f : M 7→M ′ telle que MA ∗M ′
A = GA = A′, MA,M

′
A, GA ∈ (B,C). Vérifier que si M a pour

coordonnées barycentriques
(

A B C
x y z

)
, M ′ :

(
A B C
yz zx xy

)
.

(
L’image de D∞ : x + y + z = 0 est l’ellipse

de Steiner circonscrite yz + zx + xy = 0. 26.3.

)

5.21 (*) En composant diverses similitudes affines directes (...)

1. Soit A,B,C,D un quadrilatère convexe direct ; M,N,P,Q/AMB isocèle rectangle direct en M , etc.

(a) Soit s la similitude de centre A d’angle π/4 de rapport
√

2 et s′ de centre C, d’angle π/4 de
rapport 1/

√
2. Vérifier que s′os est la rotation d’angle π/2 de centre le milieu de [AC].

(b) Idem avec s2os1, s1(centre C,angle π/4,rapport
√

2) ; s2(centre A,angle π/4,rapport 1/
√

2).
Images de M puis de P ? Conclure que MP = NQ, (MP ) ⊥ (NQ). (Victor Thébault.)

2. (Idem) Soit ABC dans le sens direct et 2 carrés extérieurs ABDEA,ACFGA ; I = B ∗ C (milieu)
J = C ∗G,K = E ∗G,L = A ∗D ; rA = rA,π/2 ; H le symétrique de A par rapport à I.

(a) Vérifier que rA transforme [EC] en [BG]. En déduire que IJKL est un carré.

(b) Par rJ,−π/2, vérifier que : C 7→ A,A 7→ G,H 7→ M où
−−→
AM = −→r −π/2(

−−→
CH),

−−→
CH =

−−→
AB. Déduire

que M est un point connu et que ACH et GAE sont isométriques. Comparer
−→
AI et

−−→
EG.

(c) A peut-il être le centre du carré ? (Exprimer AJ = AL, angle(AL,AJ) = π.)
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5.22 (*) Inversion (image d’un cercle passant par O : une droite)

1. Avec les complexes, vérifier que A′B′ =
k. AB

OA.OB
, pour une inversion de pôle O, de puissance k > 0.

2. D’où : Théorème de Ptolémée. Avec A,B,C,D cocycliques dans l’ordre ⇔ B′D′ 6 B′C ′ + C ′D′

en fait égalité, inégalité toujours vraie dans l’inversion de pôle A de puissance 1 : (même inég.) ⇔
BD

AB.AD
6

BC

AB.AC
+

CD

AC.AD
déduire : A,B,C,D cocycliques

(
et.cet
ordre

)⇔ AC.BD = AD.BC +AB.CD.

3. Note : 2ème Théorème de Ptolémée. Autres notations : AB = a,BC = b, CD = c,DA = d ;

montrer que A(ABC) =
a.b.AC

4R
, A(ADC) =

c.d.AC

4R
(relation des sinus) et déduire

AC

BD
=

ad + bc

ab + cd

avec l’aire totale calculée de deux façons ! [Le 1er Théorème s’écrivant alors ac+ bd = AC.BD .]

5.23 (*) Inversion : image d’un cercle ne passant pas par O (...)

1. Vérifier que "l’inversion conserve les angles". (On dit "tranformation conforme" car avec dfM0 ,

elle change l’angle α de 2 courbes en l’angle −α pour les courbes images : anti-homographie).

Donc, avec des courbes tangentes : "l’inversion conserve le contact" ; et "l’orthogonalité".

2. Avec le Théorème de la puissance d’un point, un cercle Γ(ω, ρ) ne contenant pas O est transformé
globalement en un cercle homothétique. On étudie l’image du centre : dessin ! (cf. DH.)

Soit C(O,R) orthogonal à Γ en T, T ′ ; R,S ses intersections avec Oω ; une 1ère inversion de puissance
Γ(O) laisse Γ invariant ; dans le cas général, on ajoute une homothétie de rapport k/Γ(O).

Par la 1ère inversion, soit P image de ω et A,B = Γ ∩Oω. Montrer que P = TT ′ ∩Oω. Ind. :

– un point de vue : (R,S,A,B) sont en DH (Formule de Newton) ; mais OA.OB = Oω.OP ;
donc (R,S, ω, P ) en DH. D’où (Polarité cf. ch 29) P sur la polaire de ω/C : P ∈ TT ′.

– un autre : Q = TT ′ ∩Oω est tel que O,Q sont conjugués/Γ cette fois ; or 2.Oω = OA+OB ⇒
2

OP
=

1

OB
+

1

OA
ou (O,P,A,B) DH selon une relation de Descartes ; d’où Q = P . Donc :

L’homologue du centre d’un cercle est le pied de la polaire de O par rapport au cercle image.

3. Remarques : − On peut aussi prendre l’image d’un rayon (ωT ) de Γ par la 1ère inversion !

– Soit M,M ′ homologues dans la 2ème inversion : les tangentes forment un triangle isocèle MIM ′

(cf.1) donc puiss (I/Γ) =puiss (I/Γ′). D’où I est sur l’axe radical ∆r des deux cercles !

– Et M,M ′, N,N ′ cocycliques (puiss de O), d’où J = MN ∩M ′N ′ ∈ ∆r car J centre radical !

– Avec f = inv(A′, i1A′2 = j1A
′2), i1 proj⊥(centre.cercle.insc), f(iA) = A1 pieds de biss. et haut.

car A1iAi1j1 DH. Si D = sym⊥(BC/bissA), A′, A1 ∈ f(D) ; et (D, BC) ≡ (AB,AC) ≡ (TA, BC)

0.7 d’où f(D) cercle d’Euler car sa tangente en A′//TA : Th. de Feuerbach ⇒ iE = R/2− r.
Et AFa, BFb, CFc conc. en ϕ, iEFϕ DH : soit ϕ centre d’hom. < 0, h : CE 7→ (i) ; h(Fa) ∈ (i) ;

puis si hA : (j) 7→ (i), > 0, hA(Fa) = h(Fa) car sur (i), proche de A, même (T ) : A,ϕ, Fa alignés.

5.24 (*) Partager ABCA en deux longueurs égales, cf. 5.18

1. Avec une droite issue de A : Soit j1 le point de contact de [BC] et du cercle ex-inscrit face à A.

Montrer que Aj1 convient. (Tracer les deux tangentes issues de A au cercle ex-inscrit).

[ Notes Bj1 = Ci1 = p− c (i1 pied du cercle inscrit) ⇒3 "céviennes" Aj1, Bk1, Cl1 concourantes

au "point de Nagel" (Th de Céva). Avec i1, "point de Gergonne" : points "isotomiques".]

2. Droite issue de A′ milieu de [BC] : La bissectrice au triangle médian issue de A′ convient.

(Tracer par B sa parallèle coupant (A,C) en D. Alors BA = DA ; et avec le Théorème de Thalès

conclure. Cette intersection des bissectrices de A′B′C ′ est appelée le : "Spieker-center".)
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5.25 (*) Une preuve du Théorème d’Erdös-Mordell (...)

Soit P intérieur au triangle A,B,C. PA = u, PB = v, PC = w ; δ(P, (BC)) = x ; y, z de même.

Alors : u+ v +w > 2(x+ y + z) et égalité ⇔ Triangle équilatéral de centre P . [D’un livre d’Avez :

"Conjecturé par Erdös en 1935, prouvé par Mordell 2 ans plus tard, il fallut attendre encore 8 ans

pour une première démonstration élémentaire par Karazinov ! Celle qui suit est du à V. Komornik".]

1. Supposons P ∈ [BC]. Montrer que AireABC vaut
1

2
(b.y + c.z). En déduire : a.u > b.y + c.z (∗).

2. On prend maintenant P quelconque intérieur à l’angle (
−−→
AB,

−→
AC).

La parallèle à (B,C) passant par P coupe (A,C) en C1 et (A,B) en B1. En posant a1 = B1C1,

b1 = AC1, c1 idem. Avec une homothétie de centre A, prouver que (∗) est encore vraie.

3. Soit Q = sym⊥(P/biss − int−A). Montrer alors que : a.u > b.z + c.y (∗∗). (La clé !)

4. Déduire que u+ v + w >
b2 + c2

bc
.x+

c2 + a2

ca
.y+

a2 + b2

ab
.z et le théorème, avec cas d’égalité.

5.26 (*) Cercles orthogonaux et relation trigonométrique (...)

Soit deux cercles (O, r) ; (O′, r′) ; se coupant en A,B. On note t = ÔAO′ = ÔBO′.

1. Montrer avec le théorème d’Al-Kashi, que : (OO′)2 = (r′ − r)2 + 2rr′(1− cos(t)).
Déduire que (TT ′)2 = 2rr′(1− cos(t)) où T, T ′ : points de contact d’une tangente commune.

2. On note L la projection de TT ′ sur (O,O′). Vérifier que
L

TT ′
=
TT ′

OO′
et L =

2rr′(1 − cos(t))
OO′

.

3. Puis OO′.AB = 2A = 2rr′sin(t). Déduire que L = AB.tan(t/2) et Cercles ⊥ ⇔ L = AB.

5.27 (*) Avec le Théorème de l’angle inscrit, droites de Simson et Steiner

1. Soit un triangle ABC ; M donné, α sa proj⊥ sur (BC), etc. Justifier :
−→
αβ,
−−→
αM =

−→
CA,
−−→
CM (π)

puis :
−→
αβ,−→αγ =

−→
CA,
−−→
CM −−−→BA,−−→BM (π). Donc : α, β, γ alignés ⇔ A,B,C,M cocycliques.

2. Montrer que cette droite de Simson est parallèle à Aα1 où α1 est sur le cercle tel que M,α,α1

alignés. Cf. aussi 29.2. (avec
−−→
AB,
−−→
Aα1 =

−−→
MB,

−−−→
Mα1 =

−−→
MB,

−−→
Mα =

−→
γB,−→γα =

−−→
AB,

−−→
SiM .)

Donc : SiM ⊥ SiN ⇔ α1, α
∗
1 diamétralement opposés ⇔M,N diamétralement opposés.

3. Droite de Steiner. Montrer que StM homothétique de SiM dans hM,2 contient H orthocentre.

(Si M1 = sym(M)/(BC), M2/ (CA), on passe de M2 à M1 par la rotation r(C, 2.Ĉ). Mais (connu)
H ∈ C1 = M1BC et H ∈ C2 = M2CA. Donc M1HM2 alignés selon Ex. 4.5 : si C ∩ C′ = {I, J} et
s similitude directe de centre I, C 7→ C′, alors MJM ′ alignés. Ou plus aisément avec Aα1 !) 5.30.

4. Pour M,N diamétralement opposés, justifier enfin que SiM ∩ SiN ∈ Cercle d’Euler de ABC.

(La droite passant par M de direction
−−→
StM et celle passant en N de direction

−−→
StN sont ⊥ et se

coupent sur C. Par homothétie (centre H,rapport 1/2) : SiM ∩ SiN ∈ Cercle d’Euler de ABC.)

5.28 (*) Droite de Steiner, point de Miquel ; isotomie et droite de Newton

Soit un triangle ABC et une droite DEF , D sur (BC), etc. : Les orthocentres de ABC, AEF ,

DBF , DEC sont alignés ; les milieux de [AD], [BE], [CF ] aussi ; et ces 2 droites sont orthogonales.

1. Preuve de tout avec la puissance. Si α = (AH) ∩ (BC) : HA.Hα = HB.Hβ = HC.Hγ (ABαβ
cocycliques) ; puiss(H/cercle.diam[AD]) = puiss(H/cercle[BE]) = puiss(H/cercle[CF ]) et idem
avec H1 ... ces 3 cercles forment donc un faisceau d’axe radical H,H1,H2,H3, donc alignés (droite
de Miquel) ; et les 3 centres milieux de [AD], [BE], [CF ] sont aussi alignés : droite de Newton ⊥ !
(5.11.5 : un cas particulier si l’on veut, avec le triangle ABΓ, Γ = (BC)∩ (AD) et en changeant quelques lettres.)
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2. Avec une droite de Steiner : [on peut s’aider de fig.1 ; mais ici voir fig.2]. Montrer que les

les 4 cercles ABC,AEF,BDF,CDE concourent au "point de Miquel" du quadrilatère. cf.4.4.

(M sur ABC ∩AEF , angles égaux à π près : BAM, BCM, FEM donc DCM et DEM ;

ainsi CDE contient M). La droite de Steiner de ce point M est donc H,H1,H2,H3 !

Et l’unique parabole quadri-tangente a pour foyer ce point M et pour directrice cette droite St.

"Cercle de Miquel" : Par inversion de pôle M , les 4 cercles deviennent 4 droites ; les 4 droites, 4

cercles passant par M , point de Miquel de la nouvelle figure, dualité ! Avec les symétriques de M

/(A,B), (B,C), (C,A) alignés, (St. : 8 points ; -les proj. du foyer d’une parab. sur tang. : Simson-)

par inversion, on a 3 cercles de centres cocycliques avec M : O3 sur le cercle (MO1O2) ; O4 aussi.

3. La droite de Newton-Gauss avec l’isotomie : au lieu de D,E,F , notons ici A1, B1, C1 ; I milieu de

[CC1], B
′ de [AC], G = isobar(A,B,C). Figure de ABCC1I ? Avec B′I : C2 = hG,−2(I) ∈ (AB) ;

puis :
−−→
BC2 = −2.

−−→
B′I = −−−→AC1 (C2 isotomique de C1). Alors : A1, B1, C1 alignés ⇒ A2, B2, C2

alignés (Ménélaüs). Et donc les 3 milieux sont alignés (par l’homothétie inverse : hG,−1/2(C2) ...).
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5.29 (*) Isogonalité et calcul de la longueur des bissectrices (...)

1. Soit ABC un triangle, M sur (AB), N sur son cercle circonscrit avec CM,CN isogonales, ce qui
est : AngleACM = AngleNCB. Montrer alors (triangles semblables) : CA.CB = CM.CN .

2. (a) Exemple : CH, CO d’où a.b = 2.R.hC . Autres exemples à justifier :

(b) Ci bissectrice coupant AB en iC et le cercle en C0 : a.b = CiC .(CiC + iCC0) ; avec CiC = l,

iCA = α, ... ab = l2 + α.β [avec bissectrice extérieure : a.b = α′.β′ − (l′)2] ou autrement.

3. Avec la relation de Stewart : A,B,C ∈ D, ∀M ⇒ BC.MA2 +CA.MB2 +AB.MC2 +AB.BC.CA = 0

(fonction scalaire de Leibniz, cas : AB+BC+CA = 0, 32.3), retrouver la longueur des bissectrices.

5.30 (*) Isogonalité : points inverses du triangle (pour conique tritangente)

1. Soit ABC un triangle, M un point ; P1, P2, P3 ses proj⊥ sur les côtés (triangle podaire de M), et
M1,M1,M3 les sym⊥ par rapport aux côtés. Idem avec P ′

k et M ′
k, pour M ′, en question 2.

[z Triangle podaire, en anglais : "pedal triangle" ; alors que triangle pédal (fr) : "cevian triangle"]

(a) Vérifier que
−−−→
P1P2,

−−−→
P1P3 =

−−−→
P2P1,

−−−→
P3P1 =

−−−→
P2P1,

−−−→
P2M +

−−−→
P2M,

−−−→
P3M +

−−−→
P3M,

−−−→
P3P1 =−−→

CB,
−−→
CM +

−→
AC,
−−→
AB +

−−→
BM,

−−→
BC =

−−→
BM,

−−→
CM −−−→BA,−→CA =

−−→
MB,

−−→
MC −−−→AB,−→AC (π).

(b) En déduire que : Pk alignés (droite de Simson) ⇔M ∈ Cercle circonscrit C. (5.27.)
[Note. Alors, Mk alignés sur la droite de Steiner ; qui contient H : BCM1H cocycliques car

le sym. orthog. de H /(BC) sur Cercle (A,B,C) ;
−−→
HB,

−−−→
HM1 =

−−→
CB,

−−−→
CM1 =

−−→
CM,

−−→
CB.

Idem
−−→
HB,

−−−→
HM3 =

−−→
AM,

−−→
AB ; différence nulle car ABCM cocycliques. //AS1, S1 ∈ C ∩MP1

car angles égaux : AB,AS1 = MB,MS1 = MB,MP1 = P3B,P3P1 = AB,SiM .]

2. Cas de non alignement : (*) Soit M ′ le centre du cercle Γ circonscrit aux Mk si M 6∈ C.
(a) Vérifier que

−→
AC,
−−−→
AM ′ =

−−−→
M2M,

−−−−→
M2M3 (π) =︸ ︷︷ ︸

cotes⊥; AM′mediatrice:AM=AM2=AM3

1

2
(
−−→
AM,

−−−→
AM3) =

−−→
AM,

−−→
AB : (AM,AM ′) isogonales.

Déduire que les 3 droites isogonales concourent en M ′, dit point "inverse isogonal" de M .

(b) Justifier que les Pk, P
′
l sont cocycliques. (P̂3P ′

3P
′
2+P̂ ′

2P2P3 = π/2+α+π/2−α, α =
−−→
AB,

−−→
AM ,

car (A,M), (A,M ′) sont isogonales. Et ce cercle γ est centré au mil[M,M ′], homM,1/2(Γ).)

3. Cas M ∈ C\{A,B,C} [voire A,B,C], M ′ =∞⊥−−→
StM

: soit DA,DB ,DC les droites isogonales.

(a) Vérifier ici que : (DA, AB) = (AC,AM) = (BC,BM) = (DB , BA) (π). Et déduire :

(b) DA//DB//DC ⊥ StM ! [(AB,AS1) + (AC,AM) = (MB,MP1) + (BP1, BM) =
π

2
.]

4. Exemples : Vérifier que I, IA, IB , IC invariants ; que O et H sont inverses (inversion isogonale).

Etude de l’inverse de G : point de Lemoine L, intersection des symédianes. 5.18.

5. Barycentres. Montrer que P1M.P ′
1M

′ = P2M.P ′
2M

′ = P3M.P ′
3M

′ [puissance de M/γ]. Déduire si

M = Bary
(

A B C
x y z

)
, que M ′ = Bar

(
A B C

a2/x b2/y c2/z

)
. [Rappel sur les coord. barycentriques :

| x |= a.P1M , par ex., signe à voir] d’où L(a2, b2, c2) Lemoine et CABC : a2yz + b2zx+ c2xy = 0.

(Les points de CABC n’ayant pas d’image par isogonalité : CABC isogonal de D∞, x+ y + z = 0.

L’image d’une droite est une conique, parabole si tangente à C, hyp. si sécante, HE si diamètre ...)

Rem. Toujours M(x : y : z) C(M) la puissance de M/CABC . • Si fM (P ) = xPA2+yPB2+zPC2 :

fM(P ) = fM (M)+ (x+y+ z)PM2 [f. scalaire de Leibniz]. P = O ⇒ (x+y+ z)C(M) = −fM(M).

P = A,B,C... et xL1 +yL2 +zL3 ⇒ ∀M, a2yz+b2zx+c2xy = (x+y+z)fM (M). • Soit γ un autre

cercle, u = γ(A) − C(A) = γ(A), ... : γ(M)− C(M)
f.affine.des.coord.cart.︷︸︸︷

= u.
x

x + y + z
+ ... d’où γ(M) ;

γ(M) = 0⇔ a2yz + b2zx+ c2xy − (x+ y + z)(ux + vy + wz) = 0, axe radical : ux+ vy+wz = 0.

• Ne pas confondre avec la transformation isotomique M 7→M∗ = Bar
(

A B C
1/x 1/y 1/z

)
! cf. 5.20.

Ici D∞ a pour image "l’ellipse de Steiner circonscrite" [de centre G, passant par A(1, 0, 0), 26.3] :

yz+ zx+xy = 0, (* tandis que l’ellipse de Steiner "inscrite" : x2 + y2 + z2− 2yz− 2zx− 2xy = 0).
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6 Géométrie dans R3

6.1 Distance δ(O,D) si D=P ∩ P ′ : x + y + z = 1 ∩ 2x− 3y = 0

1. En donnant une équation paramétrique de D(A,−→u ) et avec la formule δ(O,D).

2. (*) Deux autres façons : en calculant le minimum de dist2(O,M) quand M décrit D. Puis :

3. (*) En vérifiant D ⊂ Pλ” : x+ y + z − 1 + λ(2x− 3y) = 0, en trouvant λ : P ′⊥P” et dist(O,P”).

1. Corrigé. La question de passer d’un syst. d’éq. cart. pour une droite, à un syst. paramétrique est essentielle

D
{
x+ y + z = 1
2x− 3y = 0

. Prenons x arbitraire, par ex. ; alors :




x
y
z


 =




0
0
1


 + x.




1
2/3
−5/3


 =




0
0
1


 +

x

3
.




3
2
−5




type : M = A+ λ.−→u M ∈ D : δ(M1,D) =
‖−−−→M1A ∧ −→u ‖
‖−→u ‖ M1 quelc. donne (M1 = O) δ =

√
13

38
.

Inversement, si D en param. :




x
y
z


 =




0
0
1


 + λ.




3
2
−5


 ⇒ x

3
=

y

2
=

z − 1

−5
: un système cartésien.

2. Question très intéressante. Reprenons M ∈ D définie paramétriquement :




x
y
z


 =




0
0
1


 + λ.




3
2
−5




OM2 (carré plus simple) vaut OM2 = f(λ) = (3λ−0)2 +(2λ−0)2 +(−5λ+1−0)2 = 38λ2−10λ+1.

La courbe représentative est une parabole tournée vers le haut et le minimum est atteint pour

λ = −b/2a = 5/38 : OH2 = 38.52/382 − 10.5/38 + 1 = ... = 13/38 ; OH = δ =
√

13/38 idem !

3. Déjà Pλ” : x+ y + z − 1 + λ(2x− 3y) = 0 est un plan car




1 + 2λ
1− 3λ

1


 6= −→0 , vecteur normal. [Ce

λ, ici, n’a rien à voir avec celui qui précède]. De plus si M vérifie

{
x+ y + z = 1
2x− 3y = 0

, alors M vérifie

x+ y + z − 1 + λ(2x− 3y) = 0, ∀λ soit D ⊂ Pλ”. Alors, au lieu de D = P ∩ P ′ avec P et P ′ non

orthogonaux (Figure !) D = P”∩P ′ où P” sera judicieux contenant D, ⊥ P ′. Ici,




1 + 2λ
1− 3λ

1


 .




2
−3
0


= 0

donne λ =
1

13
; δ2=dist(O,P”) =

13√
494

car dist(M1, ax+ by + cz = d) =
| ax1 + by1 + cz1 − d |√

a2 + b2 + c2
et

P” 15x+ 10y+ 13z = 13. δ1=dist(O,P ′) = 0, δ2 = δ21 + δ22 = 0 + 132/13.38 = 13/38 ... Idem encore !

6.2 (*) Sur le tétraèdre : deux exercices difficiles (...)

1. Soit un tétraèdre équifacial (faces de même aire) ; montrer que 2 arêtes opposées ont même longueur.

Corrigé. Soit J, K, L, proj⊥ de I milieu de [A,D], A, D sur (B,C). AK = DL : même aire ; et J

milieu de [KL] donne AJ = JD. D’où I, J dans le plan médiateur de [A,D] : (I, J) perp. commune.
Elle coupe aussi [B,C] en son milieu. Donc le 1/2-tour d’axe (I, J) envoie [A,B] sur [C,D].

2. Soit Ω fixe et A,B,C variables sur S, sphère de rayon 1, de centre O avec ΩA,ΩB,ΩC ⊥. Montrer :

– Que le plan A,B,C passe par G fixe,
−→
OΩ = 3.

−−→
OG. [A′ diam. opposé, ΠA plan passant par Ω,⊥ ΩA,

ΠA∩S : cercle contenant A′, B,C de centre IA = proj(O,ΠA) = mil[ΩA′] et mil[BC] car B̂ΩC = π/2 ;
donc isobar(A,B,C) = isobar(A,A′,Ω) = bar((Ω, 1), (O, 2)).] Puis si H = proj⊥(Ω, ABC), A l’aire,

– H = orth(A,B,C) [
−−→
ΩH ⊥ ABC,−→CΩ ⊥ ΩA,ΩB,AB donc

−−→
CH ⊥ −−→AB etc] et

1

ΩH2
=

1

ΩA2
+

1

ΩB2
+

1

ΩC2
.

[A2(Ω, A,B) = A(HAB).A(CAB) : R = proj⊥(Ω, AB)⇒ RΩ tang. au cercle ΩHC, RΩ2 = RH.RC ;

d’où A2(ABC) = A2(ΩAB) +A2(ΩBC) +A2(ΩCA) ; et avec le vol. du prisme 3V = A(ABC).ΩH ...]
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6.3 (*) Au sujet du tétraèdre orthocentrique (...)

1. Soit un tétraèdre ABCD. Montrer que (hauteurs AHA, BHB concourantes) ⇔ −−→AB ⊥ −−→CD.

Corrigé. (⇒) Si AHA ∩BHB = {H}, Plan(A,B,HA, HB, H) ⊥ −−→CD ; d’où
−−→
AB ⊥ −−→CD.

(⇐) : Ici, le plan orthogonal à (C,D) contenant A (donc HA) contient aussi B (donc HB).

Mais AHA et BHB ne peuvent pas être parallèles ; donc concourantes.

2. Montrer : (1) 4 hauteurs conc. ⇒ (2) Arêtes opp. ⊥ ⇒ (3) (
−−→
AB ⊥ −−→CD,−→AC ⊥ −−→BD) ⇒ (1).

Pour (3) ⇒ (1) :
−−→
AB.
−−→
CD +

−→
AC.
−−→
DB +

−−→
AD.
−−→
BC = 0 (rel. d’Euler) ; puis avec AHA ∩BHB = {H}

−−→
CH.
−−→
AD = (

−−→
CB +

−−→
BH).

−−→
AD = 0,

−−→
CH.
−−→
BD = (

−→
CA+

−−→
AH).

−−→
BD = 0. Idem

−−→
DH .

3. Montrer : Tétraèdre orthocentrique (1,2,3) ⇔ (4) HD orthocentre de ABC. Seul ⇐ à voir :

Il donne :
−−−→
AHD ⊥

−−→
BC ; or

−−−→
DHD ⊥

−−→
BC, d’où :

−−→
AD ⊥ −−→BC ; idem

−−→
BD ⊥ −→AC,

−−→
CD ⊥ −−→AB.

4. Avec
−−→
AB +

−−→
CD =

−−→
AD +

−−→
CB, vérifier que AB2 + CD2 = AD2 +BC2 + 2.

−→
CA �

−−→
BD. Donc :

Tétraèdre orthocentrique (1-4) ⇔ (5) AB2 +CD2 = AD2 +BC2 = AC2 +BD2 noté Σ2.

5. Volume du T.orth. : Soit ABR, R ∈ (C,D), le plan ⊥ −−→CD ; forcément R,B,HA sont alignés et

R,A,HB aussi. D’où H orthocentre de (A,B,R). Si S = HR ∩AB, alors V =
AB.CD.RS

6
.

6. 1ère sphère d’Euler. Par hG,−1/3 la sphère S 7→ S1 passant par les 4 centres de gravité GA ... des

faces ; et si Tétraèdre orthocentrique, la droite d’Euler OA, GA,HA de BCD, montre que S1(Ω,
R

3
)

contient les 12 points : GA ... HA (ΩGA = ΩHA) et TA ... : 3.
−−−→
HTA =

−−→
HA (si orthocentrique) car

Note : En général sur µ, avec
−→
µA+ ... = 4.

−→
µG = 2.

−→
µO, on trouve 2.

−→
µI.
−−→
CD = 0 : µ ∈ 6 plans (I,⊥ −−→CD) !

7. 2ème sphère d’Euler pour T.orth. Soit ici : I, J,K,L,M,N milieux de AB,BC,CD,DA,AC,BD.
Ils sont sur une sphère S2(G, ρ), (IJKL rectangle...) et S2∩ABC = cercle d’Euler⇒ 6x2 + 4x3=24

points remarquables ; et 2.IJ = AC, 2.JK = BD ⇒ ρ = Σ/4. Note : GI2 = GO2 + 2.
−−→
GO.
−→
OI + R2 −

AB2/4 = GO2 + 2.
−−→
GO.
−−→
OK + R2 − CD2/4 ⇒ 2ρ2 = 2.GO2 + 2.R2 − 4.ρ2 + 4.

−−→
GO.
−−→
OG : 3.ρ2 = R2 −OG2 !

6.4 (*) "Division vectorielle"//éq. lin. avec second membre

Résoudre l’équation −→a ∧ −→x =
−→
b , −→a 6= −→0 , si possible. (−→x =

−−→
OM , ici.)

– Important. Par ex. pour un torseur de résultante
−→
Ω :

−→MM =
−→MA +

−→
Ω ∧−−→AM . Si on cherche M :

−→MM

est, non pas nul (impossible en général), mais colinéaire à
−→
Ω :
−→
Ω ∧ −−→AM = −−→MA + k.

−→
Ω (k à voir), on

trouve une droite affine l’axe central du torseur. Pour les vitesses d’un solide, c’est l’axe instantané ’du
mouvement hélicoïdal tangent’ au temps t. (Toute isométrie affine positive étant un vissage.)

– Résolution de −→a ∧ −−→OM =
−→
b , −→a 6= −→0 . "Problème de la division vectorielle".

�� Si −→a 6⊥ −→b , pas de solution. [−→a .−→b = 0 est une C.N. de solution donnant k ci-dessus.]

�� Si −→a ⊥ −→b , un dessin laisse deviner qu’il y a une solution du type −→x 0 =
−−→
OM0 = α.

−→
b ∧ −→a .

. Avec la formule du double produit vectoriel −→a ∧ (
−→
b ∧−→c ) = (−→a .−→c )

−→
b − (−→a .−→b )−→c : α = 1/‖−→a ‖2.

. Puis ayant une solution, −→a ∧−−→OM =
−→
b ⇔ −→a ∧−−→OM = −→a ∧−−→OM0 ; −→a ∧−−−→M0M =

−→
0 ⇔ −−−→

M0M = λ−→a .

Toutes les solutions, si −→a ⊥ −→b :
−−→
OM =

−→
b ∧ −→a
‖−→a ‖2 +λ.−→a droite affine. Relire le cas d’un torseur (et trouver k).
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7 Limites des fonctions de R dans R

7.1 Des limites de suites ou de fonctions (...)

Montrer que :

(
a1/n + b1/n

2

)n

−→
n→+∞

√
ab. Et :

(
ax + bx

2

)1/x

−→
x→+∞

max(a, b).

7.2 Preuve du Th. de prolongement des inégalités

1. Enoncé : Si f 6 g au voisinage de x0 et si f(x)−→
x→x0

l, g(x)−→
x→x0

m, alors l 6 m.

2. Preuve : � On va prendre x0 fini ou +∞ ; rappelons que V est un voisinage de x0 fini si :
∃ r > 0 : ]x0 − r, x0 + r[⊂ V ; et de x0 = +∞ si : ∃A > 0 : ]A,+∞[⊂ V.

� On va se limiter, par contre (pour plus de clarté), aux seuls cas l, m réels (finis)

� Supposons donc l > m ; on va trouver une contradiction.

Choisissons : ǫ =
l −m

2
> 0 (le tout est de comprendre ce choix !)

∃V1 voisinage de x0 tel que x ∈ V1 =⇒ f(x) ∈]l − ǫ, l + ǫ[,
∃V2 voisinage de x0 tel que x ∈ V2 =⇒ g(x) ∈]m− ǫ,m+ ǫ[ ; mais : V1 ∩ V2 = V
est aussi un voisinage de x0 et : x ∈ V ⇒ g(x) < m+ ǫ = l − ǫ < f(x). Impossible.

7.3 Calcul de limite avec un encadrement (...)

1. Montrer que, sur ]0, α > 0[ : ln(1 + x) < sh(x) < −ln(1− x) (sh(x) =
ex − e−x

2
)

2. Pour p ∈ N∗ : lim
n→+∞

∑

n<k6pn

sh(1/k) ? (Rép. : ln(p).)

7.4 (*) Préciser diverses limites [corrigés]

Soit f dérivable sur [0, π] avec f(0) = f(π) = 0.

Montrer que g(x) = f(x).cot(x) a des limites finies en x = 0 et x = π. Corrigé (rédaction) :

En π : Comme f est dér. en π, ∃ǫ(x), avec ǫ(x)−→
x→π

0 : f(x) = f(π) + (x− π)f ′(π) + (x− π).ǫ(x).

Avec f(π) = 0, g(x) = f(x).
cos(x)

sin(x)
= (x− π).[f ′(π) + ǫ(x)].

cos(x − π)

sin(x− π)
−→
x→π

f ′(π). Idem en 0.

7.5 (*) Limites en lien avec des intégrales

Soit f(x) =

∫ x2

x

dt

ln(t)
,

1

ln(t)
infinie autour de 1 : 1 ne doit pas être dans [x, x2] ; montrer que

1. f est définie pour x ∈]0, 1[∪]1,+∞[. (Ici, f est dérivable, donc continue, avec f ′(x) =
x− 1

ln(x)
.)

2. Existence de I =
∫ 1

0

x− 1

ln(x)
dx ? (

x− 1

ln(x)
tend vers 1 en 1 et 0 en 0 : I existe. I > 0.)

3. f tend vers 0 en 0 (facile). Si on trouve une limite finie L pour f en 1 : f sera continue par

prolongement ; et C1 par le Th de la limite de f ′ ! Alors on aura I = ”f(1)” − ”f(0)” = L− 0.

Calcul de L : Autour de 1,
1

ln(t)
≃ 1

t.ln(t)
. f(x) =

∫ x2

x

dt

ln(t)
et g(x) =

∫ x2

x

dt

t.ln(t)
aussi ?

... si x (donc t) proche de 1 ; et la 2ème aisée. Rigueur ? Montrer f(x)− g(x)−→
x→1

0. A finir !

[L = ln(2). On aurait aussi pu remplacer ln(t) par t− 1 autour de 1 ...]
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8 Continuité des fonctions de R dans R

8.1 Fonction continue, bornée, non prolongeable par continuité

(Par ex. : x 7→ sin(1/x) continue et bornée sur R∗).

8.2 Quelques questions en lien avec la fonction Arctan (...)

1. Montrer que : Arctan(
1

3
) +Arctan(

1

4
) +Arctan(

2

9
) =

π

4
.

2. Puis Arctan

√
1− x
1 + x

=
1

2
Arccos(x) [t = Arccos(x)] ; Arctan

x√
1− x2

= Arcsin(x).

8.3 (*) Une fonction uniformément continue, non lipschitzienne

Montrer que : 0 6 x 6 y ⇒ 0 6
√
y −√x 6

√
y − x. (On peut améliorer l’inégalité :

| √y −√x | 6
√
| y − x | ... et pour la prouver, 0 6 x 6 y peut être supposé). Conclure.

8.4 Trouver les fonctions C0 telles que : f(x) = f(2x + 7)

Indication. Avec la suite : u0 = t, un+1 =
un − 7

2
(arithmético-géométrique convergeant vers

−7, montrer que f(t) = f(−7). Puis que les solutions sont exactement les fonctions constantes.

8.5 Une fonction bijective mais continue nulle part (...)

Soit f(x) = x si x ∈ Q ; f(x) = 1− x si x ∈ R\Q ; g : g(0) = 1 ; g(1) = 0 ; g(x) = x, ailleurs.

Vérifier que gof convient. Puis trouver un autre exemple.

8.6 (*) Démontrer les Théorèmes sur la continuité

1. Théorème des Valeurs intermédiaires. Pour trouver x ∈ [a, b] tel que f(x) = y si y ∈ [f(a), f(b)] :

Si f(a) < f(b) : considérer α = sup{t ∈ [a, b] : f(t) 6 y}.

2. Continuïté sur un segment :

� Montrer d’abord que de toute suite de [a, b], on peut extraire une sous suite convergente.

(Propriété de Bolzano-Weierstrass obtenue par "dichotomie" - divisions du segment en 2 -)

� Montrer ensuite que f est bornée supérieurement par l’absurde.

� Montrer enfin que la borne supérieure est atteinte.

3. Continuïté de la bijection réciproque. Cas f croissante (strictement) :

Utiliser la bijectivité, la croissance stricte, l’image d’un intervalle.
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9 Dérivation des fonctions de R dans R

9.1 Révisions des théorèmes fondamentaux de l’analyse (...)

Limites

Théorème de la limite monotone. Si f croissante sur (a, b) (bornes ouvertes ou fermées), ∀x0 ∈]a, b[
f possède une limite lg en x−0 , ld en x+

0 et lg 6 f(x0) 6 ld ; une limite à gauche en b, à droite en a.

Exemple : ln possède une limite en +∞. Idem avec les suites, mais ici : n tendra toujours vers +∞.

Continuïté (3 théorèmes)

Théorème des valeurs intermédiaires. f contiue sur un intervalle I vérifie ∀a, b ∈ I,∀y ∈ [f(a), f(b)],
∃x ∈ [a, b] : y = f(x) (ainsi l’image f(I) = J de l’intervalle I : partie convexe, donc un intervalle).

Théor. de continuïté sur un segment. Une fonction C0 sur un segment est bornée et atteind ses bornes.

⇓ Continuïté de f−1 : Soit fC0, strict. monot. , sur un int. I ; alors f(I) est un int.,f bij. I → J, f−1C0

⇓
⇓ Avec des hypothèses supplémentaires de Dérivabilité :

Théorème de Rolle. Si fC0 sur [a, b], dér. sur ]a, b[, a 6= b, f(a) = f(b) : ∃c ∈ [a, b] tel que f ′(c) = 0 ⇒
Théorème des accr. finis. Si fC0 sur [a, b], dér. sur ]a, b[ a 6= b, ∃c ∈ [a, b] : f(b)− f(a) = (b− a).f ′(c)

ou, en posant b = a+ h, ∃ θ ∈]0, 1[ avec f(a+ h) = f(a) + h.f ′(a+ θ.h) ("T.A.F.")

On déduit 3 conséquences fondamentales du théorème des accroissements finis :

1. Sens de variations des fonctions dérivables ; avec la précision :
f ′ > 0 et f ′ nulle qu’en un nombre fini de points sur un segment =⇒ f strictement croissante.

2. Théorème de la limite de la dérivée : Si fC0 sur [a, b], dér. sur ]a, b[, a 6= b, et si f ′(x) possède une
limite l finie en a+, alors f ′(a) existe, vaut l et donc f ′ est en même temps continue en a.

(Si la limite est infinie : tangente verticale ; si pas de limite : ne rien déduire !)

3. Pour f dérivable (hypothèse) : f k-lipschitzienne ⇔ | f ′ |6 k.

9.2 Chercher f dérivable R→ R : f(x)− f(y) = (x− y).f ′((x + y)/2)

1. Corrigé : On connait le Théorème des accroissements finis : f continue sur [x, y] dérivable
sur ]x, y[ (si x 6= y) entraine ∃c ∈]x, y[ tel que f(x)− f(y) = (x− y).f ′(c).

En général c non unique, dépend de x, y et f . Ici, on peut prendre le milieu !

2. On cherche si possible toutes les solutions. Déjà f(x) = a.x+ b convient ! On peut

aussi savoir que c’est vrai pour les paraboles f(x) = αx2 + βx+ γ solutions.

3. Montrons qu’il n’y en a pas d’autre :

Posons x+ y = 2t, x− y = 2 ou ce qui est pareil x = t+ 1, y = t− 1 :

L’égalité s’écrit 2.f ′(t) = f(t+ 1)− f(t− 1) ; ainsi, on voit que f” existe. En recommençant, on
voit que f (3) existe ... Idée : on dérive en espérant trouver quelque chose de plus simple !

4. En dérivant la 1ère ligne / x, on a : f ′(x) = f ′(
x+ y

2
) + (x− y).f”(

x+ y

2
).

1

2
.

Dérivons par rapport à y maintenant de façon à avoir 0 à gauche :

0 = f”(
x+ y

2
).

1

2
− f”(

x+ y

2
).

1

2
+ (x− y).f (3)(

x+ y

2
).

1

4
. Donc f (3)(t) = 0, f”(t) =

α

2

f ′(t) =
α

2
.t+ β ... d’où : f(x) = αx2 + βx+ γ forcément. (Faire un dessin !)
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9.3 (*) Diverses remarques sur le T.A.F. et ses conséquences (...)

1. (*) Le T.A.F. sert aussi à diverses démonstrations (*) sur les fonctions convexes.

2. On a encore : T.A.F. ⇒ Théorème d’intégration des développements limités

⇒ Formule de Taylor-Young concernant les développements limités.

3. � La formule de Taylor-Young et les développements limités, comme les limites ou équivalents,

ont un caractère "local", c’est-à-dire seulement "au voisinage d’un point".

� Par contre la formule de Taylor-Lagrange (ch.Intégrales, différente), a un caractère global :

vraie sur un segment [a, b], par forcément "petit". (Généralisation des accroissements finis.)

9.4 (*) f C∞, f > O, nulle hors de [−1, 1] valant 1 sur [−θ, θ] ...

1. Soit f : f(x) = 0 si x 6 0 ; f(x) = e−1/x si x > 0. Montrer que f est C∞(R).

2. En déduire une fonction C∞ sur R, positive, nulle hors de [−1, 1] avec

∫

R

ψ = 1.

Corrigé :

1. � Comme f(x)→ 0, (x→ 0+), on a f C0(R) aisément (car sur R∗ : C0 par composition).

� Puis pour x > 0, f ′(x) = e−1/x.
1

x2
C1 sur ]0,+∞[, vérifie f ′(x) =

t2

et
, t =

1

x
−→

x→0+
+∞ donc

f ′(x) −→
x→0+

0 : le th. de la limite de la dérivée fournit que f ′(0) existe, vaut 0 et f ′ C0 en x = 0

à droite. Ainsi f ′ existe sur R et y est continue (car pas de problème en 0 par la gauche) : f C1.

�

1

0
0

2

(*) Même Théorème appliqué ici à f (k)(x) =
Pk(x)

x2k
.e−1/x ... (Fin laissée)

2. Voir g(x) = f(x+ 1), h(x) = f(1− x) ; ϕ(x) = g(x).h(x), a =
∫

R

ϕ > 0 et ψ(x) =
1

a
.ϕ(x).

3. Remarque (*) : on peut répondre au titre en s’aidant de Ψ(x) =
∫ x

−∞

ψ(t).dt. A finir.

9.5 (*) Questions au sujet d’une pseudo-dérivée (...)

On dit que f est pseudo dérivable en x si
f(x+ h)− f(x− h)

2h
a une limite finie. Notée f∗(x).

1. Soit f C0 sur un intervalle I pseudo-dérivable à l’intérieur et f∗ > O ici. Soit a < b dans I.

(a) Soit ǫ > 0. Et E = {x ∈ [a, b] : f(u) > f(a)− ǫ} ∀u ∈ [a, x]}.
Montrer que E est non vide, majoré (on note c = sup(E)).

Montrer que c > a. Puis que c ∈ E. Enfin que : c = b par l’absurde.

(b) Déduire que f(a) 6 f(b). Montrer que f est strictement croissante.

2. On remplace f∗ > O par f∗ > O. Avec fn(x) = f(x) +
x

n
, montrer que f est croissante.

3. Soit f continue [a, b] dans R, pseudo-dérivable sur ]a, b[ avec f∗ continue sur ]a, b[.

(a) On suppose que f(a) = f(b). Montrer que : ∃c ∈]a, b[ avec f∗(c) = 0.

(b) En général, montrer que ∃c ∈]a, b[ avec
f(b)− f(a)

b− a = f∗(c).

(c) Ce résultat demeure-t-il sans supposer f∗ continue ?

(d) Montrer que f est C1 sur ]a, b[.
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10 Polynômes R[x], C[x]

10.1 Polynômes scindés sur R (Théorème de Rolle)

1. Si P est un polynôme scindé sur R, montrer que P ′ aussi. (donc : [(1− x2)n](n) scindé !)

Ind. a racine de P d’ordre k > 1⇒ racine de P ′ à l’ordre k − 1 et Th. de Rolle ...

2. Si P , polynôme de degré n, est scindé sur R montrer que P + k.P ′ aussi. (avec e
x
k .P (x).)

10.2 En utilisant les racines complexes [corrigés]

1. Résoudre le système : (1) x+ y + z = 0, (2) x2 + y2 + z2 = 14, (3) x3 + y3 + z3 = 18.

Rép. : Avec (1) et (2), on a σ2 = −7 d’où x, y, z racines de T 3 − 0.T 2 − 7.T − σ3 = 0.

Alors (3) : 7.σ1 + 3.σ3 = 18. Donc x, y, z racines de (T + 1)(T 2 − T − 6) = 0 ...

2. Donner une C.N.S. pour que les trois racines de x3 + p.x+ q = 0 aient même module.

Rép. : p = 0. (Car : eia + eib + eic = 0⇔ ce sont : {eia, j.eia, j2.eia}.)
3. C.N.S. pour que P (x) = x3 + p.x+ q ait une racine au moins double (racines : a, a, b).

– Th. : a racine au moins double ⇔ P (a) = 0, P ′(a) = 0⇔ a3 + p.a+ q = 0, 3a2 + p = 0. (1),(2).

– Si a ∈ R : p ∈ R−, a = ǫ.

√
−p

3
, ǫ = ±1. (1) : −p.a

3
+ p.a = −q, 2

3
p.ǫ.

√
−p

3
= −q. ǫ = ±1 (2 cas

permis) ; équivalence en élevant au carré :
4

9
.p2.
−p
3

= q2. CNS : ∆ = 0 27.∆ = 4p3 + 27q2.

– Cas a, p, q ∈ C, rédaction difficile. La division euclidienne donne (idée importante !)

3.P (x) = P ′(x).Q(x) + Reste ; ( 3.P (x) plus agréable) : a racine de P et P ′ ⇔ a racine de P ′

et du Reste = 2p.x+ 3q. Aisé mais nouveau ! a doit exactement vérifier (3) 2p.a+ 3q = 0, (2) ;

ou 3.

(−3q

2p

)2

+p = 0 ; on retrouve par équivalence 4p3 + 27q2 = 0. Toutefois ici on doit voir

à part (à cause de la division) le cas p = 0 : forcément q = 0 avec (3) ; ce cas entre donc aussi

dans le cas général 4p3 + 27q2 = 0 et termine. [Note : l’expression de la racine au moins double

a =
−3q

2p
, si p 6= 0, est bien plus simple que a = ǫ.

√
−p

3
et celle-ci valide que si p réel négatif !]

Si ∆ < 0 : a, b, c ∈ R(x3 − 3x− 1 = 0). cos(3y) = 4cos3(y)−3cos(y) ; x = kz : 4z3 − 3z = K,K2 < 1 !

4. Remarque : avoir x =
3

√
a+
√
b+

3

√
a−
√
b ∈ Q ? a, b ∈ N∗, b non carré ; ∆3 = a2 − b.

(a) Montrer que
3

√
a+
√
b 6∈ Q (b non carré) ; et x > 0 (si a <

√
b,
√
b+ a >

√
b− a).

(b) Montrer que x ∈ Q∗ ⇒ ∆ ∈ Z∗, x ∈ N∗ et x(x2 − 3.∆) = 2a ; par suite : x divise 2a.

(c) Montrer que x = 2a est impossible (4a2 − 1 = 3∆, ∆ > 1; 4b = 1 + 3∆− 4∆3 > 4, ∆ < 1).

(d) Et x = a impossible (a2−3∆ = 2, ∆ > −1; b = 2+3∆−∆3 > 1, ∆ 6 1; ∆ = 1 : impossible).

(e) Que x = 1⇔ a = 3p− 1, b = p2(8p− 3), p ∈ N∗ et x = 2⇔ a = 3p+ 1, b = p(p+ 3)2. Donc

(f) Si a ∈ [[1, 5]], 2 6 b 6 3 : x 6∈ Q. [Sinon b)c)d) : x = 1 ou 2 ... Mais a = 2, b = 5 : x = 1 !]

10.3 P ∈ C[x], P (x2) = P (x).P (x− 1) (Pcte : 0, 1)

1. Avec P (x) = 0⇒ P (x2) = 0, déduire que : z racine ⇒ z2 racine. Donc racines ∈ {0}∪ U.

(Sinon, racines de module tous différents ; infinité de racines différentes ; et P = O, vu).

2. Avec : P (x− 1) = 0⇒ P (x2) = 0, si z = x− 1, montrer que : z racine ⇒ (1 + z)2 racine.

� ainsi 0 racine ⇒ 1 racine ⇒ (1 + 1)2 = 4 racine ... on a vu que ceci donne P = O. Donc :
� z racine ⇒ | z | = | 1 + z | = 1. Mais avec Cercles(centre O, r = 1) ∩ (O′(affixe −1), r = 1),

seules j, j2 possibles ! Réciproque ... Solutions : P = O et P (x) = (x2 + x+ 1)p, p ∈ N.
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10.4 Majorer le module de racines dans C [corrigé]

Soit f(z) = zn + a1z
n−1 + ...+ an, g(x) = xn− | a1 | xn−1 − ...− | an |, an 6= 0.

Montrer que g possède une unique racine dans R+ et qu’elle majore les racines de f en module.

– Si f(z) = z5 − z + 1 ou f(z) = z5 − z + i, l’ex. dit que g(x) = x5 − x− 1 a une unique racine dans R+

qu’on peut estimer (x0 < 1, 2) et que les 5 racines (∈ C) de l’équation initiale ont un module 6 1, 2 !

– Montrons que g a une racine unique dans |0,+∞[ (qui est dans ]0,+∞[) par récurrence. n = 1 : vu.

Passage au rang n : avec les notations de l’énoncé. Alors g est dérivable (comme polynôme) et
g′(x) = n[xn−1 − b1.xn−2 − ...− bn−1] tous ces coefficients étant dans R+.

� Ici, on a un léger ennui : soit tous les bk sont nuls. Auquel cas g strictement croissante sur R+ (car g′

ne s’annulle qu’une fois en 0) et avec g(0) = − | an |< 0 [et la limite en +∞], c’est fini.
� Soit non. On écrit : g′(x) = n.xk.[xn−1−k − ...− bn−k−1] de façon à ce que −bn−k−1 < 0 : l’hypothèse

de récurrence permet de dire que g′ s’annulle en 0 (peut-être) et en x1 > 0 seulement sur R+ (racine
simple) et un tableau de variations de x ∈ R+ 7→ g(x), semblable, termine aussi ce cas.

Notons x0 la racine dans ]0,+∞[ de g et retenons aussi : g négative avant x0, positive après.

– Maintenant si z racine de f , alors −zn = a1z
n−1 + ...+ an, | z |n 6 | a1 | . | z |n−1 .+ ...+ | an |

inégalité triangulaire ; ou en notant : | z |= x ∈ R+ : g(x) 6 0. Donc : x = | z | 6 x0 !

10.5 Règle de Sturm pour le nombre de racines réelles

1. ∀P ∈ R[x], considérer la suite de Sturm : S0 = P, S1 = P ′ ; Sk−1 = Sk.Q− Sk+1, d
0 Sk+1 < d0 Sk.

[Div. eucl. "signée".] Soit p minimum : Sp = Cte. Montrer que Sp = O ⇒ pgcd(P,P ′) = Sp−1

donc P a une racine (complexe) double, cas qui est exclus ensuite (car alors prendre P/Sp−1).

2. Avec pgcd(P,P ′) = 1, montrer que si c est une racine de Sk, 1 6 k < p, Sk−1(c).Sk+1(c) < 0. (C’est

le point clé avec le signe − ! On ne peut avoir de plus Sk(c) = Sk−1(c) = 0 avec pgcd(P,P ′) = 1.)

3. On considère les signes de S0(x), ..., Sp(x) notés +, 0, − pour > 0, 0, < 0.

On note V (x) le nombre de variations de signes, sans tenir compte de 0 :
(rappel, pas deux 0 de suite) ; ainsi +,+, 0,−, 0,−, 0,+,−,+ serait compté pour V (x) = 4.

(a) Soit R l’ensemble des racines des Sk, x ∈ I un intervalle. Si I ∩R = ∅ vérifier que V (x) = cte.

(b) Si I ∩R = {c}, P (c) 6= 0, c racine de Si1 , ..., Sid , montrer que x 7→ V (x) est constant sur I.
[Les signes de (Siα−1, Siα , Siα−1) sont (+, ?,−) ou (−, ?,+) avec q.2, (?) pouvant changer
avant/après x, mais dans chaque cas pour ce passage et les autres, même valeur avant/après.]

(c) Si I∩R = {c}, P (c) = 0, montrer que lim
x→c−

V (x)− lim
x→c+

V (x)= 1. [Avec (b), on étudie seulement

le passage S0(x), S1(x) ; cas P ′(c) > 0 ou P ′(c) < 0 : ici un changement de signe ! Etc.]

(d) Si P (a).P (b) 6= 0, en déduire que V (a)−V (b) = nombre de racines de P sur l’intervalle ]a, b[.

10.6 Meilleure approximation uniforme de O (polynômiale)

1. Montrer : ∃ ! Tn ∈ R[x] : Tn(cos(a)) = cos(na) [pol. de Tchebychev, n > 1 ⇒ Tn/2
n−1 unitaire] et

2. sin(a).Un(cos(a)) = sin(na) ; T ′
n = n.Un ; Tn(ch(a)) = ch(na), sh(a).Un(ch(a)) = ch(na), pair/impair.

3. (*) ∀P ∈ R[x] de degré n > 1, unitaire : ‖P‖[−1,1] > ‖ Tn

2n−1
‖ =

1

2n−1
et égalité ⇔ P = tn =

Tn

2n−1
.

[xk = cos(k.π/n),Q = tn−P : si ‖P‖ < ‖tn‖, Q(x0) > 0, Q(x1) < 0, ..., Q a n racines, deg(Q) 6 n−1

donc O, imp. Egalité (*) : (−1)k.Q(xk) > 0 ; et (−1)k.Πj 6=k(xk − xj) > 0 car x0 > x1 > ... ; donc si

LQ =
∑

k

λk.Πj 6=k(X − xj)
(

pol.de.L.
n + 1 xk

)
, λk > 0. LQ = Q, coeff. de xn : 0,

∑
λk = 0, λk = 0 : Q = O.]

4. Avec la série entière
∑

n>0

rn.eina, vérifier que
∑

n>0

rn.Tn(cos(a)) =
1− r.cos(a)

1− 2r.cos(a) + r2
, pour | r |< 1.

Et que les Tn sont orthogonaux pour le produit scalaire sur R(x] : < f, g > =
∫ 1

−1

f(x).g(x)√
1− x2

dx.
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11 Fractions rationnelles

11.1 "Homographie" : écriture analogue pour f , f−1

Soit z 7→ f(z) =
az + b

cz + d
, ad− bc 6= 0. Vérifier que f−1 (là où elle existe) a une écriture analogue.

Noter le birapport [∞, 0, 1, z] = z et (f conserve le birapport ... = [p, q, r, f(z)]) ⇔ f homographie.

2 points fixes :
Z − z1
Z − z2

= k.
z − z1
z − z2

(
birapport

= cte

)
; si 1 seul :

1

Z − z0
− 1

z − z0
=

2c

a+ d

(
z 7→ z + β seul cas où
∞ seul point double

)
.

11.2 Quelques décompositions à effectuer (...)

1. Soit a, b, c distincts et P (x) = (x− a)(x− b)(x− c). Calculer
a

P ′(a)
+

b

P ′(b)
+

c

P ′(c)
(trouver 0).

[Ind. :
x

P (x)
=

α

x− a +
β

x− b +
γ

x− c . Trouver α =
a

P ′(a)
. Puis faire

x2

P (x)
et x→ +∞].

2. (Indépendant). Décomposer en éléments simples :
2.x

x2 − 2x.ch(a) + 1
.

11.3 Transformation d’équations, utilité (...)

On sait que les xk = ei.k.2π/n, 1 6 k 6 n− 1, sont racines de
Xn − 1

X − 1
= 0. En posant Z =

1

1−X
former un polynôme dont les racines sont zk =

1

1− xk
. En déduire que

∏

16k6n−1

zk =
1

n
.

11.4 (*) Le Théorème de Gauss-Lucas (...)

Soit P un polynôme de degré 3 (on se limite ici), de racines complexes distinctes z1, z2, z3.

Montrer que les racines complexes de P ′, notées u et v ici, sont situées dans le triangle M1,M2,M3.

Solution. On sait (à voir) :
P ′(x)
P (x)

=
1

x− z1
+

1

x− z2
+

1

x− z3
. Donc 0 =

1

u− z1
+

1

u− z2
+

1

u− z3
.

Ou :
u− z1
| u− z1 |2

+
u− z2
| u− z2 |2

+
u− z3
| u− z3 |2

= 0. On conjugue :
u− z1
| u− z1 |2

+
u− z2
| u− z2 |2

+
u− z3
| u− z3 |2

= 0.

D’où enfin, vectoriellement : α.
−−−→
M1U + β.

−−−→
M2U + γ.

−−−→
M3U =

−→
0 avec α, β, γ des coefficients positifs.

Mais une égalité du type α.
−−−→
GM1 + β.

−−−→
GM2 + γ.

−−−→
GM3 =

−→
0 avec α, β, γ réels tels que α+ β + γ 6= 0

est une question de Barycentre !

Donc : U(u) est barycentre de M1,M2,M3 affectés de coefficients (réels bien sûr) positifs !

Si on le calcule par associativité, le barycentre partiel G1 de M1, M2 est sur le segment [M1,M2]
car les coefficients sont positifs. On recommence avec G1 et M3. Finalement :

U(u) est bien situé dans "l’enveloppe convexe" (le triangle !) M1,M2,M3. Idem pour V (v).

11.5 (*) Equations paramétriques dans R3 ! (coniques)

Soit : P1, P2, P3, Q des polynômes de R2[x], avec Q 6= O. On pose :

x =
P1(t)

Q(t)
; y =

P2(t)

Q(t)
; z =

P3(t)

Q(t)
. Montrer qu’on a une droite (en partie) ou une conique.

(Indication : P1, P2, P3, Q liés donc courbe plane ; ainsi que P 2
1 , ..., P2P3 ; d’où :

a.x2 + b.y2 + c.z2 + d.x.y + e.x.z + f.y.z = 0 : cône de degré 2 ; conique !)
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12 Fonctions élémentaires

12.1 Proche du cours. Diverses études [corrigé]

1. "Formule de Moivre" pour ch, sh ? (ex)n = enx : [ch(x) + sh(x)]n = ch(nx) + sh(nx) et parité !

2. Simplifier C =
∑

06k6n

ch(kx). Analogue à
∑

06k6n

cos(kx) pour revoir la trig. circulaire.

Avec : E =
∑

06k6n

ekx, C sera la partie paire de E(x) ou C =
E(x) + E(−x)

2
si besoin. Alors :

E =
e(n+1)x − 1

ex − 1
=
e(n+1)x/2

ex/2

2sh[(n+ 1)x/2]

2.sh(x/2)
=
sh[(n+ 1)x/2]

sh(x/2)
[ch(nx)+sh(nx)]. C =

sh[(n+ 1)x/2]

sh(x/2)
ch(nx).

Vérifications : n = 0, n = 1, x = 0 ...

3. (*) Preuve de : ch(a+ b) = ch(a).ch(b) + sh(a).sh(b); sh(a+ b) = sh(a).ch(b) + sh(b).ch(a).

Solution : ea+b = ea.eb [non eix ici] ch(a + b) + sh(a+ b) = [ch(a) + sh(a)][ch(b) + sh(b)] et

parité ! e−(a+b) = e−a.e−b ; ce qui est ch(a+ b)− sh(a+ b) = [ch(a)− sh(a)][ch(b)− sh(b)], etc.

4. Etudier f(x) = Arctan
1 + tan(x)

1− tan(x)
. Domaine x 6= π/2 + k.π , f π-périodique, et x 6= π/4 + k.π à

cause du dénominateur de la fraction. Ici, astuce trigonométrique : f(x) = Arctan[tan(
π

4
+x)] !

D’où, si
−π
2

<
π

4
+x <

π

2
, f(x) =

π

4
+x. C’est un intervalle de longueur π : la courbe est connue.

Note : En π/2 + k.π, non seulement f se prolonge par continuïté (comment ?) mais devient C∞.

5. (*) Simplifier f(x) = Arcsin(2x.
√

1− x2) grâce à de la trigonométrie, ici, ce qui évite de dériver.

(a) Corrigé : Domaine capital. (1) x ∈ [−1, 1] avec
√

et (2) 2x.
√

1− x2 ∈ [−1, 1] avec Arcsin.

Résolvons (2) avec x = sin(t) vu que (1) doit être satisfaite. C’est nous qui choisissons t : pre-
nons t ∈ [π/2,+π/2] donnant tous les x ∈ [−1, 1]. (2) : 2.sin(t). | cos(t) |= sin(2.t) ∈ [−1, 1] :
toujours vérifiée ! Ainsi (1) et (2) donnent : Ddefinition = [−1, 1]. Detude = [0, 1] par imparité.

(b) Domaine de dérivation. Déjà x 6= ±1 à cause de
√

, sin(2t) 6= ±1 à cause de Arcsin.

2t = ±π/2 (sur D) ou t = ±π/4 ou x = ±
√

2/2 à exclure. Exclus ou à voir x = ±1,±
√

2/2.

(c) Alors y = Arcsin(sin(2t)) � Si 2t ∈ [
−π
2
,
π

2
], on a y = 2t. Comme t = Arcsin(x), si

t ∈ [
−π
4
,
π

4
] ou si x ∈ [

−
√

2

2
,

√
2

2
] : y = 2.Arcsin(x) connu ! (et dérivée si besoin !)

� Si 2t ∈ [
π

2
, π] : x ∈ [

√
2

2
, 1]; sin(2t) = −sin(2t− π). Là : 2t− π ∈ [

−π
2
, 0] ⊂ [

−π
2
,
π

2
],

y = −Arcsin(sin(2t− π)) = −(2t− π) = π− 2t = π− 2.Arcsin(x). Dessin, vérifications ?

1) y ∈ [−π/2, π/2] partout et 2) y −→
x→1

0. Note : pas de dérivée si : x =
√

2/2.

6. Polynômes réels positifs sur R. Soit P ∈ R[x] tel que ∀x ∈ R, P (x) > 0 ; montrer que :

P = A2 +B2 où A,B ∈ R[x]. (Factoriser sur C ; puis (S2 + T 2)(U2 + V 2) = M2 +N2.)

7. Soit P 6= O, P ∈ R[x] : ∀x ∈ R, P (x) > O. Montrer que : Q = P + P ′ + ...+ P (n) > O.

(Q(x) ∼
x→+∞

P (x) > 0. Si a, plus grande racine de Q si elle existe : Q(x) ∼
x→a

α(x− a)p, α > 0, p > 1.

Or Q est C∞, on peut dériver un D.L. et dire que Q′(x) ∼
x→a

α.p(x− a)p−1 ; donc dire que : P (x) =

Q(x)−Q′(x) ∼
x→a
−α.p(x−a)p−1 par différence de termes d’ordre différents. Impossible si x→ a+.)
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12.2 Equation fonctionnelle de la fonction th (...)

Trouver f continue R→ R : f(x+ y) =
f(x) + f(y)

1 + f(x).f(y)

Si on exclut f = ±1 (f = cte), montrer : −1 < f < 1. Puis avec Argth(f), que f(x) = th(a.x).

12.3 Courbes et géométrie (exercices remarquables)

1. Dériver les fonctions suivantes (trouver cte/ch(x)) puis en déduire des relations entre elles

Arctan(ex) Arctan[sh(x)] Arctan(th
x

2
) [Voir ch(2a) = (ch2(a) + sh2(a))] Arcsin[th(x)].

Arctan[sh(x)] = 2.Arctan(ex) + C = 2.Arctan(th
x

2
) +D ! constantes avec x = 0 ; +∞ ; −∞ ...

Finir avec la 4ème fonction. (*) Ceci lié à la "fonction de Gudermann". [cf. Cours.]

2. Soit x+ y = 1 ; montrer que : x.ln(x) + y.ln(y) > −ln(2)

0 < x, y < 1, à cause du ln et de x+ y = 1. Etudier f(x) = x.ln(x) + (1− x).ln(1− x), ses

variations ; trouver un minimum atteint pour x = y = 1/2 valant : −ln(2). Vérifier et finir.

3. Entrelacement des racines de deux trinômes du second degré. On considère, avec α 6= 0 :

y =
ax2 + bx+ c

αx2 + βx+ γ
=
a

α
+

(α.b− a.β)x− (α.c − a.γ)
α(α.x2 + β.x+ γ)

. Vérifier que (et graphe des 7 cas) :

Si α.b− a.β 6= 0, avec Y = y − a

α
,X = x− xI unique point de Cubique∩ Asymp. horizontale ;

qu’alors on obtient : Y =
k.X

pX2 + qX + r
, Y ′ = k.

−p.X2 + r

[...]2
.

(a) Si β2 − 4α.γ < 0 ou q2 − 4pr < 0, donc pr > 0 : aux max, min, X2 = r/p et
Cubique∩(Y = h) donne X1,X2 avec X1X2 = r/p, donc X1,X2,Xmin,Xmax en D.H.

(b) Si β2 − 4α.γ > 0 ou q2 − 4pr > 0, mais pr > 0 : courbe non bornée ; D.H. idem. Racines

de ax2 + bx+ c : 0 ou non enchevêtrées avec celles du dén. (car aux 2 asympt. vert. X ′
1 < X ′

2,

même limite infinie en X ′
1
+
, X ′

2
−

car coupée par une droite horizontale en 2 points au plus.)

(c) Si β2 − 4α.γ > 0 ou q2 − 4pr > 0, et pr < 0 : 3 arcs où f strict. monotone. Ici, X1,X2

toujours séparées par une Asympt. vert. Donc : les racines s’enchevêtrent et réciproquement.

(d) Si β2− 4α.γ = 0 ou q2− 4pr = 0 : Y =
K.X

(X −X0)2
, Y ′ = −K. X +X0

(X −X0)3
, donc Xext et XA.V.

symétriques / point XI . Si intersections avec Y = h, (X1,X2,XA.V.,Xext) en D.H.

Enfin si α.b− a.β = 0, Y =
λ 6= 0

α.[(x− x0)2 −∆]
, ici un axe de symétrie. 0,1 ou 2 Asymptotes vert.

mais dans ce cas-ci, pas d’enchevêtrement des racines. (Ici, Cubique ∩ Asympt. horiz.= ∅.)

4. (*) Soit a > 1; b > 1 a 6= b. Montrer que

les courbes y = ax et y = bx sont homothétiques de centre sur l’asymptote commune Ox.

Corrigé. Soit (C) décrite par M(x, y), d’équation y = ax. L’homothétie h :
−−→
ΩM ′ = k.

−−→
ΩM

[Ω(α, 0) sur l’asymptote commune Ox] donne :

(
x
y

)
7→
(
x′ = α+ k.(x− α)

y′ = k.y

)
, k 6= 0.

On déduit en inversant le système que x = α+ (x′ − α)/k; y = y′/k ; et que (x′, y′) sont liés

par y′ = k.aα+ x′−α
k : c’est la courbe image décrite par M ′. On veut que ce soit aussi y′ = bx

′
.

On choisira k > 0 et l’égalité des ln : x′.ln(b) = ln(k).+ [α+
x′ − α
k

].ln(a); ∀x′ ∈ R.

Possible avec k =
ln(a)

ln(b)
; et α =

ln(k)

ln(b)− ln(a)
. (Egalité de deux polynômes en x′).
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13 Equations différentielles

13.1 Trouver les polynômes P (x) ∈ R[x] : P ′ divise P

1. Ecrivons P (x) = P ′(x).Q(x). Si P ′(x) = O, P = O ; sinon Q(x) =
1

n
.(x−a) ; n = degré (P ) > 1 :

Par conséquent : n.P (x) = P ′(x).(x − a).
2. Première solution (brève) ! Soit z0 une racine de P à l’ordre k > 1.

z0 est racine de P ′ à l’ordre k − 1. (Bien réfléchir à cela car on a fini !) Donc l’égalité prouve

que z0 = a. Finalement P possède une seule racine sur C et P (x) = α.(x− a)n, n > 1.

Inversement si P (x) = α.(x− a)n : P ′(x) = n.(x− a)n−1 donc P ′ divise P . (1/n est sans ennui)

3. Autre solution (M. Bouchut, Saint Chamond). Ecrivons n.P (x) = P ′(x).(x − a) :

(a) Après avoir vu que P (a) = 0, dérivons : n.P ′(x) = P”(x).(x−a)+P ′(x) donc (n− 1)P ′(a) = 0.

(b) Re-dérivons : n.P”(x) = P (3)(x).(x− a) + 2.P”(x) donc (n− 2)P”(a) = 0 ... Ainsi :

(c) 0 6 k < n⇒ P (k)(a) = 0 ; donc a racine (unique) d’ordre n. Réciproque comme ci-dessus.

4. Autre idée : traiter ceci en Equation différentielle P (x) solution de (x− a).y′ − n.y = 0 ...

13.2 Trajectoires orthogonales (de courbes planes ici ...)

1. Si f(x, y, y′) = 0 est l’équation d’une famille de courbes (éq. diff.), justifier que les trajectoires

orthogonales sont solutions de f(x, y,
−1

y′
) = 0. Cas de la famille de droites Ck : y = k.x ?

2. Si f(ρ, θ, ρ′) = 0 est l’équat. d’une famille de courbes (éq. diff.), justifier que les trajectoires ortho-

gonales sont solutions de f(ρ, θ,
−ρ2

ρ′
). La famille Ck : y = k.x est exclue en polaires car θ = cte.

Cas de la famille de cercles : ρ = λ.sin(θ) ? ou vues comme ceci : x2 + y2 + λ.y = 0 ?

(*) des cardioïdes ρ = λ(1 + cos(θ)) ? [Par inversion conservant ⊥, on a des paraboles d’axe Ox, de même

foyer O : ρ = µ/(1+cos(θ)) ; les traj.⊥ sont les paraboles sym/O, donc les traj.⊥ cherchées sont les cardioïdes sym/O.]

13.3 Trajectoires orthogonales (de courbes non planes ...)

1. Définition. Sur une surface, on appelle lignes de plus grande pente les trajectoires orthogonales
à la famille de courbes Ck tracées sur la surface telle que z = k : lignes de niveau 58.5.

2. Lignes de plus grande pente (horizontale) au Paraboloïde Hyperbolique : 2z = x2 − y2 ?

Un vecteur directeur d’une Ligne horizontale en M vaut −→u (1,
x

y
, 0) car 2.x− 2.yy′ = 0 ; donc

une trajectoire orthogonale vérifie : dx+ x/y. dy = 0 ou Γµ : (1) x.y = µ, (2) x2 − y2 = 2z.

13.4 E.D. Lagrange y = x.A(y′) + B(y′), Clairaut A(y′) ≡ y′

. Lagrange ⇔ isoclines rectilignes : Avec t =
dy

dx
, (t−A(t)).

dx

dt
−x.A′(t) = B′(t) : LIN., courbes intégr.

en paramétriques 40.9. Les homogènes en x, y en sont un cas particulier ; idem les éq. de Clairaut.

Pour l’éq. de Clairaut : une famille de droites solutions y = t.x+B(t) et leur "enveloppe" (E) ch.30.

Traj⊥. à une famille de droites. Eq. diff. des traj.⊥ Γµ : x+ yy′ = y′.B(−1/y′) ; les isoclines : droi-
tes de coeff. dir. −1/y′Γ , ⊥ aux Courbes Intégrales Γµ, qui sont donc des courbes parallèles de même

développée ch.30, enveloppe (E) des droites initiales y = t.x+B(t) : des développantes de (E). 56.1.

13.5 Résoudre y′ =
√

1 + y. Ne pas oublier la solution : y = −1
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13.6 Equations différentielles avec utilisations de la parité (...)

1. Résoudre f ′(x) = x.f(−x), f dérivable sur R. (cf. q. 2.3.)

2. Trouver f C2 : f”(x) + f(−x) = ex. (Ecrire f = g + h, g paire, h impaire).

3. Analogue : Résoudre f ′(x) = f(1− x), f dérivable. (Des indications :)

– Attention : ce n’est pas une équation différentielle ! Comme 2) ou bien

– Le membre de droite est dérivable donc le membre de gauche aussi et f”(x) = −f ′(1− x).
– Donc : f”(x) = −f(x) ... f(x) = A.cos(x) +B.sin(x) = C.cos(x− ϕ) ; mais attention :

– Réciproque à faire ! A la fin, infinité de solutions à une seule constante arbitraire.

[et, si la réponse est juste, c’est : y = C.cos(x−π
4
− 1

2
).]

13.7 f C0 2.π- périodique. CNS pour que F (primitive) soit 2.π-périodique

1. Voir déjà le cas : f(x) = cos(x), F (x) = sin(x) + C est 2π -périodique.

2. Voir aussi et savoir f(x) = cos2(x) =
1 + cos(2x)

2
, F (x) =

x

2
+
sin(2x)

4
+ C non périodique.

(Et cela sans rapport avec la constante arbitraire.)

3. Résolution Déjà, toute fonction C0 possède des primitives par Théorème.

Puis : Notons d(x) = F (x+ 2π)− F (x) (comme différence).

Alors : d′(x) = f(x+ 2π)− f(x) = O. Donc d(x) = cte. Ainsi :

x 7→ d(x) est identiquement nulle si et seulement si elle est nulle en un point, par ex. d(0) = 0.

Donc F sera 2π-périod. ⇔ d(0) =

∫ 2π

0
f(x)dx = 0. Comme

1

2π

∫ 2π

0
f(x)dx est appelé valeur

moyenne de f , on a finalement : F sera 2π-périod. ⇔ la valeur moyenne de f est nulle.

13.8 Si f C0 2.π- périodique, y′ + y = f(x) a une unique solution 2π-périodique

1. On a une Eq. diff. LIN. d’ordre 1, à coeff. constants. [f(x) =
sin(3x)

2 + cos5(7x)
est permis] !

2. L’unicité est facile. Car vu l’ESSM, si y(x) et y0(x) sont deux solutions quelconques :

y(x) = y0(x) + k.e−x ! Qu’elles soient toutes deux 2π-périod. exige que ke−x aussi, donc k = 0.

3. L’existence est difficile. Posons d(x) = y(x+ 2π)− y(x) (comme différence). Alors :

d′(x) = y′(x+ 2π)− y′(x) = f(x+ 2π)− y(x+ 2π)−
(
f(x)− y(x)

)
= −d(x) : d′(x) + d(x) = 0,

d(x) = k.e−x : x 7→ d(x) identiquement nulle si et seulement si nulle en un point, par ex. d(0) = 0

Soit y0(x) une solution fixée (on ne sait rien sur sa périodicité). On a y(x) = y0(x) + k.e−x.

Et donc : y(x+ 2π) = y(x) tout le temps ⇐⇒ y(2.π) = y(0) (en un point) avec ce qui précède.

Et y0(2π)+k.e−2π = y0(0)+k.e0 conduit à une (et une seule) valeur de k : une sol. 2π périodique.

4. On peut tester tout ce qui précède sur le cas trivial : y′ + y = 1. y(x) = 1 + λ.e−x...

5. Résolution générale non utile ici. [Voici : var. de la constante, y(x) = u(x).e−x, u′(x) = f(x).ex

d’où u(x) =

∫ x

a
f(t)et.dt+ k (cf. ln(x) =

∫ x

1

1

t
.dt). Donc y(x) = e−x.

∫ x

a
f(t)et.dt+ k.e−x.]
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14 Développements limités

14.1 (*) Une suite avec un développement limité (...)

1. Montrer que tan(x) = x possède une unique solution, notée xn, sur ]nπ − π/2, nπ + π/2[.

2. (*) Montrer ensuite que l’on a : xn = n.π+
π

2
−ǫn avec ǫn =

1

n.π
− 1

2.π.n2
+
αn

n2
.

(Avec ǫn = Arctan
1

n.π + π/2− ǫn
et Arctan(h) = h− h3/3 + o(h4).)

14.2 Dl de fonction réciproque avec f(x) = x + x2 − x3

1. Montrer que f est bijective de I sur J où I est maximal contenant 0.

2. On note g = f/I . Justifier que g−1 possède un DL2 en x = 0 à déterminer.

– Corrigé. Bien voir, autour de 0, que f(x) "ressemble" à x mais est au dessus : f(x) = x+ x2 + o(x2)

en rouge

0

0,4

-0,2

0,2

0
-0,4

-0,2

-0,4

x

0,40,2

d’où f−1 en bleue. Sur R, voici f

x

2

0
0

cf. limites en ±∞.

– Sur le DL : On fait le calcul d’abord, en supposant l’existence du DL ; celle-ci laissée en fin !
Un cas usuel d’existence est : g fonction C∞ avec formule de Taylor-Young (cours).

– Calcul. Supposons g−1(x) = x+ ax2 + x2ǫ(x), méthode de coefficients indéterminés. Exprimons que

g−1(g(x)) = x : x = [x+ x2 − x3] + a.[...]2 + x2.ǫ(x) car [...]2.ǫ(x) = x2.ǫ∗(x). Dl unique : a = −1.

– Existence ? g−1 est continue (pourquoi ?) et dérivable avec : (g−1)′(x) = 1/g′(y) = 1/g′(g−1(x)) ; cette

expression montre que g−1 est C1 (on veut davantage !) et même dérivable 2 fois en 0 : le DL2 existe.

Note : profitons d’une certaine analogie Développements limités - Développements décimaux pour

la question suivante sur les rationnels : période maximale pour
m

n
∈ Q, n > 2 (dév. périod.) ?

1. Cas de 22/7 ? Pourquoi : longueur-de-période 6 n− 1 ? (si n− 1, on dit "période maximale").

2. (Période max.)⇔ (n premier, m non multiple, long. de pér. des restes de div. des 10q par n : n− 1).

⇒ Comme la long. de la période du dév.d. vaut la long.de la période des restes des div. des m.10k

par n (facile),∃i : m.10i ≡ 1(n) ; chaque p ∈ [[1, n−1]] (≡ m.10j) inversible. D’où (facile) n premier.

Par le Th. de Fermat (21.1) 10n−1 ≡ 1 ≡ m.10i, m ≡ 10n−1−i : les restes des div. des m.10k sont
donc les mêmes que des 10p+k, p = n− 1− i. Ou, dans le groupe (Z/nZ∗,x) 10 est un générateur.
Remarques. m non multiple de n : clair ; n 6= 2, 5 ; ∀m ∈ [[1, n−1]] périod. max. ! et 1/11=0,0909...

⇐ m est congru à un entier de 1, ..., n − 1 donc à un 10l ; on finit alors aisément. Exemple :

3. 1/7 = 0, 142857 3/7 = 0, 428571 2/7 = 0, 285714 6/7 = 0, 857142 4/7 = 0, 571428 5/7 = 0, 714285. Et

N = 142857 vérifie 3N = 428571 2N = 285714 6N = 857142 4N = 571428 5N = 714285 7N = 999999 !

4. Par recherche informatique, on trouve que les n tels que 1/n soit à période maximale sont (pas
2, 3, 5, 11, 13) : 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223 ...

5. Caractérisation, p premier : comme en fait < 10 > est un sous groupe de (Z/pZ∗,x), la longueur de
la période est un diviseur de p− 1 (Lagrange). Alors : 1/p est à période maximale ⇔ [p 6= 2, 3, 5
et ∀d diviseur propre de p− 1 (6= 1, p − 1), p ne divise aucun des entiers ad = 11...1 (d chiffres)].

(a2 = 11, a3 = 3.37, a4 = 11.101, a5 = 41.271, a6 = 3.7.11.13.37... donc 13 ne convient pas car 13

divise a6 et 6 diviseur propre de 12 ; 37 et 41 non plus ...). [Indication : 10d − 1 = 9.ad ! ]

(Voir aussi les nombres m/13 de période 6 : avec 6 permutations de 076923 et 6 de 153846.)
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15 Courbes en paramétriques [hors coniques], fonctions R→ Rn

15.1 Une courbe orthoptique (avec diverses indications ...)

1. Equation de la tangente à la courbe

(
x = a.cos3(t)
y = a.sin3(t)

)
? [x.sin(t) + y.cos(t) = a.sin(t).cos(t).]

2. Montrer que (2 tangentes sont orthogonales) ⇔ cos(t− t′) = 0 ; par ex. t− t′ = −π/2 + 2kπ.

3. Montrer que la courbe cherchée vérifie x =
a√
2
.sin(2t).cos(

π

4
− t), y =

a√
2
.sin(2t).sin(

π

4
− t)

ou ρ =
a√
2
.cos(2θ) : courbe orthoptique de l’astroïde,"quadrifolium". Dessins ? 15.5.

15.2 Cinématique : composition des vitesses et des accélérations

Notations. Soit un référentiel Ro(O,
−→ı ,−→ ,−→k ), i.e. (id est) un repère fixe au cours du temps.

Soit maintenant un repère R(A,−→u ,−→v ,−→w ) mobile et M(t) un point mobile.

Si on a :
−−→
OM = x−→ı + ... et

−−→
AM = X−→u + ..., et

−−→
OM =

−→
OA+

−−→
AM , on définit :

d

dt
(
−−→
OM )Ro =

d

dt
(x)−→ı +

d

dt
(y)−→ +

d

dt
(z)
−→
k appelé vitesse absolue de M , notée

−→
V a(M) ou

d
−→
M

dt /Ro
.

Attention : ce vecteur peut être exprimé dans n’importe quelle base, fixe ou non !

d

dt
(
−−→
AM )R =

d

dt
(X)−→u +

d

dt
(Y )−→v +

d

dt
(Z)−→w appelé vitesse relative de M , notée

−→
V r(M) ou

d
−→
M

dt /R
.

Enfin :
−→
Ve(M) =

d

dt
(
−→
OA)Ro +X.

d−→u
dt Ro

+ Y.
d−→v
dt Ro

Z.
d−→w
dt Ro

dite vitesse d’entrainement du point M .

C’est la vitesse /R0 d’un point coïncidant avec M , mais lié au repère mobile R . Vérifier que :

1.
−→
Va =

−→
Vr +

−→
Ve et

d
−→
M

dt /R0

=
d
−→
A

dt /R0

+
−→
Ω ∧−−→AM SI A,M liés au solide mobile R, 27.7, 28.5.

2. Puis que
−→
Γ (M)/Ro = (

d2−→OA
dt2

+X
d2−→u
dt2

+ ...) + 2(
dX

dt
.
d−→u
dt

+ ...) + (
d2X

dt2
−→u + ...) ou bien :

−→
Γ /R0

=
−→
Γ /R +

−→
Γe + 2

−→
Ω ∧−→V r, dernier terme appelé accélération complémentaire ou de Coriolis.

3. Remarquons que si le mouvement d’entrainement est une translation :
−→
Γc =

−→
0 . Et cf.16.3.

15.3 Exemples de mouvement particulier très important (...)

1. Si
−→
V ⊥ −−→OM alors

−−→
OM2 = k2 (Sphère ou Cercle)

2. Si mouvement à accélération centrale de centre O,
−−→
OM ∧ −→V =

−−→
Cte : mouvement dans un plan.

15.4 (*) Etudier les mouvements de A, B, C, tels que (...)

1.
−→
V A =

−−→
AB, etc, par permutation. Supposer A,B,C équilatéral au départ. (O =

A + B + C

3
fixe ! et

dzA

dt
= zB − zA = (j − 1)zA ; zA = ei.t.

√
3/2.e−3.t/2 ; t =∞ pour atteindre O. Spirale ρ = e−

√
3.θ.)

2.
−→
V A =

−−→
AB/‖−−→AB‖, etc. A,B,C équilatéral à t = 0. (zA = ρ.ei.θ, ρ = 1− t.

√
3/2... m. trajectoire.)

3. Soit ici :
−→
V A = α(t).

−−→
AB, etc ; a = BC(t). Avec ‖−→V M ∧

−→
Γ M‖ =

v3
M

RM
, préciser : RA.RB .RC .

Corrigé : Comme ‖−→V A ∧
−→
Γ A‖ = α2.β.2.S, car ‖−−→AB ∧ −−→BC‖ = 2.S ; on a, avec a.b.c = 4.R.S :

(...)
1

RA.RB .RC
=

8.S3

(a.b.c)3
=

1

(2.R)3
où R est le rayon du cercle circonscrit au temps t.
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15.5 (*) Mouvement plan sur plan. Podaire, développée 30.6

Un plan (Q) d’un solide se déplace en restant en coïncidence avec un plan fixe (P ). Le mouvement
hélicoïdal tangent est donc soit une translation (très exceptionnellement) parallèlement à (P ), soit

une rotation de centre I(t) : centre de Rotation, "CIR". Et
−→
Ω =

dθ

dt
.
−→
k ⊥ (P ) ; θ = (−→ı ,−→u ).

Donc les normales aux trajectoires des points du solide (Q) passent par I(t) au temps t.

Mais le point géométrique I(t) change avec t ; son lieu dans (P ) est "la base" ; dans (Q) "la roulante".

C’est un roulement sans glissement car
−→
V e(I) =

−→
0 ; donc :

−→
V a(I) =

−→
V r(I) : tangentes et ds = dσ.

Si A fixé à (Q) 15.2
−→
0 =

d
−→
A

dt
+
−→
Ω ∧−→AI, −→AI =

−→
k ∧d

−→
A

dθ
(ZI = ZA + i.

dZA

dθ
) et

−→
Va[M∈(Q)] =

−→
Ω ∧−−→IM .

D’où si une famille de courbes Ct, provenant du mouvement d’une courbe C∈(Q), a une "enveloppe"

(E), soit M le point caractéristique de Ct : on a
−−−−→
MI(t) ⊥ Ct (M = I possible). [xcos(t)+ysin(t) = r.]

1. Tangente aux conchoïdes : Si M décrit C et OMP alignés : MP = cte, MP sur un solide de CIR

I ∈ NormaleM et
−→
IO ⊥ −−→MP car MP passe par O fixe : même sous-normale polaire en P et M .

2. Podaire d’une courbe : P = proj⊥(O,Tang.M à C). Les droites (MP ) et (OP ) passant par O fixe
sont ⊥ en P et forment une figure invariable. D’où I (donnant la normale en P ) sur les normales
en O et en M ; (mais : I non centre de courbure en M !) donc IP passe par le milieu de [OM ].

Note : la podaire de la parabole :
(

x = t2

y = 2.t

)
/ Sommet est la Cissoïde droite : (x =

−t2

1 + t2
, y =

t3

1 + t2
).

3. Courbe orthoptique. Les tangentes ⊥ en M et M ′ (sécantes en P ) forment une figure invariable. Le
CIR est sur les normales en M,M ′ : MPM ′I rectangle, donc IP contient le milieu J de [MM ′].

Ellipse, par Châsles : Ici, (P, J) passe par O (affinité !), on a le cercle "de Monge" : (O,
√
a2 + b2).

ou P,Q ∈ Cd(F ′, 2a), médiatr.[PF ] coupe PF ′ en M (tang.) FQ ⊥ FP ⇒ T = mil(P,Q) ∈Orth.,
4a2 = TF 2+TF ′2 = 2.(OT 2+c2) (F ′TP rect., Th. de la médiane) ou enfin par équation bien choisie

y = ux+ v tang. ⇔ v2 = a2u2 + b2 ⇔ u2(x2 − a2)− 2uxy + y2 − b2 = 0 ; faire uu′ = −1.

4. cf. ch.30 "Développée" (et 56.1) : le centre de courbure est un CIR d’un certain solide. Ainsi :

(a) Développée de la spirale logarithmique : Avec V = Cte, le rayon (O,M) est fixe dans M,
−→
T ,
−→
N ;

donc [cf. ci-dessus] I se trouve sur la normale à (O,M) en O. Et R =
ρ

sin(V )
.

(b) Développée de la tractrice : Comme MT = a, le point T est fixe dans (M,
−→
T ,
−→
N ). Donc I sur

la normale en M est aussi sur la normale à Ox en T ! Forcément : ydeveloppee.cos(αdev) = a.

D’où y = a.
√

1 + y′2. Paramétrons : y′ = sh(ϕ) : y = a.ch(ϕ), dx = a.dϕ et y = a.ch
x− x0

a
.

5. Epi, hypo, péri-cycloïdes. Un point M d’un cercle de centre C de rayon r roule sans glisser sur un

cercle de base B de centre O de rayon a ; point de contact en P ; arcAP = arcPM , A fixe sur B.

.Epicycloïde (extérieur) : a.t = r.u, zM −zC = eiu(zP −zC) : zM = r
(
m.eit − eim.t

)
où m = 1+

a

r
.

.Hypo (0 < r < a) et Péri (r > a) : changer r en −r ! Avec ρ = r ou −r : si contact extérieur ou

intérieur zM = ρ
(
m.eit − eim.t

)
m = 1 +

a

ρ
. m > 1 Epi, 0 < m < 1 Péri, m < 0 Hypo.

Cas m = −1,"engrenage de La Hire" : diamètre ! 29.6,7. Double génération : (−ρ.eimt = ρ′.m′eit
′
,

ρ.meit = −ρ′eim′t′) [idem ellipse] : mm′ = 1, ρ′ = −ρ.m = P ′C ′ = −ρ− a, t′ = m.t ; d’où même

cercle fixe a′ = (m′−1)ρ′ = (m−1)ρ = a. Γ Hyp, Γ′ Hyp. Γ Péri, Γ′ Epi.
(m = 2, 1/2,cardioïde,L = 16a

m = −2,−1/2, deltoïde).

Longueur (Newton) : ds2 = dz.dz = 4ρ2m2sin2(
m− 1

2
t)dt2 ; ds = 2ρ.m.sin(

m− 1

2
t)dt =

2m.r

m− 1
sin(

u

2
)du.

Développée semblable (Lahire) : avec
dz

dt
= ρ.m.i.(eit−emit) = 2.ρ.m.sin(

m− 1

2
t).ei

1+m
2

t,
−→
T =

dz

ds
;

α =
m+ 1

2
.t ; (si m < 0, t→ 0+ : sign ρ.m.sin(

m− 1

2
t) < 0,

ds

dt
< 0.) zC =

m− 1

m+ 1
.e

−i.π
m−1 .zM (t+

π

m− 1
) !

Géométriquement 30.2,8,9 ! [Note : Idem z = ρ
(
m.eit + eim.t

)
, t = t0 + τ , eimt0 = −eit0 , m 6= 1].
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16 Courbes en polaires [hors coniques]

16.1 (*) Sur les limaçons de Pascal (Etienne, père de Blaise ...)

1. Soit Cl : ρ = acos(θ) + l. Vérifier que M(θ) de Cl et N(θ + π) de C−l coïncident.
En déduire que Cl = C−l. Dorénavant l > 0.

2. Tracés de ces courbes ? (l = a : cardioïde)

3. Avec ρ2 + 2ρ′2 − ρ.ρ”, chercher les points d’inflexions et vérifier que celà correspond à 1 6 l/a 6 2.

[Lieu des points d’inflexions ρ2 +a.ρ.cos(θ)+2a2sin2(θ) = 0.]
(ρ2 + ρ′2)3/2

ρ2 + 2ρ′2 − ρρ” = R (ch.30) Cas ρ = 0 ?

4. Pour l = 2a, vérifier que le rayon de courbure en (−a, 0) est infini.

[En général, on peut voir que Rθ=0 = a(λ+ 1)2/(λ+ 2) ; Rθ=π = a(λ− 1)2/(λ− 2); où λ = l/a].

5. Comme "conchoïdes", vérifier qu’elles ont même sous-normale polaire que le cercle (l = 0).
Vérifier que ce sont aussi les courbes inverses des coniques par rapport à un foyer ;

et aussi les podaires d’un cercle pour un point du plan.

6. Vérifier qu’une équation cartésienne est : (x2 + y2 − ax)2 = l2(x2 + y2).

7. Qu’obtient-on par dérivation ? Vérifier que : y′ =
ay2 − x(x2 + y2)

y(x2 + y2 + ax)
(en éliminant l).

8. Déduire que les points à tangente horizontale sont inclus dans la cissoïde droite : ρ = a.
sin2(θ)

cos(θ)
.

Où sont les points à tangente verticale ?

9. Milieux des cordes de Cl, vues de O sous un angle droit ? [(x− a/2)2 + y2 = l2/2.]

Sur la cardioïde : Vitesse proportionnelle au rayon de courbure⇔ θ fonction affine de t (ou ω = cte).

3

4

2

3

1

0
2

-1

-2

1

-3

0-1-2

inflexions :

0,4

0

-0,4

-2 0

Après :

0
0

-1

-2

-1-2-3

3

2

2

1

1

sym./Ox.

16.2 (*) Tracer une courbe donnée par une équation polaire (...)

1. ρ = 1/ cos(
θ

3
) [Trissectrice de Mac-Laurin ; si A(−2, 0), (Ax,AM) = θ/3, alors (Ox,OM) = θ.]

– Au départ un intervalle en θ de longueur 6.π donne tout.
– ρ(θ + 3π) = −ρ(θ) : un intervalle en θ de longueur 3.π donne tout sans aucune symétrie !
– On choisit [−3π/2, 3.π/2] car ρ(−θ) = ρ(θ) permet encore de le diviser en deux avec une symétrie

par rapport à Ox. Detude = [0, 3.π/2]
– Au départ θ = 0 tangente parallèle à Oy avec tan(V ) = ...
– A l’arrivée, branche infinie. y = ρ(θ).sin(θ) tend vers −∞, x = ρ(θ).cos(θ) tend vers −3. (...)

2. Idem ρ =
√
cos(2.θ); ρ = 1/

√
cos(2.θ) Lemniscate de Bernoulli et Hyperbole équilatère.

3. Idem ρ = cos(θ)/sin2(θ); ρ = sin2(θ)/cos(θ) Parabole de sommet O et Cissoïde droite.

[L’aire entre la cissoïde et son asymptote : 2.
1

2
.

∫ π/2

0

1− sin4(θ)

cos2(θ)
.dθ =

3.π

4
.]
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16.3 (*) Accélération en coordonnées polaires, Formules de Binet

1. Ayant
−−→
OM = ρ(t).−→u (t), montrer que

−→
V =

.
ρ−→u + ρ.

.
θ−→u 1 ; et

−→
Γ = [

..
ρ− ρ.

.
θ
2
]−→u + [2.

.
ρ.

.
θ + ρ.

..
θ]−→u 1.

A ne pas confondre avec le repère de Frenet (cf. courbure) ! et que Γ−→u 1
=

1

ρ
.
d

dt
[ρ2.

.

θ] ; donc :

(acc. centrale
−→
Γ ,−→u col.) ⇔ ( ρ2.

.

θ = C = ‖−−→OM∧−→V ‖ cte ; c’est la "Loi des aires" dA/dt = C/2.)

2. Ici (∗)′ =
d(∗)
dθ

:
.
ρ = −C.(1

ρ
)′,

..
ρ = −C

2

ρ2
.(

1

ρ
)”
−→
V = C

(
−(

1

ρ
)′−→u +

1

ρ
−→u 1

) −→
Γ =

−C2

ρ2

(
(
1

ρ
)” +

1

ρ

)
−→u

V 2 = (
dρ

dt
)2 +

C2

ρ2
= C2

(
1

ρ2
+ [(

1

ρ
)′]2
)

connu avec
ρ(t) ou ρ(θ).

d(V 2)

2.dt
=
−→
V �
−→
Γ =

ici

dρ

dt
Γ−→u , Γ−→u =

d(V 2)

2.dρ
=
d2ρ

dt2
− C2

ρ3
.

3. Remarque : Mouvement à accélération centrale, Hodographe, Podaire et Inversion !

– Hodographe = {µ :
−→
Oµ =

−−→
V (t)} pour la cycloïde x′(t) = a(1− cos(t)), y′(t) = a.sin(t) : un cercle ...

– Cas d’un mouv. à acc. centrale : Si ici H = proj⊥(O) sur Tang. à Courbe initiale (podaire)

dA =
1

2
ρ2dθ =

C

2
dt =

1

2
.OH.ds ⇒ OH.V = C. P sur (OH) avec OH.OP = C se déduit de la

podaire par inversion de pôle O de puiss. C [aussi P pôle de (M,
−→
V )/CercleO,

√
C tppr] et on passe

de P à µ par rO, π
2
. Rem. Si la traj. a une asympt. x = a 6= 0, µ(0, y = C/a) : point de contact

d’une tangente passant par O ; si branche parab. de dir. Oy l’hodographe passe par O, tang. Oy.

16.4 (*) Avec l’hodographe, mouvements à accélération centrale

1. (*) Enoncé : Quelles sont les trajectoires des mouvements à accélération centrale de centre O dont
l’hodographe est un cercle passant par O ? (Connaitre les coniques de foyer O en polaires).

Corrigé. Hodographe de coord. polaires (v, ϕ), v = 2a.cos(ϕ) :
−→
V = a.[(1+cos(2ϕ))−→ı +sin(2ϕ)−→ ].

On calcule
−→
Γ : colinéaire à

−−→
OM(θ)⇔ 2ϕ = θ + π/2 (π). Donc V = ϕ− θ = −(ϕ+

π

2
) (π) et :

ρ′

ρ
=

1

tan(V )
=
sin(ϕ)

cos(ϕ)
, dθ = 2.dϕ. ρ =

k

cos2(ϕ)
=

2k

1 + cos(θ + π
2 )

: parabole, axe Oy, foyer O. Ou :

Par r−1 le lieu de P est un cercle contenant O, d’inverse D : y = −b 6= 0 ; l’antipodaire de D : par.
de foyer O, d’axe Oy. [Si O 6∈ cercle, antipodaire encore connue : ellipse ou hyperbole de foyer O.]

2. (*) Enoncé : Chercher
−→
Γ = f(ρ)−→u , pour que l’hodographe soit un cercle.

Corrigé : Soit A(a, 0) le centre du cercle et
−→
V = a.−→ı +R.

−→
I (ϕ). Alors

−→
Γ = R.

.
ϕ.
−→
J . Forcément :

−→
J = ±−→u , f(ρ) = ±R. .

ϕ. Et θ = ϕ+
π

2
(π) :

.
ϕ =

.
θ.

.
θ =

C

ρ2
(loi des aires) donne f(ρ) = ± R.C

ρ2
.

Inversement ici
−→
Γ = ±R.

.
θ−→u . Or d−→u 1/dt = −

.
θ−→u :

−→
V = ∓R.−→u 1 +

−→
cte. Hodographe : cercle.

3. Enoncé. On a une trajectoire circulaire passant par O avec la loi des aires. Vitesse, accélération ?

Corrigé : Si ρ = a.cos(θ), trouver que : V 2 =
C2.a2

ρ4
et, avec

d(V 2)

2.dρ
, Γ = −2C2.a2

ρ5
.

Remarques. [(**) Pour les Ovales de Descartes, cf. un problème de Robert Ferréol].

– La sous-tangente polaire OT (dans OXY ) :
1

OT
=

(
1

ρ

)′
; la sous-normale : ON = ρ′ et OT.ON = −ρ2.

Cas des coniques. ρ =
e.d

1 + e.cos(θ)
,

1

OT
=
−sin(θ)

d
. OT .cos(θ+

π

2
) = d : T ∈ Directrice. Normale (r, ϕ)

dans OXY :
X

OM
+

Y

ON
= 1 ou

1

r
=
cos(ϕ− θ)

ρ
+
sin(ϕ− θ)

ρ′
. Norm ∩Ox = {K} : ϕ = 0(π)⇒ OK =

rK = −e.ρ. Si L = proj⊥(K, (OM)) : OL = −e.ρ.cos(θ) donc : LM = ρ.(1 + e.cos(θ)) = cte = p.

– Comme autres courbes on a les Ovales de Cassini u.v = k2, u = F ′M, v = FM ; en polaires :
équation bicarrée de degré 4 ; 2 axes de symétrie ; elles ( !) contiennent la lemniscate de Bernoulli.

Les Ovales de Cayley : 1/u + 1/v = 2/b avec FF ′ = 2a. (Moyenne harmonique ; // ci-dessus.)

Ovales de Descartes : 1 axe de symétrie, 3 foyers (Descartes, Chasles) n′.u+ n.v = l ; contiennent des
coniques ±u± v = 2a (1 foyer infini) et les limaçons de Pascal (2 foyers égaux ; 3 si cardioïde) !
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17 Suites : généralités

17.1 Des études de suites assez faciles (...)

1. a0 > 0, b0 > 0 ; an+1 =
an

a2
n + b2n

; bn+1 =
bn

a2
n + b2n

(Penser à zn = an + ibn).

2. Pn =
n∏

k=1

(1 + k/n2) (Utiliser x− x2/2 6 ln(1 + x) 6 x pour x > 0.)

3. Soit la suite un+1 =

√
16 + u2

n

2
. Justifier que la suite (u2

n) est connue. Conclure.

17.2 Suite impliscite comme racine de polynômes

1. Montrer que Pn(x) = x+ x2 + ...+ xn − 1 possède une unique racine xn dans [0,+∞[. Limite ?

2. Corrigé très classique. (n > 2.) Pn continue, strictement monotone sur R+,
Pn(0) = −1, Pn(1) = n− 1 > 0 si n > 2, donne l’existence et l’unicité de xn et que xn ∈]0, 1[.

Comme Pn+1 > Pn (dessin !) Pn+1(xn) > Pn(xn) = 0. Donc xn+1 ∈]0, xn] et (xn) décroissante.
D’où (xn) décroissante, minorée par 0, converge vers l > 0. l à trouver, si possible ! Or :

x + x2 + ... + xn = x.
1− xn

1− x :
xn − xn+1

n

1− xn
= 1, xn − xn+1

n = 1 − xn. Montrons : xn+1
n −→

n→+∞
0,

d’où : xn tendra vers 1/2. xn < 1 insuffisant : (1− 1/n)n −→
n→+∞

1/e ! 0 6 xn 6 x2 < 1, x2 fixe, suffit.

17.3 Accélération de convergence : méthode de Stirling

1. Pour
+∞∑

k=1

1

k2
=
π2

6
on a S = Sn +Rn, S =

+∞∑

k=1

..., Rn =
+∞∑

k=n+1

... Vérifier alors que :

1

k(k + 1)
=

1

k
− 1

k + 1
<

1

k2
<

1

k(k − 1)
=⇒ Sn +

1

n+ 1
= Tn < S < Sn +

1

n
= T ′

n. Et :

2.
1

k(k + 1)(k + 2)
=

1

2
(

1

k(k + 1)
− 1

(k + 1)(k + 2)
) <

1

k2
− 1

k(k + 1)
=

1

k2(k + 1)
<

1

(k − 1)k(k + 1)
.

Et donc : Tn +
1

2(n + 1)(n + 2)
= Un < S < Tn +

1

2n.(n + 1)
= U ′

n.

3. Puis :
1

k2
− 1

k(k + 1)
− 1

k(k + 1)(k + 2)
=

2

k2(k + 1)(k + 2)
= ...

17.4 Accélération de convergence : méthode de Richardson

1. Supposons que : un − l = λ.hn
1 +O(hn

2 ), | h2 | < | h1 | < 1.

Montrer alors que vn =
un+1 − h1.un

1− h1
converge aussi vers l mais, de plus : vn − l = O(hn

2 ).

2. Exemple : calcul de π par la méthode d’Archimède.

Soit : un = 2n.sin
π

2n
; alors : un+1 =

un

cn+1
où cn = cos

π

2n
et donc : cn+1 =

√
1 + cn

2
.

(u2 = 2.
√

2, c2 =
√

2/2). Vérifier ici que : h1 = 1/4; h2 = 1/16 (Dl de sin).

17.5 (*) Fractions rationnelles convergeant vers un irrationnel

Si
pn

qn
→ x avec x 6∈ Q, pn ∧ qn = 1, montrer que | pn |, qn tendent toutes deux vers +∞.

(Si qn 6→ ∞, on peut trouver (qnk
) bornée (par M) ; alors | pnk

| bornée (par N) ; (rnk
) prendrait

un nombre fini de valeurs et convergerait vers x, donc stationnaire pour k > K : on aurait x ∈ Q.)
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18 Suites un+1 = f(un). etc.

18.1 Suites avec beaucoup de radicaux (...)

1. Soit la suite : an =

√

2 +

√
2 +

√
2 + ... +

√
2 (n radicaux), a1 =

√
2.

(a) Vérifier : 1 + cos(2x) = 2.cos2(x). Déduire qu’on peut poser an = 2.cos(θn), θn à préciser.

(b) Conclusion sur la convergence (éventuelle) ? cf. 18.8.

2. Soit la suite : bn =

√

1 +

√
1 +

√
1 + ... +

√
1 (n radicaux) [méthode généralisable ici].

(a) Vérifier que b1 = 1 6 b2 =
√

2 = 1, 414... ; et bn+1 =
√

1 + bn.

(b) Soit f(x) =
√

1 + x. Montrer que :

– L’équation f(x) = x a pour unique solution dans R+ : ϕ =
1 +
√

5

2
= 1, 618... nombre d’Or.

– f est croissante sur [0, ϕ] (suffira) ; et f continue sur R+...

(c) Conclure par récurrence que : 1 6 bn 6 bn+1 6 ϕ donne, avec f croissante :

1 6 f(1) =
√

2 6 bn+1 6 bn+2 6 f(ϕ) = ϕ.

D’où (bn) croissante, majorée par ϕ, converge vers l 6 ϕ. Puis montrer que l = ϕ :

. car dans l’égalité un+1 = f(un), si n tend vers +∞, le membre de gauche tend vers l ;

. et le membre de droite tend vers f(l), vu que f est continue sur R+ même ! Donc :

l = f(l), équation déjà vue ; seule solution positive ϕ : bn converge vers ϕ (en croissant).

3. (*) Montrer la convergence de cn =

√

1 +

√
2 +

√
3 + ... +

√
n. [Si p > 4 : p− 1 +

√
2p 6 2(p− 1).]

18.2 Soit un+1 = un + u2
n, u0 ∈ R : un équivalent

1. (a) Si −1 < u0 < 0, montrer que (un) converge et un ∼
n→+∞

un+1. Convergence de vn =
1

un+1
− 1

un
?

(b) Avec le Th. de Césaro admis : vn −→
n→+∞

λ⇒ v0 + ... + vn−1

n
−→

n→+∞
λ, déduire que un ∼

n→+∞
−1

n
.

2. (a) On prend dans cette question 2, u0 > 0. Montrer que : un −→
n→+∞

+∞.

On voudrait un équivalent de un en +∞. On pense que ln(un+1) ≈ 2.ln(un) donc que
ln(un) ≈ cte.2n est une estimation grossière possible. Aussi, on pose vn = ln(un)/2n.

(b) Prouver que vn+1 − vn =
1

2n+1
.ln(1 +

1

un
) ; puis que 0 < vn+p+1 − vn+p 6

1

2n+p+1
.ln(1 +

1

un
).

(c) Déduire que vn+k+1 − vn 6
1

2n
.ln(1 +

1

un
). Puis (vn) majorée, convergente vers une limite α.

(d) Montrer que ∀n ∈ N : un 6 exp(α.2n) 6 un + 1. En déduire un équivalent de un en +∞.
(Pour la dernière inégalité, on pourra utiliser un passsage à la limite dans (c).

(e) On précise même plus ! Soit βn = exp(α.2n)− un. Montrer que (βn) est bornée et que :

2.βn−1 = (βn+1 +β2
n−βn).exp(−α.2n). Déduire que un = exp(α.2n)− 1

2
+ǫn, avec ǫn −→

n→+∞
0.

18.3 (*) Méthode de Newton avec f(x) = x− ϕ(x)/ϕ′(x)

1. Montrer que lim
n→+∞

ǫn+1

ǫ2n
=
f”(r)

2
. (u1 − r =

(r − b)2
2

.
ϕ”(cx)

ϕ′(b)
si départ de b.)

2. Règle de Fourier (le signe de ϕ” est supposé constant) : (u1 − b)(u1 − r) < 0⇔ ϕ(b).ϕ”(b) > 0.
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18.4 Vitesse de convergence de suites convergeant vers n
√

a

un+1 =
1

n
[(n− 1)un +

a

un−1
n

] converge plus vite que vn =
1

2
[vn +

a

vn−1
n

]. [Cas 1, f ′( n
√
a) = 0.]

18.5 Suite un+1 =
√

2− un, u0 ∈ [−2, 2] et un = 2.cos(ϕn)

1. 1ère solution. Visée : | un+1 − 1 |6 k. | un − 1 |, k < 1, k fixe. Déjà, la suite existe :

Forcément u1 existe et u1 ∈ [0, 2] ⊂ [−2, 2] et de même on peut passer à u2, etc.

Ensuite : | un+1− 1 | = 1√
2− un + 1

. | un − 1 | On veut majorer
1√

2− un + 1
, donc : minorer

√
2− un + 1, minorer

√
2− un, minorer 2 − un ; minorer −un ; finalement : majorer un. Mais si

on dit un 6 2 (comprendre pour tout n ; et qui est juste) :
1√

2− un + 1
6 1, et on ne peut pas

conclure ! Il faut faire mieux. La clé provient de l’observation :

En réalité : u1 ∈ [0, 2] et donc u2 ∈ [0,
√

2] et ceci est vrai pour tout un tel que n > 2 : un 6
√

2.

On vérifiera que ceci entraine :
1√

2− un + 1
6

1√
2−
√

2 + 1
= k < 0, 567.

Donc : n > 2 ⇒ | un − 1 | 6 kn−2. | u2 − 1 | car on ne remonte qu’à u2 ici !

2. 2ème solution : (u2p) convergente vers quoi ? Ici aussi, il y a une difficulté ...

(a) Une chose aisée est que f décroisante de [0,2] dans [0,2] entraine fof croissante de [0,2]

dans [0,2]. Bien sûr : u4 = fof(u2), u6 = fof(u4)... Partons de u2 car on a : u2 ∈ [0, 2].

(b) Voici la difficulté : Une fois qu’on aura vu (pas encore fait) que (u2p)p>1 monotone, bornée

(par 0 et 2), elle sera convergente vers... un point fixe de fof ! (car fof continue).

Donc on résout fof(x) = x. x = 1 est solution mais peut-être d’autres ?

fof(x) =

√
2−
√

2− x. (1) fof(x) = x ⇒ 2−
√

2− x = x2 ce qui est (2) 2−x2 =
√

2− x
qui ⇒ (2−x2)2 = 2−x ou : (3) x4− 4x2 +x+2 = 0 qui possède x = 1 comme solution.

Donc : x4 − 4x2 + x+ 2 = 0 = (x− 1)(x3 + x2 − 3x− 2) (division).

L’étude de ϕ(x) = x3 + x2 − 3x− 2 (ϕ′(x) = 0 ⇔ x =
−1±

√
10

3
≃ −1, 39; 0, 72 ; et

ϕ(0) < 0 et ϕ(
√

2 < 0) montre que ϕ n’a pas de racine sur [0,
√

2] : car (2) imposait

aussi x 6
√

2 : tant mieux !

Finalement fof n’a qu’un seul point fixe sur [0, 2], c’est x = 1

y

x

2

2

1,5

1

1,5

0,5

0
10,50

(c) Sur [0, 1] : x 6 fof(x) 6 1 (pourquoi ?) donc (u2p)p>1 croissante majorée par 1 si u2 ∈ [0, 1]

(pourquoi ?) et décroissante dans l’autre cas (pourquoi ?) converge. Et donc vers 1 avec (b).

Puis u2p+1 = f(u2p) converge vers f(1) = 1. Ainsi la suite (un) converge vers 1.

3. 3ème solution : Voir que un = 2.cos(ϕn) avec

ϕn arithmético-géométrique en s’aidant de : 1− cos(a) = 2.sin2(a/2) = 2.cos(π/2 − a/2).

18.6 Des suites couplées (étudiées sans matrice ici ...)

Soit les suites : u1 = 2, v1 = 3 ; un+1 =
un + vn

2
, vn+1 =

un + 5vn

6
.

Déterminer 2 réels q tels que ∃λ, µ : λ.un + µ.vn géométrique de raison q. Conclure.
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18.7 Questions autour du Théorème du point fixe (...)

Soit f contractante, de I dans I, avec I intervalle fermé de R.

1. Montrer que ∀u0 : un+1 = f(un) converge vers l’unique point fixe de f .

2. Avec f(x) = x+ e−x de R→ R, montrer que | f(x)− f(y) |<| x− y | pour x 6= y, ne suffit pas.

18.8 Suites pour le calcul approché de π (Archimède ...)

Soit le cercle de rayon 1, de centre O. A chaque pas, on double le nombre de côtés. Pas 1 : carré de côté

l1 =
√

2, demi-périmètre p1 = 2.
√

2, α1 = π/2. Pas n : polygone de kn = 2n−1.4 = 2n+1 côtés, chacun

de longueur ln ; pn =
1

2
kn.ln, d’angle αn =

α1

2n−1
. Une jolie formule :

1. (a) Vérifier que : ln = 2.sin
αn

2
(= 2.sin

α1

2n
). Donc : pn = kn.sin

αn

2
. (0 6 α1/2 6 π/4).

(b) Avec x ∈ [0,
π

4
]⇒ sin2(x) =

1− cos(2x)
2

=
1−

√
1− sin2(2x)

2
déduire : ln+1 =

√
2−

√
4− l2n

2. (a) Calculer l2. Montrer que : ln+1 =
√

2− un où un =

√

2 +

√
2 +

√
2 + ...

√
2 , avec n radicaux.

(b) Vérifier que : pn+1 = 2n+1.
√

2− un. Sans calcul : limite de un et de 2n+1.
√

2− un ?

Quelle valeur approchée obtient-on pour n = 4 avec p4 = 25.
√

2− u4 ? Notes 6

3. Meilleure relation de récurrence : Soit cn = cos(
αn

2
) l’apothème : à l’étape n, c’est la hauteur issue

de O. Avec : cos2(x) =
1 + cos(2x)

2
, vérifier : cn+1 =

√
1 + cn

2
; pn+1 = pn.

1

cn+1
[Archimède].

18.9 Méthode des isopérimètres : périmètres constants à 2

(*) Schwab, Nicolas de Cuse vers 1450 : 9 décimales ?

AB est un côté au pas n, de longueur ln, de milieu H, OA = Rn, OH = rn, ÂOB = αn ;

C étant milieu de l’arc
⌢
AB, soit A′, B′ milieux de [AC] et [BC]. Le cercle limite a donc un rayon de

1

π
.

1. Observer que A′B′ est le nouveau côté. Placer H ′ et déduire géométriquement que :

rn < rn+1, Rn > Rn+1, rn <
1

π
< Rn, αn+1 =

αn

2
. Note 7 Et : rn+1 =

Rn + rn
2

.

2. Avec cosinus de Â′OC, Â′OH ′, vérifier que :
Rn+1

Rn
=

rn+1

Rn+1
et donc : Rn+1 =

√
Rn.rn+1. Note 8

3. Erreur ? Par calcul, vérifier que 0 < Rn+1 − rn+1 =
√
rn+1√

Rn +
√
rn+1

(Rn − rn+1) <
Rn − rn

4
. Note 9

6 Trois notes :

i. Avec les développements limités : pn =
Ln

2
= π +

λ

4n
+

ǫn

4n
. Aussi la suite qn =

1

3
(4pn+1 − pn) converge vers la même

limite mais encore plus rapidement. (Accélération de convergence de Richardson ; cf. 17.4 ignorée d’Archimède) !

ii. Demi-périmètre extérieur : Pn = kn.tan(
αn

2
).

Pn

Pn+1
=

1

1− tan2(
αn+1

2
)

=
c2
n+1

cn
=

1 + cn

2cn
> 1 décroissante vers π et

1

Pn+1
=

1

2
(

1

pn
+

1

Pn
), pn+1 =

√
pn.Pn+1.

2

3
.sin(x) +

1

3
.tan(x) = x +

x5

20
+ O(x7)⇒ pondération

2

3
,
1

3
: meilleure !

iii. Et avec les aires ? On voit que l’aire du polygone intérieur à l’étape n est : An = pn−1. (Donc rien de neuf) !

7 On a : 2.Rn.sin
αn

2
= ln(=

2

kn
), 2.rn.tan

αn

2
= ln. Qui redonnent les formules de 1) 2). Mais inutile.

8 A ne pas confondre avec : an+1 =
an + bn

2
, bn+1 =

√
an.bn (moyenne arithmético-géométrique de Gauss ...)

9 Et donc, par effet de cumul : 0 < Rn − rn <
(R1 − r1)

4n−1
, n > 1. Aussi n = 15 semble donner 9 décimales ...

Erreur, géométriquement : tracer
⌢

A′B′, D son milieu. Ĥ ′A′D = D̂A′C (théorème de l’angle inscrit). D’où H ′D < H ′C/2 !
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19 Intégrales simples

19.1 Six petites questions initiales (...)

1. "I.P.P." : I =
∫
Arcsin(x)dx =

∫
Arcsin(x).1.dx =

∫
u.v′.dx = u.v−

∫
v.u′dx ... u = Arcsin(x), v′ = 1

Donc I = x.Arcsin(x)−
∫

x.dx√
1− x2

= x.Arcsin(x) +
√

1− x2 + cte (car la dernière :
k.u′√
u

).

2. "I.P.P" avec bornes :

∫
x.cos(x).dx = x.sin(x)−

∫
sin(x).dx. Avec des bornes 3 endroits :

∫ π/2

0

x.cos(x).dx = [x.sin(x)]
π/2
0 −

∫ π/2

0

sin(x).dx = ... =
π

2
+ [cos(x)]

π/2
0 =

π

2
− 1 > 0. (vérifié)

3. Changement de variable (facile) :
∫
x.(1 + x2)4.dx. Avec : u = 1 + x2 on a : k.

∫
u4.u′(x).dx

ou k.

∫
u4.du. Donc

∫
x.(1 + x2)4.dx =

1

2
.
(1 + x2)5

5
+ cte (on n’a jamais développé (1 + x2)4 ! )

4. Une somme de Riemann : Lim Sn, n→ +∞, où Sn =
∑

16k6n

k

n2
.sin

(
k.π

n

)
?

(...) On trouve que la limite existe et vaut L =

∫ 1

0

x.sin(π.x)dx. Puis par parties ... L =
1

π
.

5. Si f ∈ CM, T -périodique montrer :
∫ a+T

a

f(x)dx =

∫ T

0

f(x)dx =

∫ T/2

−T/2

... : indépendante de a,

par calcul. Ce qui est : l’intégrale sur une période indépendante du départ [Cas a =
−T
2

].

On a l’écriture (par relation de Châsles) :
∫ a+T

a

=

∫ 0

a

+

∫ T

0

+

∫ a+T

T

; mais avec x = T + t :
∫ a+T

T

f(x).dx =

∫ t=a

t=0

f(T + t).dt =

∫ t=a

t=0

f(t).dt avec la T -périodicité. Donc :
∫ 0

a

+

∫ a+T

T

= 0.

6. Une intégrale calculée par symétrie :
∫ π/2

0

sin(t)

sin(t) + cos(t)
dt =

π

4
(Poser x =

π

2
− t.)

Rem. Avec I =

∫ π/4

0

ln(cos(x))dx =

∫ π/4

0

ln[cos(
π

4
− t)]dt, voir que J =

∫ π/4

0

ln[1 + tan(x)]dx =
π.ln(2)

8
!

19.2 Comment Fermat calculait
∫ a

0

xm.dx =
am+1

m+ 1

Sur [0, a], on prend la "subdivision" (infinie) : θ.a, θ2.a, ... où 0 < θ < 1. Alors, une

somme (supérieure) vaut :
∑

06k6+∞

θk(1− θ).a.θk.m.am = am+1.(1 − θ). 1

1− θm+1
. Puis θ → 1 ...

19.3 Une équation différentielle avec une primitive (...)

Trouver f continue sur R telle que : f(x) + x.

∫ x

0
f(t).dt−

∫ x

0
t.f(t).dt = 1.

(On montrera que f est dérivable et, avec y(x) =

∫ x

0
f(t).dt, que y” + y = 0. f(x) = cos(x).)

19.4 fC0([0, 1]),
∫ 1

0

f(t).dt = 0 ; α = inf f , β = sup f :
∫ 1

0

f2(t).dt 6 −α.β

Indication :
∫ 1

0

(f − α+ β

2
)2(t).dt 6 (

β − α
2

)2 ...
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19.5 (*) Quelques calculs de diverses intégrales [avec ici les réponses]

1. Montrer que

∫ 1

0

√
1− x
1 + x

dx =
π

2
− 1 et

∫ b

a

√
(x− a)(b− x)dx =

π

8
(b− a)2, géométriquement !

2. Soit I =
∫ 1

0

ln(1 + x)

1 + x2
dx et J =

∫ 1

0

Arctan(x)

1 + x
dx. En posant x =

1− u
1 + u

calculer I. En déduire J .

Rép. I =
π

4
.ln(2)− I... I =

π

4
.ln(2)− J donc J = I =

π

8
.ln(2).

3. Calculer I(a) =
∫ π

0

dx

1 + a.sin2(x)
. I(a) =

∫ +π/2

−π/2

= 2.

∫ π/2

0

(u = tan(x)) I(a) =
π√

1 + a
.

4. Calculer I(x) =
∫ π/2

0

dt

cos2(t) + x.sin2(t)
(
π

2.
√
x

) et J(x) =
∫ π/2

0

sin2(t).dt

(cos2(t) + x.sin2(t))2
(

π

4.x3/2
).

5. (Récurrence) On considère les intégrales : In =

∫ π

0

cos(nt).dt

b2 − 2bcos(t) + 1
, 0 < b < 1.

Calculer In+2 + In − (b+
1

b
)In+1. En déduire que In = α.bn + β.

1

bn
=

π√
1− b2

.bn.

19.6 (*) a < b, λ > 0, g C1 ; par parties
∫ b

a

g(t)sin(λ.t)dt→ 0 si λ→ +∞

Corrigé :
∫ b

a

g(t)sin(λ.t)dt = ... =
1

λ
[g(a).cos(λ.a) − g(b).cos(λ.b)+

∫ b

a

g′(t).cos(λ.t)dt]. Or :

g′ bornée (C0 sur un segment, g C1) ; | u+v+w | 6 | u | + | v | + | w | et |
∫ b

a

ϕ(t)dt | 6
∫ b

a

| ϕ(t) | dt

D’où |
∫ b

a

g(t)sin(λ.t)dt | 6 1

λ
[ | g(a) | + | g(b) | +

∫ b

a

| g′(t) | .dt] =
K

λ
...

(
connu sous le nom de

lemme de Riemann-Lebesgue

)
.

19.7 (*) Une intégrale classique par limite de somme de R. 44.7

1. Pour n ∈ N∗, montrer : xn − 1 = (x2 − 1).
n−1∏

k=1

(x2 − 2x.cos(kπ/n) + 1).

2. Soit a un réel, a 6= ±1 ; en déduire : I(a) =
∫ π

0

ln(a2 − 2a.cos(t) + 1).dt.

3. (*) On peut aussi étudier a 7→ I(a) comme fonction définie par une intégrale :

On a, pour | r |< 1 :
∫ π

0

1− r.cos(α)

1− 2rcos(α) + r2
dα = π car c’est ℜe

∫ π

0

∑
rk.ei.kαdα ; donc

pour R |> 1
∫ π

0

2(R− cos(α))

R2 − 2Rcos(α) + 1
dα =

2.π

R
. I(a) = 2.π.ln | a |, si | a |> 1 ; 0, si | a |< 1.

19.8 (*) Limites et intégrales [dont (

∫ b

a

fn(x).dx)1/n ...]

1. Soit In = (

∫ b

a

fn(x).dx)1/n, f > O, C0 sur [a, b]. Montrer que In −→
n→+∞

‖f‖∞ = sup[a,b]f .

2. Soit un =
∫ 1

0

tnf(t)dt, f C0. Montrer que l’on a ici : n.un −→
n→+∞

f(1).

3. Montrer que un =

∫ 1

0
f(tn)dt −→

n→+∞
f(0). Equivalent de

∫ 1

0

xn

xn + 1
dx ? (Trouver

ln(2)

n
).

4. Soit f paire. Montrer g(x) =

∫ x

0

x.f(t)

t2 + x2
dt est paire. lim

x→0
g(x) ? Idem avec

∫ x

0

t.f(t)

t2 + x2
dt.

5. (*) Si f C0([0, π]),

∫ π

0
f(x) | sin(n.x) | dx −→

n→+∞
2

π

∫ π

0
f(x)dx. (

∫ (k+1).π/n

kπ/n

f(x). | sin(nx) | dx =

2

n
.f(π.θk). Le total tend vers 2.

∫ 1

0

f(π.x).dx ; car on a la limite d’une somme de Riemann.)
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20 Calcul de primitives

20.1 Les primitives de x 7→ e
√

x sont-elles calculables ?

On y arrive :
∫
et.2.t.dt ...

20.2 Primitives de fractions rationnelles en sin(x), cos(x)
∫
sin(x).dx

cos(3x)
? Déjà cos(3x) = 4.cos3(x)− 3.cos(x). (P3(X) = 4.X3 − 3.X polynôme de Tchebychev).

D’où F (x) =

∫
sin(x).dx

cos(3x)
= −

∫
dt

4t3 − 3t
; ici u = t2 bon car fraction rationnelle impaire !

F (x) = −
∫

t.dt

(4t3 − 3t).t
= −1

2
.

∫
du

4u2 − 3u
= −1

8
.

∫
du

u2 − 3
4 .u

. Décomposer, ou bien le cours :

F (x) = −1

8
.

∫
du

[u− 3
8 ]2 − (3

8 )2
= k

∫
dX

X2 − A2
=
−k
2A

.ln | X +A

X −A | +C =
1.8

8.6
.ln | u−

3
8 + 3

8

u− 3
8 − 3

8

| +C. D’où

F (x) =
1

6
.ln | t2

t2 − 3
4

| +C =
1

6
.ln | cos2(x)

cos2(x) − 3
4

| +C. Mais : 4.cos(x).[cos2(x)− 3

4
] = ... = cos(3.x) !

D’où F (x) =
1

6
.ln | 4.cos(x).cos2(x)

4.cos(x)[cos2(x)− 3
4 ]
| +C =

1

6
.ln | 4.cos3(x)

cos(3.x)
| +C =

1

6
.ln | cos

3(x)

cos(3.x)
| +D.

Remarque. Quand on a dit : t = cos(x), personne n’a dit x ∈ [0, π] car x est celui ... de l’énoncé.

En un mot, on ne pouvait pas dire "x = Arccos(t)". D’autres exercices :

1. Montrer que
∫
cos3(x)

sin5(x)
dx =

−1

4sin4(x)
+

1

2sin2(x)
+ Cte ; (t = cos(x) est bon aussi).

2. Avec astuce : Calculer
∫
sin(x) + cos(x)

3 + sin(2x)
dx en posant t = sin(x)− cos(x) !

20.3 Avec des fonctions irrationnelles (
∫

dx√
ax2 + bx + c

connu)

1. Primitive de
1√

x+ 1 +
√
x− 1

(Quantité conjuguée)

2. Vérifier que
∫

dx√
(x− a)(b − x)

= Arcsin
2x− a− b
b− a + C = 2Arctan

√
x− a
b− x +D.

[x =
a+ b

2
+
b− a

2
sin(t), t ∈ [−π/2, π/2], pour la première ; et voir que C −D =

π

2
.]

3. Vérifier que
∫

1

x
.

√
1− x
2 + x

dx = 2Arctan
√
∗ − 1√

2
ln |
√∗+ 1/

√
2√∗ − 1/
√

2
| +Cte

4. Vérifier que
∫ √

x+ 2

x+ 3
dx = ǫ.

√
(x + 2)(x+ 3) +

1

2
ln |
√∗ − 1√∗+ 1

| +Cte, ǫ =

{
+1 si x > −2
−1 si x < −3

5. Vérifier que
∫

dx

x+
√
x2 + x+ 1

=
√
∗+ 2ln |

√
∗ − x− 2 | −1

2
ln | 2.

√
∗ − 2x− 1 | +Cte.

6. Vérifier que
∫

x.dx√
x2 + 4x+ 5

=
√
∗ − 2ln | x+ 2 +

√
∗ | +Cte.

7. Vérifier que
∫

(x+ 2)dx√
−2x2 + 4x+ 1

=
−3√

2
Arccos

√
3

2
(x− 1)− 1

2
.
√
∗+ Cte.

8. Vérifier que
∫
x.
√
x2 + x+ 1dx =

4

3
(∗)3/2 −

√
3

16
(2x+ 1).

√
∗ − 3

16
Argsh

2x+ 1√
3

+ Cte.

9. Calculer
∫

3

√
x− 1

x+ 1
dx

∫
3
√
x+ 1

x+ 2
dx

∫
dx

3
√
x2(x− 6)

∫
dx

(α.x+ β)
√
ax2 + bx+ c

t =
1

α.x+ β
.
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20.4 Une primitive hors série de : f(x) = 1/[ch(x).
√

ch(2x)]

Calculer
∫

dx

ch(x).
√
ch(2x)

. [t =
√
ch(2x) ramène à

∫
sign(x).

√
2.dt

(t2 + 1)
√
t2 − 1

"abélienne" ; faisable.]

20.5 Calculs de limites (seulement) d’intégrales irrationnelles

Calculer lim
x→0+

∫ x

0

dt√
(1 + t2)(x2 − t2)

[limite seule] et lim
λ→1

∫ λ

1

dx√
x(x − 1)(λ− x)

[Idem.]

20.6 Intégration des "différentielles binômes"
∫
xm.(a.xn + b)p.dx

1. Montrer que le cas
∫
xm.(a.xn + b)p.dx se ramène avec a.xn = −b.t à

∫
tq.(1 − t)p.dt.

2. On suppose p entier et q = N/D rationnel ; montrer que t = uD permet de faire le calcul.

3. Idem si q entier et p rationnel. Dans un troisième cas, on suppose p+ q entier et p = N/D

rationnel ; avec
∫
tp+q(

1− t
t

)p.dt et (
1− t
t

)= uD, montrer que le calcul est encore possible.

20.7 (*) CNS :
∫

(x− a)(x− b)

(x− c)2.(x− d)2
dx soit rationnelle (a, b, c, d distints)

Une solution naturelle mais technique. On écrit F (x) =
p

(x − c)2 +
q

(x − c) +
r

(x− d)2 +
s

(x− d) et on

veut exactement que : q = s = 0. Mais la réponse finale doit porter sur a, b, c, d seuls !

D’autre part, en multipliant par x et avec x→∞, clair que q + s = 0. Donc CNS à exprimer q = 0

On a : p =
(c− a)(c− b)

(c− d)2 ; et F (x)− p

(x− c)2 =
q

(x− c) +
r

(x − d)2 +
s

(x− d) . D’où à gauche :

F (x)− p

(x− c)2 =
(x− a)(x− b)

(x− c)2.(x− d)2 −
p

(x− c)2 =
(x− a)(x− b)− (c−a)(c−b)

(c−d)2 .(x− d)2

(x− c)2.(x− d)2 . Soit N(x) le numérateur

– Forcément N(c) = 0 (sans effort). La formule de Taylor dit que : N(x) =
N ′(c)

1!
(x− c) + ...

– Donc on obtient (notre souci) q =
N ′(c)

(c− d)2 en faisant comme d’habitude : ∗(c− c) puis x = c.

Par cette façon, tout revient donc à exprimer que N ′(c) = 0 !

N ′(x) = 2.x− (a+ b)− 2.
(c − a)(c− b)

(c− d)2 .(x− d) ... ou c− a+ c− b = 2.
(c − a)(c− b)

(c− d) ou enfin :

1

c− a +
1

c− b =
2

c− d (∗)
Deuxième solution : plus facile !

On écrit : ∃ k, l :

(
k

x− c
+

l

x− d

)′
= F (x). Ou : ∃ k, l : −k.(x− d)2 − l.(x− c)2 = (x− a)(x− b)

(les numérateurs) ; ou bien (coefficients de 1, x, x2) : ∃ k, l :





k + l = −1
2kd+ 2lc = −(a+ b)
kd2 + lc2 = −ab

– Ici 3 équations, 2 inconnues (k et l) donc une contrainte entre les paramètres a, b, c, d.

– Une fin élégante. Le système s’écrit k.




1
2d
d2


+ l.




1
2c
c2


 = −




1
a+ b
ab


. Il est clair que les 2 premiers

vecteurs (−→u ,−→v ) sont libres (c 6= d) ; on exprime que le 3ème est dans V ect(−→u ,−→v ) en annulant

un déterminant !

∣∣∣∣∣∣

1 1 1
2d 2c a + b

d2 c2 ab

∣∣∣∣∣∣
= 0.

∣∣∣∣∣∣

1 0 0
2d 2(c− d) a + b− 2d

d2 (c− d)(c + d) ab− d2

∣∣∣∣∣∣
= 0. Ici on trouve :

(a+ b)(c + d) = 2(ab+ cd). (∗∗) Mais : (∗)⇔ (∗∗) c’est la "division harmonique" !
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21 Groupes, anneaux, corps

21.1 Diverses questions d’Arithmétique (...)

1. Les congruences dans Z. a est congru à b modulo n et on note a ≡ b(n) si a = b+ k.n, k ∈ Z.

[Analogue aux congruences modulo 2.π dans R pour les mesures d’angles.] Ex : 19 ≡ 1(9).
On pourrait développer la "preuve par 9" pour la multiplication des entiers. Autre thème :

2. Le (petit) théorème de Fermat. Si a ∈ Z, et p nombre premier, montrer que ap ≡ a(p).
Autre énoncé : p divise a.(ap−1 − 1). Si p (premier) ne divise pas a, alors ap−1 ≡ 1(p).

Exemple : 12345 ≡ 1234(5) (Fermat, 5 est premier) et ... ≡ 4(5) : facile.

Démonstration � Cas p = 2. Il faut voir que a2 − a est toujours pair ∀a ∈ Z. Facile.
� Autres cas : p = 3 ou 5, ou 7 ou 11 ... Si a ∈ N : récurrence. a = 0 clair. Sinon a = b+ 1 :

(b+ 1)p = bp + 1+
∑

16k6p−1C
k
p .b

p−k. Voyons que Ck
p , 1 6 k < p, est divisible par p, ce sera fini.

k!.(p − k)!.Ck
p = p! et p est un nombre premier qui divise le membre de droite. Il divise donc

un terme du produit à gauche. Or ne divise ni k! car k < p ni (p− k)! : k > 1 ; donc divise Ck
p .

Pour a ∈ Z− : posons a = −b et p impair (rappel). ap = −(bp) ≡ −b = a.

3. Utilisation du Théorème de Fermat. Déjà tout nombre de Z est dans une et une seule des 4 parties :
{...,-8,-4,0,4,8,12,16,...} nombres 4k ; {...-7,-3,1,5,9,13,...} nombres 4k + 1 ;

{...,-6,-2,2,6,10,...} nombres 4k + 2 ; {...,-5,-1,3,7,11,...} nombres 4k + 3.

� Puis : aucun nombre premier du type 4k. � Un unique du type 4k + 2 : c’est 2.

� Une infinité du type 4k + 3 : cf. un exercice du début du Cours (assez difficile).

� Et plus difficile encore : il y a une infinité de nombres premiers du type 4k + 1.

Si m > 2, on va trouver un nombre premier p congru à 1 modulo 4, p > m ; celà suffira.

Soit le nombre (m!)2 + 1, p un diviseur premier (tout nombre > 2 en possède) ; p > m sinon p

divisant (m!)2 ne diviserait pas (m!)2 + 1 ; (m!)2 ≡ −1(p) donc [u ≡ u′, v ≡ v′ ⇒ u.v ≡ u′.v′]

(m!)p−1 = (m!)2. p−1
2 ≡ (−1)

p−1
2 . Or [Fermat] (m!)p−1 ≡ 1(p) donc

p − 1

2
pair ; p = 1 + 4k. [Beau !]

Deux remarques 1) Le théorème de Fermat se généralise avec la fonction indicatrice ϕ d’Euler.
2) Pour p premier, on a donc ∀a ∈ Z, ap ≡ a(p). N’y a-t-il que les nombres premiers ayant cette

propriété ? Non ; un tel nombre est dit "nombre de Carmichaël" ; exemple : 561 = 3.11.17.

21.2 Avec la division euclidienne, préciser les sous-groupes de Z

Ce sont les n.Z. (c’est connu)

21.3 (*) Au sujet des Groupes quotients (...)

1. Soit G un groupe, R une relation d’équivalence. Montrer qu’elle est "compatible à gauche" si et
seulement si elle est du type xRy ⇔ x−1y ∈ H où H (qui est classe(e)) est un sous-groupe de G.

2. Si H sous-groupe, de G fini, montrer que toutes les classes (relation précédente) ont même cardinal ;
et card(H) divise card(G), Théorème de Lagrange ; [card(G)/card(H) : indice de H dans G.]

3. Montrer que l’ensemble quotient G/R peut être muni d’une relation de groupe ⇔ H est un sous-
groupe "distingué", i.e. (id est) xH = Hx, ∀ x ∈ G. Exemples : noyaux d’homomorphismes.

21.4 Un groupe admettant un nombre fini de sous groupes est fini

Les éléments sont tous d’ordre fini (sinon contient un sous-groupe isomorphe à Z donc une

infinité de sous-groupes). Et alors : | G | 6 ∑

finie

|< a >|. Donc G est fini.
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21.5 (*) Groupe G opérant sur un ensemble E (...)

1. G opère sur E si on a une application (g, x) 7→ g � x : g′.(g � x) = (g′g) � x et e � x = x, ∀ x ∈ E.

Montrer que ĝ : x 7→ g.x est bijective E → E, de réciproque : x 7→ g−1.x. Et que g 7→ ĝ est un

homomorphisme G→ SE . Inversement, un hom. g 7→ ĝ, G→ SE définit l’opération g.x = ĝ(x).

2. On appelle Orbite de x : Orb(x) = {g.x, g ∈ G}. [G induit une action sur Orb(x)].

Vérifier que ∀y ∈ Orb(x), Orb(y) = Orb(x). Et que les orbites forment une partition de E.

3. Soit E/G l’ensemble-quotient des Orbites ; vérifier la formule des classes : | E | = ∑

O∈E/G

| O |.

4. Exemple. Si H est un sous-gr. de G, H agit sur G par (h, g) 7→ h.g ; cl(a) = {h.a} = H.a = Orb(a).
Ici toutes les orbites (pour cette "translation à gauche") ont même cardinal | H | ; l’indice de H

dans G est (G : H) =| G/H | (si fini) et | G |= (G : H). | H | . D’où le Théorème de Lagrange !

5. Stabilisateur pour action quelc. : Si A ⊂ E, StA = {g : g.A = A} : sous-gr. (non distingué) de G ;

ex : Stx si x ∈ E ; on a | G | = | O(x) | . | Stx | [g 7→ g.x surj. sur O(x) et g.x = g1.x⇔ g ∈ g1.Stx :

ainsi, les antécédents de g1.x sont au nombre de | Stx |. Ou bien noter que : Stg.x = g−1.Stx.g.]

21.6 Le centre Z(G) d’un p-groupe (fini) n’est jamais réduit à {e}
Soit l’action de G sur G : (g, x) 7→ g.x.g−1. | O(x) | divise | G |. Si | O(x) | = 1, on a x ∈ Z(G) ; donc

| G | = | Z(G) | + ∑

x 6∈Z(G),O∈G/action

| O(x) | ces dernières de card. multiple de p ; d’où p divise | Z(G) |.

(Donc : tout groupe d’ordre p2 est abélien. Sinon G/Z(G) cyclique donnerait g = ak.cl et gg′ = g′g.)

21.7 (*) Le groupe G des isométries du cube (...)

1. En prenant un repère orthonormé direct A,
−−→
AB,

−→
AC,
−−→
AD, vérifier qu’il y a 8.3.2=48 isométries, dont

24 directes (G+) laissant le cube invariant. Et que le centre de gravité G est invariant.

2. G+ : Id ; 3 rotations d’axe IJ milieu de 2 faces opposées (±π/2, π) et 6 autres ; 6 demi-tours d’axe

UV milieux d’arêtes opposées ; 8 rotations d’angle ±2.π

3
d’axes AA′ joignant 2 sommets opposés :

24 déplacements. Et en faisant agir G+ sur les (AA′), etc, voit que G+ est isomorphe à S4.

21.8 Non unicité de la décomposition dans un anneau non factoriel

Dans Z[i.
√

3] : avec 4 = 2.2 = (1 + i
√

3)(1 − i
√

3) et dans Z[i.
√

5] : avec 6 ... (Exercice)

Note. Seul 26 vérifie a2 < 26 < b3, b3−a2 = 2 (∗). Car ici Z[i.
√

2] euclidien, donc principal, factoriel.

b3 = (a+ i.
√

2)(a− i.
√

2) ; et a− i.
√

2 ∧ a+ i.
√

2 = a− i.
√

2 ∧ (i.
√

2)3 ; or (aisé) i.
√

2 irréductible ;
s’il divise a− i.

√
2, il divise a dans Z[i.

√
2] et a pair ; mais (∗)⇒ a, b impairs : a+ i.

√
2∧a− i.

√
2 = 1.

Ainsi : a+ i.
√

2 = (α+ i.β.
√

2)3 ; β(3α2 − 2β2) = 1 ; seul cas : β = 1, α = ±1 ; d’où a = ±5; b = 3.

21.9 (*) Au sujet des Anneaux quotients (...)

1. Soit A, un anneau, R une relation d’équivalence. Montrer que l’ensemble quotient peut être muni
d’une structure d’anneau si et seulement si xRy ⇔ x− y ∈ I où I est un idéal bilatère de A :

i.e. I sous groupe de (A,+) commutatif et : ∀a ∈ A, ∀x ∈ I, a.x et x.a sont dans I.

2. Montrer que les idéaux de Z sont les n.Z. Et : Z/p.Z corps ⇔ p premier. Th. de Wilson :

(p > 2 premier) ⇔ (p − 1)! ≡ −1(p). [⇐ aisé ; ⇒ dans (p− 1)! regrouper chaque terme avec son inverse sauf

1 et p− 1 : seuls égaux à leur inverse, cf. éq x2 − 1 = 0, dans un corps commutatif. Voir le cas p = 2 aussi.]

21.10 (*) Avec A = Z[i], si p premier, p ≡ 1 (4) : p somme de 2 carrés

Avec l’idéal I = p.A (voir 21.9), montrer que dans A/I, xp−1 − 1 possède p racines, les classes

de 1, ...(p− 1) et i. Déduire que ce n’est pas un corps puis que p est non irréductible ; conclure.
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22 Espaces vectoriels

22.1 Donner des exemples de sous e.v. supplémentaires

1. Avec une base : Dans R3 ? dans Rn[x] ? dans R[x] ? 2. Dans F(R,R) ? dans F(R,C) ?

22.2 (*) Résolution de systèmes linéaires [corrigé]

1. Avec le pivot de Gauss : (S)





x+ y − 3z = −13
x+ y − 2z = −8
2x+ y + z = 3
x+ 2y − 3z = 5

⇔





1.x+ y − 3z = −13 et .
. z = 5 L2 ← L2 − L1

. − y + 7.z = 29 L3 ← L3 − 2L1

. y = 18 L4 ← L4 − L1

⇔

On a pris "appui" sur Ligne 1 pour supprimer les x de TOUTES les autres Lignes.




1.x + y − 3z = −13 .
−1.y + 7z = 29

z = 5
y = 18

⇔





1.x + y − 3z = −13 .
−1.y + 7z = 29

z = 5
7z = 47 L4 ← L4 + L2

⇔





1.x + y − 3z = −13 .
−1y + 7z = 29

1.z = 5
0 = 12 L4 ← L4 − 7L3

⇔





1.x + y − 3z = −13 .
−1.y + 7z = 29

1.z = 5
0 = 12

impossible, visible avant ! mais on a voulu illustrer les opérations élémentaires.

(S’)





3x + 2y + 6z + t = 1
x + y + 2z + 0.t = −1
2x + 2y + 5z + t = 1

⇔





x + y + 2z + 0.t = −1
3x + 2y + 6z + t = 1
2x + 2y + 5z + t = 1

⇔





x + y + 2z + 0.t = −1 .
−y + 0.z + t = 4 L2 ← L2 − 3.L1

z + t = 3 L3 ← L3 − 2.L1

Sous cette forme, on voit qu’il y a une infinité de solutions à une seule lettre arbitraire.

par exemple t : t arbitraire, z = −t+ 3, y = t− 4, x = t− 3.

2. (*)





λ.x + y = 0
x + λ.y + z = 0

y + λ.z = 0
et





λx1 + x2 = 0
x1 + λ.x2 + x3 = 0

x2 + λ.x3 + x4 = 0
...

xn−1 + λxn = 0

ou : en posant x0 = xn+1 = 0, le système

de n équations : 1 6 k 6 n : xk−1 + λxk + xk+1 = 0. On discute sa résolution selon la valeur de λ.

(a) Résoudre le cas n = 3. [Rép. : si λ 6∈ {0,±
√

2} solution unique x = y = z = 0. Sinon 3 cas
particuliers en λ où, chaque fois, on trouvera une infinité de solutions à une lettre arbitraire.]

(b) Cas général. Avec uk+1 + λ.uk + uk−1 = 0, montrer que si λ = 2 : xk = (−1)k.(α + β.k) et
que le système possède une unique solution : x1 = ... = xn = 0. Et analogue si λ = −2.

(c) Supposons λ 6= ±2 ; notons r 6= 1/r les racines de x2 +λ.x+1 = 0. Donc xk = α.rk +β.1/rk.
Justifier, avec x0 et xn+1, qu’on doit voir le cas r2n+2 = 1 ; se produisant "ssi" r = eip.π/(n+1),
p ∈ [[1, n]] ; que vaut alors λ = −(r + 1/r) ? Montrer ici que le système a une infinité de
solution à une lettre arbitraire. Et sinon qu’il a la seule solution évidente : x1 = ... = xn = 0.

22.3 Des exemples de combinaisons linéaires [corrigé]

1. Indiquer un espace vectoriel contenant les fonctions cos(px), sin(qx), p ∈ N, q ∈ N∗ et montrer

que sin3(x) est combinaison linéaire des sin(qx), q = 1, 2, 3. Vérifier ...

[Sol. Par ex. E = C∞(R,R). Trouver (Euler) sin3(x) =
−1

4
.sin(3x) +

3

4
.sin(x), imparité respectée.]

2. Idem pour ch4(x) en combinaison linéaire de ch(px), p = 0, 1, 2, 3, 4. [8.ch4(x) = ch(4x)+4.ch(2x)+3.]

22.4 (*) Complexifié d’un e.v. réel (comme le passage de R à C)

1. On considère ExE et on pose, si z = a+ ib : z.(−→u ,−→v ) = (a−→u − b−→v , a−→v + b−→u ). Ainsi :

(−→u +i.−→v )+(−→u ′+i.−→v ′) = ... et (a+i.b).(−→u +i−→v ) = ... Vérifier que c’est un C-e.v. (EC = E + i.E).

2. Si dimR(E) = n, E de base −→e 1, ...,
−→e n, alors ExE = EC est de dimension n sur C (et 2.n sur R),

de base (−→e 1,
−→
0 ), ...(−→e n,

−→
0 ) : on dit qu’on a complexifié E. [Ainsi : (

−→
0 ,−→e1) = i.(−→e1 ,

−→
0 ).]

(En affine : EC = O+EC ; f(x, y) = 0, courbe réelle ; f(X,Y ) = 0 sa courbe complexe. Ex.X2+Y 2 = 0.)
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23 Espaces vectoriels de dim finie

23.1 Sur-famille, sous-famille [facile ; corrigé]

Soit (−→u i)i∈I une sur-famille de (−→u i)i∈J c’est-à-dire J ⊂ I : ensembles d’indices.

1. Montrer que : (−→u i)i∈J génératrice ⇒ (−→u i)i∈I génératrice. Puis :

2. Une sous-famille d’une famille libre est libre ; ou bien : une sur-famille d’une famille liée est liée.

� Rédaction : On a dans tous les cas V ect(−→u i)i∈J ⊂ V ect(−→u i)i∈I car J ⊂ I.
L’hypothèse dit alors que V ect(−→u i)i∈J = E ; à fortiori, dans ce cas : V ect(−→u i)i∈I = E.

� Soit λ1
−→u 1 + ...+ λp.

−→u p =
−→
0 , les indices étant dans J ; on peut considérer qu’ils sont dans I

et donc (sur-famille (−→u i)i∈I libre) les λk sont nuls ; d’où la sous-famille (−→u i)i∈J est libre.

23.2 Dans E = R3, dimRR3=3, famille libre, génératrice

Soit les vecteurs : −→a




a
0
0


 ,
−→
b




β
b
0


 ,−→c




γ
γ′

c


 ,
−→
d




1
2
3


 ,−→e




4
5
6


 ,
−→
f




7
8
m


 .

1. Familles libres ?

� 4 vecteurs sont forcément liés en dimension 3 !
� −→e et

−→
f sont (par contre) libres car non colinéaires.

� Pour
−→
d , −→e ,

−→
f : le système 3x3 : x.

−→
d + y.−→e + z.

−→
f =

−→
0 donne m 6= 9⇒ x = y = z = 0 ;

m = 9 : x, y, z pas forcément nuls. Donc

{
m 6= 9⇒ syst. libre
m = 9⇒ syst. lié.

Famille libre ⇔ m 6= 9.

� Pour −→a ,−→b ,−→c : Si a.b.c 6= 0, x.−→a + y.
−→
b + z.−→c =

−→
0 ⇒ x = y = z = 0 : Syst. libre.

En sens inverse Syst. libre ⇒ a 6= 0, car tout système contenant
−→
0 est clairement lié.

Syst. libre ⇒ b 6= 0 sinon −→a = a−→ı et
−→
b = β−→ı colinéaires, donc liés ; et −→a ,−→b ,−→c liés ;

et Syst. libre ⇒ c 6= 0 sinon −→a = a−→ı ,−→b = β−→ı + b−→ ,−→c = γ−→ı + γ′−→ liés car 3 vecteurs

dans V ect(−→ı ,−→ ) ! Donc −→a ,−→b ,−→c libres ⇔ abc 6= 0 pour le système "triangulaire" donné.

2. Enfin génératrices ?

� Deux vecteurs ne sont jamais générateurs (de tout l’espace) en dim 3.

� Puis, comme on est en dim 3 :
−→
d ,−→e ,−→f gén. ⇔ base ⇔ libre ⇔ m 6= 9.

23.3 Famille libres / liées dans E = Rn[x] ou R[x) [corrigé]

1. L’ensemble des polynômes de degré 2 (exactement) n’est pas un sous espace :

Plusieurs raisons !





O non dans cet ensemble car de degré −∞
Si P,Q sont de degré 2, P +Q pas forcément !

Enfin λ = 0⇒ λ.P = 0.P non de degré 2.

2. On a Rn[x] = V ect(1, x, , ..., xn) donc sous-e.v. ! (1, ...xn) : Famille génératrice ; qui est libre

aussi ; donc base à (n+ 1) vecteurs. dimRRn[x] = n+ 1 (Ne pas confondre avec Rn.)

3. Puis :

Soit R0, R1, ..., Rn des polynômes de degré r0 < r1 < ... < rn, r0 > 0 : cette famille est libre.

Car soit αnRn + ...+ α0.R0 = O. Si un αk est non nul, soit αp celui non nul de plus grand
indice ; on aurait une contradiction car alors degré(Gauche)= rp > 0, degré(Droite) =−∞.

� D’où (x− a)k06k6n libre à (n+ 1) vecteurs d’un e.v. Rn[x] de dim. n+ 1 donc autre base.

� Le cas de Pk, avec d0Pk = k > 0 est un cas particulier de l’encadré ci-dessus.
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4. Le cas R[x] et la famille infinie des Qk = x.(x− 1)...(x − k + 1) :

Montrer que c’est une (autre) base de E = R[x].

Corrigé. Comme par définition, une famille infinie est libre si toute sous-famille finie est libre,

on est donc ramené à l’encadré ci-dessus (degrés distints > 0) donc la famille est libre.

Voyons qu’elle est génératrice (attention ! infinie). Soit un polyn. P 6= O (sinon évident) :

voyons qu’il est comb. lin. de la famille. Si degré(P ) = p > 0, on a P ∈ Rp[x], de dim. p+ 1

et Q0, ...Qp libre à p+ 1 vecteurs de Rp[x] d’où génératrice de Rp[x], donc génère P ∈ R[x].

23.4 Quelques autres exemples de famille libres / liées [corrigé]

1. Dans E = C∞(R,R), les fonctions x 7→ 1, x 7→ sin(x), x 7→ cos(x), x 7→ sin2(x), x 7→ cos2(x) sont
liées.

2. Mais les fonctions x 7→ 1, x 7→ sin(x), x 7→ cos(x), x 7→ sin(2x), x 7→ cos(2x) sont libres.

Corrigé :

� Vrai car voici une relation de liaison (comb. linéaire !) : 1.1 − 1.cos2(x)− 1.sin2(x) = O.

� On applique la définition :

a.1 + bsin(x) + c.cos(x) + d.sin(2x) + e.cos(2x) ⇒ a = b = c = d = e = 0 ? : la question !

Réponse : on prend 3 équations avec x = 0, puis x = π/2, puis x = −π/2 ; puis on dérive

b.cos(x)− c.sin(x) + 2d.cos(2x) − 2e.sin(2x) = O et mêmes valeurs. D’où :





a+ c+ e = 0
a+ b− e = 0
a− b− e = 0
b+ 2d = 0
−c− 2d = 0
c− 2d = 0

(2) et (3) donne a− e = b = −b donc b = 0, a = e. (5) et (6) : c = 2d = −2d donc c = d = 0.

(1) donne alors 2a = 0 ; donc a = 0 = b = c = d = e. Fini.

23.5 Somme directe. Supplémentaires et dimension finie [énoncés]

1. Soit E de dimension finie.

Montrer l’équivalence : E = E1 ⊕ E2 ⇔
{

E1 ∩ E2 = {−→0 }
dim(E) = dim(E1) + dim(E2).

Non corrigé ici mais essentiel.

2. Soit E1, ...Ep sous e.v. de dim finie. Alors E1 + ...+ Ep directe ⇔ dim(
∑

Ek) =
∑

dim(Ek).

3. Soit E = E1 ⊕ E2, dim(E1) finie ; −→u ∈ E2,
−→u 6= −→0 . On pose E′

1 = V ect(−→u +−→ei ,−→ei base de E1}.
Montrer que c’est un autre supplémentaire de E2, distinct de E1.

4. D’une famille de n vecteurs de rang r, on extrait une sous famille de n′ vecteurs de rang r′.

Montrer n− r > n′ − r′.
[Car la famille de n′ vecteurs peut être complétée par n− n′ vecteurs de rang r − r′]

5. Montrer, avec des sous e.v. que : (E1 + E2) ∩ E3 ⊃ (E1 ∩ E3) + (E2 ∩E3),

(E1 ∩ E2) + E3 ⊂ (E1 + E3) ∩ (E2 + E3) avec inclusions strictes possibles.

Déduire que dim(E1 + E2 + E3) = d1 + d2 + d3 − d12 − d13 − d23 + d123 est parfois faux.
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24 Applications linéaires

24.1 En dim. finie, une équivalence importante pour f ∈ L(E)

1. Montrer En dim. finie : Ker(f) et Im(f) supplémentaires ⇔ Ker(f) ∩ Im(f) = {−→0 }.

2. Corrigé. Déjà bien revoir : Soit E de dimension finie ; alors on a l’équivalence 23.5 :

(Si dim(E) finie) E = E1 ⊕ E2 ⇔
{

E1 ∩ E2 = {−→0 }
dim(E) = dim(E1) + dim(E2).

Avec ceci, il suffit d’invoquer le Théorème du rang et c’est fini.

24.2 Soit f ∈ L(E) : noyau et image parfois non en somme directe

1. Montrer en dimension quelconque : fof = O ⇔ Im(f) ⊂ Ker(f).

2. Si E de dim. finie sur K, montrer que : Ker(f) = Im(f)⇔ (f2 = O et n = 2.rg(f)).

Corrigé facile :

1) 1ère équivalence : fof = O ⇔ fof(−→u ) =
−→
0 , ∀E

−→u ⇔ f [f(−→u )] =
−→
0 , ∀E

−→u ⇔ Im(f) ⊂ Ker(f)
vu que les f(−→u ) décrivent Im(f) en entier.

2) ⇒ Ayant dim(E) = dim(Ker(f)) + dim(Im(f)) [Th. du rang] : dim(E) = 2.dim(Im(f)) = 2.rg(f).

De plus −→u ∈ E =⇒ f(−→u ) ∈ Im(f) ⊂
ici
Ker(f), donc f(f(−→u )) =

−→
0 ou fof = O.

⇐ Puisque f [f(−→u )] =
−→
0 , celà veut dire que f(−→u ) ∈ Ker(f), ceci ∀−→u : Im(f) ⊂ Ker(f).

Puis : le Théorème du rang et l’égalité (par hypothèse) dim(E) = 2.dim(Im(f)) donnent

[avec dim(E) finie] dim(Ker(f) = dim(Im(f)) : Egalité des sous espaces Im(f), Ker(f).

24.3 Dans E = R2[x], sur la Dérivation discrète (et cf. 25.7)

1. Vérifier que f : P (x) 7→ P (x+ 1) est un endomorphisme ; et aussi ∆ = f − Id.
2. Noyau, image et rang de ∆ ? (Voir que d = degre(P ) > 1⇒ degre(∆(P )) = d− 1.)

3. Vérifier que ∆3 = O et inverse de Id−∆ ? puis de Id+ ∆ = f avec P (x) 7→ P (x− 1).

Corrigé :

1. "endo" est clair car d0(P (x+ 1)) 6 2. Deux démonstration de "morphisme", ou de la linéarité :

(a) Profitons de la dim. finie et prenons la base usuelle (1, x, x2) : P (x) = a+ bx+ cx2, a
pour image P (x+ 1) = a+ b(x+ 1) + c(x2 + 2x+ 1) = (a+ b+ c) + (b+ 2c)x+ cx2 donc


a
b
c


 7→



a+ b+ c
b+ 2c
c


. Cette écriture



a+ b+ c
b+ 2c
c


 =




1 1 1
0 1 2
0 0 1


 .



a
b
c


 prouve la

linéarité et donne même la matrice en base indiquée.

(b) Donnons une autre démonstration sans tenir compte de la dimension (finie ici) :
On a f(λ.P ) = (λ.P )(x+ 1) = λ.P (x+ 1) = λ.f(P ) ; et
f(P +Q) = (P +Q)(x+ 1) = P (x+ 1) +Q(x+ 1) = f(P ) + f(Q) : fini. Et ∆ = f − Id

est lui-même un endomorphisme, par différence, de matrice dans (1, x, x2) :




0 1 1
0 0 2
0 0 0


 .

2. Noyau, Image, rang de ∆. Déjà ∆ : P (x) 7→ P (x+ 1)− P (x) = ∆(P )(x) = (b+ c) + 2cx et

∆(P ) = O ⇔ b+ c = 2c = 0⇔ P (x) = a. Ker(∆) = R0[x] sous e.v. des polynômes constants.
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Donc dim(Ker(∆)) = 1, rg(∆) = 3− 1 = 2 par le théorème du rang, soit dim(Im(∆)) = 2.

Or : P = x a pour image ∆(P ) = 1, P = x2 a pour image ∆(P ) = 1+2x, Im(∆) ⊃ V ect(1, 1+2x)

= V ect(1, 2x) = V ect(1, x) ; l’égalité des dimensions (finies) donne Im(∆) = V ect(1, x) = R1[x].

3. Pour ∆3 = 0, il suffit de voir que l’image de la base (1, x, x2) par ∆3 est le polynôme nul [laissé].

Id−∆3 = (Id−∆)(Id+ ∆ + ∆2) = (Id+ ∆ + ∆2)(Id −∆) montre que Id − ∆ est inversible

d’inverse Id+ ∆ + ∆2. Idem pour Id+ ∆ = f si on veut mais on a mieux ici : f a pour inverse

P (x) 7→ P (x− 1) ; d’où l’inverse de la matrice du triangle de Pascal de 1.(a) aisément !

24.4 Avec le cours bien connu sur les projecteurs [corrigé]

1. Montrer que (fog = f et gof = g) ⇔ f, g projecteurs de même noyau.

[pour la réciproque, g(−→x )−−→x ∈ Ker(g) = Ker(f)].

2. Montrer que (fog = g et gof = f) ⇔ f, g projecteurs de même image.

3. � Puis (*) Si p, q proj., p+ q proj. ⇔ poq = qop = O.

� Si qop = O, r = p+ q − poq proj. et Ker(r) = Kerp ∩Kerq; Im(r) = Imp⊕ Imq.
� p− q proj. ⇔ poq = qop = q ; alors Ker(p− q) = Ker(p)⊕ Im(q),Im(p − q) = Im(p) ∩Ker(q).
� Si poq = qop, poq projecteur et Im(pq) = Im(p) ∩ Im(q), Ker(pq) = Ker(p) +Ker(q) ...

Corrigé de 1. Déjà, deux rappels : [le 2ième pour 2, qui est analogue]

[f ∈ L(E) et fof = f ]⇔ f projection sur Ker(f − Id)//Ker(f) qui sont supplémentaires.

Pour un projecteur, l’image est aussi le sous e.v. des vecteurs invariants Im(p) = Ker(p− Id).
⇒ On a fof = (fog)of = fo(gof) = fog = f ; et f lin. : f projecteur. De même pour g.

Même noyau : Si −→u ∈ Ker(f), ayant gof = g, il vient g(−→u ) = g[f(−→u )] =
−→
0 : −→u ∈ Ker(g)

ou Ker(f) ⊂ Ker(g) et par symétrie de l’hypothèse Ker(g) ⊂ Ker(f) aussi ; donc égalité.

⇐ Déjà assurons nous que g(−→x )−−→x ∈ Ker(g) : g[g(−→x )−−→x ] =
−→
0 car gog = g ! Puis

Ker(g) = Ker(f) donne f(g(−→x )−−→x ) =
−→
0 , ceci ∀−→x ∈ E. Ou fog(−→x ) = f(−→x ) ou bien

fog = f ! Et par symétrie de l’hypothèse : gof = g.

24.5 Rang : Soit f ∈ L(E, F ), E, F de dimensions finies ; g...

1. Montrer : rg(f) 6 dim(E) ; rg(f) 6 dim(F ) ; rg(gof) 6 min[rg(f), rg(g)].

2. Montrer : rg(f + g) 6 rg(f) + rg(g) ; puis | rg(f)− rg(g) |6 rg(f + g) 6 rg(f) + rg(g).

3. Soit f ∈ L(E) tel que rg(f) = 1. Montrer : ∃k ∈ K tel que f2 = k.f (si k 6= 0,
1

k
f projecteur).

Corrigé : (1) rg(f) = dim(E) − dim(Ker(f)) 6 dim(E). Im(f) ⊂ F ⇒ rg(f) 6 dim(F ).

Pour gof , donc g va de F dans Ge.v. ici. f(E) ⊂ F ⇒ g[f(E)] ⊂ g(F ) : rg(gof) 6 rg(g). Enfin le

th. du rang appliqué à g/f(E) donne dim[f(E)] = dim[Ker(g) ∩ f(E)] + rg(gof) : rg(gof) 6 rg(f).

(2) Déjà (f + g)(E) ⊂ f(E) + g(E) est clair. [Par contre l’inclusion peut être stricte : f = Id = −g,
(f + g)(E) = {−→0 } tandis que f(E) = E = g(E) car f, g bijectifs E → E ; d’où f(E) + g(E) = E ici.]

Donc : rg(f + g) 6 dim[f(E) + g(E)]. Par propriété : dim[f(E) + g(E)] 6 dim[f(E)] + dim[g(E)]

= rg(f) + rg(g). La fin, classique, est à voir : f = (f + g) + (−g)⇒ rg(f) 6 rg(f + g) + rg(−g)
= rg(f + g) + rg(g) ; d’où rg(f)− rg(g) 6 rg(f + g) et permutter f et g. (3) laissé 25.5.
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24.6 Sur le rang d’applications linéaires : quelques ajouts (...)

1. Soit E, F de dimension finie. Montrer que sont équivalents :

a) rg(f + g) = rg(f) + rg(g)
b) Im(f + g) = Im(f)⊕ Im(g)
c) Ker(f + g) = Ker(f) ∩Ker(g) et E = Ker(f) +Ker(g).

2. Soit E et F quelconques. Montrer que gof(E) = g(F ) ⇔ F = Im(g) +Ker(f).

Et que f(E) isomorphe à g[f(E)] ⇔ Im(f) ∩Ker(g) = {−→0 F}.

24.7 Soit E un e.v. de dim. finie : n. Montrer les équivalences

(*) Ker(f) = Ker(f2)⇔ Im(f) = Im(f2)⇔ E = Ker(f)⊕ Im(f).

Notes initiales � Hypothèse "dim finie" ? En fait, indispensable : P 7→ x.P dans R[x] ou P 7→ P ′.

� Bien sûr éviter la FAUTE : Ker(f2) = Ker(f)⇒ f2 = f . Contre exemple : f = 2.Id dans R2.

� Un cas où des affirmations n’ont pas lieu [donc aucune n’a lieu, dit l’exercice] : f ∈ L(R2) et f 6= O
(donc Ker(f) 6= E) et f2 = O (d’où Ker(f2) = E). [f nilpotent d’indice 2].

� L’inclusion Ker(f) ⊂ Ker(f2) est toujours vraie. Donc Ker(f) = Ker(f2) dit Ker(f2) ⊂ Ker(f).

� Idem : Im(f2) ⊂ Im(f) a toujours lieu. Donc Im(f) = Im(f2) dit, en fait : Im(f) ⊂ Im(f2).

Corrigé en dimension quelconque quand c’est possible :

1. Ker(f) = Ker(f2)⇒ Ker(f) ∩ Im(f) = {−→0 } :

Soit −→u ∈ Ker(f) ∩ Im(f) : f(−→u ) =
−→
0 et −→u = f(

−→
t ) donc

−→
t ∈ Ker(f2) = Ker(f)...

2. Ker(f) ∩ Im(f) = {−→0 } ⇒ Ker(f) = Ker(f2) :

Soit −→u ∈ Ker(f2) ; il suffit de voir (comme dit au dessus) que −→u ∈ Ker(f) et ce cera fini.

Posons −→v = f(−→u ) ; on a f(−→v ) =
−→
0 . Donc −→v ∈ Ker(f) ∩ Im(f) = {−→0 } ; donc −→u ∈ Ker(f).

3. Im(f) = Im(f2)⇒ E = Ker(f) + Im(f) :

Soit −→u ∈ E : f(−→u ) = fof(−→v ) pour un certain −→v . Alors −→u = [−→u − f(−→v )] + f(−→v ).

4. E = Ker(f) + Im(f)⇒ Im(f) = Im(f2). Il suffit de voir Im(f) ⊂ Im(f2) :

Soit f(−→u ) ∈ Im(f) :−→u = −→v +−→w ∈ Ker(f) + Im(f) : Donc f(−→u ) = f(−→w ) ∈ Im(fof).

5. Enfin, en dimension finie (seulement), E = Ker(f) + Im(f)⇔ Ker(f) ∩ Im(f) = {−→0 }.
(Ceci équivalent à "sous espaces supplémentaires", grâce au Théorème du rang !)

24.8 Quaternions de Hamilton et une note sur GA = E ⋊ GL(E)

1. (*) Soit H= {M :
(

α β

−β α

)
, α = a+ ib, β = c+ id ∈ C}, 1 = I4, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
.

(a) Vérifier que H est un R e.v. de dim 4, et un corps non commutatif (M 6= O, M−1 = 1/det(M).M∗).

(b) Vérifier que l’équation X2 = −1 possède une infinité de solutions dans H = V ect(1, I, J,K).

(c) Et aussi que {±1,±I,±J,±K} est un groupe non abélien à 8 éléments pour la "loi" x.

2. (*) Un exemple de produit "semi-direct" : le groupe affine :

On rappelle que f est affine associée à
−→
f linéaire si f(M) = f(O) +

−→
f (
−−→
OM ), ∀O,M ou ∀M .

Pour f [
−−→
OOf ,

−→
f ], g [

−−→
OOg,

−→g ], affines E → E , on a donc gof [
−−→
OOg +−→g (

−−→
OOf ) ,−→g o−→f ]. D’où,

avec de plus des bijections, on a alors le groupe, produit semi-direct : GA = E ⋊ GL(E).

En effet, plus généralement G⋊ϕ G
′ concerne (g, g′) � (k, k′) = (g.ϕg′(k), g

′.k′) : loi de groupe

si on a une action de G′ sur G, (g′, g) 7→ ϕg′(g) telle que : ϕ(ǫ) = IdG, ϕ(g′.k′) = ϕ(g′)oϕ(k′)

en notant ϕ(g′) = ϕg′ ∈ Aut(G), automorphisme de G : ϕg′(g.k) = ϕg′(g).ϕg′(k). On observe

ici que g ≃ (g, ǫ), g′ ≃ (e, g′) et G distingué dans G⋊ϕ G
′. Dans l’exemple ϕ−→g = −→g .

(Si H et K sous-gr de G avec : HK = G, H ∩K = 1, H ⊳G, H ⋊K possible : ϕk(h
′) = k.h′.k−1.)
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25 Calcul matriciel

25.1 Utilité du calcul des puissances d’une matrice.

1. Soit (un), (vn)

{
un+1 = 3un + 2vn

vn+1 = un + 2vn
, Xn =

(
un

vn

)
. Trouver A : Xn+1 = A.Xn ; d’où Xn = An.X0 !

2. On cherche An par changement de base ici. Supposons A = Matr[f, (−→ı ,−→ )], f endomorphisme.

Calculer f(−→ı −−→ ) et f(2−→ı +−→ ). Déduire : ∃P inv. / P−1.AP = D, D diagonale. Conclure.

Corrigé : (a) Xn+1 =
(

un+1

vn+1

)
=

(
3 2
1 2

)
.

(
un

vn

)
= A.Xn ; A =

(
3 2
1 2

)
. Xn = A.Xn−1 = A.A.Xn−2 = ...

= An.X0 (A0 = I2 ici même si A non inversible ; mais elle l’est !) Ainsi, tout revient à calculer An.

(b) f(2−→ı +−→ ) ? matrices A.
(

2
1

)
=

(
8
4

)
= 4.

(
2
1

)
⇒ f(2−→ı +−→ ) = 4.(2−→ı +−→ ) ; f(−→ı −−→ ) = −→ı −−→ .

Puis (−→u = −→ı −−→ ,−→v = 2−→ı +−→ ) est une famille libre de 2 vecteurs [non colinéaires] et ceci en

dim. 2, donc une autre base. La matrice du même endomorphisme f , mais en base (−→u ,−→v ), est

D =
(

1 0
0 4

)

f(−→u )f(−→v )

−→u.−→v
. Si P =

(
1 2
−1 1

)

−→u −→v

−→ı.−→
, matrice de changement de bases, P−1.A.P = D [Th.] ; Dn facile ;

A = P.D.P−1 ; A2 = P.D.P−1.P.D.P−1 = P.D2.P−1 ... An = P.Dn.P−1 P−1 =
1

3

(
1 −2
1 1

)
. Finir !

25.2 D’autres méthodes pour le calcul de Mn (...)

Soit A =

(
b b− a

−a− b −b

)
; T =

(
a c
0 b

)
; B =




1 2 3
0 1 2
0 0 1


 ; J =




0 1 1
1 0 1
1 1 0


 ; C =




1 1 1
1 0 0
1 0 0


 .

1. Calculer A2 puis An, n ∈ N∗. Calculer T 2; T 3; puis T n, n ∈ N∗.

2. En écrivant B = I3 +N [Binôme de Newton, N nilpotente commutant avec I], calculer B100.

3. Calculer J2 en fonction de I = I3 et J ; en déduire que J est inversible et préciser J−1.

Préciser le reste de la division de Xn par X2 −X − 2. En déduire Jn. Cas n ∈ Z, ici ?

4. Montrer que 3.Cn = an.C + bn.C
2 et préciser an et bn.

Corrigé : (a) Pour A : A2 = ... =

(
a2 0

0 a2

)
= a2.I2 : c’est la clé ! Donc :

A202 = (A2)101 = (a2.I)101 = a202.I, tandis que A203 = A202.A = a202.I.A = a202.A. Etc.

Pour T : essais (T 2, T 3...) T n =

(
an cn
0 bn

)
, cn = c(an−1 + an−2.b+ ...+ bn−1). Récurrence ...

(b) Pour B : Ici, B = I3 +N , N =




0 2 3
0 0 2
0 0 0


 nilpotente et commute avec I : N3 = O. Binôme !

Par exemple B100 = (I3 +N)100 = I100+

(
100
1

)
.I99.N+

(
100
2

)
.I98.N2 = I + 100.N + 50.99.N2 ...

(c) Pour J : Méthode du polynôme annulateur, guidée par l’énoncé. Déjà J2 = 2I + J (à voir) !

� D’où J(J − I) = 2I ou J.
1

2
(J − I) = I. Ainsi J , carrée, est inversible à droite donc par Th.

J est inversible, J−1 =
1

2
(J−I) =

1

2



−1 1 1
1 −1 1
1 1 −1


. J annule le polynôme x2-x-2 (J2−J−2.I = O).

� Faisons ici une division xn=[x2−x−2].Q(x)+a.x+b car degré(Reste) 6 1 : exercice essentiel.

Prenons 2 valeurs de x pour trouver 2 inconnues a, b : les racines de x2−x−2, qui sont −1 et 2.

Alors

{
(−1)n = −a+ b

2n = 2.a+ b
et Reste =

2n − (−1)n

3
.x +

2n + 2(−1)n

3
.
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� Idée : substituer J à x et I à 1 ⇒ Jn = O + a.J + b.I =
1

3
[(2n − (−1)n)J + (2n + 2(−1)n)I].

– Le peut-on ? Un exemple-test : dans x2=(x-1)(x+1)+1, si on met une matrice M , a-t-on :

(M − I)(M + I) + I = ... M2 ? ... OUI ! Et vérifions Jn, n = 1, n = 0, n = −1 ...

– Remarques : 1) L’expression de Jn doit être valable ici, même si n ∈ Z ...

2) Si M non inversible, il faut être prudent avec M0.

(d) La dernière question est assez facile ...

25.3 En dim. 2, f end. : Im(f) = Ker(f) = V ect((1, 2))

– Solution. L’énoncé dit −→u (1, 2) : donc on a une base. Donner f par sa matrice dans cette base.

– Vu que −→u base de Im(f) forcément : f(−→ı ) = a.−→u , f(−→ ) = b.−→u . A ce stade A =

(
a b
2a 2b

)
.

– Maintenant A.
(

1
2

)
=

(
0
0

)
donne a = −2b. Donc A = b.

(
−2 1
−4 2

)
, b 6= 0, infinité de solutions.

25.4 Trois questions concernant la trace [corrigé]

1. Prouver que pour un projecteur, en dimension finie, Tr(p) = rg(p).

2. Montrer qu’on ne peut pas trouver deux matrices A,B telles que AB −BA = In.

3. Soit An,p, Bp,n. Montrer que : AB projecteur de rang p ⇒ BA = Ip.

Solution (a) : Soit p un projecteur en dim. finie [pour parler de Trace] et une base adaptée de

E = Ker(p− Id)⊕Ker(p), savoir (−→u 1, ...
−→u r) base de Ker(p− Id) qui est aussi Im(p) [donc r :

nombre de vecteurs = ici rg(p)] réunie à (−→v r+1, ...
−→v n) base de Ker(p) : A =

(
Ir Or,n−r

On−r,r On−r,n−r

)
.

Tr(A) = r et on sait que la trace ne dépend pas de la base : r = Tr(A) = Tr(p) = rg(p).

(b) : Tr(AB −BA) = Tr(AB)− Tr(BA) = 0 par Théorème ; 6= Tr(In) = n. Fini.

Remarque : Mais en dim. infinie, fog − gof = Id est possible : g(P ) =x.P, f(P ) = P ′ dans R[x] !

(c) Avec rg(AB) 6 inf(rg(A), rg(B)), forcément rg(B) = p. Puis BABAB = BAB donne (B surj.)

BABA = BA : BA projection. Alors : rg(BA) = Tr(BA) = Tr(AB) = p et donc BA = Ip.

25.5 Si A ∈Mn de rang 1 : ∃k, A2 = kA et k = Tr(A)

– Solution. Ici, il est bon d’avoir en tête des matrices de rang 1, c’est-à-dire le sous e.v. engendré par les

Vecteurs Colonnes est de dimension 1 :

(
2 1
4 2

)
,

(
0 1
0 0

)
,




2 1 −1
4 2 −2
6 3 −3


,

(
Que
des 1

)
...

– Même en dim. quelconque : f ∈ L(E), de rang 1 ⇒ fof = k.f pour un certain k fixe !

Car si −→e 1 base de Im(f), f(−→x ) = kx.
−→e 1, fof(−→x ) = kx.ke1 .

−→e 1 = ke1.f(−→x ).

– Ici dim(Imf) = 1 de base −→e 1, donc dim(Ker(f)) = n− 1 par le Théorème du rang. 2 cas :

soit Ker(f) ∩ Im(f) = {−→0 }, alors supplémentaires ; soit Im(f) ⊂ Ker(f), fof = O, k = 0 !

1. Si supplémentaires, soit −→e 2,...,
−→e n une base de Ker(f) : −→e 1,

−→e 2...
−→e n base de E et la matrice est

A′ =




α 0 0 ... 0
0 0 0 ... 0
...
0 0 ...


 ; cas fini : (A′)2 = α.A′, α = k = Tr(A) 6= 0. (p =

1

k
f proj. de rang 1.)

2. Quand Im(f) ⊂ Ker(f), −→e 1,
−→e 2,...

−→e n−1 base de Ker(f) ⊃ Im(f) complétée par un vecteur

−→v pour avoir une base de E. A′ =




0 ... 0 β
puis que des 0
...
0 de partout 0


. Ici aussi : k = Tr(A) (= 0).
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25.6 Dans M2,2, deux sous e.v. supplémentaires [corrigé]

Montrer que les sous e.v. des matrices symétriques et antisymétriques sont supplémentaires. Généraliser.

Solution. Notons S et A les ensembles des matrices symétriques et antisymétriques.

� DéjàM2,2 = V ect(

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
) e.v. (connu) sur R de dimension 2.2=4.

� S = {
(
a b
b c

)
, a, b, c ∈ R} = V ect(

(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
) est un sous e.v. de dimension 3

car les 3 matrices indiquées sont libres. (Rappelons que M ∈ S ⇔ tM = M).

� Ensemble A (non vu pour S) : M =
(

a b
c d

)
∈ A ⇔ tM = −M ⇔

(
a c
b d

)
= −

(
a b
c d

)
⇔

a = 0, d = 0, c = −b donc A = V ect(
(

0 1
−1 0

)
) ainsi A est un sous e.v. de dimension 1.

� Les deux sous e.v. S et A sont en somme directe car si on a tM = M et tM = −M alors M = O.

Donc S ∩ A = {O} et dim(S ⊕A) = 3 + 1 = 4. D’où S ⊕A =M2,2 (par égalité des dimensions).

Autre solution et généralisation pour ’sous e.v. supplémentaires’ : la décomposition d’une

matrice en somme d’une matrice symétrique et antisymétrique ? Déjà,M3,3 est de dimension 9 et

f : M 7→ tM est un endomorphisme (clair) de M3,3 vérifiant fof = Id. Par Théorème, f est la

symétrie vectorielle / Ker(f − Id) // Ker(f + Id) et ces 2 sous e.v. sont de plus supplémentaires !

L’un est Ker(f − Id) = S (on exprime exactement que tM = M) l’autre : Ker(f + Id) = A. Dimen-

sions : les matrices sym. sont de la forme




a b c
b d e
c e f


 sous e. v. de dimension 3+2+1 = 6. A de dimension

2+1=3. (6+3=9, correct) et : M = S+A, tM = S−A : S =
1

2
(M +tM), A =

1

2
(M −tM) [// ch, sh].

(Dans le cas général, idem : Sn ⊕An =Mn,n avec dimensions
n(n+ 1)

2
et

n(n− 1)

2
de somme n2.)

25.7 Dérivées intermédiaires bornées si les extrêmes le sont

Soit f 2 fois dérivable sur R : f et f” bornées, M0 = sup | f |, M2 = sup | f” |. Si h > 0, on rappelle

l’égalité (T-L) : ∃c1 ∈ [x, x+ h] avec f(x+ h) = f(x) + h.f ′(x)+h2

2
f”(c1) notée (1)

Et : ∃c2 ∈ [x, x− h] avec f(x− h) = f(x)− h.f ′(x)+ h2

2
f”(c2) notée (2)

1. Avec (1) − (2) et l’inégalité triangulaire, montrer que 2h. | f ′(x) |6 2M0 + h2.M2

2. Minimum de ϕ(h) =
2M0 + h2M2

2h
, h > 0 ? En déduire | f ′ | bornée : sup | f ′ |= M1 6

√
2M0M2.

3. Cas n > 2. Soit f de classe Cn R→ R. Si f et f (n) sont bornées sur R, prouvons que f (k) aussi.

On peut utiliser : | a | − | b | 6 | a− b | 6 | a | + | b | et | a+ b | 6 | a | + | b |.

Sol. Traitons le cas n = 4. On pose




F1(x)
F2(x)
F3(x)


 =




h1 h2
1/2! h3

1/3!

h2 h2
2/2! h3

2/3!

h3 h2
3/2! h3

3/3!


 .




f ′(x)
f”(x)

f (3)(x)


.

(a) Si h1, h2, h3 sont non nuls distints, montrer que H3,3 est inversible avec det(H).

(b) Et que l’égalité de (T-L) pour f de classe C4 sur [x, x+ hk] donne :

∃ck ∈ [x, x+ hk] : f(x+ hk)− f(x)− hkf
′(x)− h2

kf”(x)/2!− h3
kf

(3)(x)/3! =
h4

k

4!
f (4)(ck).

Déduire : | Fk(x) | − | f(x+ hk)− f(x) | 6 | f(x+ hk)− f(x)− Fk(x) | 6 h4
k

4!
.M4.

Puis que : | Fk(x) | 6 | f(x+ hk)− f(x) | +
h4

k

4!
.M4 6 2.M0+

h4
k

4!
.M4.

(c) Conclure sans préciser un majorant. [(*) Mk 6 2k.(n−k)/2.M
1−k/n
0 .Mk/n

n et cf. 34.12.]
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25.8 Un problème sur la dérivation discrète (cf. 24.3)

Soit : P (X)
T7−→ P (X + 1) = T (P )(X) et ∆ = T − Id : P (X) 7→ P (X + 1)− P (X). Note.10

1. Ici E = R2[X]. Si P = a+ bX + cX2, calculer P (X + 1) = α+ βX + γX2 et montrer : T ∈ L(E).

Matrice A ? Montrer que T est inversible et T−1 : P (X) 7→ P (X − 1). En déduire tA, (tA)−1.

2. Ici E = R[X]. T endomorphisme de E est supposé acquis. On a T = Id+ ∆ ou ∆ = T − Id.

(a) Justifier que T p : P (X) 7→ P (X + p), p ∈ N et P (X + p) =
p∑

k=0

(
p
k

)
∆k(P ). Cas p = 2 ?

(b) Et aussi que : ∆p(P )(X) =
p∑

k=0

(
p
k

)
.(−1)p−k.P (X + k). Cas ∆2(P )(X) et ∆3(P )(X) ?

(c) Avec ∆n(Xn) = n!, puis k < n ⇒ ∆n(Xk) = O, déduire : n! =
n∑

j=0

(
n
j

)
.(−1)n−j(x + j)n,

n! =
n∑

j=0

(
n
j

)
.(−1)n−jjn (∗) et 0 =

n∑

j=0

(
n
j

)
.(−1)n−j(x+ j)k, 0 =

n∑

j=0

(
n
j

)
.(−1)n−jjk (∗∗).

(d) Soit f C∞(R) ; n fixé. Avec f(a+ j.h) =
n∑

k=0

f (k)(a)

k!
jkhk + o(hn) et (∗, ∗∗), déduire que :

n∑

j=0

(
n
j

)
(−1)n−j .f(a+ j.h) = hn.f (n)(a)+ o(hn) et :

1

hn

n∑

j=0

(
n
j

)
(−1)n−j .f(a+ j.h)−→

h→0
f (n)(a).

3. Si n ∈ N, soit Nn(X) = X(X − 1)...(X − n+ 1), de degré n, (N0 = 1) : Polynômes de Newton.

(a) Vérifier que, si Hn(X) =
1

n!
.

n−1∏

k=0

(X − k) : ∆H0 = O, ∆(Hn+1) = Hn [cf.

(
xn+1

(n+ 1)!

)′

=
xn

n!
]

(b) On suppose : degré(P ) 6 n, n > 0. On considère a fixé. On pose Q(X) = P (a+X).

Montrer que ∃αk : P (a+X) = Q(X) =
n∑

k=0

αk.Hk(X) (car : (Hk)06k6n libre dans Rn[X])

(c) Justifier que ∆i(Q)(0) = αi. Et que P (a+X) =

n∑

k=0

∆k(P )(a)

k!
.Nk(X) =

n∑

k=0

∆k(P )(a)Hk(X).

(d) Dans la formule 2. (a), si on remplace X par a, qu’obtient-on ? Commentaire ?

(e) On rappelle : Hk(X) =
Nk(X)

k!
; P (X) =

n∑

k=0

∆k(P )(0).Hk(X) ; ∆p(P )(0) = (−1)p.

p∑

k=0

(
p
k

)
(−1)k.P (k).

Montrer que : (i)⇒ (ii)⇒ (iii)⇒ (i)⇒ (iv)⇒ (i), avec

i. P prend des valeurs entières quand la variable est dans Z

ii. P prend des valeurs entières quand la variable est dans {0, 1, ..., p}
iii. Les coordonnées de P dans la base Hk sont des entiers

iv. P prend des valeurs entières sur p+ 1 entiers consécutifs.

4. Formule d’inversion de Pascal et utilisations : on reprend la question 1), mais dans E = Rn[X].

Préciser An+1 avec les images de la base : (1,X, ...,Xn) et son inverse A−1
n+1. Note11

10On note T comme translation mais translation sur l’indéterminée. T est linéaire !
11Lecture. Voici, en compléments difficiles, deux utilisations classiques de A−1 :

(a) Si Card(X) = p > 1, Card(Y ) = n, on sait qu’il y a np applications de X dans Y .
Si Sp,k désigne le nombre de surjections de X dans un ensemble de Cardinal k, on déduit :

np =
n∑

k=1

(
n
k

)
.Sp,k. Et donc par inversion de la matrice de Pascal : Sp,n =

n∑

k=1

(−1)n−k.

(
n
k

)
.kp.

(b) Si Card(X) = n, on appelle dn le nombre de dérangements de X, à savoir de permutation sans aucun élément invariant.
Par convention, d0 = 1 ; et comme exemple, d3 = 2 (Sur les 6 permutations, 2 seulement sont des dérangements).

On obtient, par comptage : n! =
n∑

k=0

(
n
k

)
.dk. Donc par inversion, on arrive à :

dn

n!
=

n∑

k=0

(−1)k

k!
−→

n→+∞

1

e
.
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25.9 E.v. et Anneau (algèbre) de matrices [corrigé]

Soit A l’ensemble des matrices du type

(
a+ b a− b
a− b a+ b

)
, a, b ∈ R ; U =

(
1 1
1 1

)
, V =

(
1 −1
−1 1

)
.

Montrer que A est un sous e.v. de M2(R). Calculer U2, V 2, UV, V U ; structure de (A,+, .) ?

� Sol. Ecrire naturellement :

(
a+ b a− b
a− b a+ b

)
= a.

(
1 1
1 1

)
+ b.

(
1 −1
−1 1

)
: reconnaitre U et V !

Donc A = {a.U + b.V } = V ect(U, V ) : sous e.v. et ... dimRA=2.

� Ensuite pour (A,+, .) : comprendre que la 2ème loi est ici la multiplication des matrices de A (et
non la loi externe connue, vu que A e.v.). Calculs : U2 = 2U, V 2 = 2V, UV = O, V U = O ;
donc (aU + bV )(a′U + b′V ) = aa′U2 + bb′V 2 +O +O = 2(aa′U + bb′V ) : loi interne dans A.

Puis produit commutatif vu le calcul, ass. (toujours), neutre a+ b = 1, a− b = 0 possible : donc I2
dans A ; et distributivité de �/+ : toujours vraie. Ainsi (A,+, �) : anneau commutatif ; non intègre
car U 6= O, V 6= O, mais U.V = O. [(A,+, �, .) : algèbre commutative, non intègre, de dim. 2.]

25.10 Question au sujet des matrices à trace nulle ( 6= 48.4)

1. (*) Montrer que si ∀−→x , f(−→x ) = k−→x .
−→x alors ∃k : f = k.Id.

2. Déduire, si Tr(A) = 0, que A semblable à A′ de diagonale nulle (avec q.1 et récurrence).

3. Si D = diag(d1, ..., dn), dk distincts et f : M 7→MD −DM , montrer que f est un endomorphisme
deMn(R) avec Ker(f) = {Matrices diagonales} et Im(f) = {Matrices à diagonale nulle}.
Conclure : � Tr(A) = 0⇔ ∃R,S : A = RS − SR (déjà pour A′ puis changement de base).

� Si ψ est une forme linéaire avec ψ(AB) = ψ(BA), alors ∃λ : ψ = λ.Tr (dim Im(ψ) 6 1).

25.11 Matrice symétrique, conique x2 + 2kxy + y2 + 2x+ 2y = 0

1. Une courbe de degré 2 est une conique, parfois dégénérée. La forme quadratique a pour matrice

M =

(
1 k
k 1

)
symétrique : diagonalisable sur R avec changement de base o.n. si on veut : P−1 =t P .

2. Avec C0 ∩C1 : on trouve O(0, 0) A(−2, 0), B(0,−2) ; puis toutes les coniques contiennent O,A,B.

3. Avec M = P.

(
λ 0
0 µ

)
.P−1, le type de la conique est : si λ.µ = det(M) = 1− k2 > 0, type ellipse ; si

λ.µ = det(M) = 1− k2 < 0, type hyperbole ; si λ.µ = det(M) = 1− k2 = 0, type parabole.
Le cas c) :

k = 1 : x2 + 2.xy + y2 + 2x+ 2y = 0. Or X = P.X ′ ou X ′ = P−1.X. Posons

(
X
Y

)
=

1√
2

(
1 1
−1 1

)(
x
y

)
= P−1

(
x
y

)
. P−1

: rotation d’angle
−π
4

; P d’angle
π

4
; donc (−→ı ,−→I ) =

π

4
.

L’équation est : X2 +
√

2X = 0, 2 droites parallèles X = 0, X = −
√

2 : (A,B) normalement.

k = −1 : x2 − 2.xy + y2 + 2x+ 2y = 0 ou (x− y)2 + 2(x+ y) = 0. Même changement de

base (pas d’origine !) Y 2 +
√

2.X = 0 : vraie parabole de sommet O (en vert, contient A, B).

Dessin :

x

y
2 4

-2

0

4

-4

2

-2-4 0

Lieu des centres laissé ...
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26 Déterminants 2x2 ou 3x3

26.1 Exercices de cours sur les déterminants dans R2 ou R3

1. Rappeler la valeur de

(
a b
c d

)−1

quand elle existe.

2. Montrer les formules "de Cramer" pour un système linéaire 3x3 inversible.

3. Une réciproque non vraie (assez facile) :

(a) On sait que A semblable à A′ (id est A′ = P−1AP ) ⇒ Tr(A′) = Tr(A), det(A′) = det(A)

et rg(A′) = rg(A). [Et même : rg(Q−1AP ) = rg(A), pour P,Q inversibles].

(b) Ces 3 égalités ensemble n’entrainent pas la réciproque. A = I2, A
′ =

(
1 1
0 1

)
non semblables.

1ère façon : l’endomorphisme Id a pour matrice I2 dans toute base ; jamais de matrice A′.

2ème façon : P.I2.P
−1 = I2.P.P

−1 = I2 6= A′ car I2 commute avec toute matrice.

4. Avec le produit mixte et un endomorphisme : Soit f ∈ L(R3). Justifier que :

∃λ : [f(x), y, z] + [x, f(y), z] + [x, y, f(z)] = λ.detB(x, y, z) et λ = trace(f).

5. Calculer le déterminant 2x2 "de Cauchy" :

∣∣∣∣
1

ai + bj

∣∣∣∣ , (*) puis idem 3x3, (**) puis nxn.

6. (a) Rappeler la valeur (et la définition !) du déterminant de Van Der Monde.

(b) On prend le déterminant n, n [commencer par n = 3, n = 4, n = 5] Dn = det(Vn) où

Vn = (aj,k) = ω(j−1).(k−1), ω = ei.2.π/n. Calculer V 2 puis V 4. En déduire | Dn |= nn/2.

(c) Avec un dét. de Van Der Monde, déduire que Arg(Dn) =
∑

16j<k6n

Arg
ωk − ωj

ω
.

(d) (*) Avec l’égalité (à voir) ωk − ωj = ei.π/n.(k+j).2.i.sin(
π

n
(k − j)), justifier que :

Arg(Dn) = −2π

n
.
n(n− 1)

2
+
π

2
.
n(n− 1)

2
+
π

n
.
∑

k+j = −π.(n−1)+
π

4
.n(n−1)+

3.π

n
.
∑(

k
2

)

ou, avec
∑(

k
2

)
=

(
n+ 1

3

)
, que Arg(Dn) =

π

4
.(n−1).(3n−2). Et Dn = nn/2.ei.

π
4
.(n−1).(3n−2).

26.2 Déterminants et géométrie, (*) "problème de Napoléon"

Soit un triangle direct A,B,C, d’affixes a, b, c ∈ C. Construire pour z ∈ C∗, z 6= 1, P,Q,R d’affixe

p, q, r : b− p = z(c− p), c− q = z.(a− q), a− r = z(b− r). [Des triangles semblables BPC, etc.]

1. Par ajout des 3 relations, vérifier que (1−z)(a+b+c) = (1−z)(p+q+r). Sachant que l’isobarycentre

de A,B,C est tel que 3.
−−→
OG =

−→
OA +

−−→
OB +

−−→
OC ; et donc d’affixe (a+ b+ c)/3, que conclure ?

2. (a) Soit ici z = i. Justifier que BPC est isocèle rectangle. Vérifier que : p− a = i(r − q).
(b) En déduire que (AP ) est une hauteur de PQR ; et donc (AP ), (BQ), (CR) concourantes.

3. On suppose maintenant que P,Q,R et z sont donnés ; et A,B,C inconnus. D’où le système



0.a+ b − zc = p(1− z)
−za+ 0.b+ c = q(1− z)
a− zb+ 0.c = r(1 − z).

Si D =

∣∣∣∣∣∣

0 1 −z
−z 0 1
1 −z 0

∣∣∣∣∣∣
, on sait que : D 6= 0⇔

{
a, b, c existent

et sont uniques.

(a) Vérifier que D = 0 se produit 2 fois seulement. (On rappelle que z 6= 1.)

(b) Soit ici z = j = e2i.π/3. Préciser le point P (et Q et R de même). Dans le système 3),

que dire de L1 + jL2 + j2L3 ? Conclure que P,Q,R est équilatéral direct. Cas z = j2 ?
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26.3 (**) Eq. barycentriques, déterminants, matrices (lecture)

1. Si (A,
−−→
AB,

−→
AC). M : cart.

(
u
v

)
⇒ bar.

(
A B C

1 − u − v u v

)
. Bar.

(
A B C
x y z

)
⇒ cart. (

y

x + y + z
,

z

x + y + z
).

� Interprétations de x+ y + z = 0 (x, y, z) 6= (0, 0, 0). 1) : un point à l’infini ; 2) : un vecteur
−→v =x.

−−→
MA+ y.

−−→
MB + z.

−−→
MC = y.

−−→
AB + z.

−→
AC indépendant de M ; (pas de cte multiplicative ici).

� Droites. D∞ : X+Y +Z = 0. Sinon : αX+βY +γZ = 0, en affine α(1−U −V )+βU +γV = 0,

(β−α)U+(γ−α)V +α = 0 ; (β−α, γ−α) 6= (0, 0), vect. dir.
(

α − γ
β − α

)
−−→
AB,

−−→
AC

en bar. :




γ − β
α − γ
β − α


 =




1
1
1


∧




α
β
γ


 .

� Eq. baryc. de M,M ′ :
∣∣∣∣∣∣

x x
′

X

y y
′

Y

z z
′

Z

∣∣∣∣∣∣
= 0. 3 droites concourantes ou parallèles ⇔

∣∣∣
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣∣∣ = 0.

Donc : αX+βY +cZ = 0 par. à αX+βY +γZ+λ(X+Y +Z) = 0 car (αX+βY +γZ = 0, α′X+β′Y
+ γ′Z = 0) doit avoir même sol. que (αX +βY + γZ = 0, α′X+β′Y + γ′Z = 0,X +Y +Z = 0).12

2. Homologies, élations du plan projectif P(R3) = P2(R) : droites vect. de E = R3 ; plan affine z = 1.

Les autom. conservant strict. un plan de R3 : de matr. sembl. à



1 0 0
0 1 0
0 0 λ


 ,λ 6= 0, ou




1 0 0
0 1 1
0 0 1


 (aisé) :

dilatations et transvections [qui engendrent GL(E) car les transv. engendrent SL(E)13 d’où] Homologies et
Elations de P(E) engendrent le gr. projectif linéaire de E : groupe des transf. projectives de P(E).

(a) cas 1) ⇒ homologie du plan projectif : une droite de points fixes D, un sommet fixe S 6∈ D. Si

A 6∈ D 7→ A′, alors : M 7→M ′ avec S,M,M ′ alignés et (A,M)∩(A′,M ′) ∈ D. (Si M ∈ (S,A),
faire 2 fois ceci). SiM0 = (SM)∩D : [S,M0,M,M ′] = k ; k = −1 : homologie harm. involutive.
L’homologie conserve alignement, birapports, contacts ; donc DH, polarité : Cercle 7→ Conique.

(b) cas 2) Ici ∃ S ∈ D tel que les droites passant par S soient globalement invariantes. [V ect(
−→
J ].

Si A 6∈ D 7→ A′, alors : M 7→M ′ avec M,M ′, S alignés et (A,M) ∩ (A′,M ′) ∈ D. Elation.

(c) En affine ? cas 1) si D =∞, [S,∞, A,A′] = SA/SA′ = k, hom. affine ; k = −1 : sym.-point ;
si S = ∞, dilatation de rapport k, d’axe D ; k = −1 : symétrie oblique. cas 2) et D = ∞,
translation ; si S =∞ seul, avec D = Ox, x′ = x+ a.y, y′ = y : transvection affine.

3. (a) Par homol. harm. (O 6∈ D), cercle 7→ conique : si δ = homothO,1/2(D) tangente au cercle en T ,

parab.(axe//OT , D invariant) ; si δ sécante, hyp. ; sinon, ellipse. Si O aussi
= centre, 2d : dist(O,D),

U,X, V, proj⊥O,M,M0, (⊥ D)M ′ , OM0 = 2.OK0, D.H.[(a + b)(z + z′) = 2(ab + zz′), a = 0] :

OM0(OM +OM ′) = 2OM.OM ′, OM.K0M
′ = OK0.OM

′ ; OM = R :
M ′O

dist(M ′, δ)
=

R

d

(
foy. O
dir. δ

)
.

(b) Si homolologie de centre A, A ∈ C ; A 6∈ D, M,N ∈ C, AM ⊥ AN : AM ′ ⊥ AN ′, A, M ′, N ′ ∈ Con,

O′ = Fr
(

point.de
Frégier

)∈M ′N ′, AFr ⊥ ConA

(
tang.en.A
conservée

)
(Michel Guillerault). [Si x2/A+ y2/B = 1,14

Fr décrit une conique homothétique K =
B − A

B + A
; mais si y2 = 2px : parabole translatée (aisé).]

Th.(Frégier). O 7→ Fr, pol(O/C) = D∞ 7→ pol(Fr/Con) = δ, homothA,1/2(D). ∆ = DA invar.,

∆∩C = b, ∆∩Con = B ⇔ −→AB = −−→Ab, B ∈ C′symA(C)∩Con ⇒
Bezout

contact x3 en A
(

c.C′ = c.courb.A
AFr ∩ Med[AB]

)
.

12(*) Ceci car, en géom. du triangle, A, B, C jouent le même rôle en coord. barycentriques ; calculs, dessins par logiciels.

Coniques. λx2+µy2+νz2+2λ′yz+... = 0. Tang. en M0 ∈ C [dl1, f homog., f. d’Euler ou polarité] (λx0+ν′y0+µ′z0)x+... = 0.

Si a,b,c affixes de A..., les coord. bar. des points cycliques sont I(c-b,a-c,b-a), I, [isogonaux : α.α′ = a2, cf. 5.30] car :

I ∈ D∞ et (a-c)
−→
AB+(b-a)

−→
AC= X + iY = 0, isotrope. Conique circonscrite à ABC λyz +µzx+νxy = 0. Ellipsecirc : avec

∩D∞, ∆ = (λ + µ− ν)2 − 4λµ, donc < 0 ssi λ = α2, µ = β2, ν = γ2 et α, β, γ côtés triangle non plat ; coord. bar. du centre
[=pôle -dédoubl. des termes- de D∞] : (λ(µ+ν−λ), ..., ...). 2 ex. cf. CABC . Polaire de L(a2, b2, c2)/CABC : axe de Lemoine
x

a2
+ ... = 0 ; d’isog. yz + zx + xy = 0 : Ellipse, tang. en A //BC : Steinercirc.. Con. non dég. inscrite : [z = 0, racine double

... matr. inv. de Con.circ. !] λ2x2 +µ2y2 +ν2z2−2(µν.yz +νλ.zx+λµ.xy) = 0. Ellinsc : ∩D∞, ∆ < 0 ssi λµν(λ+µ+ν) > 0
[vérifié, Maple] centre (µ + ν, ...). Steinerinsc : λ = µ = ν [contient A′(0, 1, 1)...], Cercleinsc : λ = b + c− a [centre :(a, b, c)].

13 Car Dilatation : −→x 7→ −→x +ϕ(−→x )−→u où ϕ est une forme lin. avec α = ϕ(−→u ) 6= 0 et 1+α 6= 0 ; transvection : −→u ∈ Ker(ϕ),
ϕ 6= O. Soit A avec det(A) = 1 : avec Tij(λ) = In + λEij , i 6= j, Tij(1)Tji(−1)Tij(1) remplace Li par Lj et Lj par −Li.
Supposons donc ai1 6= 0, i > 2, avec ce qui précède ; puis se ramèner à a11 = 1. Ensuite, avec des matrices de transvections,

on a Mp...M1.A.N1...Nq =
(

1 0
0 A1

)
, etc. D’où GLn(K), K = R ou C, est engendré par les matr. diag. inversibles : voici le cas

d’une transvection (clair si dilatation). Si D diagonale avec coeff. diagonaux tous distincts et non nuls, Tij = D−1.(D.Tij)
la seconde matrice étant elle aussi diagonalisable (inversible) car triangulaire avec valeurs propres toutes distinctes.

14 Si hyperbole équilatère, Fr est rejeté à l’infini dans la direction de la normale. Calcul : Norm. ∩(P (x,−y)Q(−x, y)) ;

Equations : Bx(Y − y) = Ay(X − x), x(Y + y) + y(X − x) = 0, d’où : (A + B)X = (A−B)x, (A + B)Y = −(A−B)y.

58



27 Espaces vectoriels euclidiens

27.1 Une famille de vecteurs orthogonaux non nuls est toujours libre

Corrigé : Soit −→v 1, ...
−→v p, ... la famille. Même si infinie, on prend une combinaison linéaire nulle ;

donc une sous famille finie : a1.
−→v 1 + ...+ ap.

−→v p =
−→
0 . Le produit scalaire par −→v 1 6=

−→
0 donne

a1.‖−→v 1‖2 + 0 + ...+ 0 =
−→
0 .−→v 1 ou a1.‖−→v 1‖2 = 0 ; donc a1 = 0. Idem les autres. Fini.

27.2 Dans E = R3 e.v.e. usuel, décrire l’endomorphisme de matrice B

B =
1

7



−2 6 −3
6 3 2
−3 2 6


.

– Corrigé : Les vecteurs colonnes étant ortho-normés, on a B ∈ O3. Puis det(B) = −1.

– Solution 1 : −B ∈ O+
3 , en fait demi-tour axial autour de

−→
K de matrice, en base judicieuse diag(1,−1,−1).

D’où B semblable à diag(−1, 1, 1) : reconnaitre la symétrie orthogonale /
−→
K⊥ (les invariants).

– Solution 2 : On a tB = B−1 car B orthogonale et tB = B par observation. D’où B = B−1.

Mais alors, par Théorème, B est la matrice d’une symétrie qui est aussi une isométrie : celà entraine

symétrie orthogonale ... (à voir). On cherche les vecteurs invariants (sans erreur) : un plan vectoriel.

27.3 Sur M2(R), un produit scalaire classique et norme de Frobénius

Il s’agit de < A,B >= Tr(tA.B). On obtient : Tr(
(

a c
b d

)
.

(
a′ b′

c′ d′

)
) = aa′ + cc′ + bb′ + dd′.

M2(R) étant isomorphe à R4 en tant qu’espace vectoriel, on reconnait le produit scalaire canonique !

Et donc les 4 matrices
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
forment une base orthonormée pour ce p.s.

– La norme d’une matrice, déduite de ce p.s. vaut donc : N(A) =
√
Tr(tA.A).

– On a, par conséquent, l’inégalité de Cauchy-Schwarz : | Tr(tA.B) |2 6 N2(A).N2(B).

Par exemple | Tr(A) | 6 N(I)N(A) =
√

2.N(A) =
√

2.T r(tA.A) ; et égalité ⇔ A = α.I.

– Vérifier, pour finir, que S2(R) et A2(R) sont des supplémentaires orthogonaux .

27.4 Inégalités : produit scalaire et matrices orthogonales (...)

1. Montrer l’inégalité : (a1 + ...+ an)2 6 n.(a2
1 + ...+ a2

n).

Soit −→u =




a1

a1

...
an


 et −→v =




1
1
...
1


 avec le p.s. usuel de Rn. L’inégalité de Cauchy-Shwartz termine.

2. Pour une matrice orthogonale (
∑

aij)
2 6 n2. Soit −→v =




a11 + a12 + ... + a1n

a21 + a22 + ... + a2n

...
an1 + an2 + ... + ann


 ; −→w =




1
1
...
1


 on a

(−→v .−→w ) =
∑

i,j

aij ! Il ne reste plus qu’à dire : ‖−→v ‖2 = ‖−→v 1‖2 +‖−→v 2‖2 + ...+‖−→v n‖2 car ces vecteurs

sont orthogonaux ! Et ceci vaut 1+1+ ...+1 car aussi unitaires ! Et inégalité de Cauchy-Schwartz.

3. Si A, B,
1

2
(A+B) ∈ O, vérifier que : t ∈ R ⇒ t.A+ (1− t).B ∈ O. Déduire que A = B.

(Pour "déduire" : sinon, un vecteur de t.(A−B) peut devenir "grand").
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27.5 Symétrie par rapport à un hyperplan en dimension finie (...)

Soit f ∈ L(E) : −→u 7→ −→u + α.(−→u �−→a ).−→a , −→a unitaire de E, espace vectoriel euclidien.

1. Montrer qu’on a un endomorphisme symétrique. Puis trouver ses "éléments propres".

2. Trouver α pour que f soit une isométrie (‖f(−→u )‖ = ‖−→u ‖) à décrire. Enfin vérifier :

3. Dans R3, si s(−→u ) = sym(−→u /Plan −→n ⊥) : −→u − s(−→u ) = 2.p(−→u ) où p(−→u ) =
(−→u �−→n )

‖−→n ‖2 .−→n .

27.6 Le Th. du parallélogramme caractérise une norme provenant d’un p.s.

1. Soit f(x, y) = ‖x+ y‖2 − ‖x‖2 − ‖y‖2. Vérifier que f(2x, y) = 2.f(x, y) (avec ‖x+ y + x‖2 ...)

2. Puis que g = ‖x+y+z‖2 = ‖x+y‖2+‖y+z‖2+‖z+x‖2−‖x‖2−‖t‖2−‖z‖2 (avec g = ‖x+
y + z

2
+

y + z

2
‖2 = −‖x‖2 +

1

2
‖2x+ y+ z‖2 +

1

2
‖y+ z‖2 = −‖x‖2 +

1

2
‖y+ z‖2 +

1

2
‖(x+ y)+ (x+ z)‖2 = ...)

3. (a) Déduire que f est additive / 1er vecteur. Pour montrer que f(λ.x, y) = λ.f(x, y) :

(b) Vérifier que c’est vrai si λ ∈ N ; puis que f(−λ.x, y) = −f(λ.x, y) avec l’additivité.

(c) Puis pour λ =
1

q
avec f(q.

1

q
.x, y) ; puis λ ∈ Q. Enfin λ ∈ R (avec la continuïté, inég. triang.)

4. Conclure que f est un p.s. (Posant f(x, y) = 2.(x � y) : ‖x‖2 = x � x. (*) (Th. de Von Newman.)

27.7 Applications symétriques ou antisymétriques en e.v.e. (...)

On dit que f est sym. (antisymétrique) si f(−→u ).−→v = u.f(−→v ) (respect. f(−→u ).−→v = −−→u .f(−→v )).

1. Montrer qu’une telle application est linéaire. Matrice en base orthonormée ?

2. Dans R3, on dit qu’un champ de vecteurs est équiprojectif si
−−→
MN.

−→
V (M) =

−−→
MN.

−→
V (N).

En posant f(
−−−→
M0M) =

−→
V (M)−−→V (M0), vérifier que f est antisymétrique ;

puis qu’il existe
−→
Ω tel que :

−→
V (N) =

−→
V (M) +

−→
Ω ∧ −−→MN .

27.8 Sur les applications conservant le produit scalaire (...)

Soit E un e.v. muni d’un produit scalaire. Montrer que f conserve le p.s. ⇒ f linéaire

[Indication : développer ‖f(−→u +−→v )− f(−→u )− f(−→v )‖2 ... ]

27.9 (*) Dans R2[x] avec un p.s. donné par une intégrale (...)

1. Orthogonaliser : 1, x, x2 pour le produit scalaire ϕ(P,Q) =
∫ π

0

P (t).Q(t).sin(t)dt.

(Réponse : 1, x-π/2, x2 − πx+2)

2. Minimum de
∫ π

0

(x2 − ax− b)2.sin(x)dx ? (P3 � P3 = x2 � P3 = δ2 = 40− 4.π2)

Plus usuel inf

∫ 1

0

(t2 − a.t− b)2.dt =
1

180
. Analogue ϕ(X,Y ) =tXAY où A =




2 1 1
1 1 1
1 1 2


 est un

produit scalaire sur R3. Orthogonaliser la base canonique. [Rép. : −→ı ,−−→ı /2 +−→ ,−−→ +
−→
k ]

27.10 (*) Matrices 3,3 circulantes et rotations vectorielles (...)

Montrer que A =



p q r
r p q
q r p


∈ O+

3 ⇔ p, q, r racines de X3 −X2 + a = 0, a ∈ [0,
4

27
].

Préciser alors A. [−→ω = (−→ı +−→ +
−→
k )/
√

3, 2.cos(θ) = 2p − q − r, 2.sin(θ) =
√

3.(r − q).]
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27.11 Suite de Fibonnacci, nombre d’or ; matrices 2x2 et produit scalaire

A Léonard de Pise, dit Fibonnacci, étudia le problème de la reproduction des lapins (1202).

Un couple de lapins, au mois 1, donne naissance au bout de 2 mois, chaque mois, à un autre couple.

Idem pour tout nouveau couple. Donc au mois (n+ 2), il y a : ceux du mois (n+ 1) augmentés des

nouveaux couples, autant qu’au mois (n) ⇒ un+2 = un+1 + un (∗) ; avec u1 = u2 = 1, u0 = 0, u1 = 1.

1. a) Montrer que (∗) permet de calculer un pour n ∈ Z− ; Valeurs pour −5 6 n 6 8 ?

b) Prouver que u−n = (−1)n+1.un note15, en voyant les cas n = 0 et n = 1. Note16

2. a) Désormais n > 0. Montrer très simplement que que : un −→
n→+∞

+∞.

b) Résoudre l’équation r2 − r − 1 = 0 en notant ϕ < ϕ les racines. Préciser ϕ+ ϕ; ϕ.ϕ; ϕ− ϕ.

Connaissant les suites vérifiant une relation de récurrence linéaire d’ordre 2, préciser un.

c) Déduire que un ∼
n→+∞

ϕn

√
5

et que la suite
un+1

un
converge vers le nombre d’or ϕ (≃ 1, 618...).

d) Montrer que v1 = 1 ; vn+1 =
√

1 + vn converge en croissant vers ϕ. (ϕ =

√

1 +

√
1 +

√
1 +
√

...)

e) Soit la suite w1 = 1 ; wn+1 = 1 +
1

wn
. Vérifier que | wn+1 − ϕ |6 k. | wn − ϕ |, avec 0 6 k < 1

à préciser. Conclure et faire le lien avec
un+1

un
. (ϕ =

1

1 + 1
1+ 1

...

) note17

B On veut retrouver la valeur exacte de (un)n>0 par une méthode matricielle, en prouvant la réponse.

On pose : Un =

(
un

un+1

)
; A =

(
0 1
1 1

)
; P =

(
1 1
ϕ ϕ

)
; ∆ =

(
ϕ 0
0 ϕ

)
.

1. a) Vérifier que P est inversible et que P−1AP = ∆ sans calculer P−1.

b) Calculer ensuite : P−1 ; et ∆n ; et en déduire la première ligne de An.

c) Vérifier que Un+1 = A.Un ; que Un = An.U0 et retrouver la valeur de un.

d) Justifier sans calcul que An est symétrique et que : An =

(
un−1 un

un un+1

)
.

e) En déduire : un+2.un − (un+1)
2 = (−1)n+1, pour n > 0, note18 et aussi (∗) note19.

2. Vérifier que A2 −A− I = 0. Déduire ∃ αn, βn : An = αn.I + βn.A ; et que αn+1 = βn = un.

Note20.

C Un produit scalaire dans M2(R). Pour M =

(
a b
c d

)
, N =

(
a′ b′

c′ d′

)
, on considère Tr(tM.N).

1. Vérifier qu’il s’agit du produit scalaire canonique faisant de M2(R) un espace euclidien.

2. Montrer (V ect(I,A))⊥ = {M : Tr(tM.I) = Tr(tM.A) = 0} = V ect(B,C), B =

(
1 0
1 −1

)
=tC.

3. Pourquoi a-t-on An ⊥ V ect(B,C) ? Qu’obtient-on en exprimant que An ⊥ (B + C) ?

15 De plus :
n∑

k=1

uk = un+2 − 1 ;
n∑

i=1

u2i−1 = u2n ;
n∑

i=0

u2i = u2n+1 − 1 ;
n∑

k=1

(−1)k.uk = (−1)n.un−1 − 1.

16 On peut également démontrer qu’on a la relation suivante :

n∑

k=1

u2
k = un.un+1.

17 On peut encore observer l’égalité : wn − ϕ = (−1)n/(ϕn.un) où ϕ est le nombre d’or.

18 Donnant :
n∑

k=1

(−1)k+1

uk.uk+1
−→

n→+∞

1

ϕ
et

n∏

k=2

(1 +
(−1)k

u2
k

) −→
n→+∞

ϕ (avec des simplifications télescopiques).

19 On a aussi un+1.up + un.up−1 = un+p, d’où ... pgcd(un, up) = upgcd(n,p) ; ainsi u2
n+1 + u2

n = u2n+1.

20 Et encore, avec ω = eiπ/5, on obtient :
| ω2 − 1 |
| ω − 1 | = ϕ (cf. pentagone régulier du chapitre C).
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28 Espaces affines/Affines euclidiens

28.1 Composée de 2 symétries affines orthogonales dans E = R3

Si D : (x.sin(α) − y.cos(α) = 0) ∩ (z = h) ; D′ : (x.sin(α) + y.cos(α) = 0) ∩ (z = −h), décrire sD′osD.

Solution (Dessin !) � D est une droite affine comme intersection de 2 plans affines non parallèles.

(Quand donc : 2 plans affines ax+ by + cz = d, (a, b, c) 6= (0, 0, 0) et... sont-ils parallèles ?) D′ idem.

� Oz : la perpendiculaire commune O équidistant de D et D′. L’énoncé donne ce repère judicieux !

� sD est une isométrie affine. Ici sD ∈ Is+3 . L’Application Linéaire associée, notée −→sD, est la symétrie

Vectorielle par rapport à une droite Vectorielle : V ect−→u (cos(α), sin(α), 0) ou demi-tour : dans O+
3 .

(Attention en sens inverse : si −→g Linéaire de O+
3 , est un demi-tour autour de V ect(−→u ), il n’est pas sûr

que g, affine, soit une symétrie / une droite Affine de direction V ect(−→u ) - et donc, droite affine du
type (P,−→u ), P à chercher- car en général, g est un Vissage : des translations se "rajoutent" !)

� Puis
−→
f = −→sD′o−→sD Linéaire dans O+

3 (une rotation Vectorielle axiale) se voit assez bien :

C’est la rotation autour de V ect(
−→
k ) (car

−→
k invariant) d’angle −4.α ... D’où f = sD′osD Affine est

� Un Vissage d’angle −4.α, d’axe Affine (P,
−→
k ), P à chercher, ainsi que le Vecteur de Translation.

Mais, rappel de cours : P ∈ Axe-affine ⇒
−−→
PP ′ colinéaire à

−→
k . D’où la Tentative qui réussit :

Si H = D ∩ (Oz), K = D′ ∩ (Oz), on a H 7→ H 7→ H∗ avec
−−−→
HH∗ = 2.

−−→
HK colinéaire à

−→
k . Donc

H est sur l’Axe-affine cherché, qui est (Oz) et Vecteur de translation 2.
−−→
HK = 4.

−−→
HO = −4.h.

−→
k .

28.2 Dans E = R3 e.a.e., décrire M 7→M ′ : x′ = z − 2, y′ = x, z′ = y

� (Corrigé) On a :



x′

y′

z′


 =




0 0 1
1 0 0
0 1 0





x
y
z


+



−2
0
0


 donc f est affine.

� L’application linéaire associée,
−→
f , de matrice A =




0 0 1
1 0 0
0 1 0


 est dans O3 selon

un Théorème, vu que les vecteurs colonnes forment une base ortho-normée.

� A ce stade, on sait que dét
−→
f = ±1 ; en fait, +1.

Donc
−→
f ∈ O+

3 est une rotation vectorielle axiale par un autre Théorème. On trouve ...

. Axe (vectoriel de
−→
f ) = V ect




1
1
1


 =V ect(−→u ) ; ce vecteur choisi pour orienter l’axe.

. Angle : 2cos(θ) + 1 = Tr(A) par propriété. θ = ±2π

3
. Et comme

−→
f (−→ı ) = −→ , 1ère colonne de A,

θ = +
2π

3
à vue. (et donc A−1 est à la fois : tA et A2).

� Revenons à f : Par un troisième Théorème, ayant f ∈ ℑs+3 , f est un vissage : . Angle : θ = +2π/3 ;

. Axe affine D de f et Vecteur de translation : M ∈ D ⇒
−−−→
MM ′ = δ.−→u ou





x′ − x = δ
y′ − y = δ
z′ − z = δ

D’où (laissé)

δ = −2

3
, vecteur de translation

−2−→u
3

et D : { x− y = −2/3
y − z = −2/3

. Vérification :
−→D { x− y = 0

y − z = 0
!
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28.3 Applications affines. Note sur la projection conique (Th de Désargues)

1. Préciser f affine : M 7→M ′, x′ = 5x+ 2y − 2z + 2; y′ = −4x− y + 2z − 2; z′ = 8x+ 4y − 3z + 4.

2. Expression de la projection (affine !) de E = R3 sur le plan affine x+ y + z = 1 //V ect(1, 0, 1) ?

3. Rem. une proj. non affine :

et Hilbert (*) : Th. de Pappus 29.1 ⇒ Th. de Désargues dans R2 ; dans R3 Th. de D. toujours vrai !

28.4 Dans E = R3, des ensembles de points tels que (...)

1. Quel est l’ensemble des points M tels que :
−−→
MA � (

−−→
MB ∧ −−→MC) = 0 ?

2. Quel est l’ensemble des points M tels que :
−−→
MA ∧ (

−−→
MB ∧−−→MC) =

−→
0 ? [et une note :

A,B,C alignés, ∀M BC.MA2 +CA.MB2 +AB.MC2 +AB.BC.CA = 0 relation de Stewart. 32.3.]

28.5 Au sujet des torseurs. Un exemple classique

1. Soit un système de "pointeurs" (Ak,
−→u k) : de résultante

−→
R =

∑−→u k ; et de moment en M :
−→MM =

∑−−−→
MAk∧−→u k ; on peut prendre des vecteurs "glissants" : remplacer Ak par Bk surD(Ak,

−→u k).

Montrer que
−→MM =

−→MO +
−→
R ∧ −−→OM . (Donc si même

−→MO et même
−→
R , même moment partout).

2. Déduire que
−→
R.
−→MM est invariant : invariant scalaire du torseur (

−→
R,
−→MO).

3. Moment / un axe (OO′) : Si on a un axe (O,O′) vérifier que
−→MO �

−−→
OO′ =

−→M′
O �
−−→
OO′.

(
−→MO �−→w )−→w , −→w unitaire, est dit moment par rapport à l’axe).

4. Exemple. Montrer que les vitesses d’un solide forment un champ des moments d’un torseur :

(a) Avec : A(t)B(t) = cte, vérifier qu’on a un champ "équiprojectif" :
−−→
AB �

−→
dB/dt =

−−→
AB �

−→
dA/dt.

(b) Soit O fixé, f(
−−→
OM) =

−→
V M −

−→
V O ; montrer :

−−→
OM �f(

−−→
OM) = 0, f(

−−→
ON) �

−−→
OM = −−−→ON �f(

−−→
OM).

(c) En utilisant qu’une application antisymétrique est forcément linéaire 27.7 ; de matrice anti-

symétrique en base o.n. ; donc du type −→u 7−→ −→Ω ∧ −→u , déduire que : f(
−−→
OM) =

−→
Ω ∧ −−→OM .

Vérifier alors que : ∀M, N,
−→
V N −

−→
V M =

−→
Ω ∧ −−→MN (ou bien

−→
Ω indépendant de O).

5. Classification

(a) Si en un point, le torseur se réduit à : (
−→
R,
−→
0 ) on dit "glisseur".

Si on a (
−→
0 ,
−→M0), on dit "couple" (moment indépendant de O). Inversement, montrer que

(b) Si
−→M0 �

−→
R = 0 : on a un couple (

−→
R =

−→
0 ) ou, avec "la division vectorielle", un "glisseur".

(c) Dans le cas général, le torseur peut être vu comme somme des deux précédents (ou encore
comme système de 2 vecteurs glissants. Les torseurs peuvent être vus comme e.v. de dim 6).

6. "Axe central" d’un torseur : On cherche {A tel que ‖−→MA‖ soit minimum. }
(a) Montrer que : {M :

−→MM soit colinéaire à
−→
R} est une droite affine. Et que les points de cet

"axe central" sont les solutions cherchées (avec le Théorème de Pythagore). Dessin en voyant

que l’angle entre
−→
R et

−→MA varie ente 0 et π/2 si A s’éloigne de l’angle central.

(b) Remarque : En tout point A de l’axe central, le moment vaut (

−→
R �
−−→MA

R2
).
−→
R , si

−→
R 6= −→0 .
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29 Cercles et coniques (et cf. 30.3,5,6,8)

29.1 Trois questions de barycentre. Note sur le cercle [Pascal]

1. L’isobarycentre de 3 points A,B,C, est l’intersection des médianes G : connu.

2. Celui de la plaque homogène est G aussi ; découpons la plaque en lamelles parallèles à (A,B) :
chaque lamelle a son centre de gravité au milieu ; or ces milieux sont alignés sur la médiane
CC ′ ! D’où Gplaque ∈ (AA′) ∩ (BB′) ∩ (CC ′) : Gplaque = G. Par contre, montrer que

3. L’isobarycentre du fil triangulaire homogène est le centre du cercle inscrit au triangle "médian" !

– Corrigé de 3. Tout point M de ce plan est barycentre de A,B,C avec des coefficients judicieux :

1. 1ère démonstration :
−−→
MA,

−−→
MB,

−−→
MC du plan vectoriel de dim. 2, sont liés. ∃α, β, γ non tous nuls :

α.
−−→
MA + β

−−→
MB + γ

−−→
MC =

−→
0 . Ici α + β + γ 6= 0 sinon α

−−→
MA + β

−−→
MB − (α + β)

−−→
MC =

−→
0 ;

α
−→
CA+ β

−−→
CB =

−→
0 :

−→
CA,
−−→
CB liés, car α = β = γ = 0 exclus. Impossible : A,B,C non alignés.

2. 2ème. ∃λ, µ :
−−→
AM = λ.

−−→
AB + µ.

−→
AC =

(1− λ− µ).
−→
AA+ λ.

−−→
AB + µ.

−→
AC

(1 − λ− µ) + λ+ µ
; bar

(
A B C

1− λ− µ λ µ

)
!

– Voici des coefficients barycentriques en toute généralité. D’abord un rappel :

1. M = bar
(

A B
α β

)
⇒ A,M,B alignés et par ex. α = MB,β = MA ; "la longueur d’en face ..."

2. Propriété M = bar
(

A B C
Aire(MBC) Aire(MCA) Aire(MAB)

)
, Aire(MBC) = Aire triangle.

Car α.
−−→
MA+ β

−−→
MB + γ

−−→
MC =

−→
0 , donne

−−→
MA ∧ (α.

−−→
MA + β

−−→
MB + γ

−−→
MC) =

−−→
MA ∧ −→0 =

−→
0 .

D’où : β.
−−→
MA ∧−−→MB + γ.

−−→
MA ∧ −−→MC =

−→
0 , β.[

−−→
MA ∧ −−→MB �

−→
k ] = γ.[

−−→
MC ∧ −−→MA �

−→
k ]. Or

[
−−→
MA ∧ −−→MB �

−→
k ] représente le volume algébrique du solide de base le parallélogramme construit

sur
−−→
MA,

−−→
MB, de hauteur 1 ; donc l’aire algébrique du parallélogramme

−−→
MA,

−−→
MB : 2xAtriangle

Si α, β, γ > 0, pour simplifier,
β

AireMCA
=

γ

AireMAB
=

α

AireMBC
"l’aire d’en face ..."

– Coefficients barycentriques du centre du cercle inscrit à PQR. I est donc bar. de
(

P Q R
r.QR r.RP r.PQ

)

ou de
(

P Q R
QR RP PQ

)
: I barycentre de chaque sommet affecté du coefficient = longueur d’en face.

– Cas du fil. Par associativitéA′, B′, C ′ affectés des coefficients (A′, BC = 2B′C′) : bar
(

A′ B′ C′

B′C′ C′A′ A′B′

)
.

C’est donc le centre du cercle inscrit au triangle A′B′C ′ : "centre de Spieker" du triangle.

Théorème de Pascal, dit Th."de l’hexagramme mystique" (et Th. de Pappus si la conique
dégénère en 2 droites) 5.18 28.3 :

Le génie de Pascal fut -aussi- de prendre ce résultat comme Théorème de départ et "d’en tirer
plus de 400 corollaires qui renferment l’essentiel des Coniques d’Apollonius", selon le Père Mersenne.

Ayant 6 points ABC,A∗B∗C∗ sur un cercle, on a AB∗ ∩A∗B, AC∗ ∩A∗C, BC∗ ∩B∗C alignés.

– Un cas particulier (avec le cercle) est le cas où on a des parallèles, donc 2 points sont à l’infini

(et on peut (*) se ramener à ce cas facile, d’après Perrin, justifiant Poncelet ...) ! ?

– (*) Une preuve usuelle utilise les birapports : car on peut définir le birapport de 4 points d’un cercle

(et même d’une conique). Ce résultat s’étend par projection centrale (perspective) à toute conique.
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29.2 (*) Triangle inscrit dans une Hyperbole équilatère H [corrigé]

1. Si H d’asymptotes Ox,Oy ; A,A′, B ∈ H, A′ = sym(A/O) ; (A,B) ∩Asymp = {P,Q} vérifier que

K = milieu[A,B] = mil[P,Q] et OK = KP ; puis avec 2
−−→
OK =

−−→
A′B : Ôx,AB = − ̂Ox,A′B (π).

2. Si maintenant A,B,M sont sur H, de : Ôx,AB = −Ôx,A′B (π) et : ̂Ox,AM = − ̂Ox,A′M (π),

([AA′] encore diamètre) déduire que : ̂AB,AM = − ̂A′B,A′M (π) et réciproquement. Si M = C,

3. A′BCH cocycliques [ÂB,AC = − ̂HB,HC = − ̂A′B,A′C (π)]. h(A,
1

2
) : O centre de H ∈ Cercle d’Euler

K,J = mil[AC], α = mil[AH] Th. de Brianchon-Poncelet, H ∈ H. [ ̂AB,AH = ̂CH,CB = − ̂A′B,A′H.]

1. (a) Notes (Géry Huvent). Le cercle A′BCH a même taille que le cercle ABC : c’est son

sym./(B,C). En particulier A∗ = sym(A′/(B,C)) ∈ Cercle ABC ; ÂB,AC = ̂A∗B,A∗C.

(b) Sym(H/O) = H ′ = F se trouve sur H∩ Cercle-ABC. [Car B sur H de diam. [HH ′] donne :
̂HA,HB = − ̂H ′A,H ′B ; mais ̂HA,HB = − ̂CA,CB car côtés ⊥ et Th. de l’arc capable, etc.]

La parabole de foyer F de directrice SteinerF (H ∈ StF ) : est tritangente au triangleABC .

(c) Notant A1, B1, C1 les pieds des hauteurs et ici A2, B2, C2 les milieux des côtés, le Th. de Pappus
pour A,C1, C2 et C,A1, A2 montre que G,H et (C1A2) ∩ (C2A1) sont alignés : la droite de
Pascal de l’hexagone inscrit A1, B1, C1,A2, B2, C2 dans le cercle d’Euler est la droite d’Euler !

(d) Si A,B,C,D ∈ H [il existe une telle hyp. équilatère ; une infinité si quadrangle orthocentrique]
alors O, centre de H, est sur les 4 cercles d’Euler : O = E, centre d’Euler du quadrilatère.

(e) (Poncelet*) proj⊥(D ∈ H) = p, q, r, Y = m[BD] :
−−→
OK,

−→
Or = Y K, Y r =[BD, BA = rB, Ry]AD,AB+

BD,BA = AD,AB+pD, pr. OJ,Oq = AD,AC+pD, pq. OK,OJ+Oq,Or = AC,AB+pq, pr
or OK,OJ = IK, IJ = AC,AB : O; p, q, r cocycliques. Si p, q, r alignés : centreHE ∈ Simson.
Idem O; l,m, n triangle cévien de D ⇒ l,m, n autopolaire/Conique ; On, lm diam. conj. ; (HE)

même inclinaison/asympt. nm,nl = Om,Ol. [Ou (l,m, n) ; (O,points cycliques) autopolaires ...]

2. (a) Si ABCD cocycliques (centre Ω, R), les centres des 4 cercles sont cocycliques (q.3, O = E) :

OO1 = OO2 = OO3 = OO4 = R/2. Et G isobar. de ABCD :
−→
ΩE = 2.

−→
ΩG car par homD,1/2

Cercle ABCD 7→ cercle passant par Ω et les milieux de DA,DB,DC : son sym./G passe par
les milieux de BC,AC,AB : un cercle d’Euler ; ⇒ symG(Ω) = O = E car sur les 4 cercles !

(b) Le cercle est de diamètre [DΩ] (centre S,R/2) et RS = AD/2 (cf. Fig. 2.3) ; le sym /G est

IJUE : [O3O2] homothétique de [AD] par sGohΩ,1/2 = hH,−1/2, 3.
−−→
GH = −−→GΩ,

−−→
ΩH = −2

−−→
EH :

Par hH,−1/2, le quadrilatère des centres des cercles d’Euler (bleu) : homothétique de ABCD.

Retrouver que les mi-hauteurs de ABCD inscrit sont concourantes en E = O = sym(Ω/G) :
D(I,⊥ CD) est ⊥ O1O2 ; c’est donc l’axe radical (IE) ; ⇒ chaque mi-hauteur passe par E.

(c) Si M = hHABC ,1/2(D) : M ∈ (IJU), MV//BHABC ⊥ AC ; or E ∈ (IJU) et EV//ΩU ⊥ AC
(symG, G = U ∗ V ) donc M = E : le quadr. des orthocentres (sur H) est sym.de ABCD/ E.

29.3 (*) C.N.S. pour que ax2 + 2bxy + cy2 = 1 soit une ellipse. Aire ?

Sol. géom. [et 59.1.] Soit le faisceau linéaire de coniques ax2 + 2bxy + cy2 − 1− λ(x2 + y2 −R2) = 0.

Forme quadratique dégénérée ⇔ λ v.propre de la matrice. Et (coniques passant par O)⇔ λ.R2 = 1 ;
on a 2 droites doubles (det(∗) = 0) sécantes en O : les cas de tangence des 2 coniques initiales. D’où :

ellipse "ssi" λ, λ′ > 0 ou (a+ c > 0, ac− b2 > 0). Et Aire = π.R1.R2 = π/
√
λ1.λ2 = π/

√
ac− b2.
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29.4 Ellipse x2/a2 + y2/b2 = 1 : construction de Rytz si diamètres conjugués

1. Soit OP2P1 alignés, P2 ∈ C(O, b), P1 ∈ C(O, a) : P = (P1, y)∩(P2, x) décrit une ellipse. [HP/HP1 = b

a
]

2. Si OP , OQ donnés, diamètres conjugués (i.e. OP1 ⊥ OQ1), on cherche les axes. Pappus, Euler.

(a) Vérifier que rotO,π/2 : O, P2, P1, P 7→ O, Q2, Q1, P
∗ et : Q1, Q, Q2, P

∗ rectangle.

(b) Si on prolonge P ∗Q, vérifier qu’elle coupe les axes en X, Y tels que QX = b, QY = a.

[Q,Q2 projetés en R,S sur Ox et T sur Oy, X̂QR = ŜQ2O ; triangles ORQ1, QTY égaux.]

3. Une construction : C(Umilieu P ∗Q; a + b

2
, O) ∩ (P ∗, Q) donne X,Y ; donc : Ox,Oy ; et aussi : a, b.

[PR = PS = OQ, (PRS) ⊥ (OQ)⇒ Biss.OR, OS : axes ; U ∈ (OR), UP//Ox ⇒ OU = b, UR = a. R, S cercles de Châsles.]

29.5 Faisceau linéaire de cercles C0 : x2 − 2a0x + y2 + c0 = 0, C1 6= C0

Soit le faisceau de cercles de base C0, C1 ; Ck : x2−2a0x+y2 + c0 +k.(x2−2a1x+y2 + c1) = 0, a1 6= a0.

1. Vérifier si k = −1 que c’est l’axe radical D, ensemble des points d’égale puissance/C0, C1. k 6= −1 :

2. On fait dorénavant une translation de repère de façon que l’axe radical ait pour équation x = 0.

Vérifier que la famille a pour équation x2 + y2 − 2.λx+ c = 0. Et que P (O, y) a même puissance /
chaque cercle. Nature du faisceau selon le signe de c (à points de base ; points-limites ; tangents).

3. Vérifier que les trajectoires orthogonales sont x2 + y2 − 2µ.y − c = 0 (Faisceau conjugué).

4. (*) Dans le plan complexifié (≃ C2), si le faisceau F est à points limites U, V : x2+y2−2λ.x+c = 0,

c > 0 [points limites (±√c, 0)], vérifier que les points du complexifié : (0,±i.√c) appartiennent à
tous les cercles du faisceau F qui a ainsi 2 points communs imaginaires conjugués (et distincts).

Un faisceau linéaire de cercles est donc une famille de cercles ayant 2 points communs :
réels et distints ; ou réels et confondus ; ou bien imaginaires conjugués !

5. (*) Points à l’infini : Dans le plan projectif {(X,Y, T ) 6= (0, 0, 0)} (redonnant le plan affine, T = 1),

cherchons avec : X2 + Y 2− 2aXT − 2bY T + cT 2 = 0 ∩ T = 0 (éq. homogène x =
X

T
, y =

Y

T
) les

� "Points à l’infini" : aucun réel ; 2 dans le complexifié : I(1, i, 0) et J(1,−i, 0), "les points cycliques",
points à l’infini des "directions de droites de pente i et −i", dites "directions isotropes".

� Le fait de passer par les points cycliques du plan projectif complexifié caractérise les cercles dans
l’ensemble des coniques du plan car équivaut au fait que la forme quadratique est A(x2 + y2).

� Avec
{

X2 + Y 2 − 2aXT − 2bY T + cT 2 = 0
Y = iX + (b− ai)T

montrer que : Cercle ∩ (droite isotrope passant par son

centre) admet le point cyclique correspondant comme racine double ⇒ une asymptote (tangente
en un point ∞). Ces 2 droites isotropes sont donc les asymptotes du cercle. [Une droite isotrope

. fait le même angle avec tout autre droite mais avec elle, angle indéterminé ; on peut dire ⊥ à elle-même !

. La dist. de 2 points d’une isotrope vaut 0. On a aussi TI ∩ TJ réel car conjuguées. Pôle de D∞ : centre.]

6. (*) Une conique étant définie par 5 points avec 3 quelconques non alignés, un faisceau de coniques est
défini par 4 d’entre eux dits points de base ; donc un faisceau de cercles est un faisceau de coniques
tel que 2 points de base sont les points cycliques. Cette présentation englobe le cas du faisceau sin-
gulier de cercles concentriques : constitué de cercles ayant les mêmes asymptotes, c’est-à-dire de
cercles bitangents à l’infini en I, J , points cycliques, qui sont points de base, et ici points doubles !

∩ y = i.x+ λ et x2 + y2 = e2(x− d)2 ou x2 + y2 = (e.x − p)2, p = e.d, d = δist(O = F,D).

On a l’équivalence : (∆ = 0, Droite isotrope tangente) ⇔ (e2 − 1)λ2 + 2p.e.i.λ = 0.

Définition (Plücker). Foyer : un point duquel on peut mener 2 tangentes isotropes à la conique.

Si e = 0, p = ed 6= 0 : λ = 0, droite isotr. tang. en I(1, i, 0)∈ C passe au centre du cercle, seul foyer.

si e = 1, λ = 0
(

y = ix,
y = −ix

)
: 1 seul foyer aussi pour la parabole. [T = 0 ou (I, J), autre tangente à P !]

e 6= 0, 1 : 4 foyers (0, 0) ; [−2pe/(1− e2), 0] ; [−pe/(1− e2),±i.pe/(1 − e2)] ; ∩ de 2 tang. isotropes.

D’où la déf. monofocale. Si : 2 isotropes issues de F sont tangentes en U, V ∈ Conique et (M, N) sur Con. coupe
(U, V ) polaire de F (directrice) en P ; si Q tel que (MNPQ) DH et (UV ) ∩ (FQ) = R : (UV PR) DH car P est
conjugué de Q et F ; (FI, FJ, FP,FR) faisc.H donc FP ⊥ FQ (car conjugués/isotropes), donc biss. de FM, FN !

D’où FM/FN = PM/PN = dist(M, ∆)/dist(N, ∆) (proportionalité) et fixer N . Cas M = N , tangente : FM ⊥ FP !
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29.6 Sur un Théorème de La Hire (sur l’Ellipse) [corrigé]

On connait la méthode de "la bande de papier" : étant donnés deux axes orthogonaux Ox, Oy, et une
tige rigide mobile par deux de ses points : A sur Ox et B sur Oy (donc AB = cte) alors : un point
de cette tige décrit une ellipse (qui peut être applatie, comme la trajectoire du point A, par exemple).

L’exercice suivant considère 2 axes non forcément orthogonaux : Ox, OX ; ainsi qu’un solide S lié à
la tige rigide A,B. On montre qu’un point P , fixé sur ce solide, décrit une ellipse (parfois applatie) :

1. Dans le triangle OAB, montrer que
AB

sin(xOX)
= 2.R ; et donc R est le rayon fixe du cercle OAB21.

Le cercle C2 de rayon R fixe, passant par A,B (et O), de centre Ω variable, peut être vu comme
faisant partie du solide mobile. Considèrons aussi le cercle fixe C1 de centre O, de rayon 2R.

Comme OAI et OBI sont ⊥ (mouvement de A sur Ox ; B sur OX) I est le centre instantané de
rotation ; donc le petit cercle roule sans glisser dans le grand. Soit P lié à ce solide (P = A permis)

2. (a) Tracer la droite ΩP coupant C2 en E et F . (P,E,F appartiennent au solide mobile lié à AB)

(b) Montrer que E et F décrivent des segments cette fois orthogonaux [théorème de l’angle inscrit

pour ÂOE.] Conclure pour P ("Méthode de la bande de papier").22 (Note23)

29.7 Sur la double génération des coniques (ex. ellipse)

Soit un repère orthonormé Oxy et une tige A ∈ Ox, B ∈ Oy de longueur l > 0 et M solidaire avec cette

tige prolongée tel que
−−→
AM = b.−→u , −→u unitaire de même sens que

−−→
AB et b ∈ R ! On a

−−→
OM =

−→
OA+

−−→
AM .

x = l.cos(θ)− b.cos(θ); y = b.sin(θ) si θ = (−→ı ,−→OI), I milieu de [A,B]. Donc :
x2

(l − b)2 +
y2

b2
= 1. Cl,b

Cl,b = Cl′,b′ ? Si b′ = −b possibilité en plus b =
l − l′

2
. Ex. : (l = 6, b = −1); (l = 8, b = 1).

Si b′ = b une possibilité en plus b =
l + l′

2
> 0. Ex. : (l = 3, b = 4); (l = 5, b = 4).

Remarques

– On peut se limiter au dernier cas : grand axe sur Ox.

– (*) De même on a une double génération des courbes cycloïdales. 15.5.5.

21 Le point O n’est pas un point lié au petit cercle, considéré comme solide animé.
22 Ceci constitue le Théorème de La Hire. Un cas particulier est : si un disque roule sans glisser à l’intérieur d’un cercle

double, un point de la circonférence tel A décrit un diamètre ! Mouvement circulaire transformé en mouvement rectiligne.
23 Sur le nom "La Hire" : les joueurs de cartes doivent savoir que La Hire est le valet de ♥ ...
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29.8 (*) Puissance d’un point/une conique [Jean de Biasi]

Soit une conique de foyer F ; M se projetant en HM sur la directrice ∆ ⊥ −→ı : si une droite (A,−→u )

coupe la conique en M1,M2 : [1− e2.cos2(θ)].−−−→AM1 �
−−−→
AM2= cte = AF 2 − e2AH2

A où θ = (−→ı ,−→u ).

(Arriver à une équation de degré 2, à l’intersection :
−−→
AM = λ.−→u ∩ −−→FM2 − e2−−−−→HMM

2 = 0 ; de terme en

λ2 : 1− e2.cos2(θ) car
−−−−→
HMM =

−−−→
HAA+

−→
AP ,

−→
AP 2 = λ2.cos2(θ) ; et de terme constant : AF 2 − e2AH2

A.)

D’où le Théorème de Joachimsthal. 2 sécantes en A coupent une conique en M1, ...,M4 : une CNS
pour que les Mi soient cocycliques est cos2(θ1) = cos2(θ2), θ2 = −θ1(π) : inclinaisons sym./Directrice ou

sa perpendiculaire.24 (Si droites// : (A,B)//Ox ou Oy, un rectangle.) [⇔ si αi, angles sur le cercle,
∑

αi = 0 ].

. Cas y2 = 2px et x2 + y2 − 2Ax− 2By +C = 0 ; trouver y1 + y2 + y3 + y4 = 0 : centre de gravité ∈Axe.

. Cas x = acos(t), y = bsin(t) ; avec T = eit et x2+y2−2Ax−2By+C = 0 trouver t1+t2+t3+t4 = 0(2π).

. Cas x = a(T + 1/T ), y = b(T − 1/T ) [hyp.] : T1T2T3T4 = 1. Cf. 30.3,25 Th. de J. vrai aussi : normales à H,

T1T2T3T4 = −1. [Toute conique a une éq. : y2 = 2p.x+q.x2, q = e2−1, p = ed paramètre, F (
p

1 + e
, 0), d = δ(F,D).]

29.9 (*) Polynôme de degré 3. Convexité. Ellipses de Steiner

1. Deux questions liées : Ayant P (x) = (x− α)(x− β)(x− γ) de racines complexes α, β, γ, affixes
du triangle A,B,C, peut-on "voir" où sont les deux racines de P ′ ? Soit S ou ST l’aire du triangle.

2. (a) Montrer qu’il y a une et une seule ellipse circonscrite à ABC d’aire minimum.

(b) Montrer qu’il y a une et une seule ellipse inscrite à ABC d’aire maximum.
Et que ces deux ellipses [de Steiner] sont de centre G et homothétiques de rapport 2.

Pour 2) et 1) : les racines de P ′ sont les affixes des 2 foyers de l’ellipse inscrite dans ABC !

1. (a) On a 2S = ab.sin(C) = bc.sin(A) = ca.sin(B) donc : 8S3 = a2b2c2.sin(A)sin(B)sin(C).

(b) f(t) = −ln[sin(t)] convexe sur ]0, π[ (f” > 0) ; donc f(
A+B + C

3
) 6

1

3
[f(A)+f(B)+f(C)] et

égalité⇔ A = B = C. Donc : sin(A)sin(B)sin(C) 6 3.
√

3/8 et égalité⇔ A = B = C = π/3.

D’où : S3 6
3.
√

3

64
a2b2c2, S 6

√
3

4
(abc)2/3 et égalité si et seul. si Triangle équilatéral.

2. (a) On sait que : 3
√
xyz 6 (x+ y + z)/3 et égalité ⇔ x = y = z. D’où :

(b) S 6

√
3

12
(a2 + b2 + c2) et égalité ⇔ a = b = c (inutile ici ; inég. de Weitzenböck).

(c) S 6

√
3

9
(
a+ b+ c

2
)2 , égalité ⇔ Triangle équilatéral. Soit p =

a+ b+ c

2
demi-périmètre.

3. (a) 1b) et
abc

2S
= 2R (rayon du cercle circonscrit) : S 6

3.
√

3

4
R2 et égalité "ssi" T équilatéral.

(b) 2c) et S = p.r (rayon du cercle inscrit) donnent S > 3.
√

3.r2 et égalité "ssi" T équilatéral.

4. Ici, on utilise qu’une bijection affine du plan multiplie les aires par une constante [comme l’applica-
tion affine sera composée de 2 affinités, clair]. Et qu’une application affine conserve le barycentre.

(a) Soit E une ellipse d’aire SE, circonscrite au triangle T ; on tranforme l’ellipse en cercle par une

application affine f [possible]. Alors :
SE

ST
>

π.R2

3.
√

3.R2/4
=

4.π

3
√

3
. Et égalité ⇔ [par 3a) encore]

Nouveau triangle équilatéral ⇔ Centre du cercle = Centre de gravité du nouveau triangle
A′B′C ′ ⇔ [par f−1] Centre de l’ellipse = Centre de gravité ancien triangle ABC.

(b) Nombre de solution(s). Au moins une : Si g affine, ABC 7→ A”B”C” équilatéral de cercle

circonscrit Γ” : g−1(Γ”) convient. Unicité : Avec f du a) fog−1 est une similitude ϕ, car un
triangle équilatéral 7→ un autre ; comme g = ϕ−1of , g(E) =le cercle circonscrit car f(E) cercle.

5. De même F étant une ellipse inscrite à un triangle, on a
SF

ST
6

π.r2

3.
√

3.r2
=

π

3.
√

3
et égalité ⇔ ...

⇔ Centre de l’ellipse = Centre de gravité ancien triangle ABC. Ellipse unique encore.

Et E homothétique de F dans le rapport 2, puisque R = 2.r pour le triangle équilatéral image.

24 Sans lien mais : si xy = x0y0 est équilatère ; A,B(−x0,−y0) un diamètre ; AP, BP inclinées sym/Asympt ⇔ P ∈ H.
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6. Foyers. Soit P (x) = (x−α)(x−β)(x−γ). Par translation [centre G] on peut supposer α+β+γ = 0
et par rotation, α.β + β.γ + γ.α ∈ R− (à voir). Qui ramène à : P (x) = x3 + px+ q, p ∈ R−.

(a) Les formules de Cardan donnent ainsi les racines : Ayant u, v tels que

{
u3 + v3 = −q
u.v = −p/3 , on a :

α = u+ v, β = uj + vj2, γ = uj2 + vj, ce qui se traduit encore par (*) :

h : affine z 7→ u.z + v.z transforme {1, j, j2} équilatéral en A,B,C d’affixes α, β, γ.

(b) Notons u = r.eit, v = s.e−it, r > s. Le cercle inscrit z =
1

2
ei.θ a pour image l’ellipse d’équation

z =
1

2
[r.ei(θ+t) + s.e−i(θ+t)] de centre O, de demi-axes

r + s

2
sur Ox,

r − s
2

sur Oy. D’où les

foyers ici sur Ox, tels que : x2
foyer =(

r + s

2
)2 − (

r − s
2

)2= rs = uv =
−p
3
∈ R+ : xf = ±

√
−p/3.

(*) Ce sont donc les racines de P ′(x) = 3x2 + p : Théorème de Siebeck-Marden !

Notes : 1)
P ′(x)

P (x)
=

1

x− α +
1

x− β +
1

x− γ =
3(x− z)(x− z′)

(x− α)(x − β)(x − γ) . Avec x = z on a aisément : les

racines de P ′ sont dans le triangle ABC : (Théorème et points de Gauss-Lucas 11.4).

2)
(α− z)(α− z′)
(α − β)(α − γ) =

1

3
, arg(

1

3
) = 0 d’où des égalités d’angles avec les foyers : Théorème de Poncelet.

3) Si P décrit une ellipse homofocale, M ′P +PM+grand.arcMM ′=cte : Graves.

[Avec 1), d/dt(PM ′+PM) =
−−−→
PM ′/PM ′ �(

−→
V M ′−−→V P )+

−−→
PM/PM �(

−→
V M−

−→
V P ) = ‖−→V M‖−‖

−→
V M ′‖ = −dL/dt.]

29.10 Polarité / à un cercle, réciprocité, quadrangle harmonique

1. Définitions. Déjà soit deux cercles C [x2 + y2 = R2] et Γ.

(a) C et Γ sont orthogonaux ⇔ R2 + ρ2 = OΩ2 ⇔ puiss(Ω/C) = ρ2 ⇔ puiss(O/Γ) = R2.

Vérifier, si [MM ′] est un diamètre de Γ, que ceci équivaut à :
−−→
OM.

−−−→
OM ′ = R2.

(b) On dit que M et M ′ sont conjugués / C si le cercle de diamètre [MM ′] est ⊥ à C.
� Si la droite (MM ′) coupe C en P,P ′, vérifier que MM ′PP ′ est une D.H. (cf. 4.6 ; etc.)

� (Idem) Si (OM) coupe C en A,B ; et Γ en M,µ, vérifier que (A,B, µ,M) est harmonique.

(c) Avec la définition, montrer que si M0

(
x0

y0

)
6= O, le lieu de ses conjugués est la droite d’équation

xx0+yy0 = R2 (orthogonale à OM0 ; calculs à éviter) : polaire de M0. M0 est dit son pôle.

La droite de l’infini est la polaire du centre O ; pour tout diamètre [P,Q] : (P,Q,O,∞) = −1.

2. Conséquences.

(a) Si M0 est sur C montrer que sa polaire, notée (m0), est la tangente en M0.

(b) Si M0 extérieur, tracer les tangentes M0T,M0T
′ : justifier que sa polaire est (T, T ′).

(c) Si M0 intérieur, soit ∆ ⊥ OM0 en M0 ; S, S′ = C ∩∆ ; U = Tang.S ∩ Tang.′S . Polaire ?

3. Réciprocité polaire. La relation de conjugaison étant symétrique (
−−→
OM.

−−−→
OM ′ = R2), si la polaire de

M passe par M ′, celle de M ′ passe par M : droites "conjuguées" ; et (
−→
OA,
−−→
OB) = (a, b) (π). D’où :

(a) (1) Si un point décrit une droite ∆;O 6∈ ∆, sa polaire pivote autour du pôle de cette droite ;
(2) et si une droite pivote autour d’un point I 6= O, son pôle décrit la polaire de ce point.

(b) (3-3’) Des points sont alignés sur une droite ne contenant pas O (respectivement contenant O)
⇔ les polaires sont concourantes au pôle de cette droite (resp. parallèles).

(c) (4-4’) A,B,C,D sont en D.H. ⇔ les polaires (a), (b), (c), (d) forment un faisceau harmonique.
Plus généralement : A,B,C,D alignés sur une droite ne contenant pas O ⇔ (a), (b), (c), (d)
concourantes − au pôle − : comme ces polaires sont resp. ⊥ à OA,OB,OC,OD, le faisceau
des 4 polaires est isométrique à celui des 4 droites OA, ... : même birapport. Et : si A,B,C,D

sur une droite contenant O, les polaires sont parallèles ; avec xM ′ = R2/xM : même résultat.
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4. Exercices avec indications

(a) Soit (O,R) un cercle et M un point. Si MUV et MU ′V ′ sont sécantes au cercle issues de M
et si P = (U ′V ) ∩ (UV ′), Q = (UU ′) ∩ (V V ′) alors la polaire de M est la droite (P,Q).

[En effet, M et P sont conjugués par rapport au couple de droites UU ′ et V V ′ : Si on a
une D.H. PP1UV

′ les droites QU,QV ′, QP1, QP sont un faisceau harmonique donc les conju-
gués de P forment une droite passant par Q ; et idem par M avec UV et U ′V ′ : c’est MQ ;
MPQ triangle autopolaire. (D’où si UV ∩PQ = M ′, MM ′UV harmonique, M ′ conjugué de M
par rapport au cercle : le cercle de diamètre [MM ′] est ⊥ (O,R). Idem avec M” = PQ∩U ′V ′).]

(b) Soit un triangle ABC, dont les bissectrices intérieures coupent le cercle circonscrit en A0B0C0.
Si M est sur les tangentes en A et A0, etc., alors : M,N,P sont alignés.

[Biss. int. concourantes ⇒ pôles alignés. Idem avec les médianes (AA′), hauteurs AA1, etc.]

(c) Soit ABC de cercle inscrit I(i, r) touchant les côtés en i1, i2, i3 ; la polaire de A /I est (i2, i3)
donc le pôle de (A,H) est M = (i2, i3)∩α, α ⊥ (A,H) passant par i ; idem avec N,P : M,N,P
alignés, car hauteurs conc. Idem : pôle de (Ai1)... conc. (point de Gergonne) ...

(d) Enfin si deux courbes sont tangentes en un point, les polaires aussi 29.11 (exercice).

5. Birapport de 4 points réels cocycliques : réel. 4.6... (cas de points alignés : connu).

(a) Montrer : ∀M ∈ C, [M ;A,B,C,D] = cte-réelle. (Avec le Th. de l’angle inscrit : une rotation
affine transformant ce faisceau en [N ;A,B,C,D] N ∈ C : on dit birapport [A,B,C,D] et bien
sûr, on peut faire tendre M vers A, ce qui donne une tangente : birapport (TA, AB,AC,AD).

(b) et cte =birapport des affixes complexes. (Un changement de repères − qui ne modifie pas le
birapport − ramène au cas où O ∈ Cercle et centré sur Ox ; avec une inversion z′ = 1/z, le
Cercle est transformé en une droite et le birapport réel, est seulement conjugué, donc conservé).

(c) Inversement, birapport des affixes complexes réel ⇒ points cocycliques, si non alignés.

6. Quadrangle harmonique et conjugaison. 4.7. (A, B, M, M ′) (QH) si birapport = −1. Ici (A, B, C, D).

(a) Th.
Si C(C, R) est un cercle ; D(A,−→u ) une droite : ‖−→u ‖ = 1 ; si −→u varie en direction, D ∩ C = {M, M ′}
on a : AM.AM ′ constant et vaut puiss(A/C) = CA2 −R2 = d2 −R2 : "puissance du point A/C".

Démonstration par calcul vectoriel, sans repère ! Pour D :
−−→
AM = λ.−→u . Pour C :

−−→
CM2 = R2. Donc

(
−→
CA +

−−→
AM)2 = R2 d’où λ2 + 2.λ.(−→u �

−→
CA) +

−→
CA2 −R2 = 0 (‖−→u ‖ = 1 choisi). Le produit des racines vaut

λ.λ′ = (λ.−→u ) � (λ′−→u ) =
−−→
AM �

−−−→
AM ′ =

−→
CA2 −R2. Fini ! 3 cas : 1) A ∈ C, 2) A intérieur ⇔ puiss(A/C) < 0.

3) A extérieur au cercle ⇔ puiss(A/C) > 0 : avec une tangente AT au cercle, on a aisément AT 2 = d2 −R2.

(b) Utilisation. Ensemble des points du plan M :
MA

MB
= k, A 6= B, k > 0 ; courbe notée Ck. (k = 1 : médiatrice).

Si k 6= 1, Ck est un cercle (d’Apollonius) centré sur (A, B). (*) Et Ck ⊥ à tout cercle Γ passant par A et B.

Démonstration (k 6= 1 sinon clair ; A et B points communs du dessin). 1) On a donc
−−→
MA2− k2.

−−→
MB2 = 0 ou

(
−−→
MA+k.

−−→
MB) � (

−−→
MA−k.

−−→
MB) = 0. Si U : baryc.(A, 1)(B, +k), V : (A, 1)(B,−k) : (1+k).

−−→
MU =

−−→
MA+k.

−−→
MB,

(1 − k).
−−→
MV =

−−→
MA − k.

−−→
MB. D’où

−−→
MU �

−−→
MV = 0,

−−→
MU ⊥ −−→MV : M décrit le cercle de diamètre [UV ].

2) (*) Pour l’orthogonalité
UA

UB
=

V A

V B
=

MA

MB
= k,

UA

UB
= −

V A

V B
(1) : on dit que A, B, U, V sont

en division harmonique. [⇒ U et V pieds des biss. de AMB]. Celà entraine la relation de Newton 4.6 :

Si Ω est milieu de [U, V ], ΩU2 = ΩV 2 = ΩA.ΩB (2) : écrire UA = UΩ + ΩA, etc, pour passer de (1) à (2).

Si maintenant Γ passe par A et B : ΩA.ΩB = puiss.Ω/Γ ; ici, Ω est extérieur (puiss > 0) ; si T est un point

d’une tangente à Γ issue de Ω, puiss(Ω/Γ) = ΩT 2 (Th.) ; et aussi ΩU2 avec (2). Ceci indique que Ck ⊥ Γ !

(c) Montrer : A,B,C,D, situés sur le cercle C forment un QH ⇔ (AB) et (CD) conjuguées.

(⇒ [B;C,D,A, ω] harm. ; ω ∈ (C,D) conj. de P : pôle de (A,B) ; (AB), (CD) conjuguées.

⇐ : Si le pôle ω de AB est sur CD, [C,D,P, ω] = −1 et [B;C,D,A, ω] harm. ; Bω étant
tangente, on a [A,B,C,D] = −1 : Q.H. Voir aussi le cas où AB, CD diamètres, ω =∞ !)

Rem. Ω, pôle de (C,D)/C : Ω ∈ (A,B), centre de Γ ⊥ C ; ωPΩ autopolaire, d’orth. O centre de C.
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29.11 Polarité par rapport à un cercle, Théorème de Salmon, tppr

1. Théorème de Salmon. Soit A,M de polaires (a), (m) ; α, µ les proj⊥ de A,M respectivement
sur (m), (a), A′,M ′ celles de O sur, respectivement (a), (m) ; ∆ la bissectrice de [OA), [OM).

(a) Justifier que : OA.OA′ = OM.OM ′ = R2. En déduire que :

(b) dans la similitude inverse composée de la réflexion/∆ et h(O, OM/OA) : A 7→M , M ′ 7→ A′.

(c) Par conservation de l’orthogonalité, justifier que : α 7→ µ et Aα/Mµ = OA/OM :

Le rapport des dist. à O de A et M vaut celui des dist. de A et M à la polaire de l’autre.

(d) Ou bien : voir que
−→
OA.
−→
Oµ =

−−→
OM.

−→
Oα = R2 ; donc

−→
OA.(

−−→
OM +

−−→
Mµ) =

−−→
OM.(

−→
OA +

−→
Aα) ...

2. Définition. La tppr de cercle C(O,R) est la bijection pôle-polaire. (Transf. par polaires réciproques).

A toute figure F formée de points et de droites correspond f formée de droites et de points.

(A des points alignés avec O, correspondent des droites parallèles.)

A toute propriété de F correspond une propriété de f dite "corrélative". F est dite autopolaire

si F = f : c’est le cas d’un triangle conjugué (chaque sommet est le pôle du côté opposé).

3. Courbes polaires réciproques. [Calcul avec le cercle C(O, 1).]
On suppose une Courbe C1 donnée comme ensemble de ses points ou enveloppe de ses tangentes.

Lorsque M décrit la Courbe (u(t), v(t)) le pôle δ de la tangente ∆, x.v′(t)− y.u′(t) + u′v− uv′ = 0

décrit une courbe [d’équation ci-dessous] ; et la polaire (m) de M : x.u(t) + y.v(t) = 1, enveloppe

aussi cette même courbe décrite par δ ; (en prenant 2 tangentes en M,M ′ proches, de points de

Courbe ou par calcul) : x =
−v′

u′v − uv′ =
(1/v)′

(u/v)′
, y =

u′

u′v − uv′ =
(1/u)′

(v/u)′
. Application involutive !

4. Transformée du cercle (A, r) décrit par α, id est : Aα = r. [Revoir le Théorème de Salmon.]

Notons d = OA, le théorème de Salmon donne :
MO

Mµ
=
d

r
, (m) étant tangente variable au cercle.

Donc : La tppr par rapport au cercle (O,R) du cercle (A, r) est la conique de foyer O ; de

directrice (a), polaire de A par rapport au cercle (O,R) ; d’excentricité e =
d

r
=

OA

r
.

D’où, si r = d, c’est-à-dire si O ∈ cercle (A, r), la tppr est une parabole (courbe non fermée) !

Toute propriété du cercle a une propriété corrélative focale pour la conique obtenue. Ainsi :

(a) Comme (m) tangente au cercle est orthogonale en α à Aα on aura
−−→
OM ⊥ −→OT , T pôle de Aα

mais T est intersection de (a), polaire de A = directrice, et de celle de α = Tangente en M .

Donc la portion de tangente à une conique comprise entre M et T sur la directrice est vue du
foyer correspondant sous un angle droit. Et points M, F, M ′ alignés donnent le même T .

Si on a une parabole, M̂TM ′ = π/2 et si (M,M ′)//Tangente en E ∈ P, (TE)//Axe :

(Si Ox = Axe ; I, I ′ = Tang. ∩Oy : yI =
y

2
; milieu II ′ = milieu TF : yT =

y + y′

2
; c’est yE.)

(b) Deux tangentes (m) et (m′) en α,α′ sont symétriquement inclinées sur la droite (α,α′).

Donc (O,S) S : pôle de (α,α′), est bissectrice de OM , OM ′ ; or le pôle S de (α,α′) est
l’intersection des tangentes en M,M ′ ; (O foyer). D’où le 1er théorème de Poncelet.

(Le 2ème fait intervenir les 2 foyers ; chacun peut se démontrer avec le cercle directeur).

5. Autre démonstration de 29.10.3.(c)

A,B,C,D alignés sur une droite ∆ dans le plan projectif : (A,B,C,D) = (a, b, c, d).

Si ∆ 6= D∞, ne contenant pas O : (a), (b), (c), (d) concourantes au pôle δ ; si A′ = (OA) ∩ (a) etc,
on a (A,B,C,D) = (OA, ...) = (A′, B′, C ′,D′) ici cocycliques ! ceci vaut (δA′, ...) ou (a, b, c, d).

Si O ∈ ∆, les polaires sont parallèles ; xM ′ = R2/xM et même birapport (∆, sécante possible) !

Si points de D∞, on a 4 directions donnant 4 diamètres, de polaires : les diamètres orthogonaux.

71



6. Lien avec la podaire. Soit un point O et une courbe γ ; la podaire de γ le lieu γ1 de H noté P en
15.3 30.6, pied de la perp. abaissée de O sur les tangentes à γ ; γ est l’enveloppe des ⊥ OH, en
H : antipodaire de γ1. Le pôle K de la tangente/C(O,R) vérifie O,H,K alignés et OH.OK = R2.

⇒ La tppr γ′ de γ relativement à C(O,R) est l’inverse de la podaire γ1 dans Inv(O, puiss R2).

C’est donc aussi l’antipodaire de l’inverse γ2 de γ, puisque γ est la tppr de γ′ (cf. Rem. 2).

Remarques : � Quand la tangente à γ en A passe par O, la tppr γ′ passe par le point à l’infini
dans la direction ⊥ (OA) ; la polaire de A (usuellement tangente à γ′) étant l’asymptote à γ′.

� Si A est en O, on a une branche parabolique. Cf. cas du cercle contenant O, ρ = 2acos(ϕ), R = a.

� Soit γ enveloppe des droites x.cos(θ) + y.sin(θ) = p(θ) ; la podaire γ1 a pour équation polaire
ρ = p(θ) ; donc l’inverse/C(O,R) a pour équation ρ = R2/p(θ) : c’est aussi la tppr de γ.

7. Autres méthodes pour la tppr d’un cercle par rapport au cercle C(O,R)

La tppr par rapport au cercle C(O,R) du cercle (A, r) est une conique de foyer O.

En effet la podaire d’un cercle (A, r) est un limaçon de Pascal (ρ = a.cos(θ) + r, a = OA, θ =
−→
OA,
−−→
OP )

et une cardioïde si O ∈ γ ; l’inverse est donc une conique de foyer O et une parabole si cardioïde.

Ou alors l’inverse γ2 de γ est un cercle ou une droite si O ∈ γ. Et on sait que l’antipodaire d’un
cercle est une conique de foyer O (on dit alors cercle "principal") tandis que l’antipodaire d’une
droite (ne passant pas par O) est une parabole de foyer O (la droite étant sa tangente au sommet).

Ou encore si C(O, 1) et Courbe : A((a.r, 0), r) : u = r.(a+ cos(t)), v = r.sin(t) donne la courbe :

x =
1

r
.

cos(t)

1 + a.cos(t)
, y =

1

r
.

sin(t)

1 + a.cos(t)
ou en polaires : ρ =

1

r
.

1

1 + a.cos(t)
, conique de foyer O ; de

directrice (a) x = 1/a.r, polaire de A ; d’excentricité e = a = d/r. Si O ∈ Cercle, a = 1 : parabole.

Théorème de l’angle pivotant, utilisation : [L’arc capable et l’angle pivotant sont duaux.]

Soit un cercle (O,OP = OQ = OM); ̂−−→
MP,

−−→
MQ = θ (π) avec tangentes (p), (q). Si Mp ∈ (p),Mq ∈ (q)

sont tels que ̂−−−→
OMp,

−−−→
OMq = θ (π), alors (m) = (MpMq) enveloppe le cercle ;

−̂−→
OP ,

−−→
OQ = 2.θ.

Plus généralement :

Si (p), (q) 2 droites, O 6∈ (p)∪ (q) ; Mp ∈ (p), Mq ∈ (q) tels que
−−−→
OMp,

−−−→
OMq = θ(π) : l’enveloppe des

droites (MpMq) = (m) est une conique de foyer O tangente à (p) et (q) en P,Q et
−̂−→
OP ,

−−→
OQ = 2θ.

En effet : Avec une tppr/ C(O,R), soit P ′, Q′, M ′ les pôles (à dist. finie) de (p), (q), (m) ; on a
−−−→
OMp ⊥

−−−→
P ′M ′ car Mp pôle ; donc (

−−−→
M ′P ′,

−−−→
M ′Q′) = θ(π). Ainsi M ′ décrit un cercle, (Th. de l’arc

capable) et par suite, (m) = (Mp,Mq) enveloppe une conique de foyer O. La tangente (p) en P

correspond à : Mq = (p) ∩ (q) d’où (
−−→
OP,

−−−−→
O.p ∩ q) = θ ; et idem avec

−−→
OQ, donc

−−→
OP,

−−→
OQ = 2.θ.

8. Remarques. � Soit P et Q sur un cercle. Si M sur le cercle, l’angle ̂(M,P ), (M,Q) est indépendant
de M ; il en est de même du birapport [MP,MQ,MI,MJ ] ; il y a un lien ! Origine en M∈ C(O,R) :

̂(M,P ), (M,Q) = θ ⇒ [P,Q, I, J ] = e−2.i.θ ; I, J , "points cycliques" 29.5 : formule de Laguerre.

D’où (MP ) ⊥ (MQ) ⇔ [P,Q, I, J ] harmonique (Laguerre, "candidat à l’X" ajoute-t-on en général !)

En effet, on a les droites MP : y = x.tan(α) et MQ : y = x.tan(β), elles coupent la droite de l’infini
contenant les points cycliques I(1, i, 0), J(1,−i, 0) aux points (1, tan(α), 0), (1, tan(β), 0).

Donc [P,Q, I, J ] =
i− tan(α)

i− tan(β)
:
−i− tan(α)

−i− tan(β)
= e2.i.(α−β) = e−2.i.θ, avec tan(α) =

sin(α)

cos(α)
. 58.6.

� On peut définir le birapport de 4 points et de 4 tangentes à une conique Γ.
� Avec x = x0 +X, y = y0 +Y , Γ : A.X2 +B.XY +C.Y 2 +D.X+E.Y = 0 a une éq. par. [Y = t.X] :

x =
at2 + bt + c

gt2 + ht + l
, y =

dt2 + et + f

gt2 + ht + l
; inv. 6 polynômes de R4[t] sont liés : ces éq. param. donnent Γ.

Si Γ u =
P

R
, v =

Q

R
, sa t.p.p.r./C(O, 1) 29.11.3 x = −Q′R−QR′

P ′Q− PQ′ , y =
P ′R− PR′

P ′Q− PQ′ : une autre conique !

� On peut encore étudier la tppr relative à une conique : tppr de C x2 + y2 = R2 par rapport à H
x2 − y2 = a2 ? polaire de M(R.cos(t), R.sin(t)) : Rx.cos(t)−Ry.sin(t) = a2 ; enveloppe : C′(O, a2/R).
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30 Longueur et courbure des courbes planes

30.1 Courbes C1 telles que a.R = a2 + s2

1. Souvent, une courbe est donnée ; on cherche R et s ; ici c’est inverse ! Paramètre naturel : α.

Et si une courbe est solution, si on la translate, ce sera encore une solution (car rien de changé

pour R et s). Idem si on la tourne ... Les solutions sont définies à un déplacement près !

2. Puis
a.ds

dα
= a2 + s2. Equation différentielle non linéaire mais à variables séparées

a.ds

a2 + s2
= dα

Arctan(
s

a
) = α− α0. Choix de direction de −→ı pour que α0 = 0 et choix d’origine intéressant ...

3. On revient à x, y par
d
−→
M

ds
=
−→
T ou

dx

ds
= cos(α)

dy

ds
= sin(α). Donc s = a.tan(α), ds =

a.dα

cos2(α)

et : dx =
a.cos(α)dα

cos2(α)
=

a.dα

cos(α)
... primitive x = a.ln | tan(

α

2
+
π

4
) | +x0 (difficile à savoir)

x = a.ln | tan(
α

2
+
π

4
) | (x0 = 0) ; dy =

a.sin(α).dα

cos2(α)
, y =

a

cos(α)
+y0 ; y =

a

cos(α)
.

0

-1

-2

-3

210-1-2

3

2

1

4. La courbe semble être une "chainette" : y = a. ch(
x

a
) à un déplacement près. Vérifions !

Soit α ∈]− π

2
,
π

2
[ ici : y > 0. Alors

α

2
+
π

4
∈]0, π

2
[ (donc valeur absolue inutile ici) :

x = a.ln
(
tan(

α

2
+
π

4
)
)

; tan(
α

2
+
π

4
)= ex/a.

ex/a + e−x/a

2
=
t+ 1/t

2
=
t2 + 1

2.t
où t = tan(

α

2
+
π

4
).

Mais :
2.tan(θ)

1 + tan2(θ)
= sin(2θ). Ici

1

sin(2.
(α

2
+
π

4

)
)

=
1

cos(α)
:

y

a
=
ex/a + e−x/a

2
!

30.2 (*) Quelques autres équations intrinsèques

1. Idem : R = s (autre cas R = f(s) ) donnant s = k.eα ; ρ = k.
eπ/4

√
2
eθ = K.eθ à déplacement près.

(Ici dans un repère lié aux tangentes, lieu du Centre de Courbure : droite Y = X, Y = R, X = s.)

2. Idem : R2 = 2as ou s =
a

2
α2 donne une développante de cercle de rayon a à déplacement près.

[M = C + λ.−→τ , dλ/dσ = −1 donc λ = −σ + λ0. x = cos(t) + t.sin(t), y = sin(t)− t.cos(t).]

3. Autre type d’équation intrinsèque : s = g(α), R = g′(α). Exemple. s = a.α : Cercle.

Utilité : Si C (abscisse curviligne σ, rayon de courbure r) est la développée de Γ (s, R) avec

C = M +R−→N : dσ = dR ; σ = R = g′(α), r =
dR
dα

= g”(α) car r =
dσ

dβ
=
dσ

dα
(= R.dR

ds
). Donc

s = k.eα : développée isométrique ! Ex 2-3, clairs. R = a.cot(α) : Tractrice et sym/Ox, cf. Ex 1.

4. Courbes cycloïdales 15.5. On avait s =
−4ρ.m

m− 1
.cos(

m− 1

2
.t), α =

m+ 1

2
.t. D’où s = K.cos(ω.α)

ω =
m− 1

m+ 1
; et t = τ − τ0, α = θ − θ0, si utile. 30.6.8.9. Donc développée semblable (Lahire) !

Et développée isométrique ’ssi’ ω = 1 ou m = 1 +
a

ρ
infini ou a infini : seul cas de la cycloïde.

5. Notes. Cycloïde R2 + (s− 4a)2 = 16a2 ; courbes cycloïdales (m+ 1)2R2 + (m− 1)2s2 = 16ρ2m2.
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30.3 (*) Parabole Γ t 7→M(x = 2t, y = t2), normales

1. (a) Justifier que le foyer a pour coordonnées F (0, 1) et préciser la directrice D (ici x2 = 4y).25

(b) Donner l’équation vérifiée par le point (X,Y ), décrivant la tangente en M ∈ Γ ; fig.1.

(c) Si Tangente∩Ox = {T}, montrer : OP = 2OT où P (x, 0) = proj⊥(M) sur Ox. [Non demandé :
ceci permet de construire la tangente en M ; ainsi que le foyer car MTF est rectangle en T ].

2. Calculer
−−→
dM

dt
; et ds où s = ÔM . Soit M1(2, 1) ; interpréter I =

∫ 1

0
2.
√

1 + t2.dt.

Avec t = sh(ϕ) et ch2(ϕ) =
1 + ch(2.ϕ)

2
, relier I à J =

∫ ln(1+
√

2)

0
ch2(ϕ).dϕ =

ln(1 +
√

2) +
√

2

2
.

3. (a) Calculer
−→
T =

−−→
dM

ds
; et
−→
N . Avec α = (−→ı ,−→T ), vérifier que tan(α) = t. Préciser R =

ds

dα
.

(b) Vérifier les coordonnées du centre de courbure à transl. près (Xc = −2.t3, Yc = 3.t2) ; fig.2.26

y

5

x

0
0

3210-1

2

0

20
0

-1

4

0
20-2

Pour ellipse et hyperbole : (*) 27 28 29

4. Propriété mécanique de C, isochronisme de Leibnitz. Nouveau repère encore noté O,x, y ; fig.3 :

Trouver les courbes telles qu’un point matériel, soumis à son poids et à la réaction normale (sans

frottement), ait une vitesse verticale constante. On suppose qu’au temps t = 0, x = y =
dx

dt
= 0.

On note encore α = (−→ı ,−→T ) ∈ [
−π

2
, 0]. Ayant donc

dy

dt
= −β (β > 0, constant) on a y = −β.t.

Puis : m.g = R.cos(α), m.
d2x

dt2
= −R.sin(α) (> 0) donnent (acquis) :

d2x

dt2
= −g.tan(α) = −g.dy

dx
.

(a) Justifier que
d2x

dt2
.
dx

dt
= g.β puis que

1

2
(
dx

dt
)2 = g.β.t et x = k.t3/2, k = Cte.

(b) Soit x = k.τ3, y = −β.τ2 (où τ2 = t > 0). On pose u =
x

y
: montrer que x = l.u3 ; y = l.u2,

l nouvelle constante. Conclusion sur les Cp,q : x = p.τ3, y = q.τ2 ("parabole semi-cubique") ?

5. Courbe orthoptique de C. Tangente en M0 passant par (X,Y ) : X + t0.Y − t30 = 0 ; avec
+1

t0.t′0
= −1,

que t”0 = −X solution. D’où l’autre parabole Y = 1+X2 (fig. 4) ; tangente à C car à l’intersection :
4.(Y− 3

2
)2.(Y + 3) = 0 ! Donc en U, V (±1/

√
2, 3/2) passent une tangente double et une normale à C.

25 Avec le foyer, justifier aussi que toutes les paraboles sont semblables entre elles.
26 Normales à la parabole y2 = 2px. Menées de N(α, β) : y3 + 2p(p− α)y − 2p2β = 0 (∗) donc y1 + y2 + y3 = 0. Avec :

cercle (x−A)2+(y−B)2 = R2 ∩ parab. : y4+4p(p−A)y2−8p2By+4p2(A2+B2−R2) = 0, 29.8, donc contient M1, M2, M3

⇒ y4 = 0 ; inversement, le cercle (M1, M2, O) contiendra M3 : M1, M2, M3 pieds des normales⇔ O, M1, M2, M3 cocycliques.

Alors, A = (p + α)/2, B = β/4, R =
√

A2 + B2. Trois remarques : 3 solutions pour (1) ⇔ N "intérieur" de la développée.

Eliminant y de (∗) et y2 = 2px : x1 + x2 + x3 = 2α− 2p ; si N ∈ Ox (β = 0) M1 = O et FM2 = FM3 = FN (x2 = α− p).
Enfin avec y1 + y2 + y3 + y4 = 0 dans cercle ∩ par., le cercle osculateur en A la recoupe en D : yD = −3yA.

27 (*) Si ellipse : x4− 2a2α/c2.x3 + a2(a2α2 + b2β2− c4)/c4.x2 +2a4α/c2.x− a6α2/c4 = 0. 4 sol. : intérieur de développée.

Ellipse ∩(x − A)2 + (y − B)2 = R2 : x4−4a2A/c2.x3+2a2[2(a2A2+b2B2)+c2k2]/c4.x2−4a4k2A/c4.x+a4(k4−4b2B2)/c4 = 0,

k2 = A2 + B2 −R2 + b2 [Maple]. Si Mi sont les pieds des normales, sym(M4/O) ∈cercle(Mi,16i63) ! (Joachimsthal) : Dém.

N(α, β) ∈ normale.[x = acos(t), y = bsin(t)]⇔ α.asin(t)− c2sin(t)cos(t) = β.bcos(t). Produit des racines de l’équation de

degré 4 : ei(t1+t2+t3+t4+π) = 1 et 29.8. D’où si Ai, Bi centres : x1 + x2 + x3 = a2(α + 2A4)/c2, x4 = a2(α− 2A4)/c2, A4 =

α/2− c2x4/2a2, B4 = β/2 + c2y4/2b2.
∑

Ai = α,
∑

Bi = β. Hyp : changer b2 en −b2, HE : c2 = 2a2 changer b2 en −a2,

A4 = α/2− x4, B4 = β/2− y4,
∑

xi = α ! et [A = A4; σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4, σ
′
2 = x1x2 + x1x3−

x1x4 + x2x3 − x2x4 − x3x4 ...] : 4(a2A2 + b2B2) + 2c2k2 − (a2α2 + b2β2 − c4) = 2a2(4A2 − α2), k2 = A2 + B2 −R2 − a2 ;
⇒ 4R2

i = α2 + β2 ! En général (voir E. et H.) les Mi sur l’HE d’Apollonius : c2xy = a2α.y − b2β.x passant par N, O ...
28 Steiner : "Par D ∈ Ell passe 3 cercles oscul. en A, B, C ∈ Ell ; A, B, C, D cocycl." ; Joachimsthal : "et Isob.(ABC) = O".

Géom. 29.8. Isob(A, B, C) = O ⇒ AO∩BC = A′, conjuguées : TangA//BC. Con∩CABC = D⇒ TA, AD ég. inclinées/axes
et si Cosc.A ∩ Con = D∗, idem pour TA, AD∗ ⇒ D∗ = D. Et normales en A, B, C, hauteurs ⇒ concourantes en N ...
Analyt. D ∈ cercles osc. en A et en B ⇔ 3t1+t4 = 2k.π, 3t2+t4 = 2l.π ; t2−t1 = ±2π/3 ; donc 2 sol. B, C : t2, t3 = t1±2π/3.

t1 + t2 + t3 + t4 = 2k.π ⇒ A, B, C, D cocycliques et ABC déduit de A′B′C′ équilatéral de centre O : O isob.(A, B, C).
29 Si A,B, M ∈ Ell, AM + MB maximum, on a réflexion en M -extremum lié- donc si Biss en M coupent (AB) en U, V :

[A, B, U, V ] D.H., (A, B) contient V pôle de Norm,⇒ T pôle de (A,B) ∈ Norm : M ∈ HE d’Apollonius(T ). Si B = sym(A) :

T =∞TA , M = proj⊥(T ) ; TA, TM , TB, TM′ rectangle ∈ CMonge ; réflexion en M , AM//diag : max = diagrect = 2
√

a2 + b2 !
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30.4 (*) Au sujet des courbes de poursuite usuelles (...)

Un maitre partant de O se dirige sur Oy à la vitesse v = k.V , 0 < k < 1. Son chien partant de (a > 0, 0)
se dirige vers lui en décrivant la courbe y = f(x) à la vitesse V = v/k, 0 < k < 1, x > 0.

1. Vérifier que l’ordonnée du maitre est y − x.y′ et que
d(y − x.y′)

dt
= k.V (1) éq. horaire.

Vérifier que :
ds

dt
= V (2) éq. horaire et aussi que

ds

dx
= −

√
1 + (y′)2.

2. En déduire que x.y” = k.
√

1 + (y′)2 (3) éq. différentielles avec coordonnées. Puis que :

3. [on peut poser y′ = sh(ϕ)] y′ =
1

2

(
(
x

a
)k − (

a

x
)k
)

(y′(a) = 0.) Et que la position du chien est

4. f(x) =
x

2

(
1

k + 1
(
x

a
)k +

1

k − 1
(
a

x
)k

)
+C, k 6= 1 ; f(x) =

1

2

(
x2

2a
− a.ln(x)

)
+C, k = 1 ;

(rattrapage
⇔ k < 1.)

5. En déduire, avec f(a) = 0, que le temps de rattrapage est τ =
a

V
.

1

1− k2
(avec f(0), τ =

C

v
).

6. On prend k =
1

2
. Vérifier que : C =

2

3
.a, τ =

4

3
.
a

V
et (y − 2a

3
)2 =

x

9a
(3a− x)2 "cubique

de Tschirnhausen" passant par (a, 0) à tangente horizontale et (0,2a/3) à tangente verticale.

10

10

x

5

0

y

0

Angle
π

3
au point double. En par. x = a.u2, y =

2a

3
+ a.u(1 − u2

2
).

Remarque. b.y2 = x2(a− x) ou x = a− b.t2, y = t.x : Cubique de Tsch. si b = 3a > 0.

Courbe de Lissajous si a = 3b > 0 ! en effet, x = sin(2t), y = sin(3t+ π/4) avec t = π/4− ϕ :

2x+ 1 = 3− T 2, 2y = T.(2x+ 1) si T = 2.sin(ϕ). Folium parabolique si a = b : ρ = cos(2θ)/cos3(θ).

30.5 Enveloppes dans R2, R3 ; cf. 13.4 ; développée ; et 30.6

1. En dim 2 SiDt : a(t)x+b(t)y = c(t), montrer que l’enveloppe desDt vérifie

{
a(t).x+ b(t).y = c(t)
a′(t)x+ b′(t)y = c′(t).

Plus généralement l’enveloppe dans le plan des f(x, y, t) = 0 s’obtient par (1) et (2) f ′
t(x, y, t) = 0.

Si on a par contre u 7→M(u, t), l’env. vérifie ici ∂
−→
M/∂t, ∂

−→
M/∂u colinéaires ; relation symétrique.

(Env.) : lieu des points où une courbe de la 1ère famille est tangente à une courbe de la 2ème.

4 exemples : � Pour l’enveloppe des (Ct) : a(x, y).t2 + b(x, y).t+ c(x, y) = 0, faire ∆ = 0.

� Pour (Ct) : a(x, y).cos(t) + b(x, y).sin(t) = c(x, y), faire a2(x, y) + b2(x, y) = c2(x, y). Pour :

� [x−a(t)]2+[y−b(t)]2 = R2, x = a(t)± −R.b′(t)√
a′2(t) + b′2(t)

, y = b(t) ± R.a′(t)√
a′2(t) + b′2(t)

// t 7→ (a(t), b(t)).

� y = x.tan(α)− g.x2/2v2
0cos

2(α) [tir], 1/cos2(α) = 1 + t2, par. enveloppe : y = v2
0/2g − gx2/2v2

0 .

2. En dim 3 une famille de droites n’a pas d’enveloppe en général : Pour avoirM(t) = A(t)+λ(t).−→v (t)

et
−−→
dM/dt colinéaire à −→v (t), CNS : ∃λ(t), µ(t) : A′(t) + λ(t)−→v ′(t) + µ(t)−→v (t) =

−→
0 .

Donc CN : dét(A′(t),−→v (t),−→v ′(t)) = 0 (∗). Supposons (∗) satisfaite :

– si −→v ∧−→v ′ 6= −→0 , λ(t).−→v ∧ −→v ′ = A′ ∧ −→v ...
−−→
dM/dt = (λ′ − µ)−→v (t), µ inutile. D’où λ(t), M(t).

– si −→v ∧−→v ′(t0) =
−→
0 : si

{
A′ ∧ −→v 6= −→0 , Dt0 n’a pas de point caractéristique (droite singulière);

A′ ∧ −→v =
−→
0 , tous les points de Dt0 sont caractéristiques (d. stationaire).

Rem. : ∀t, λ′ = µ possible : gerbe de droites conc. ∀t,−→v ∧ −→v ′ =
−→
0 possible : gerbe de droites //.

Cas




x
y
z


 =




α(t)
β(t)
0


 +z




a(t)
b(t)
1


 CN : α′b′ − β′a′ = 0. Alors ∃z(t), µ(t)/... : µ(t) = 0, z = −α

′

a′
= −β

′

b′
.

Tangentes à (Env.) : surf. développable ! 58.2.3, 59.5. (Env.) est appelée ’arête de rebrousse-

ment’ : car à z = z0, x
′ = a′z0 + α′ donc x′ = 0 ; idem y′ = 0 ; d’où un point de rebroussement.
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30.6 Podaire, enveloppe, coordonnées polaires, courbure 15.5

– La podaire d’une courbe/un point O est le lieu des pieds des hauteurs abaissées de O sur les tangentes.

Si la podaire a pour équation :
−−→
OP = ρ.−→u ,−→u (cos(θ), sin(θ)), la courbe initiale (E) :

−−→
OM = ρ−→u +λ−→u 1

avec
−−→
dM

dθ
col. à −→u 1. Donc λ = ρ′ et (E) a pour équation

−−→
OM = ρ−→u + ρ′−→u 1 : enveloppe des droites

Dθ : x.cos(θ) + y.sin(θ) = ρ(θ). Considérons D′
θ : −x.sin(θ) + y.cos(θ) = ρ′(θ) ; D′

θ ⊥ Dθ, passant

par M ∈ (E), donc par N , tel que OPMN soit rectangle :
−−→
ON = ρ′(θ).−→u 1. D′

θ : Normale en M .

– Développée C0 de (E) = Γ0 : l’enveloppe des D′
θ. D”θ est ⊥ −→u et passe par L :

−→
OL = ρ”.(−−→u ). Donc

le rayon de courbure de (E) est donc R tel que
−−→
MC =

−→
PL = (ρ” + ρ)(−−→u ). R = ρ+ ρ”, ρpodaire.

– Tangente à la podaire :
−→
dP

dθ
= ρ′−→u + ρ−→u 1. [Exemple : ρ = a(1 + cos(θ))⇒ (E) x2 − 2ax+ y2 = 0.]

Normale dans (O,−→u ,−→u 1). ρ
′(X−ρ)+ρ.Y = 0 ; la normale passe par N(0, ρ′) ou ω milieu de [OM ] :

Podaire : enveloppe des cercles de diamètre [OM ]. Env.cercles ( centre M
contient O

)= hO,2(Podaire).

– Propriétés : [Si ρ = b.sin(k.θ − ϕ), (E) est une courbe cycloïdale k =
m − 1

m + 1
, m =

1 + k

1 − k
15.5.5 30.2.]

1. (P ) étant la podaire de (E), on dit que (E) est l’antipodaire de (P ) ; et aussi que (E) est l’ortho-
caustique de (P ) [Enveloppe des rayons "réfléchis" issus de O, mais ici réflexion à angle droit !]

2. Soit (Q) = homothétiqueO,2(Podaire). (Q) est le lieu des sym. de O / aux tangentes à (E), on dit

l’orthotomique de (E) fig.1.2 ; donc aussi l’enveloppe des cercles centrés sur (E) passant par O.

Sa développée C, enveloppe des (MQ), est la caustique de (E) pour la source placée en O.
[On dit parfois que (Q) = Γ anticaustique ; et (E) caustique inverse de cette développée de (Q).]

(E) est encore le lieu des points équidistants de (Q) et O [
−−→
MQ ⊥ (Q)] [l’isotèle de (Q)] et aussi

la polaire (tppr) de l’inverse de (P ) [Si OP.OK = a2 : polaire de K/Cercle(O, a) = (M,P )].

Enfin : Faisant rouler sur (E) fixe, sa symétrique/Tangentes : le point O′ = Q décrit l’orthotomique
qui est donc aussi une "roulette" : ainsi une cardioïde est podaire d’un cercle/un de ses points O
et épicycloïde de rebroussement O. L’orthotomique d’une Parabole/F : Directrice. Autres cas ?

3. Remarques. • Si O =∞ (rayons incidents //) la caustique est aussi une développée : si ∆ droite ⊥
rayons, H = proj⊥(M,∆), S = sym(H/Tang. en M). Le lieu de S est l’anticaustique/∆ (env. des
cercles : centre M ,tang. à ∆,*) ; sa développée est la caustique à ∞ de (E), courbe réfléchissante.

Ex. Caustique d’un cercle C. Si O ∈ C, cardioïde de sommet O [dév. de card.] ; si O =∞, nephroïde

car si 2 cercles de rayon R,
R

2
, sont tangent ext. en I, (Ω, ÃI) et (U, ĨM), ÃI = ĨM : tang. en M = (MJ),

où
−→
IU =

−→
UJ , (ΩJ) biss. de (MJ), (J−→ı ), −→ı col à

−→
ΩA : néphroïde caustique de ∞ pour le Cercle (Ω, J). Et

δ(I,ΩA) = IM : enveloppe.cerclescentre.I∈C0(Ω,R).tangent.diamΩA, néphroïde car tangents à (MJ) en M . fig.3.

• Cercles Ct ⊥ C0, Ω ∈ Axe-rad.(Ct, Ct′), ΩM.ΩM ′ = R2 ⇔ env.(Ct) : courbe anallagmatique !

• Courbe : env. de ses cercles osculateurs. Et courbes//C : env. des cercles (centrés sur C, r = cte).

[Note : Trajectoires⊥ de cercles centrés sur Ox ; x = λ+R(λ).cos(ϕ), y = R(λ).sin(ϕ). Trajectoires ⊥ :

dy/dx = tan(ϕ)⇒ dϕ/sin(ϕ) = dλ/R(λ) ... R(λ) = cte, tractrice ; R(λ) = λ, cercle tangent à Ox en O.]

4. Exercices. � Antipodaires (orthocaustiques) d’une droite D : paraboles, F = O, tang. au sommet D.

Podaire des coniques à centre/un foyer F : cercle principal C. [Orthot. : hF,2(C) = cercle-dir. de F.]

� Podaire d’une hyperbole équilatère/son centre : Lemniscate de Bernoulli [=Aussi inverse HE/Centre.]

[ (*) tppr d’une conique/Cercle(O, a) : ellipse si O ∈région.foyer, hyperb. si O ext., parab. si O ∈conique.]

� Podaire d’une par./sommet : Cissoïde droite ; /pied de dir. : Strophoïde droite [inverse HE/Sommet] ...
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30.7 Equation intrinsèque R.s = 1 : spirale de Cornu (fig. 4)

Montrer que les courbes
1

R
= s sont, à déplacement près : x =

∫ s

0

cos(u2/2)du, y =
∫ s

0

sin(u2/2)du.

30.8 (*) Au sujet des normales à certaines courbes (...)

1. Une propriété de l’ellipse. Soit (x = a.cos(t) y = b.sin(t)) une ellipse.

La normale en M coupe Ox en P et Oy en Q. Montrer que PM/QM = b2/a2.

2. Sur la parabole. Soit une normale à la parabole y2 = 2px en M , coupant la directrice (x = −p/2)
en N et de centre de courbure C en M . Vérifier que xc+

p

2
= 3.(x+

p

2
) ainsi :

−−→
MC = −2.

−−→
MN .

3. Pour la chainette y = a.ch(
x

a
), si N = Normale ∩Ox, vérifier l’égalité :

−−→
MC = −−−→MN .

4. La normale en M à une cycloïde x = a(t− sint(t)), y = a(1− cos(t) coupe Ox en P et le cercle
qui génère la cycloïde est supposé être MPM1P1 ces 2 derniers points diamétralement opposés.

(a) Vérifier qu’on passe de (M1P1) à (MP ) par une translation de vecteur −2.a−→ . Puis que :

(b) M1 décrit une cycloïde translatée de a.π.−→ı et de tangente en M1 : (M1P1) donc que M1 est le

point caractéristique de (M1P1) 56.1. Si C point caractéristique de (MP ) :
−−−→
M1C = −2.a.−→ ,

d’où la développée de la cycloïde initiale obtenue par translation et
−−→
MC = 2.

−−→
MP = 2.

−−→
MN !

5. Développée de courbe cycloïdale 15.5.5. Soit M un point de la ’roulette’ (contact des 2 cercles en P )

M1, P1 diam. opposés ; h : dr(M,P ) 7→ dr(M1, P1) l’homothétie(O du cercle fixe, rapport
OP1

OP
). La

tangente au lieu de M1 (courbe cycloïdale décalée d’une 1/2 période) est (M1, P1) [normale(P,M1)] : M1

point caractéristique de (M1, P1) ; µ = h−1(M1) p.caract. de (PM) normale (idem à ’Euler-Savary’)

décrit aussi une courbe cycloïdale, la développée. (m = 1 +
a

r
,

Pµ

PM
=

1 − m

1 + m
,

Mµ

MP
=

2m

m + 1
,

Oµ

OM1
=

m − 1

m + 1
).

30.9 (*) Enveloppe de droites et courbes particulières

1. Soit une tige de longueur fixe P (a.cos(t), 0) ∈ Ox, Q(0, a.sin(t) ∈ Oy.

(a) Montrer que l’enveloppe des (P,Q) est une astroïde

(
x = a.cos3(t)
y = a.sin3(t)

)
, t = (−→ı ,−−→OM). [C.I.R.

(non centre de Courbure) M(a.cos(t), a.sin(t)). Point caractéristique I = proj⊥(M, (P,Q).]

(b) Et que l’enveloppe des médiatrices de [P,Q] est une même astroïde mais tournée de 45̊ .

[Point caractéristique J = proj⊥(M,Mediatr.∆) car solide ; si
−−→
OK = 2.

−→
OJ , (I,M) enveloppe

le lieu de K : astroïde 2 fois plus grosse tournée de 45̊ , développée de l’astroïde ; d’où J !]

2. Soit A(a.cos(t), a.sin(t)) et B(a.cos(m.t), a.sin(m.t)), m 6= 1. Vérifier que :

(a) (A,B) a pour équation : x.cos
m+ 1

2
.t+ y.sin

m+ 1

2
.t = a.cos

m− 1

2
.t. (30.6.) Puis

(b) Dm + iD′
m : z.e−i. m+1

2
.t =

a

m+ 1
(ei.

m−1
2

.t + m.e−i. m−1
2

.t) ou z =
a

m+ 1

(
ei.m.t +m.ei.t

)
.

[Courbes cycloïdales aussi, se ramèner à z = ρ
(
m.eit − eim.t

)
] avec t = τ − τ0. cf. 15.5...

3. Avec les tangentes aux courbes cycloïdales : x.sin
m+ 1

2
t − y.cos

m+ 1

2
t = a.

m+ 1

m− 1
sin

m− 1

2
t, on a

l’enveloppe des Dθ (
m+ 1

2
t = θ+

π

2
) : x.cos(θ)+ y.sin(θ) = b.sin(k.θ−ϕ) (courbe initiale) et inver-

sement par rotation de repère k =
m− 1

m+ 1
, b = a.

m+ 1

m− 1
. Par calcul (si on veut aussi) la développée,

enveloppe des D′
θ, a la même forme (30.6, k 6= 1) : c’est donc une courbe cycloïdale semblable !

4. Sur les droites réfléchies sur y = ex, des droites verticales venant de +∞ dans le sens des y.

(a) Equation ? [si f ′(x) = ex = tan(α), pente = tan(
π

2
+ 2.α) =

−1

tan(2.α)
=
e2x − 1

2.ex
= sh(x).]

(b) Enveloppe ? [enveloppe des droites Y − ex = (X − x).sh(x) ; trouver Y = ch(X + 1) !]
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31 Fonctions de plusieurs variables : Continuité

31.1 Continuité de f(x, y) = (1− cos(
√
| x.y |))/ | y | [corrigé]

� La fonction est définie sur R2\∆, ∆ étant y = 0 ; elle y est continue par les théorèmes généraux.

� Peut-on la prolonger par continuïté au point (x0, 0) de ∆ ?

On a 1− cos(
√
| x.y |) ∼

(x,y)→(x0,0)

| x.y |
2

[=
h2

2
] ; donc f(x, y) −→

(x,y)→(x0,0)

| x0 |
2

pour x0 6= 0 et x0 = 0.

Ainsi de poser : f(x0, 0) =
| x0 |

2
prolonge f par continuïté sur tout R2.

31.2 (*) Tangentiels de 3 points alignés d’une cubique : alignés

Le titre correspond au cas particulier 2.(d).

1. Soit Γ une courbe plane algébrique de degré n d’équation F (x, y) ≡
n∑

k=0

ϕk(x, y) = 0 où ϕk est

homogène de degré k ; et soit (Ai)16i6p p points quelconques de ce plan. (Exemple : n = 3, p = 4).

Notons Mi,j = Γ ∩ (AiAi+1), 1 6 j 6 n car n points d’intersection à i fixé ; Ap+1 = A1. Puis :

M =
Ai + λ.Ai+1

1 + λ
, donc

MAi

MAi+1

= −λ ; λi,j correspondant aux Mi,j, 1 6 i 6 p, 1 6 j 6 n.

a) Vérifier que les (λi,j), 1 6 j 6 n, sont racines de

n∑

k=0

(1 + λ)n−kϕk(xi + λxi+1, yi + λyi+1) = 0.

b) Que le coefficient de λn vaut F (Ai+1) ; et que le coefficient constant vaut F (Ai).

c) Que (−1)n
n∏

j=1

λi,j =
F (Ai)

F (Ai+1)
=

n∏

j=1

Mi,jAi

Mi,jAi+1

; et qu’au total :

p∏

i=1

.

n∏

j=1

Mi,jAi

Mi,jAi+1

= 1.

2. On prend maintenant le cas d’une cubique et on suppose connu le théorème de Ménélaüs.

(a) Soit L, L′ deux droites coupant Γ en P,Q,R; P ′, Q′, R′ ; A = QQ′ ∩RR′, etc. Figure ?

(b) Notons P” = (PP ′) ∩ Γ, Q”, R”, idem :

Que dire (avec q.1) de la quantité
PB

PC
.
P ′B

P ′C
.
P”B

P”C
.
QC

QA
.
Q′C

Q′A
.
Q”C

Q”A
.
RA

RB
.
R′A

R′B
.
R”A

R”C
?

(c) Le théorème de Ménélaüs donne
PB

PC
.
QC

QA
.
RA

RB
= 1 et une autre relation ; conclusion ?

(d) Que peut-on déduire dans le cas particulier : P = P ′; Q = Q′; R = R′ ? (tangentes).

(e) Cas des points d’inflexions de Γ. Si la condition d’alignement de 3 points P, Q, R est :

(∗) a.t1t2t3 + b.(t1t2 + t2t3 + t3t1) + c.(t1 + t2 + t3) + d = 0, les points d’inflexions sont

solutions de : at3 + 3bt2 + 3ct+ d = 0, σ1 =
−3b

a
, σ2 =

3c

a
, σ3 =

−d
a

. Que conclure ?

[D’abord, si P = P ′ (tangente) t1 = t2 = t, donne P”(t3 = t′) très facilement (tangentiel),
at2 + 2bt+ c = 0 signifiant que t′ =∞. Puis il y a en génétal 3 points d’inflexion (degré 3)
et pour voir s’ils sont alignés, vérifions (∗) : a.σ3 + b.σ2 + c.σ1 + d = 0 ? Oui, ils sont alignés.]

Notes : � Pour les cubiques, il s’agit du "Théorème de Lamé".

� Les courbes ayant une paramétrisation rationnelle sont dites "unicursales" ; c’est rarement le

cas, même si n = 3 : y2 = x(x2 − 1), 2 morceaux. Mais les coniques sont toutes unicursales.
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32 Fonctions de plusieurs variables : Dérivation

32.1 Soit f(x, y) =
sin(x3)− sin(y3)

x2 + y2
pour (x, y) 6= (0, 0) et f(0, 0) = 0

Montrer qu’on a défini une application C0(R2) avec d.p. partout, non C1 en O(0, 0).

Corrigé : La fonction est C1 hors de (0, 0) par les théorèmes généraux ; donc C0. En (0, 0) :

� Continuïté : d’abord 0 6
x2

x2 + y2
6 1 donc

sin(x3)

x2 + y2
∼

(x,y)→(0,0)

x3

x2 + y2
=

x2

x2 + y2
.x −→

(x,y)→(0,0)
0.

Et de même l’autre terme : Donc f(x, y) −→
(x,y)→(0,0)

0 = f(0, 0). f est C0(R2).

� Existence des dérivées partielles en O(0, 0) : f(x, 0) =
sin(x3)

x2
∼

x→0
x ; donc

f(x, 0)− f(0, 0)

x
−→
x→0

1 :

f ′x(0, 0) existe et vaut +1. Idem f ′y(0, 0) existe et vaut −1.

� f non C1 en O(0, 0). Calculons hors de O : f ′x(x, y) =
cos(x3).3.x2.[x2 + y2]− 2.x.[sin(x3)− sin(y3]

[x2 + y2]2

Donc f ′x(x, x) =
cos(x3).3.x2.[2.x2]

[2.x2]2
−→
x→0

6

4
=

3

2
6= 1. f ′x non continue en O(0, 0).

32.2 Maximum(xyz), M ∈ triangle ABC, x = dist(M, BC), gradient

� Corrigé (*). Faire une figure. Ensuite, les trois variables x, y, z ne sont pas indépendantes car 2

degrés de liberté. En considérant 3 triangles MBC,MCA,MAB : ax+ by + cz = 2.S = cte.

� f(M) = f(x, y) = x.y.[2S − ax− by], continue sur un fermé borné, est bornée et atteint ses bornes.

[Le fermé-borné en (x, y) : x > 0, y > 0, ax+ by 6 2S]. Sur la frontière, minimum : produit nul.

� Le maximum est donc atteint "à l’intérieur" et c’est "un point critique" pour fC1. Un calcul à faire

annulant les d.p. donne alors ax = by = 2S − ax− by qu’il vaut mieux lire ainsi, par symétrie du

problème : ax = by = cz et donc ax = by = cz =
2S

3
ce qui fait au plus un point candidat.

Comme on sait que le maximum est atteint en au moins un point, en ce point et en lui seulement, le

maximum est atteint. (Note : Même pour une fonction d’une variable C0 sur un segment,

le maximum peut être atteint en plusieurs points : sin sur [0, π/2 + 4π].)

� Connait-on ce point géométriquement ? Oui.

1) Tout point M du plan est barycentre de A,B,C non alignés affectés de coefficients judicieux :

Ecrire ∃λ, µ :
−−→
AM = λ.

−−→
AB + µ.

−→
AC et (1− λ, λ, µ) conviennent.

2) Ensuite,
−−→
MA ∧ [α.

−−→
MA + β.

−−→
MB + γ.

−−→
MC] =

−−→
MA ∧ −→0 =

−→
0 , pour M intérieur [notre cas], voir que

β

AireMCA
=

γ

AireMAB
=

α

AireMBC
; en un mot, on a des coefficients barycentriques géométriques !

3) Justement, on a trouvé ici ax = by = cz : 3 aires égales donc c’est l’isobarycentre.

Le maximum du produit est atteint au seul point G, centre de gravité du triangle.

Note (*) : autre utilisation habile du gradient

On donne les 2 droites ensemble (y − ax)(y − bx) = 0. Trouver le faisceau des bissectrices.

1. On peut considérer les hyperboles f(x, y) ≡ (y − ax)(y − bx)− k = 0 et exprimer
−−→
grad(f)(M) col.

à
−−→
OM car ce vecteur est orthogonal à la tangente. Trouver (a+ b)[y2 − x2] + 2(1− ab)xy = 0.

2. Autre solution possible avec de la trigonométrie ...
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32.3 Minimum de MA2 + MB2 + MC2, M ∈ Triangle.ABC, Leibniz

Facile 6= 32.2 : fonction scalaire de Leibnitz [et 6= min(MA +MB +MC) "problème de Fermat" (*)]

� Soit G quelconque, pour le moment et f(M) = α.MA2 + β.MB2 + γ.MC2. Alors :

f(M) = α.(
−−→
MG+

−→
GA)2 + ... = (α+β+γ)MG2 +2

−−→
MG � (α

−→
GA+β

−−→
GB+γ

−−→
GC)+αGA2 +βGB2 +γGC2.

� Cas α+ β + γ 6= 0 : choisissons G barycentre de A,B,C avec coeff. α, β, γ ; on a, par ex. dans

notre cas α = β = γ = 1, f(M) = 3.MG2 +GA2 +GB2 +GC2 = Quantité fixe + 3MG2 :

Il y a donc un minimum, même si M ∈ au plan ABC en entier atteint en G et en G seulement.

Rem. : α.MA2 + β.MB2 + γ.MC2 = cte = k ⇔ MG2 = Cte : Cercle de centre G, si Cte > 0.

� Si α+ β + γ = 0 α.
−−→
MA+ β.

−−→
MB + γ.

−−→
MC =

−→
V indépendant de M ! f(M) = cte⇔ −−→OM �

−→
V = Cte :

Droite sauf si
−→
V =

−→
0 . Ex : (b2− c2)MA2 +(c2−a2)MB2 +(a2− b2)MC2 = 0 : droite d’Euler (O,G.)

Autres : MA2sin(2A)+MB2sin(2B)+MC2sin(2C) =
abc

R
: cercle ABC (contient A). Cercle d’Euler :

MA2 +MB2 +MC2 +MH2 = 4.R2 (A1 pied de hauteur : c2 +CH2 =
BB2

1 + CB2
1

sin2(A)
=

a2

sin2(A)
= 4.R2).

{i} = {M : aMA2 + bMB2 + cMC2 = abc} 2.2.8 ! Cercle(i, r) {M : aMA2 + ... = abc+(a+ b+ c)r2}.

32.4 Soit g C0 ; et f telle que : f(x, y) =
1

x
.

∫ x.y

x

g(t).dt (...)

1. Montrer qu’on peut prolonger f par continuïté sur R2.

2. La fonction prolongée f̃ est-elle C1 ? C2 ?

32.5 (*) Une équation aux dérivées partielles [corrigée]

Résoudre : 2.
∂f

∂f
− ∂f

∂y
= x2y en posant X = x, Y = x+ 2y (bien voir les notations déjà).

On a donc f(x, y) = F (X,Y ) ; écrivons (comme en physique) z = f(x, y) = F (X,Y ), avec

∂z

∂x
désignant

∂f

∂x

∂z

∂X
désigne

∂F

∂X
... règle de la chaîne :

∂z

∂x
=

∂z

∂X
.
∂X

∂x
+
∂z

∂Y
.
∂Y

∂x
.

Après calculs, il semble qu’on arrive à l’équation 2.
∂z

∂X
=

1

2
X2(Y −X) ; voilà la fin :

� Il ne reste qu’à prendre une primitive d’une fonction polynômiale par rapport à la lettre X.

� En notant qu’une constante par rapport à X est une fonction arbitraire d’une variable Y mais dérivable

(ex. : exp, Arctan...) trouver z =
X3.Y

12
− X4

16
+ ϕ(Y ), ϕ arbitraire dérivable ; et remettre x, y ...

32.6 Sur l’inversion, avec différentielle de f. de deux variables

1. Avec
−−→
OM ′ = k.

−−→
OM

OM2
, vérifier que df(M)(−→u ) =

k

OM2
[−→u − 2.(

−→
t .−→u ).

−→
t ] où

−→
t =

−−→
OM

‖−−→OM‖
.

Matrice :
k

ρ2

(
−cos(2θ) −sin(2θ)
−sin(2θ) cos(2θ)

)
.

2. Comme −→u 7→ −→u − 2.(
−→
t .−→u ).

−→
t est la symétrie orthogonale par rapport à

−→
t ⊥ [ayant ‖−→t ‖ = 1] :

déduire que l’inversion géométrique conserve les angles mais change les signes.

(On peut voir que la différentielle de (−→u ,−→v ) 7→ −→u �−→v est (
−→
h ,
−→
k ) 7→ −→u �

−→
k +

−→
h �−→v ; celle de

M 7→ ‖−−→OM‖2 :
−→
h 7→ 2.

−−→
OM �

−→
h ; et déduire que df(M) est une similitude vectorielle indirecte).

3. Déduire que les tangentes aux points A et A′ sont symétriques par rapport à la médiatrice de [A,A′].
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33 Fonctions de plusieurs variables : Intégration

33.1 Calcul de l’intégrale de Gauss avec les intégrales doubles [corrigé]

Il s’agit de l’existence et du calcul de
∫ +∞

0

e−x2
dx.

� Existence.

Comme f(x) = e−x2
> O, β 7→

∫ β

0

f(x)dx = F (β) est croissante ; donc l’intégrale converge ⇔

elle est majorée indépendamment de β. Soit 1 6 β : écrivons
∫ β

0

=

∫ 1

0

+

∫ β

1

= a+G(β).

Il suffit de voir, si 1 6 x 6 β que e−x2
6 e−x et de savoir [évidemment] que

∫ +∞

1

e−xdx converge

[celle-ci peut se calculer par primitive !] pour majorer G(β) et donc F (β).

� Calcul. Soit DR = {x > 0, y > 0, x2 + y2 6 R}, CR = {0 6 x 6 R, 0 6 y 6 R} :

Alors

∫ ∫

DR

e−(x2+y2)dxdy 6

∫ ∫

CR

e−(x2+y2)dxdy 6

∫ ∫

DR.
√

2

e−(x2+y2)dxdy (pourquoi ?)

Calculer les intégrales extrêmes et vérifier que celle du milieu vaut [F (R)]2. Puis conclure.

On a donc
∫ +∞

−∞

e−x2

dx =
√
π qui intervient de manière essentielle en probabilités (par exemple).

Il y a d’autres manières de la calculer ; en particulier avec les intégrales généralisées avec paramètre.

33.2 (*)
∫ ∫

(x2 − y2)dxdy sur l’intérieur de l’ellipse x = a.cos(t), y = a.sin(t)

[x = a.ρ.cos(θ), y = b.ρ.sin(θ) ; jacobien=a.b.ρ ; d’où I =
π.a.b

4
(a2 − b2)].

33.3 Volume commun à 2 cylindres de révolution (même rayon) d’axes ⊥

[16.R3/3] [(*) Pour la surface d’éq. : z = f(x, y), on rappelle que A =
∫ ∫

D

√
1 + p2 + q2 dx.dy.]

33.4 Quelques calculs : une aire non plane et un volume [avec réponses]

de la "Trompette de Gabriel" (*) [Roberval, Torricelli]. L’hyperbole équilatère (H) y =
a2

x
, 0 6 x 6 a

tournant autour de Oy, engendre un volume fini (π.a3) mais une surface non plane infinie.

[Notons qu’on sait calculer aussi l’aire de la "fenêtre de Viviani",

la courbe qui la limite portant le nom d’"hippopède" x = R.cos(t)sin(t), y = R.sin2(t), z = R.cos(t) !]

33.5 Avec les formule de Stockes et d’Ostrogradski, rotationnel, divergence

1. Montrer que

∫

Γ
ydx+ zdy+xdz =

−π.a2

√
2

où Γ : x2 + y2 + z2 = a2∩x+ z = a orientée par −→u



1
0
1


.

2. Flux de : M 7→ −−→OM au travers du tore décrit par le cercle de centre Ω(a, 0, 0), rayon R < a ?

a) div(
−→
V (M) = 3. b) Volume connu : 2.π2a.R2. D’où : φ = 6.π2.a.R2.
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Exercices de programme SPE

34 Compléments sur les Fonctions

34.1 Quelques équivalents à trouver

1. Soit f(x) =
x

ln(x)
. Montrer que c’est une bijection de [e,+∞[ dans [e,+∞[.

Equivalent de f−1(y) en +∞ ?

2. (a) Montrer que : Arccos(x) ∼
x→1

√
2.
√

1− x avec cos(h)− 1 ∼
h→0

−h2

2
.

Puis avec h = Arccos(x) ∼
x→1

sin[Arccos(x)] = +
√

1− x2.

(b) Puis avec Arccos(1− h), h→ 0, en posant : h = 2sin2(u), u > 0 ... (Idem : Argch)

34.2 Dérivée nième de : f(x) =
ln(x)

x
?

34.3 Limite de (tan
3x

2
)tan(3x) en

π−

6

34.4 Une limite théorique très classique

Soit f dérivable en 0+, avec f(0) = 0. lim
n→+∞

n∑

k=1

f(
k

n2
) ?

34.5 Manipulation d’inégalités de convexité (...)

1. Après vérification de la convexité de ln(1 + ex), montrer : 1 + (
∏

xk)
1/n 6

∏
(1 + xk)

1/n xk > 0.

2. Pour xk > 0, montrer x2/x1 + x3/x2 + ...+ xn/xn−1 + x1/xn > n. (xk = exp(tk), exp convexe).

3. (**) Montrer (avec la définition) pour f définie sur ]0,+∞[ : f(1/x) convexe ⇐⇒ x.f(x) convexe.

[(αa+ βb).f(αa+ βb) 6 α.a.f(a) + β.b.f(b)⇔ f(
1

γA+ δ.B
) 6 γ.f(

1

A
) + ... si γ =

αa

αa+ βb
, A =

1

a
... d’où ⇒. Et (⇐) avec (⇒) appliqué à g(1/x) = x.f(x).]

34.6 Pour f C2 dans un voisinage de x0 où f” ne s’annulle pas

Montrer que le "θ” des Accroissements finis est unique et qu’il tend vers 1/2.

34.7 (f C0 sur [a, b], dér. sur ]a, b[, f(a) = 0, | f ′ |6 α. | f |) ⇒ f = 0

Corrigé : F (x) = e−2.α.x.f2(x) est positive, décroissante, nulle en a !

34.8 Au sujet du Théorème de Rolle généralisé (remarque)

Soit f C0 sur [0,+∞[ dérivable sur ]0,+∞[ avec f(0) = lim
x→+∞

f(x). Montrer ∃c ∈]0,+∞[ avec f ′(c) = 0.

34.9 (*) Théorème des Accroissements finis généralisés

Soient f, g C0 sur [a, b] avec g(a) 6= g(b), dérivables sur ]a, b[. Montrer ∃c ∈]a, b[:
f(b)− f(a)

g(b)− g(a) =
f ′(c)
g′(c)

.

D’où la "règle de l’Hôpital" : Ayant f(x)/g(x) une forme indéterminée du type "0/0" en x0,
si f ′(x)/g′(x) tend vers λ, alors f(x)/g(x) aussi. [Et on peut recommencer avec f” et g” ! ]
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34.10 (*) Avec les "polynômes de Lagrange"

1. Soit x0 < ... < xn réels donnés distincts dans [a, b]. On note : Πn+1 =
n∏

i=0

(x− xi) ; et

Li(x) =
∏

j 6=i

(x− xj)

(xi − xj)
=

Πn+1(x)

(x− xi).Π′
n+1(xi)

. Montrer qu’on a une base de Rn[x].

2. Interpolation : Soit f C∞ (pour question suivante) donnée ; Montrer qu’il existe un unique polynôme

Pn ∈ Rn[x] tel que Pn(xi) = f(xi) et alors : Pn(x) =

n∑

i=0

f(xi).Li(x).

3. Erreur : ∀x ∈ [a, b],∃αx : f(x)− Pn(x) =
Πn+1(x)

(n + 1)!
f (n+1)(αx), αx ∈]min(x, x0),max(x, xn)[.

4. Points équidistants. Posons h =
b− a
n

, xi = a+ i.h ; fi = f(xi) ; et ∆fi = fi+1 − fi, 0 6 i 6 n− 1.

Montrer : ∆kfi =

k∑

j=0

(−1)k+jCj
kfi+j, 0 6 i 6 n− k ; et, avec : Qn(s) = Pn(a+ s.h) = Pn(x)

Pn(x) =
n∑

k=0

∆kf0.
s(s− 1)(s − 2)...(s − k + 1)

k!︸ ︷︷ ︸
Nk(s), polynome de Newton

, s =
x− a
h

, s ∈ [0, n] : formule de Newton.

5. (Autre : ∀s ∈ Z, Nk(s) ∈ Z soit avec les Ck
n ou bien avec Nk(s)−Nk(s− 1) = Nk−1(s).)

34.11 (*) Prouver une existence d’une dérivée (...)

Soit t ∈]0, 1[ et f C0 : ]− a, a[−→ R avec
f(x)− f(t.x)

x
−→
x→0

λ.

Montrer que f est dérivable en 0 et calculer f ′(0). (Ind. : remplacer x par x.t, etc. f ′(0) =
λ

1− t .)

34.12 (*) Majoration de dérivée intermédiaire, Mk majorant | f (k) |

1. Sur R. Montrer que ∀k > 0, | f ′ |6 M0

k
+
k.M2

2
. Déduire que | f ′ | est bornée et M1 6

√
2M0M2.

2. Sur [0,+∞[. Montrer que : ∀x > 0, | f ′(x) |6 2M0

h
+
hM2

2
, h > 0. Puis que : M1 6 2.

√
M0M2.

(** Cas [a, b] beaucoup plus difficile, Landau ... Sur R, 25.7 : inégalités de Kolmogorov.)

34.13 (*) Théorème de Darboux (avec le Th. des Accroissements finis)

Montrer que toute fonction dérivée vérifie le Théorème des Valeurs Intermédiaires.

34.14 (*) Soit f telle que fof(x) = a.x + b, a 6= 0 (...)

1. Montrer que f est bijective. Puis en la supposant C0 qu’elle est monotone ; et que a > 0.

2. On suppose f C1 et a 6= 1. Prouver que f est affine (f(ax+ b) = af(x)+ b, f ′ = Cte) et conclure.

34.15 (*) Existence de fonctions C∞ régularisante

1. Montrer que f(x) = e−1/x2
si x 6= 0, f(0) = 0 est C∞ sur R.

2. Montrer que g(x) = 0 si | x |> 1, g(x) = e
1

x2−1 si | x |< 1 est C∞ sur R.

3. Exemple de fonction C∞ sur R nulle si | x |> 2, valant 1 si | x |6 1 ? (Utiliser
∫ x

−1

g(t).dt.)
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35 Compléments sur les Suites

35.1 Cas un+1 = f(un), f(x) = (1− x)2, u0 ∈]0, 1[ intervalle de stabilité

Dessins
x

1,5

1

0

0,5

1,5
0

10,5

1,5

x

1

0

0,5

1,5
0

10,5

Le point fixe de f est répulsif ! (u2p), (u2p+1) convergentes

[à voir] chacune vers un point fixe de fof . Mais fof a 3 points fixes : α = 0 < l < β = 1, l étant point

fixe de f , donc de fof ! (u2p) et (u2p+1) sont convergentes mais vers des limites distinctes ...

35.2 Limite de suites en lien avec des intégrales (...)

1. Soit f continue en 1. Montrer que : n.

∫ 1

0

xn.f(x)dx −→
n→+∞

f(1).

2. Soit In =
1

2.n.π
.

∫ π

−π

sin2(nt/2)

sin2(t/2)
dt, n > 1 ; et Jn =

1

2π
.

∫ π

−π

sin[(n+ 1
2 )t]

sin(t/2)
dt.

Montrer que Jn = 1 ; puis que (n+ 1)In+1 − n.In = Jn = 1 ; et que In = 1.

35.3 Théorème de Césaro et lemme de l’escalier

1. Soit une suite (un) ; on pose vn =
u1 + u2 + ...+ un

n
.

Si un −→
n→+∞

l, montrer qu’il en est de même de vn (l finie ou non). Mais réciproque fausse.

2. Montrer que la réciproque est vraie si, de plus, (un) est monotone.

3. (Lemme de l’escalier, cf. 1.) Soit (xn) telle que xn+1 − xn −→
n→+∞

λ ; montrer que
xn

n
−→

n→+∞
λ.

35.4 Des équivalents avec le théorème de Césaro (...)

1. Soit la suite xn+1 = xn +
1

x2
n

, x0 > 0. Nature de (xn) ? Montrer que x3
n+1 − x3

n −→n→+∞
3.

En déduire, avec le théorème de Césaro, qu’on a l’ équivalent : xn ∼
n→+∞

3
√

3n.

2. De même avec un+1 = sin(un), u0 = 1 et
1

u2
n+1

− 1

u2
n

→ 1

3
; donc un ∼

n→+∞

√
3/n

3. Idem avec xn+1 = xn + e−xn , x0 ∈ R. Avec yn = e−xn ,
1

yn+1
− 1

yn
→ 1 ; donc xn ∼

n→+∞
ln(n).

4. Soit u0, u1 > 0 et un+1 =
un

1 + un.un−1
. Etudier (un). Equivalent de un avec lim

n→+∞
1

u2
n+1

− 1

u2
n

.

5. Soit −1 < u0 < 0, un+1 = un + u2
n. Avec vn+1 − vn, vérifier que vn =

1

un
∼

n→+∞
− n.

Puis avec vn+1 − vn = −1− 1

n
+
ǫn
n

, montrer que : vn = −n− ln(n) +O(1) +

n∑

k=1

ǫk
k

.

Sachant que la dernière somme est négligeable / ln(n) déduire que : un +
1

n
∼

n→+∞
ln(n)

n2
.

35.5 Comparaison des règles de Cauchy et D’Alembert sur les séries

Montrer que si un > 0 et un+1/un → λ, alors : n
√
un → λ (n→ +∞.) [ln possible.]
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35.6 Suite bornée en lien avec la convexité (...)

Soit (an) bornée telle que ∀n ∈ N∗ : an−1 + an+1 > 2.an.

1. On pose dn = an−1 − an ; montrer que (dn) est décroissante ; puis que dn −→
n→+∞

0.

2. Montrer que (an) est décroissante. (On note a sa limite, si utile).

3. Montrer, pour n > p+ 1 : ap − an > (n− p)(an−1 − an) > 0. En déduire la limite de (n.dn).

35.7 Approximation de nombres irrationnels

1. Si x 6∈ Q, n ∈ N∗ montrer ∃ (p, q) avec 1 6 q 6 n : | x− p

q
| < 1

n.q
.

2. En déduire une infinité de couples (p, q) ∈ (ZxN∗ tels que | x−p
q
| < 1

q2
.

Solution : On prend n+ 1 valeurs et k 7→ {kx} = k.x− [k.x] sur [[0, n]] ; on découpe [0, 1[ en n

intervalles [0, 1/n[, ... alors ("tiroirs de Dirichlet") : | q.x− p |< 1

n
; et donc | x−p

q
|< 1

n.q
6

1

q2
.

Puis : | x−pn

qn
|< 1

n.qn
6

1

n
donc les

pn

qn
convergent vers x ; si nombre fini de couples distints, la

suite serait stationnaire à partir d’un certain indice (car convergente) et x serait rationnel ; exclus.

35.8 (*) Equivalent avec le théorème de Césaro : généralisation

Soit une suite (un) convergeant vers 0+, du type un+1 = un − g(un) ; u0 = a ; g continue avec :

1) Sur ]0, a], 0 < g(x) < x ; 2) g(x) << x, x→ 0+ ; et 3) un ∼
n→+∞

vn ⇒ g(un) ∼
n→+∞

g(vn).

Alors : Si
1

g(x)
∼

x→0
h(x) [pour simplifier, éventuellement] et si H est une primitive de h (ainsi par

exemple en prenant H(x) =

∫ x

a
h(t).dt), on a H(un) ∼

n→+∞
− n. Et on inverse H selon les cas.

Exemples : g(x) = xα, α > 1 ; g(x) =
−x
ln(x)

; g(x) = e−1/x [pas de primitive connue ici] ; g(x) = x2.e−1/x.

Rem. Pour un+1 = un−u2
n,
∑

ln
un+1

un
div. (télescopie), donc

∑
un div. (aisément, sans équivalent)

Démonstration : Déjà 1) suffit à montrer la convergence de (un) vers 0, en décroissant.

Ensuite, l’idée vient d’une analogie avec les équations différentielles !
y′

g(y)
= −1 ou h(y).y′ = −1 ...

En toute rigueur, voyons que H(un+1)−H(un)→ −1 : ceci suffit avec le Théorème de Césaro.

On a : H(un+1)−H(un) = (un+1 − un).h(θn) par le théorème des accroissements finis.

Et un+1 6 θn 6 un sont équivalents avec 2). Donc H(un+1)−H(un) équivalent à −1 avec 3).

Les exemples (exercices) :

• Si g(x) = x2.e−1/x, l’hypothèse 3) n’est pas assurée [exemple : x ∼
x→0

x− x2 mais g(x− x2) ≁ g(x)].

Cependant la conclusion est juste.

• Cas g(x) =
−x
ln(x)

:
−1

2
.ln2(un) ∼

n→+∞
− n, ln(un) ∼

n→+∞
−
√

2.n. L’ennui est alors que "un ∼
n→+∞

e−
√

2.n

... " est plus qu’incertain ! (exponentielles d’équivalents en l’infini). En réalité : un ∼
n→+∞

e−
√

2.n/
√

e !

35.9 (*) Soit Rn = (
1

n
)n + (

2

n
)n + ...+ (

n

n
)n. On cherche sa limite (...)

Soit p = E(
√
n) ; on considère : Sn =

n−p−1∑

k=1

(
k

n
)n et Tn =

p∑

j=0

(1− j

n
)n. Vérifier que Sn 6 n.e−

√
n.

Puis, avec α =

√
n√

n− 1
, montrer que e−α.j 6 (1− j

n
)n 6 e−j , j 6 p, et que Tn −→

n→+∞
e

e− 1
. Conclure.
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36 Séries numériques

36.1 Convergence d’une série avec un Développement Limité

Soit un = [(1 +
1

n
)−n − 1

e
]α. Convergence de

∑
un et de

∑
(−1)n.un ?

– Corrigé. On sait que (1 +
1

n
)−n tend vers

1

e
: on le refait en mieux. Et donc un −→

n→+∞
0⇔ α > 0.

– Si la 1ère série est à termes > 0, la 2ème est alternée ... Précisons le [...] avec ln(1 + h) et eh :

Si n > 1 : (1 +
1

n
)−n = exp(−n.( 1

n
− 1

2n2
+

1

3n3
+
ǫn
n3

)) = exp(−1 +
1

2n
− 1

3n2
+
ǫn
n2

)

=
1

e
.exp(

1

2n
− 1

3n2
+
ǫn
n2

) =
1

e
.(1 +

1

2n
− 1

3n2
+
ǫn
n2

+
1

8n2
). Donc [...] =

1

e
.(

1

2n
+

k

n2
+
ǫn
n2

), k = cte.

1. un = [...]α ∼
n→+∞

contante > 0

nα
: convergence ⇔ α > 1. (−1)n.un si α > 0, CN de convergence :

2. (−1)n.un =
(−1)n

(2e.n)α
(1 +

K

n
+
ǫn
n

)α =
(−1)n

(2e.n)α
(1 +

K.α

n
+
ǫ′n
n

). Série alternée qui est somme d’une

série semi-convergente et d’une série Absolument convergente
(−1)n

(2e.n)α
(
K.α

n
+
ǫ′n
n

) : convergente.

36.2 x + ln(x) = n a une unique racine un.
∑

1/un,
∑

(−1)n/un

Corrigé. C’est un cas où un est défini implicitement (sans pouvoir l’expliciter).

On fait un dessin de f(x) = x+ ln(x) ; elle est C0, strictement croisante, même concave

(f”(x) = −1/x2 < 0) et possède une branche parabolique de direction asymptotique y = x (ce

qui est f(x)/x tend vers 1 et f(x)− x tend vers +∞ en +∞)

y

x

6

8

4

2

6
0

420

Notons : f(1) = 1.

Ainsi : f−1 existe, est continue, croissante et bijective de [1,+∞[ dans [1,+∞[. Et donc :

un = f−1(n) est aussi croissante et tend vers +∞ (un croissante ; si majorée, on ne pourrait avoir

un + ln(un) = n −→
n→+∞

+∞). ln(un) << un et donc n = un + ln(un) ∼
n→+∞

un. un ∼
n→+∞

n.

D’où
∑

1/un est divergente par équivalent pour les séries à termes positifs et∑
(−1)n/un convergente par le Th. spécial des séries alternées car 1/un est aussi décroissant.

(Ajout sans réponse ! Voir que un = n− ln(n) + ǫn.)

36.3 Convergence et somme de série (par télescopie)

1. De la série de terme général : un = Arctan(
1

n2 + n+ 1
). (Arctan(n+ 1)−Arctan(n).)

2. De la série de terme général : un = ln(1 +
2

(n+ 1)(n + 4)
). (ln(3).)

3. Montrer que
∑

n>2

ln(1− 1

n2
) est une série convergente de somme −ln(2).

4. Montrer que
∑

n>2

ln(1 +
(−1)n

n
) est une série convergente de somme nulle.

5.
∞∑

k=1

(−1)k.ln(k)

k
= γ.ln(2)− ln2(2)

2
avec

n∑

k=1

ln(k)

k
− ln2(n)

2
conv. vers λ, valeur inutile.
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36.4 Nature de la série de terme général un (...)

1. un = sin(π.
√
n2 + 1) (Dl3 de

√
1 + 1/n2, somme d’une série semi-conv. et d’une série abs. conv.)

2. un = ln(1 +
(−1)n

√
n

) vn =
(−1)n

√
n+ (−1)n

wn = ln(

√
n+ (−1)n

√
n+ a

) (Convergence ⇔ a = −1)

Corrigé de (1) On a : π.
√
n2 + 1 = π.n.(1 +

1

2n2
+O(

1

n4
)) = π.n+

π

2n
+O(

1

n3
).

Avec sin(n.π + h) = (−1)n.sin(h), et sin(h) = h+O(h3), on déduit : un = (−1)n.[
π

2n
+O(

1

n3
)].

La série apparait comme somme d’une série semi-convergente par le Théorème des séries alternées

et d’une série absolument convergente ; donc convergente.
Attention

� un ∼
n→+∞

vn ⇒ séries
∑

un et
∑

vn sont de même nature à condition que un soit de signe constant.

�
∑

(−1)n

√
n

semi-convergente par le Théorème des séries alternées mais
∑

ln(1+
(−1)n

√
n

) diverge, bien

que un et vn équivalents. Car ln(1+
(−1)n

√
n

) =
(−1)n

√
n
− 1

2n
+O(

1

n.
√

n
) somme de 3 séries respectivement

semi-conv./div./absolument conv. ; donc divergente. D’où | un |, | vn | n’ont pas la même monotonie !

36.5 Somme d’une série et comparaison avec 1/nα

1. Soit 0 < a < b et u1 > 0. On suppose que :
un+1

un
=
n+ a

n+ b
.

� Trouver α : la suite vn = ln(nα.un) converge. (Equivalent de vn+1 − vn ; trouver α = b− a.)
� CNS sur (a, b) pour que

∑

n>1

un converge. (b− a > 1.) Ceci étant on trouve, ici, la somme !

� Convergence de la série de terme (n+ 1)un+1 − n.un ; conclure que S = b.u1/(b− a− 1).

2. Rem. : comparaison logarithmique. Si un > 0, vn > 0 ; et ∀n > n0 : un+1/un 6 vn+1/vn, alors :

un 6 k.vn, k = un0/vn0 . Avec an = 1/nα, an+1/an = 1−α/n+ ǫn/n, d’où la "Règle de Duhamel" !

36.6 (*) On suppose
∑ un

n
convergente. Alors : (

∑
uk)k6n /n→ 0

Corrigé : Posons Vn =
n∑

k=1

uk

k
−→

n→+∞
V . Alors un = n.[Vn − Vn−1]. D’où :

∑

k6n

uk =
∑

k.Vk −
∑

k.Vk−1 = −V0 − V1 − ...− Vn−1 + n.Vn. Et Théorème de Césaro.

36.7 (*) Si (un) décroissante et série convergente, alors : n.un → 0

Corrigé. Faire une "transformation d’Abel" (comme une intégration par parties) :
∑

16k6n

uk =
∑

16k6n

[k − (k − 1)]uk =
∑

16k6n

k.uk−
∑

16l6n

l.ul+1 + n.un+1 =
∑

16k6n

k[uk − uk+1] + n.un+1.

Donc
∑

16k6n

k[uk − uk+1] a une limite finie car croissante majorée. Par conséquent n.un+1 a une

limite finie λ. La convergence de
∑

un exige alors que λ = 0, car la série harmonique diverge.

Autre corrigé. Vu que la série converge, un → 0 ; et comme un décroissante, un > 0 ; d”où :

0 6 p.u2p 6 up+1...+ u2p donc 2p.u2p → 0 ; 0 6 (2p+ 1)u2p+1 6 u2p+1 + 2p.u2p tend aussi vers 0.

Remarque. si
∑

un est une série à termes positifs, convergente, sans autre hypothèse, soit Rn le

reste ; alors : (*)
∑

n.un et
∑

Rn sont de même nature. Et sommes égales si convergence.

n∑

k=1

k.uk =
∑

k(Rk−1 −Rk) =
n−1∑

k=0

Rk − nRn. Si
∑

k.uk conv., 0 6 nRn 6
∑

k>n+1

k.uk ; d’où un sens.

Inversement,
∑

Rk convergente ⇒
∑

k.uk conv. (car majorée) ; alors, même somme est déjà vu.
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36.8 (*) Calculs de somme de séries en lien avec des intégrales

1. Montrer que :

+∞∑

n=0

(−1)n

α.n + β
=

∫ 1

0

tβ−1.dt

1 + tα
; α > 0 , β > 0. Si α = 3, β = 1 :

1

3
(ln(2) +

π√
3
).

2. Montrer que :
∑

n>n0

1

(n− α).(n − β)
=

1

α− β .
∫ 1

0

[tn0−1−α − tn0−1−β].dt

1− t , n0 > α > β.

36.9 Montrer la formule d’Euler sur les nombres premiers pn

1. Soit s > 1. Montrer la convergence de la suite Pn =
∏

06k6n

1

1− 1
ps

k

et que lim
n→+∞

Pn =
∑

n>1

1

ns
.

2. (*) En déduire que la série de terme général
1

pn
diverge.

36.10 Série convergente/un+1 équivalent à un > 0 : un = o(Rn)

Corrigé : (Ex. : un ∼
n→+∞

1

na
, a > 1.) Soit ǫ ∈]0, 1/2]. ∃N > 0 : p > N =⇒ up+1 > (1− ǫ)up.

Donc si n > N : un + un+1 + un+2 + ... > un + (1− ǫ).un + (1− ǫ)2.un + (1− ǫ)3.un + ... = un.
1

ǫ
.

D’où : un = o(Rn−1) donc : un = ∼
n→+∞

un+1 = o(Rn).

36.11 (*) Sur la formule de Stirling (avec diverses précisions ...)

1. Avec

∫ n

n−1
(t−n− 1

2
)′.ln(t)dt, si un =

∫ n

n−1
ln(t)dt− ln(n− 1) + ln(n)

2
: un =

1

12n2
+

1

12n3
+O(

1

n4
).

2. En déduire que ln(n!) = (n+
1

2
).ln(n)− n+ 1−

n∑

p=2

up et Rn =
+∞∑

k=n+1

uk ∼
n→+∞

ρn =
1

12.n
;

3. Précisons : avec q.1, montrer que vn = ρn−1 − ρn =
1

12(n − 1)
− 1

12.n
= un +O(

1

n4
) ; puis que

4. u′n = un − vn = O(
1

n4
)⇒

∑

p>n+1

u′p = O(
1

n3
), ln(n!) = (n+

1

2
).ln(n)− n+ 1− S +

1

12.n
+O(

1

n3
).

5. D’où n! = nn+1/2.e−n.K.exp
(

1

12.n
+ O(

1

n3
)
)

= ... et K =
√

2.π (par les intégrales de Wallis (*).)

36.12 Accélération de convergence γ =
∑

un, un =
1

n
− ln(1 +

1

n
)

1. Monter la convergence de la série
∑

un et qu’on a aussi γ = lim
n→+∞

(
∑

16k6n

1

k
−ln(n)).

2. Si vk =
1

2k
− 1

2(k + 1)
+

1

12k2
− 1

12(k + 1)2
, montrer que uk − vk = O(

1

k5
). En déduire que :

3. γ =
∑

16k6n

1

k
−ln(n+1)+

1

2(n+ 1)
+

1

12(n+ 1)2
+O(

1

n4
). [n = 4, S4 ≃ 0, 47. 0, 57722 : erreur < 2.10−5.]

36.13 Convergence et somme de la série un = (−1)nsin(n)/n 54.7

1. Vérifier que : cos(
t

2
).

n∑

k=1

(−1)k.cos(kt) =
1

2
.[(−1)n.cos(

2n+ 1

2
t)− cos( t

2
)] .

2. Montrer la convergence de la série et justifier que la somme vaut :
∑

n>1

un =
−1

2
.

[Tout faire en même temps ; ou bien Sn =
∑

k6n

(−1)k.sin(k) borné et transformation d’Abel.]
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36.14 (*) Développement asymptotique d’une suite grâce aux séries

1. Sommation de comparaisons ; soit vn > 0 :

(a) Si
∑

vn converge. Si un << vn : Rn << R′
n. Si un ∼

n→+∞
vn : Rn ∼

n→+∞
R′

n ; (vrai avec O)

(b) (*) Si
∑

vn diverge. Si un << vn : Sn << S′
n. Si un ∼

n→+∞
vn : Sn ∼

n→+∞
S′

n ; (idem)

2. Convergence de la suite : x0 ∈]− 1, 0[ et xn+1 = xn + x2
n. En déduire, avec yn = −1/xn,

que yn+1 − yn = 1 +
1

yn − 1
; et que xn =

−1

n
+
ln(n)

n2
+
ln(n)

n2
.ǫn.

36.15 (*) Si un > 0, étudier
∑

un/R
α
n−1 si

∑
un convergente,

∑
un/S

α
n sinon

1. Cas
∑

un convergente. α > 1 :
∑

vn divergente. Car α = 1 : 1− vn =
Rn

Rn−1
,
∏

(1− vn) tend

vers 0,
∑

ln(1− vn) div. vers −∞. Si vn tend vers 0, vn ∼
n→+∞

− ln(1− vn) div. et sinon div. aussi !

Si α < 1,
∑

vn convergente. Car
un

Rα
n−1

=

∫ Rn−1

Rn

dt

Rα
n−1

6

∫ Rn−1

Rn

dt

tα
et α < 1 : convergence.

2. Cas (un) divergente. Si 0 < α 6 1,
∑

vn divergente. Cas α = 1 : 1− vn =
Sn−1

Sn
,
∏

(1− vk) tend

vers 0,
∑

ln(1− vk) vers −∞. Si vn ne tend pas vers 0, divergence ! sinon, vn ∼
n→+∞

− ln(1− vn).

Si α > 1,
∑

vn convergente. Car
un

Sα
n

=

∫ Sn

Sn−1

dt

Sα
n

6

∫ Sn

Sn−1

dt

tα
et α > 1 : convergence.

36.16 (*) Somme avec les coefficients binômiaux. L’égalité :
∑

n>p

1

Cp
n

=
p

p− 1

1.
(

n + p
p

)
= Cp

n+p ; et si un = 1/
(

n + p
p

)
, vérifier que : (n+ p+ 1).un+1 = (n+ 1).un.

2. On pose Sn =
n∑

k=1

uk. Montrer, par télescopie, que (p − 1).Sn = 1− (n+ 1).un. Conclure.

36.17 (*) Soit
p

q
∈ Q ∩ [0, 1]. Trouver ai < i ∈ N tels que

p

q
=
∑

i>2

ai

i!
. Cas de

4

7

Note. l’écriture n’est pas unique :
1

2
=

1

2!
=
∑

k>3

k − 1

k!
; et

4

7
=

1

2!
+

1

4!
+

3

5!
+

3

6!
+

3

7!
. Etc.

36.18 (*) Un certain développement de x ∈]0, 1] (...)

Montrer que x = lim
n→+∞

(
1

p0
+ ...+

1

p0...pn
) avec p0 > 2, pn+1 > pn. Et : (pn) stationnaire ⇒ x ∈ Q ...

(Au départ, montrer l’existence de p0 tel que : x ∈]
1

p0
,

1

p0 − 1
] ; etc.)
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37 Suites et Séries de fonctions

37.1 Etude de la convergence simple et uniforme

1. De la suite de fonctions x 7→ xn sur [0, 1[.

2. De la série de fonctions x 7→ xn sur [0, 1[.

3. (a) (*) Montrer le Théorème de Dini :

Si fn C.S. vers f ; fn, f C
0 sur un compact ; et si la suite (fn)n est croissante : il y a C.U.

(b) Utilisation de (a) : La suite P0 = O, Pn+1 = Pn+
1

2
(x− P 2

n(x)) C.U. vers
√
x sur [0, 1].

4. Montrer cette question de cours : Si fn Riemann-intégrable, C.U. vers f sur [a, b], alors :

f est R-intégrable et Fn(x) =

∫ x

a
fn(t).dt C.U. vers

∫ x

a
f(t).dt ; même

∫ b

a
| f − fn | dt→ 0.

37.2 Suite de polynômes convergeant uniformément sur R+ vers P (x)

(A partir d’un certain indice, forcément : Pn = P + ǫn)

37.3 Est-on, ou non, dans un cas de convergence uniforme ?

1. Polynômes de Lagrange avec subdivision régulière.

Soit f C∞[a, b]. On suppose les dérivées uniformémént bornées : ∃M tel que sup | f (k) | 6 M .

Alors les polynômes de Lagrange associés aux subdivisions régulières convergent uniformément vers
f sur [a, b] (utilité des hypothèses ! 34.10.)

Cas f à valeurs dans R : Th de Rolle. Avec xj = a+ j.
b − a
n

, f(x)− Pn(x) =

n∏

j=1

(x− xj).
f (n+1)(αx)

(n+ 1)!

Cas f à valeurs dans C : ce qui précède pour parties réelles et imaginaires.

2. Convergence simple, puis uniforme sur R, de : fn(x) =
1

1+ | x− n | ?

Vérifier que

∫

R

f2
n(x).dx = 2. Soit g C0 telle que g2 soit intégrable ; verifier que In =

∫

R

fn.g

existe et que In tend vers 0 si n→ +∞ (* avec
∫ −A

−∞

+

∫ A

−A

+

∫ +∞

A

.)

37.4 Echange de symboles : intégrale et somme de série

1. Cas où c’est faux. Si fn(x) =
2n.x

1 + n.2n.x2
, vérifier que lim

n→+∞

∫ 1

0
fn(x)dx 6=

∫ 1

0
( lim
n→+∞

fn(x))dx.

2. Un cas où c’est juste. Un Théorème rappelé (*) :

(1) un(x) continues par morceaux (CM)

(2)
∑

un(x) converge simplement et
∑

un(x) CM

(3)
∑∫

I

| un(x) | dx converge, alors
∫

I

∑
un existe et vaut

∑

n>0

∫

I

un.

37.5 Convergence uniforme mais pas "normale"

1. Montrer que la série un(x) =
x.e−n.x

ln(n)
converge uniformément sur R+ mais pas normalement.

2. Donner un autre exemple. [un(x) = (−1)n/(n+ 1), même sur R !]
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38 Séries entières

38.1 Le Lemme d’Abel. Des exemples

1. Si la série entière
∑

an.z
n est telle que an.r

n est bornée, r ∈ R+, montrer que la série

converge absolument pour les z tels que | z |< r.

[Ecrire : | an.z
n |=| an | .rn.(

| z |
r

)n 6 M(
| z |
r

)n. Puis R = sup(r) ...]

2. Exemples. 1) Rayon de
+∞∑

n=1

an.z
n où an= somme des diviseurs de n ? [1 6 an 6 n2 ⇒ ... R = 1].

2) de
+∞∑

n=1

3n.z2n ? [Etudier la convergence absolue de cette série considérée comme numérique par

la règle de D’Alembert, par exemple :
un+1

un
−→

n→+∞
3. | z |2. Donc R =

1√
3
. Elle est géométrique !]

38.2 Des calculs de rayons de convergence

de
∑ nn

n!
zn ; de

∑
anz

n où an est la nème décimale de π.

38.3 Convergence suivi d’un calcul de somme

de
∑

an.z
n où an = 2n3 − 3n2 + 1 ; puis an =

n3

n!
.

38.4 D.S.E. avec une équation différentielle

1. Vérifier que f(x) = Arcsin2(x) vérifie : (1− x2)y”− x.y′ = 2.

2. En déduire que f est Développable en S.E sur ]− 1, 1[. Trouver ce D.S.E. (pair).

38.5 D’autres calculs de rayon de convergence

1. On suppose que f(x) =
∑

an.z
n a un rayon de convergence R > 0.

Montrer que g(x) =
∑

an.z
n/n! possède un rayon infini. [Prendre z0 6= 0 tel que anz

n
0

bornée.] Montrer ensuite que, si x >
1

R
:

1

x
.f(

1

x
) =

∫ +∞

0

e−x.t.g(t).dt

2. On suppose que
∑

an.z
n a un rayon de convergence R > 0. Rayon de

∑
an.z

2n ? de
∑

a2
n.z

n ?

[Réponse :
√
R; R2.]

3. Cas : an = sin(n) ; an = nn/n! ; a3p = 0, a3p+1 = 22p+1, a3p+2 = 22p+2 ; an = (1 +
(−1)n

n
)n

2
.

38.6 Une égalité en utilisant le produit de Cauchy

1. Soit An =
∑

06k6n

ak, une suite convergente. En déduire que
∑

an.x
n a un rayon R > 1.

Et montrer que, sur ]− 1, 1[ : (1− x).
∑

n>0

An.x
n =

∑

n>0

an.x
n avec le produit de Cauchy.

2. Soit Hn =
n∑

k=1

1

k
; montrer que R = 1 pour

∑
Hn.x

n et que :
∑

n>1

Hn.x
n = − ln(1− x)

1− x .
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38.7 Soit a0 = 1, an+1 =
∑

06k6n

ak.an−k ; S(x) =
∑

anx
n 6= 39.4

1. On suppose R > 0. Montrer que x.S2(x) + 1 = S(x) sur ]−R,R[.

2. En déduire S(x) et an puis R. [Trouver an =
(2n)!

n!(n+ 1)!
qui est donc entier. Vérifié.]

3. En déduire le nombre de façons de calculer x1 ∗ ... ∗ xn (par des parenthèses) pour une loi

non associative. (Nombres de Catalan.)

38.8 Utilisation d’une série entière pour une série numérique

1. Vérifier que f(x) =
Arcsin(x)√

1− x2
est solution de (1− x2).y′ − x.y = 1. (∗)

2. Montrer que les solutions de (∗) sont : (avec Cn
2n =

(
2n
n

)
.)

y(x) = a0

+∞∑

n=0

1

22n
Cn

2n.x
2n +

+∞∑

n=0

22n

(2n+ 1).Cn
2n

x2n+1, an+1 =
n

n+ 1
an−1. Rayon de convergence ?

3. En déduire que : f ′(x) =
+∞∑

n=0

(2.x)2n

Cn
2n

. Puis que :
+∞∑

n=0

1

Cn
2n

=
36 + 2.π.

√
3

27
.

38.9 Autre façon d’obtenir certaines intégrales de Wallis

Vérifier, pour | x |< 1 que :
∑

n>0

xn.

∫ π/2

0
cos2n(t).dt =

∫ π/2

0

dt

1− x.cos2(t) =
π

2.
√

1− x .

[Rappelons que le cas génétal des intégrales de Wallis est In =
∫ π/2

0

cosn(t).dt.]

38.10 Quelques développements en série entière (D.S.E.)

1. Soit f(x) =

+∞∑

n=0

(2x− x2)n. Domaine de définition ? [C’est ]1−
√

2, 1 +
√

2[ \ {1}.]

Puis domaine sur lequel elle est développable en série entière (DSE) ? [Somme connue ; ]1−
√

2, 1[ !]

2. Développer f(x) = Arctan
1

x+ 1
en série entière (autour de 0).

[En (−1)+ et (−1)− les limites sont différentes ! Ecrivons si x > −1, f(x) =
π

2
−Arctan(x+1) =

π

2
− g(x), on trouve que g (avec g′) est DSE sur ]−

√
2,+
√

2[. Donc f est DSE sur ]− 1,
√

2[.

(On trouve que g′(x) =
1

(x+ 1 + i)(x+ 1− i) =
1

2.i

(
1

x+ 1− i −
1

x+ 1 + i

)
= ℑm(

1

x+ 1− i).

On écrit
1

(1− i).(1 + x
1−i)

: g′(x) = ℑm
∑

k>0

(−1)k.xk.ei(k+1).π/4

√
2

k+1
=
∑

k>0

(−1)k.xk.sin((k + 1).π/4)
√

2
k+1

;

d’où g(x) = ... On ne peut pas excéder
√

2 pour g car le terme général est alors non borné.

Autre note utile : en un point de l’ouvert de convergence : la fonction localement bornée aussi).]

38.11 Une série numérique avec le D.S.E. de la fonction exp

Montrer que :

+∞∑

n=1

1

nn
=

∫ 1

0

1

xx
.dx.
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38.12 Montrer que f(x) = ex2

.

∫ x

0

e−t2dt est D. S. E. (E.D.L.)

[Corrigé. Trouver : f ′(x) = 1 + 2.x.f(x). La clé est le Théorème de Cauchy-Lipschitz qui dit

que (y′ − 2xy = 1, y(0) = 0) possède une unique solution ! Or f est solution ; et par calcul

une solution est D.S.E. avec un rayon R > 0. A finir (...)]

38.13 Trouver f(x) =
∑ In

n!
.xn avec In =

∫ e

1

lnn(t).dt

1. Montrer que In, n > 0, est décroissante vers 0 ; nature de
∑

(−1)n.In ?

2. Vérifier que In+1 = e− (n+ 1).In ; d’où un équivalent de In et la nature de
∑

Iα
n

3. Rayon de convergence de
∑ In

n!
.xn ? Vérifier que f(x)− I0 = e.(ex − 1)− x.f(x) ; conclure.

38.14 Trouver f(x) =
∑

anxn avec an =
∫ π/4

0

tann(t).dt

1. Calculer a0 et a1. Montrer que (an) converge vers l 6 1.

2. Vérifier que an + an+2 =
1

n+ 1
; en déduire l.

3. Rayon de convergence de
∑

anx
n ; puis montrer que (x2 + 1).f(x)− a0 − a1.x = −x.ln(1− x).

38.15 Vérifier que
x.sin(a)

x2 − 2.x.cos(a) + 1
=
∑

n>1

xn.sin(n.a) , | x |< 1

.

38.16 Equivalent de la fonction : f(x) =
∑

n>0

xn2

, en 1−

Rayon de convergence ? Puis montrer que f(x).
√

1− x −→
x→1

√
π

2
. (On donne :

∫ +∞

0

et2.ln(x)dt =
1

2
.

√
π

−ln(x)
.) (**) Note : La limite au point −1 est

1

2
; cf. ici 39.2 fin.

38.17 CNS pour avoir un DSE au voisinage de 0

1. CNS à montrer : ∃ M,ρ, h strictement positifs tels que ∀x ∈ [−h, h],∀n : | f (n)(x) |6 M.ρn.n!

2. Corrigé : CN. Fixons 0 < h < r < R : f (n)(x) =
∑

k>0

(k + n)...(k + 1)ak+nx
k.

Or (rp.ap) bornée par K (en module) ; d’où :

| f (n)(x) |6
∑

k>0

(k+n)...(k+1) | ak+nr
k+n | . | x

r
|k . 1

rn
6
K

rn

∑

k>0

(k+n)...(k+1(
h

r
)k =

K

rn

n!

(1− h
r )n+1

.

Prendre : M =
K

1− h
r

et ρ =
1

r − h .

CS. Avec Taylor avec reste intégral, on obtient : | Rn(x) |6 M.ρn+1. | x |n+1.

Donc f DSE sur ]− α,α[ avec α = min(1/ρ, h).
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39 Compléments sur les Séries entières

39.1 Formules de Newton pour somme des puissances de racines

Soit P (X) = Xp + ...+ ap = 0, ap 6= 0. On utilise ici un DSE.

1. Montrer que :
P ′(t)

P (t)
=
∑ 1

t− λj
(racines distinctes ou bien non).

2. Déduire que :
P ′(1/t)

P (1/t)
=

+∞∑

n=0

Sn.t
n+1 (DSE pour chaque | λj.t |< 1.)

3. En déduire : Si n > p : Sn + a1Sn−1 + ...+ ap.Sn−p = 0

et si n < p : Sn + a1Sn−1 + ...+ an−1.S1 + n.an = 0.

39.2 (*) Un théorème sur le bord pour les séries entières (Abel)

1. Enoncé.

Soit :
∑

n>0

anx
n = f(x), de rayon R > 0. Si

∑
an.R

n converge, alors

f est continue sur [0, R] (et donc f(R) = lim
x→R

∑

n>0

an.x
n).

2. [Corrigé guidé] � Montrer qu’on peut se ramener à R = 1, ce que l’on fera.

� Soit S =

+∞∑

k=0

ak ; et Rn =

+∞∑

k=n+1

ak. Montrer sur [0, 1[ : f(x)− S = −
+∞∑

n=0

Rn(xn − xn+1).

(Transformation d’Abel classique, et noter que : R−1 = S.)

� Découper
+∞∑

n=0

=

n0∑

n=0

+

+∞∑

n0+1

etc. Note : Si an = (−1)n+1.n, la suite des sommes partielles Sn diverge

[S2n = −n, S2n+1 = n+ 1], même au sens de Césaro ; mais converge au sens d’Abel vers 1/4 !

3. Deux remarques. Inversement, si f(x)−→
x→1

L, L finie, a-t-on
∑

n>0

an convergente ?

C’est un énoncé "taubérien" : "non" en général (f(x) =
1

1 + x
) mais "oui" si an = O(

1

n
) : théorème

taubérien fort de Hardy-Littlewood. Preuve si an = o(
1

n
) (Tauber) ; soit Mn = supk>n | k.ak | :

– Montrer que Mn existe et converge vers 0. Puis que :

– un = L−
∑

06k6n

ak = L− f(x) +
∑

06k6n

ak.(x
k − 1) +

∑

k>n+1

ak.x
k. Et que :

– | un | 6 | L− f(x) | +
∑

06k6n

| ak | .(1 − xk) +
Mn

n.(1− x) et encore que :

– | un | 6 | L− f(x) | +(1− x).
∑

06k6n

k. | ak | +
Mn

n.(1− x) .

– Avec : 1− x = 1/n, et la moyenne de Césaro pour le terme central, conclure.

Théorème (Frobénius, 1880).
∑

an Césaro-conv. : σn = (
∑

06k6n−1

sk)/n conv.⇒ Abel-conv. de même somme :

∑

n>0

anx
n = (1−x)

∑

n>0

snx
n [snx

n → 0 ou prod. de C.] = (1−x)2
∑

n>0

(s0+...+sn)xn = S+

∑
(n + 1)(σn+1 − S)xn

∑
(n + 1)xn

et la dernière fraction tend vers 0 vu l’hypothèse σn+1 → S quand x→ 1 : exercice.

39.3 Un exemple de calcul sur le cercle de convergence (...)

Convergence et somme de
∑

n>0

an.z
n où an =

1

4n+ 1
. En déduire :

∑

n>0

(−1)n

4n+ 1
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39.4 Quelques autres développements en série entière (...)

1. DSE de tan(x) ; R ? (Autre utilisation d’une éq. différentielle). [Solution : suite (an) 6= 38.7.]

� Sol. de y′ = 1 + y2, y(0) = 0 sur ]− π

2
,
π

2
[ : y(x) =

+∞∑

n=0

anx
n, a1 = 1 et an+1 =

1

n+ 1

n∑

k=0

ak.an−k.

Alors forcément : | an |6 1, R > 1. Par unicité de la solution, tan est DSE et R > 1.

� Par la formule de Leibnitz, y(n+1) =
n∑

k=0

Ck
n.y

(k).y(n−k) donc dérivées positives sur [0,
π

2
[.

� D’où tan(x) =
n∑

k=0

akx
k +Rn(x) et sur [0,

π

2
[ : 0 6 Rn(x) ou Sn(x) 6 tan(x) ; croissante majorée,

converge : R >
π

2
. Et cette série vérifie l’éq. diff. : c’est tan ! R 6

π

2
car tan non bornée en

π

2

−
.

2. Remarque. cot liée aux "nombres de Bernouilli" ; donc tan aussi car tan(t) = cot(t)− 2.cot(2t).

3. Plus généralement, si f C∞]− α,α[ paire ou impaire, a des dérivées positives sur [0, α[, alors

f est DSE sur ]− α,α[. [Si 0 6 x < y, on montre que : Rn(x) 6 (
x

y
)n.Rn(y) 6 (

x

y
)n.f(y) :

Comme le cas précédent, sauf qu’il faut montrer que la série converge vers f ou que le reste

tend vers 0 sur (0, α(. Ecrire Rn(x) =

∫ x

0

(x− t)n
n!

f (n+1)(t)dt =

∫ x

0

(x− t)n(y − t)n
(y − t)n.n!

f (n+1)(t)dt

6 (
x

y
)n.

∫ x

0

(y − t)n
n!

f (n+1)(t)dt 6 (
x

y
)n.Rn(y) 6 (

x

y
)n.f(y).]

39.5 (*) Calcul avec la transformation d’Abel 38.15 54.7

1. Montrer si α ∈]0, 2.π[ :

+∞∑

n=1

ei.n.α

n
=
−ln(2)

2
− ln[1− cos(α)]

2
+
i.(π − α)

2
(et la convergence) !

2. Corrigé. Si An =

n∑

k=0

eikα, An =
1− ei(n+1)α

1− eiα donc | An |6
2

| 1− eiα | = M . Alors, transf. d’Abel

Sn =

n∑

k=1

eikα

k
=
∑ Ak −Ak−1

k
=
∑ Ak

k
−
∑ Ak−1

k
=
An

n
− A0

1
+

n−1∑

k=1

Ak.(
1

k
− 1

k + 1
) avec

An

n
tend vers 0 et série abs. conv. Le 1er terme vaut aussi : −ln(2.sin

α

2
.)

Considérons la série entière
+∞∑

n=1

ei.nα

n
xn. R = 1 et si x ∈]−1, 1[, f ′(x) = ... =

eiα − x
x2 − 2xcos(α) + 1

... :

f(x) =

+∞∑

n=1

ei.nα

n
xn = −1

2
ln(x2 − 2xcos(α) + 1) + i.Arctan(

x− cos(α)

sin(α)
) + cte. Puis, si α 6= π,

cte = i.Arctan(cot(α)). Avec Arctan(a)+Arctan(b) = Arctan
a+ b

1− ab si a.b < 1 [x.cos(α) < 1] :

ℑm f(x) = Arctan(
x.sin(α)

1− x.cos(α)
) ou :

+∞∑

n=1

xn.sin(n.α)

n
= Arctan(

x.sin(α)

1− x.cos(α)
) pour x ∈]−1, 1[.

Faire ensuite tendre x vers 1− selon le théorème d’Abel 39.2. Arctan(X) =
π

2
−Arccot(X) ...

Quand | x | < 1, α quelc. ! Autre méthode avec les séries de Fourier. 54.7.
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40 Equations différentielles

40.1 (*) Résoudre (1 + x2)y” + x.y′ − 4.y = 0 avec x = sh(t)

Corrigé : y = f(x) = f [sh(t)] = g(t) ; y′ designe f ′(x) ;
.
Y désignera g′(t) ; y(x) = Y (t).

D’où y′ =
.

Y .
1

ch(t)
avec la dérivation des fonctions composées et des fonctions réciproques

dt

dx
=

1
dx
dt

.

Dérivons à nouveau y” =
..

Y .
1

ch2(t)
−

.

Y .
sh(t)

ch3(t)
. Et, en reportant :

..
Y − 4.Y = 0 qui est facile !

D’où Y = λ.e2t + µ.e−2t = A.ch(2t) +B.sh(2t) ; et y = A.(2x2 + 1) + C.x.
√
x2 + 1.

40.2 Résoudre (1− x2).y”− x.y′ + y = 0 si | x |< 1, x = sin(t)

Corrigé : Déjà des problèmes, pour cette éq. diff. linéaire, prévus en x = ±1 (cf. coeff. de y”).

Puis on pose : x = sin(t) avec t ∈]− π/2, π/2[ qui donne t = Arcsin(x) si besoin.

Et (ci-dessus) : dY/dt = dy/dx.dx/dt donc
.
Y = y′.cos(t) ; puis en re-dérivant / t :

..
Y = dy′/dt.cos(t) − y′.sin(t),

..
Y = dy′/dx. dx/dt .cos(t)− y′.sin(t),

..
Y = y”.cos2(t)− y′.sin(t).

Peut-être faudrait-il inverser les relations soulignées mais tout devrait bien se passer ...

On trouve
..
Y + Y = 0 ! donc : Y = A.sin(t) +B.cos(t) y = A.x+B.

√
1− x2.

Et si | x |> 1 ? Sur ]− 1, 1[, on aurait pu poser aussi bien x = cos(t) ... Ici : x = ǫ.ch(t),

ǫ = ±1, t > 0, pour | x |> 1 (qui donne t = Argch(| x |) si besoin), semble bon !

40.3 (*) Au sujet de l’équation différentielle d’Euler (...)

1. Résoudre a.x2.y” + b.x.y′ + c.y = 0 en posant x = ǫ.et, ǫ = ±1 selon l’intervalle ou t = ln | x |.
2. Cas de : x2y”− 3x.y′ + 4.y = 0 ?

40.4 Diverses résolutions avec diverses indications (...)

1. Résoudre : y” + y = tan(x) (Var. des ctes. y = a.cos(x) + b.sin(x)− cos(x).ln | tan(
x

2
+
π

4
) | .

2. Résoudre : y” + y = 1/sin3(x) (sol. particulière (2.cos2(x)− 1)/2.sin(x).)

3. Résoudre : x2y” + xy′ − y = 0, z = x.y.

4. (*) Trouver f C0(R) : f(x) = 2.
∫ x

0

√
f(t)dt. (Réponse. x 6 0 : f(x) = 0 ; pour x > 0 :

ou bien f(x) = 0 ; ou bien ∃c > 0 tel que f(x) = 0 si x 6 c et f(x) = (x− c)2 si x > c).

5. Soit l’équation différentielle y” + p(x)y′ + q(x)y = 0. Montrer qu’on a deux solutions telles que

u.v = cte (u.v = 1 possible) ⇔ 2p.q + q′ = 0 et alors :
u′2

u2
= −q. Cas où : q(x) = −x2 ?

6. Résoudre : x′ = y, y′ = z, z′ = x (x(3) = x(t) ! ... )

7. Résoudre : (1 + x2)y” + 2x(1 + x2)y′ + y = 0, t = Arctan(x).

8. Résoudre : x.y”− y′ − x3.y = 0, t = x2. Et enfin :

9. Trouver f dér. sur R : f ′(x) = f(−x). [Poser f(x) = p(x) + i(x), 2.p(x) = f(x) + f(−x), etc.]
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40.5 E.D.Linéaire du deuxième ordre, théorique (...)

Montrer que : y” + y = f(x), f C0 a pour solution particulière : y(x) =
∫ x

0

f(t).sin(x− t)dt.
[C’est un "produit de convolution" qui apparait naturellement dans les Séries de Fourier.]

Etudier ensuite le cas où : y”− y = f(x), f C0.

40.6 (*) E.D.L. du deuxième ordre, solution périodique (...)

Existence et unicité d’une solution 2π-périodique telle que y”− y =
2

2− ei.x
= f(x).

– Corrigé : Equation différentielle linéaire à coefficients constants et ici

y = A.ch(x) +B.sh(x) = a.ex + b.e−x au choix, pour ESSM, vue l’équation caractéristique r2− 1 = 0.

– Une idée de solution expliscite (avec variation des constantes) est permise. Mais possible que si

c’est facile (exemple : y”− y = cos(x)) ; pas ici ce qui rend l’exercice intéressant (et classique) :

– Existence : Si ϕ0(x) solution de EASM (périodique ? on ne sait !) Sol. y = ϕ(x) = ϕ0(x)+a.e
x+b.e−x.

(*) Comment avoir ∀x : ϕ(x+ 2π) = ϕ(x) ? Notons d(x) = ϕ(x+ 2π)− ϕ(x) [différence] :

– Il est assez aisé de voir que d”(x) − d(x) = f(x + 2.π) − f(x) = 0, vue la 2.π-périodicité de f . (Donc

d(x) = λ.ex+µ.e−x : ceci ne va pas forcément servir, c’est pour fixer les idées). Comme d”(x)−d(x) = O

il faut et il suffit d’exprimer d(0) = d′(0) = 0 pour que d = O : problème de Cauchy !

On obtient le système de Cramer en a, b (pourquoi ?) : existence et l’unicité sont alors prouvées !

(1) ϕ0(0) + a+ b = ϕ0(2π) + a.e2.π + b.e−2.π, (2) ϕ′
0(0) + a− b = ϕ′

0(2π) + a.e2.π − b.e−2.π.

40.7 Solution bornée de y”− ω2y = f(x) ; f C0, bornée sur R, ω 6= 0

(*) Montrer qu’il existe une unique solution bornée sur R.

40.8 Erreur dans la méthode de Newton (valeur approchée de racine)

Soit f C2[a− r, a + r], r > 0 : f(a) = 0 et f ′ ne s’annule pas (donc, de signe constant).

1. Montrer que | f
f ′ | 6

eM|x−a| − 1

M
, où M = sup |f”

f ′ |. [Supposons f ′ > 0 ; avec g(x) =
f

f ′ : g′ = 1− g f”

f ′ .

Si x > a : g′ 6 1+ g.M ; finir avec Y = 1+ g.M . Si x 6 a : g 6 0, g′ 6 1− g.M , ici Y = 1− g.M .

Ou avec une éq. différentielle g′ + h.g = 1 avec h(x) =
f”(x)

f ′(x)
...]. Question 2. indépendante :

2. Montrer ∃h > 0 : sur ]a− h, a+ h[, | x− f(x)

f ′(x)
−a | 6 M(x− a)2 ["convergence quadratique".]

40.9 Equations diff. non linéaires mais qui s’y ramènent (...)

1. 1er ordre. Bernoulli : a(x)y′ + b(x).y + c(x).yn = 0. (Poser z = 1/yn−1.)

Ricatti : a(x)y′ + b(x).y + c(x).y2 = d(x) (avoir une solution y1(x), puis y(x) = y1(x) + z(x).)

Lagrange y = A(y′).x+B(y′) : isoclines rectilignes Im : y = x.A(m) + B(m). Si A(m0) = m0 :

droite solution. Cas part. Clairaut, y = x.y′ +B(y′). Après les solutions éventuelles A(m0) = m0,

poser y′ = m, nouvelle var. : [m−A(m)].dx/dm−A′(m).x = B′(m), y(m) illico. 13.4. Clairaut :

les droites Im et leur enveloppe : x = −B′(m), y = −m.B′(m) +B(m) ! Ex : y = x.y′ + y′2.

2. 2ème ordre. Si y” = f(y, y′), incomplète en x, poser y′ = z(y) [d’abord y = cte ?] alors y” =
.
z.z.

Exemples. yy” = (y′ − 1).y′ : (y = λ, y = x+ µ, y = α.eβ.x − 1/β).

2yy” = y′ − y′3 : (y = cte, x = µ+ y + 2.λ.ln | y − λ |). 2kyy” = (1 + y′2) (Ribaucour, 2k ∈ N.)

Si on a une homogène en y, y′, y”, poser z = y′/y et cf. 40.11. Ex. y”− 2.x.y′ = y(1− x2)

devient z′ + z2 − 2xz = 1− x2 (Ricatti), z = x+ u(x) enfin : y = k.(x− λ).ex
2/2.)
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40.10 Question très classique mais pas très facile ( !)

Soit a > 0 et f C1 : R+ → R telle que f ′(x) + a.f(x) [notée g(x)] tende vers 0 en +∞.

Montrer que : f(x) −→ 0 (x→ +∞). (Indication : résoudre y′ + a.y = g(x).)

40.11 Sur la Transformation de Liouville (...)

1. Soit y” + α(x).y′ + β(x).y = 0. (1) Montrer qu’on se ramène à z” + q(x).z = 0 (I) [équation de

Hill si q périod.] avec y = u.z : 2u′+α.u = 0 ; alors : q = β− α
2

4
− α

′

2
, u(x) = exp(

−1

2
.

∫ x

0
α(t).dt).

2. Autre transformation. Montrer qu’on passe de (1) à une équation de Riccatti réduite :

v′ + α(x).v + v2 = −β(x) avec y = exp

∫
v(x)dx, y(x) supposée positive ; (où v =

y′

y
).

Et qu’on passe inversement de (2) v′ + a(x).v + b(x).v2 = c(x) à (1) avec v =
y′

y.b(x)
.

3. On passe donc de y” + q(x).y = 0 (I) ’Sturm-Liouville réduite’ à (II) v′ + v2 = −q et de (II) à (I).

A toute équation de Ricatti, on peut associer une EDL2 "sans second membre" et inversement.

Vu que les solutions de cette EDL2 sont y = C1.y1 + C2.y2, et v =
y′

y
, les sol. d’une équation

différentielle de Ricatti dépendent homographiquement d’une constante arbitraire.

40.12 Diverses utilisations du Wronskien

1. Soit y” + g(x).y = 0, g continue intégrable sur R+.

(a) Montrer, si ϕ solution bornée, (avec ϕ′(x)− ϕ′(0) = −
∫ x

0
ϕ(t).g(t).dt)

que ϕ′(x) a une limite en +∞ ; puis que cette limite vaut 0.

(b) Vérifier que le Wronskien W (x) =

∣∣∣∣
ϕ1(x) ϕ2(x)
ϕ′

1(x) ϕ′
2(x)

∣∣∣∣= ϕ1(x).ϕ
′
2(x)− ϕ2(x).ϕ

′
1(x) est constant.

[Si on avait eu (1) ci-dessus, on aurait eu W (x) = C.e−
∫ α(x)

1
.dx.]

(c) En déduire qu’il y a au moins une solution non bornée sur R+.

2. Soit ϕ de classe C2(R,R) telle que : ϕ”(x) + ϕ(x) > O.

En considérant les variations de la fonction :

g(t) = sin(t− x).ϕ′(t)− cos(t− x).ϕ(t) sur [x, x+ π], montrer que ϕ(x) + ϕ(x+ π) > 0.

40.13 Equation différentielle et série

1. (a) Rayon de convergence de :
∑(

2n
n

)
.xn ? (Trouver

1

4
.)

(b) Avec une EDL1 [(4x− 1)y′ + 2y = 0] montrer que f(x) =
∑

n>0

(
2n
n

)
.(
x

4
)n =

1√
1− x .

[On peut aussi voir que an = (4− 2/n).an−1 sur la série initiale.]

2. Résoudre l’éq. diff. linéaire : xy” + 2y′ + xy = O, en cherchant une solution D.S.E.

Sol. Posons : y =
∑

an.x
n, R > 0 ; on a

∑

n>1

n(n− 1)an.x
n−1 + 2

∑

n>1

n.an.x
n−1 +

∑

n>0

an.x
n+1 = O.

Termes en x0 : a1 = 0. En x1 : 6a2 = −a0. En xk : (k + 2)(k + 1).ak+1 = −ak−1. Donc

f(x) =
∑

a2px
2p (a2p+1 = 0) et aisément R = +∞. On reconnait f(x) = a0.

sin(x)

x
. Utilisant la

méthode de la variation de la constante, voici toutes les solutions : y = l.
sin(x)

x
− k.cos(x)

x
.
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41 Calcul d’Intégrales simples

41.1 On montre que π 6∈ Q, résultat d’abord prouvé par Lambert

1. Une conséquence : Soit la suite (ein)n∈N ; montrer que tous ses éléments sont distincts.

2. Soit I =

∫ π

0

P (x).sin(x).dx, P polynôme de degré 2n.

(a) Montrer que : I = P (π) + P (0)−
∫ π

0

P”(x).sin(x).dx. En déduire que :

(b) I = P (π) + P (0)− P”(π) − P”(0) + P (4)(π) + P (4)(0)− ...+ (−1)n[P (2n)(π) + P (2n)(0)].

3. Supposons que π =
a

b
, a, b ∈ N∗. Soit P (x) =

xn.(a− b.x)n

n!
; In =

∫ π

0

xn.(a− b.x)n

n!
.sin(x).dx.

(a) Montrer que ∀j ∈ N, 0 6 j < n, P (j)(0) = 0. (Ordre de multiplicité de la racine.)

(b) Pour : n 6 j 6 2n, préciser le coefficient de xn+j dans P (x). En déduire que :

P (n+j)(0) =
(n+ j)!

j!(n− j)!a
n−j .(−b)j ∈ Z et A = P (0)−P”(0)+P (4)(0)− ...+(−1)n.P (2n)(0) ∈ Z.

(c) Avec P (π− x) = P (x), montrer que B = P (π)− P”(π) +P (4)(π)− ...+ (−1)n.P (2n)(π) = A.

(d) � Justifier que In ∈ N∗. (Montrer In > 0, par le Théorème "aux 4 hypothèses").

� Puis que In −→
n→+∞

0. (Majorer P (x) par (π.a)n/n! sufft.) Conclure.

[En fait e et π sont des nombres "transcendants".]

41.2 (*) Intégrale généralisée
∫ +∞

0

xm−1

1 + xn
dx obtenue par décomposition

(*) On montre que Im,n =

∫ +∞

0

xm−1

1 + xn
dx =

π
n

sinm.π
n

en décomposant la fraction ; 0 < m < n.

1. Vérifier que Im,n = 2.I2m,2n. On calcule I2p,2q et, pour la suite, notons improprement m = 2p :

2. Avec tk =
π

2q
+ k.

π

q
, vérifier qu’on doit intégrer

−1

2q
.
2.x.cos(m.tk)− 2.cos(m− 1)tk

x2 − 2x.cos(tk) + 1
, k ∈ [[0, q − 1]].

3. Et [m = 2p] que
∑

06k6q−1

eimtk = eim π
2q .

∑

06k6q−1

eim π.k
q = 0,

∑

k

cos(mtk).

∫ β

0

2(x− cos(tk))dx

x2 − 2xcos(tk) + 1
−→

β→+∞
0.

4. Que
1

q
.

∫ +∞

0

sin(m.tk).sin(tk).dx

(x− cos(tk))2 + sin2(tk)
=
sin(mtk)(π − tk)

q
, car Arctan(t) =

π

2
−Arccot(t), t ∈]0, π[.

5. Avec
∑

k.ei.kt, [m = 2p] et question 3(a), vérifier que :
∑

sin(m.tk).tk =
π

q
.

2q.sin(2pπ/(2q))

−4.sin2(2pπ/(2q))
.

6. En déduire, encore avec 3(a), que : I2p,2q =
π/q

2.sin(2p.π/ 2q)
; et enfin la valeur de Im,n attendue.

41.3 Des calculs d’intégrales conduisant à des intégrales généralisées

1. Vérifier que I(λ) =

∫ π

0

dt

1 + λ2.sin2(t)
= 2.

∫ π/2

0
∗ et, avec u = tan(t), que I(λ) =

π√
1 + λ2

.

2. Soit In(λ) =
∫ π

0

cos(n.t).dt

1− 2.λ.cos(t) + λ2
, λ 6= ±1. Calculer I0(λ) avec u = tan

t

2
. (cf. 44.7(b) et après.)

Vérifier ensuite les égalités suivantes : In(
1

λ
) = λ2.In(λ), λ.(In+1 + In−1)(λ)− (1 + λ2).In(λ) = 0

et, avec In −→
n→+∞

0, déduire que : In(λ) =
π

(λ2 − 1).λn
si | λ |> 1 ou In(λ) =

π.λn

1− λ2
si | λ |< 1.
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41.4 fC0([a, b], R+∗), σ subd. :
∫ xk

xk−1

f =
1

n

∫ b

a

f .
1

n

∑
f(xk)→

∫ b

a

f2/

∫ b

a

f

Ind. : F (x) =

∫ x

a

f(t)dt bijective (sur son image) ; xk = F−1(
k.I

n
) où I =

∫ b

a

f(t).dt ; et calcul.

41.5 (*) Quelques questions théoriques sur l’intégrale de Riemann

1. On suppose que s∆1 6 I− 6 I+ 6 S∆2. (Notations des sommes de Darboux, par ex.) Alors :

Quand (le module de ∆) = δ (max | xj − xj−1 |) tend vers 0, s∆ tend vers I−. Idem l’autre.

Lemme pour preuve. Soit ǫ > 0 et choix : I− − s∆′ < ǫ ; soit n le nombre de points de ∆′.

Alors : s∆∪∆′ − s∆ 6 n.δ.(M −m) où, δ =| ∆ | et M, m bornes de f . [à voir.]

[Ajouter 1 pt : (x∗−xi−1).m
′
1 +(xi−x∗).m′

2− (xi−xi−1).m0 6 (xi−xi−1).(M −m) 6 δ.(M −m).]

Puis : Avec δ tel que n.δ.(M −m) < ǫ, on aura : I− − s∆ < 2.ǫ, ce qui termine.

2. D’où le Théorème : Si f R-int (I− = I+ = I), alors les sommes de Darboux, donc de Rieman,

tendent vers I quand le module de la subdivision tend vers 0. Réciproque vraie et assez facile.

3. De la définition, les fonction R-int sont exactement celles qu’ont peut encadrer par 2 fonctions en

escalier ϕ 6 f 6 ψ avec 0 6
∫ b

a

(ψ − ϕ)dx < ǫ : en fait, il est suffisant que ϕ et ψ soient R-int.

Donc une limite uniforme de fonctions R-int. (pour n > N : fn − ǫ 6 f 6 fn + ǫ) est R-int. !

4. Les fonctions en escalier sont R-intégr. (facile). Les limites uniformes des fonctions en escalier sont
donc R-int. On dit fonctions réglées. Comme la limite uniforme d’une suite de f. continues en x0

est continue en x0 et qu’une union dénombrable d’ensembles finis ou dénombrables est dénombrable,
les points de discontinuïté des fonctions réglées forment un ensemble fini ou dénombrable.

Théorème : f réglée sur [a, b]⇔ f a une limite à droite et à gauche en chaque point ("étagée").

Preuve � (⇒) Limite à droite en x0 ∈ [a, b[ : f = Lim− unif(fn) et chaque fn admet une limite à
droite en x0 car en escalier. Par la convergence uniforme de fonct. ayant une telle limite, f aussi.

� (⇐) Soit ǫ > 0 : Pour x ∈ [a, b] on trouve αx tel que sur ]x − αx, x[ et ]x, x + αx[ on ait
| f(t)− f(t′) |< ǫ, grâce à l’hypothèse. Comme [a, b] est compact, on extrait un sous recouvrement
fini de ]x−αx, x+αx[ (∩ [a, b] !) De là, on a assez aisément un nombre fini de points de subdivision
de [a, b] (x − αx, x, x + αx rangés par ex.) et une fonction en escalier ϕ : | f − ϕ |< ǫ. Avec des
ǫ = 1/n, on obtient alors une suite de fonct. en escalier convergeant uniformément sur [a, b] vers f .

5. On montre enfin (**) que les fonctions R-int sur [a, b] sont les fonctions bornées dont les points de
discontinuïté est une partie de mesure nulle. Or on a des parties de mesure nulle non dénombrables :
l’intégrale de Riemann est donc plus générale que celle des fonctions réglées (celle de Cauchy).

6. Développements asymptotiques des sommes de Riemann. Les fonctions sont partout C2.

(a) Montrer (1)
∫ 1

0

g(t)dt =
g(1) + g(0)

2
−
∫ 1

0

t− t2

2
g”(t)dt. Ind. : Partir du membre de droite ; ou du

membre de gauche par parties avec v′ = 1, v = t− 1/2. (Début de la formule d’Euler-Mac Laurin.)

(b) Interpréter :
g(1) + g(0)

2
comme aire de trapèze ; et, si g” > O, le signe :

∫ 1

0

t− t2

2
. g”(t)dt > 0.

(c) Soit I =
∫ 1

0
f(x)dx. On admet les égalités suivantes faciles, la dernière en posant x =

k − 1 + t

n
:

I =
n∑

k=1

∫ k/n

(k−1)/n
f(x)dx =

1

n

n∑

k=1

∫ 1

0
f(

k − 1 + t

n
) dt. Avec (1) appliquées aux dernières, montrer :

(2) I =
1

n

n∑

k=1

f(
k

n
) − f(1) − f(0)

2n
− rn, où : rn =

1

n2
.(

1

n
.

n∑

k=1

Jk), Jk =
∫ 1

0

t − t2

2
f”(

k − 1 + t

n
) .dt.

(d) Si m2 = inf f”,M2 = sup f” sur [
k − 1

n
,
k

n
], montrer que Jk ∈ [

m2

12
,
M2

12
] ; Jk =

f”(ξk)

12
, ξk ∈ [

k − 1

n
,
k

n
]

[on rappelle que l’image d’un segment est un segment par f” qui est C0]. Enfin, avec une somme

de Rieman, montrer que rn =
f ′(1) − f ′(0)

12n2
+

ǫn

n2
. Exemple :

n∑

k=1

1

n + k
= ln(2) − 1

4n
+

1

16n2
+

ǫn

n2
.
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42 Intégrales généralisées

42.1 Le cours : à ne pas confondre (...)

1. L’existence des intégrales généralisées = intégrales (semi-)convergentes. Avec :

2. Fonctions intégrables sur I= absolument intégrables ou : ∃M > 0 : ∀J ⊂ I,
∫

J

| f |6 M .

On peut avoir I = [a, b], [a, b[, ]a, b], ]a, b[. Montrer que
∫ π

2

0

√
tan(x)dx existe et vaut

π.
√

2

2
.

42.2 (*) Au sujet de la période du pendule simple

Soit θ l’angle fait par le fil (sans pesanteur attaché à une masse m) avec la verticale descendante Oz.

La conservation de l’énergie fournit l’équation classique :
1

2
m.l2.

.

θ
2 −m.g.l.cos(θ) = −m.g.l.cos(θ0) ;

ce qui donne la période T = 4.

√
l

2g
.

∫ θ0

0

dθ√
cos(θ) − cos(θ0)

(et
∫ π/2

0

sin2nu.du =
π

2
.
1.3...(2n− 1)

2.4. ... .2n
, Wallis).

1. En posant sin(u) =
sin(θ/2)

sin(θ0/2)
, montrer que : T = 4.

√
l

g
.

∫ π/2

0

du√
1− k2.sin2(u)

, k = sin
θ0
2

, (Jacobi).

2. Avec I(k) cette dernière, trouver : I(k) =
π

2
[1 +

k2

4
+ O(k4)] donc : T = 2.π.

√
l

g
.[1 +

θ2
0

16
+ O(θ4

0)].

(D’où : Isochronisme des oscillations à
1

100
près : pour θ0 6 0, 4 radians, soit θ0 6 23 degrés).

42.3 (*) Période indépendante de l’amplitude (isochronisme)

1. Construire la courbe d’équation : x = R.[θ − sin(θ)]; y = −R[1− cos(θ)] (pendule cycloïdal).

2. La conservation de l’énergie donne :
1

2
m(

.
x

2
+

.
y

2
) +mgy = mgy0. (Ep énergie potentielle). Déduire

que
.

θ
2

=
g

R
.
cos(θ0)− cos(θ)

1− cos(θ) ; T = 4.

√
R

g

∫ π

θ0

.

√
1− cos(θ)

cos(θ0)− cos(θ)
dθ. [θ = π, bas de la cycloïde inversée].

3. On pose : u2 = cos(θ0)− cos(θ), d’où : 2u.du = sin(θ).dθ. Vérifier qu’on a aussi

T = 4.

√
R

g

∫ √1+cos(θ0)

0

√
1− cos(θ0) + u2 .2.u.du

u.
√

1− cos(θ0) + u2.
√

1 + cos(θ0)− u2
= 4.π.

√
R

g
. Conforme avec 2.π.

√
l

g

car au bas de la cycloïde le rayon de courbure vaut R = 4R. Comme la développée d’une

cycloïde est aussi une cycloïde, on a une réalisation de ce pendule cycloïdal due à Huyghens.

4. Réciproque. (*) Soit Oy tourné vers le haut. Pour avoir un "oscillateur harmonique" :
d2s

dt2
= −ω2

0s,

1

2
m.(

ds

dt
)2 + Ep = E0, m.

ds

dt
.
d2s

dt2
+
dEp

dt
= 0,

dEp

ds
= k.s, k = m.ω2

0, on doit avoir Ep =
1

2
k.s2, si choisie

nulle au fond de la courbe ; aussi origine des abscisses curvilignes (et des y). Donc
1

2
k.s2 = m.g.y.

D’où
ds

dy
=

g

ω2
0 .s

. Avec ds2 = dx2 +dy2 : dx =
√

g

2.ω2
0.y
− 1.dy, donc : y 6

g

2.ω2
0

= ymax. Posant alors

y = ymax.
1− cos(u)

2
=

g

4.ω2
0

.(1− cos(u)) ! trouver x = x0+
g

4.ω2
0

.(u+ sin(u)) : la cycloïde ! !

5. Cycloïde : courbe "isochrone" = la période est indépendante de l’amplitude. Ceci provient qu’elle
est aussi : "tautochrone" [tautologie] = on arrive en A, bas de la cycloïde, partant de D sans vi-

tesse initiale, avec un temps égal quel que soit départ D, sur une arche renversée. Car s2 = 8.R.y,

si origine de s au point A le plus bas. Alors :
1

2
.m.(

ds

dt
)2 +m.g.y = cte qui donne

d2s

dt2
+

g

4.R
s = 0.
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42.4 Existences et divers calculs d’intégrales généralisées (...)
∫ b

a

dt√
(t− a)(b− t)

= π ;

∫ +∞

0

dt√
1 + e2t

= ln(1 +
√

2) ; (*)

∫ +∞

0

e−at − e−bt

t
dt.

∫ +∞

−∞

(
Arctan(x+ 1)−Arctan(x)

)
.dx = ? (Aucun calcul ne primitive n’est indispensable ! )

∫ +∞

0

ln(x)

1 + x2
dx ? (Fin :

∫ 1/ǫ

ǫ

ln(x)

1 + x2
dx et poser t =

1

x
.)

∫ +∞

0

sin(x).dt

ch(t) + cos(x)
= x, x ∈ [0, π[.

42.5 Intégrale de Gauss
∫ +∞

0

e−t2dt avec les intégrales de Wallis

1. Montrer que :

∫ 1

0
(1− t2)n.dt 6

∫ 1

0
e−n.t2dt 6

∫ 1

0

1

(1 + t2)n
dt 6

∫ +∞

0

1

(1 + t2)n
dt

2. Avec les intégrales de Wallis Wn =

∫ π/2

0
cosn(x).dx ∼

√
π

2n
, trouver que

∫ +∞

0
e−t2 .dt =

√
π

2
.

42.6 Une intégrale classique avec un D.S.E. :
∫ 1

0

ln(t)

1− tdt

lim
x→0

∫ 1

x

ln(t)

1− tdt : existence et calcul. (
ln(t)

1− t non bornée en 0).

– Solution. On sait que
1

1− t = 1 + t+ t2 + ...+ tn−1 +
tn

1− t sur [0,1[. Et Ik(x) =

∫ 1

x
tk.ln(t).dt

vaut : Ik(x) = [
tk+1.ln(t)

k + 1
]1x −

∫ 1

x

tk

k + 1
dt. On a donc, en faisant tendre x vers 0 :

∀k ∈ N , lim
x→0

Ik(x) =
−1

(k + 1)2
, vu que x.ln(x)→ 0 (x→ 0).

– Reste Jn(x) =

∫ 1

x
tn−1.

t.ln(t)

1− t dt, n étant choisi n > 1 ; aucun problème en 1.

g(t) =
t.ln(t)

1− t est prolongeable par continuïté sur le segment [0,1] ; ainsi bornée : | g(t) |6 M ;

donc sans aucun problème : lim
x→0

Jn(x) =

∫ 1

0
tn−1.

t.ln(t)

1− t dt noté Jn. Puis :

| Jn | = |
∫ 1

0
tn−1.

t.ln(t)

1− t dt | 6
∫ 1

0
| tn−1.

t.ln(t)

1− t | dt 6

∫ 1

0
M.tn−1dt 6 M.

1

n
⇒ Jn −→

n→+∞
0.

• Fixons n > 1 ; faisons x→ 0 : lim
x→0

∫ 1

x

ln(t)

1− tdt = −(
1

12
+

1

22
+ ...+

1

n2
) + Jn = L ; ∀n > 1.

• Faisons ensuite n→ +∞ ; sachant que
1

12
+

1

22
+ ...+

1

n2
−→

n→+∞

π2

6
[difficile mais connu]

et Jn −→
n→+∞

0, on a : L =
−π2

6
. Ce qui donne :

∫ 1

x

ln(t)

1− tdt −→x→0

∫ 1

0

ln(t)

1− tdt =
−π2

6
.

42.7 Une autre intégrale classique
∫ π/2

0

ln(sin(t)).dt (...)

1. Soit I =

∫ π/2

0
ln(sin(t)).dt et J =

∫ π/2

0
ln(cos(t)).dt. Existence et I = J ?

2. Monter que

∫ π

0
ln(sin(t)).dt = 2.I. Calculer I + J . En déduire que I = J =

−π
2
.ln(2).

3. Déduire que

∫ π/2

0

x.dx

tan(x)
=
π

2
.ln(2) (par parties) ;

∫ π

0
x.ln(sin(x)).dx = −π2.

ln(2)

2
, (t = π − x).
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42.8 Limite de série en lien avec une intégrale généralisée

Soit f C0 : R+ 7→ R+, décroissante, intégrable. Vérifier que lim
h→0+

h.

+∞∑

n=1

f(n.h) =

∫ +∞

0

f(x).dx.

42.9 Existence et calcul de l’intégrale de Dirichlet
∫ +∞

0

sin(x)

x
dx

1. On considère In =

∫ π/2

0

sin(n.x)

sin(x)
dx. Montrer que (I2n+1)n est constante.

2. On pose Jn =

∫ π/2

0

sin2(nx)

sin2(x)
dx. Vérifier que Jn+1 − Jn = I2n+1 et que Jn =

n.π

2
.

3. Montrer que : Kn 6

∫ π/2

0

sin2(nx)

x2
dx 6 Jn où Kn =

∫ π/2

0

sin2(nx)

tan2(x)
dx = Jn −

π

4
.

4. En déduire que :

∫ +∞

0

sin2(x)

x2
dx =

π

2
. Et que :

∫ +∞

0

sin(x)

x
dx existe et vaut

π

2
.

42.10 Avec une fonction intégrable (intégrale absolument convergente)

1. Soit f C([0,+∞[, R) positive, intégrable. Montrer que f décroissante ⇒ x.f(x) −→
x→+∞

0.

[On peut utiliser

∫ 2x

x
f(t)dt tend vers 0. Note : ceci entraine aussi 3.(a).]

2. Soit f C([0,+∞[, R) positive, intégrable. Montrer que f uniformément continue ⇒ f(x) −→
x→+∞

0.

3. (a) Soit f C([0,+∞[, R) positive, intégrable. Montrer :
1

x

∫ x

1
t.f(t)dt −→

x→+∞
0. [Parties + Césaro.]

(b) Soit g(x) =
1

x2

∫ x

1
t.f(t).dt. Montrer que g est intégrable et que

∫ +∞

1
g(t)dt =

∫ +∞

1
f(t).dt.

[Ceci aussi avec les séries mais prendre vn =
1

n.(n+ 1)

n∑

p=1

p.up.]

42.11 Soit f de classe C2 de R dans R avec f 2 et f”2 intégrables (...)

1. Montrer que f.f” est intégrable sur R. (Cauchy-Schwartz).

2. Puis que : f ′2 est intégrable (parties et si f(x)f ′(x) −→
x→+∞

+∞, f2(x) > 2x+ c vers +∞ ;

et si f(x)f ′(x) −→
x→−∞

−∞, f2(x) > −2x+ d vers −∞.)

3. Montrer que (

∫ +∞

−∞
f ′2)2 6

∫ +∞

−∞
f2.

∫ +∞

−∞
f”2. (Avec finalement : f(x)f ′(x) −→

x→±∞
0 !)

4. Que f est uniformément continue (f(y)− f(x) =

∫ y

x
1.f ′(t).dt et (CS)) et que f(x) −→

x→±∞
0.

42.12 Avec sh(x) =
ex − e−x

2
et

∑ 1

k2
:
∫ +∞

0

x

sh(x)
.dx =

π2

4
(D.S.E.)

42.13 (*) Montrer que l’intégrale sur R+ de f(x) = e−x.|sin(x)| diverge
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43 Théorème de la "convergence dominée"

43.1 Des exemples pour retenir ce théorème

1. Importance de l’hypothèse de domination : fn(t) = n.tn−1 sur [0, 1[, fn(1) = 0.

2. Ex. In =

∫ √
n

0
(1− t2

n
)n.dt −→

n→+∞
I =

∫ +∞

0
e−t2dt et In =

√
n.W2n+1 (Wallis) donne I =

√
π

2
.

[Prendre fn(t) = (1− t2

n
)n.1[0,

√
n] (fonction caractéristique).]

3. Applications aux intégrales à paramètre.

43.2 Des limites et des équivalents d’intégrales (...)

Limite de In =

∫ 1

0

f(x)

1 + xn
.dx (n→ +∞) ? On suppose f(1) 6= 0. Equivalent de In − L ?

43.3 Existence et Limite de In =
∫ +∞

0

n.sin(t).dt

t(1 + n2t2)
, n→ +∞

Existence ? Montrer que lim
n→+∞

In =
π

2
.

43.4 Equivalent de I(a) =
∫ +∞

0

e−a.t.dt√
t2 + 1

, quand a→ 0 [réponse]

Montrer que I(a) ∼
a→0

− ln(a).

43.5 Etude et équivalent de fonction. Soit f(x) =
∫ +∞

x

dt

et − 1
(...)

Domaine de définition ? Variations ? Equivalents simples en +∞ et en 0.

43.6 (*) Equivalent de fonction définie par une intégrale [réponse]

Soit : f(x) =

∫ +∞

x

dt

t.[exp(
√
t)− 1]

1. Justifier son existence pour x > 0.

2. Equivalent en 0+ ? en +∞ ? (
2√
x

;
2.exp(−√x)√

x
.)
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44 Intégrales à paramètres

44.1 Des résultats : rappelés et illustrés

1. Un cas facile. Montrer que : f(x) =
∫ 2.π

0

dt

1− cos(x).cos(t) =
2π

sin(x)
pour x ∈]0, π[.

Ind.
∫ 2.π

0

=

∫ π

−π

= 2.

∫ π

0

∗ Puis :

u = tan
t

2
⇒ f(x) =

∫ +∞

0

4.du

(1 + u2)− (1− u2).cos(x)
=

4

(1 + cos(x)
.

√
1 + cos(x)

1− cos(x) .
π

2
=

2π

sin(x)

2. Continuité de f : x ∈ J 7−→
∫

I

g(x, t).dt ; x ∈ J . f C0 sur J si on a :

(1) continuité de g par rapport à x sur J

(2) continuité par morceaux (CM) par rapport à t sur I (∩R)

(3) ∀ [α, β] ⊂ J, ∃ϕ CM, intégrable sur I, | g(x, t) |6 ϕ(t) (domination sur tout segment).

Exemples [(*) Démonstration avec les suites (xn) et Théorème de la convergence dominée].

(a) f(x) =
∫ +∞

0

ln(x2 + t2)

1 + t2
dt avec J = [0,+∞[, I =]0,+∞[ !

(b) f(x) =
∫ +∞

0

e−xt

√
t+ 1

dt f C0 sur ]0,+∞[, f(x) ∼
x→+∞

1/x, f(x) ∼
x→0

√
π/x.

3. Dérivabilité de f . Formule de Leibnitz : f C1 sur J et f ′(x) =
∫

I

∂g

∂x
(x, t)dt si (de plus) :

(1) existence et continuité de
∂g

∂x
par rapport à x sur J

(2) aussi sa continuité par morceaux (CM) par rapport à t sur I (∩R)

(3) ∀[α, β] ⊂ J,∃ϕ CM, intégrable sur I, | ∂g
∂x

(x, t) |6 ϕ(t) (mais une domination "locale" suffit).

Ex.2.(a). Trouver f ′(x) =
∫ +∞

0

2.x.dt

(x2 + t2)(1 + t2)
=

π

1 + x
même si x = 1 ; f(x) = π.ln(1 + x).

Pour x > −1, montrer que : f(x) =
∫ 1

0

t− 1

ln(t)
.tx.dt = ln(

x+ 2

x+ 1
). [cf. 44.7.]

44.2 Pour x > 1, soit f(x) =
∫ π

0

ln(x+ cos(t)).dt (...)

1. Montrer que f est C1 et que f ′(x) =
π√

x2 − 1
; en déduire : f(x) = π.ln(x+

√
x2 − 1) + C.

2. Montrer que f(x)− π.ln(x) −→
x→+∞

0. Conclure que C = −π.ln(2).

44.3 (*) Si f C∞(R, R), f(0) = 0 : U(x) = f(x)/x, U(0) = f ′(0) C∞

(Ind. U(x) =
∫ 1

0

f ′(t.x).dt et donner U (n)(0) en fonction de f (n+1)(0). Si f D.S.E., résultat connu !)

44.4 (*) Au sujet de la fonction : x 7→ f(x) =
∫ +∞

0

e−t2 .ch(2.x.t).dt

1. Montrer que f est de classe C1 sur R et que : f ′(x) = 2.x.f(x).

2. Déduire que f(x) =

√
π

2
.ex2

. [(∗) g(x) =
∫ +∞

0

e−x.t2 .dt

1 + t2
−→

x→+∞
0 permet de calculer l’intégrale de Gauss.]
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44.5 Etudier f(x) =
∫ +∞

0

Arctan(x.t).dt

t.(1 + t2)
, définie sur R, impaire (...)

1. Montrer que f est définie, impaire et C1 sur R avec f ′(x) =
π

2
.
| x | −1

x2 − 1
.

2. D’où pour x > 0, f(x) =
π

2
.ln(1 + x) (−π

2
.ln(1− x) si x 6 0)

3. En déduire que K =

∫ +∞

0

(
Arctan(x)

x

)2

.dx = π.ln(2).

44.6 (*) Avec f(x) =
∫ +∞

0

e−x.t.sin(t)

t
.dt, calcul de

∫ +∞

0

sin(t)

t
.dt

1. Montrer que x 7→
∫ π

0

e−x.t.sin(t)

t
dt est continue sur R+ (Primitive de sin(t).e−xt facile).

2. Et x 7→
∫ +∞

π

e−x.t.sin(t)

t
dt =

−e−xπ

π(1 + x2)
− 1

1 + x2

∫ +∞

π

cos(t) + x.sin(t)

t2
e−xtdt est C0 sur R+.

3. Puis que f est C1 si x > 0 ; f ′(x) = −1/(1 + x2), f(x) = Arctan(1/x). Préciser I. 44.9.

44.7 f(x) =
∫ π

0

ln(x2 − 2x.cos(t) + 1).dt , intégrale de Poisson 39.5

1. Montrer que f est définie si x 6= ±1 ; et sur ]− 1, 1[ I =

∫ π

0

1

x2 − 2x.cos(t) + 1
.dt =

π

1− x2
.

2. On pose sur ]− 1, 1[, J =

∫ π

0

cos(t)

x2 − 2x.cos(t) + 1
.dt. Vérifier que −2xJ + (x2 + 1)I = π.

Déduire sur ]− 1, 1[, que J =
π.x

1− x2
; enfin que f ′ = O sur ]− 1, 1[ et f = O sur ]− 1, 1[.

3. Vérifier enfin, pour | x |> 1, que : f(x) = f(1/x) + π.ln(x2). (*) Cas x = ±1 ? 42.7.

Autres façons :
∏

16k6n

(1− 2x.cos(kπ/n) + x2) = (x+ 1).
x2n − 1

x− 1
et sommes de R. Ou bien

∑

n>1

ei.n.t.
xn

n
= −1

2
.ln[x2 − 2x.cos(t) + 1] + i.Arctan

x.sin(t)

1− x.cos(t) si | x |< 1 ... (S.E. ou S.F.)

44.8 Etudier : g(x) =
∫ 1

0

tx − 1

ln(t)
.dt et h(x) =

∫ +∞

0

ln(t)

x2 + t2
.dt

1. On prend aussi f(x) =
∫ 1

0

tx−1 − 1

ln(t)
.dt : f ′(x) =

1

x
, f(x) = ln(x) (domination pour 0 < a < x < b).

2. Voir aussi h(x) =
∫ +∞

0

ln(t)

x2 + t2
dt, x > 0 (t = x.u, h(1) = 0, h(x) =

π.ln(x)

2.x
. Sur R∗, h paire.)

44.9 (*) Intégrale généralisée calculée avec une série entière

1. Soit ϕ(x) =
∑

n>0

an.x
n

n!
et ψ(x) =

∑

n>0

an.x
n de rayon R > 0. Montrer que ϕ a un rayon R′ = +∞.

2. On veut montrer que
∫ ∞

0

e−t.ϕ(x.t).dt = ψ(x) si | x | < R. Vérifier que
∫ +∞

0

e−t.tn.dt = n!

Déduire, si | x |< R, que :
∑

n>N

| an.x
n | .

∫ +∞

0

tn.e−t

n!
dt =

∑

n>N

| an.x
n | −→

N→+∞
0.

Conclure par (**) le théorème de convergence croissante. En déduire, si | x |< 1 :

3. I(x) =

∫ ∞

0
e−t.sin(x.t).dt =

x

1 + x2
; J(x) =

∫ ∞

0
e−t.

sin(x.t)

t
.dt = Arctan(x) ; cas x = 1 ?

K(x) =

∫ +∞

0

1− cos(xt)
t2

.e−tdt = x.Arctan(x)− 1

2
.ln(1 + x2) avec K”(x) =

1

1 + x2
.
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45 Compléments sur Espaces vectoriels ; Applications linéaires

45.1 En dimension finie, des projecteurs associés (...)

Si f et g endomorphismes en dimension finie tels que rg(f) + rg(g) = n et f + g = Id. Montrer

que E = Im(f)⊕ Im(g) et gof = fog = O. Et que f et g sont des projecteurs associés.

45.2 Endomorphismes qui commutent et sous e.v. stables

1. Si gof = fog, Ker(f) stable par g ou : g(Ker(f)) ⊂ Ker(f) ou : −→u ∈ Ker(f)⇒ g(−→u ) ∈ Ker(f).

(En effet : −→u ∈ Ker(f) signifie f(−→u ) =
−→
0 ; donc f [g[−→u )] = fog(−→u ) = gof(−→u ) = g(

−→
0 ) =

−→
0 ).

2. Et : Im(f) stable par g ou : g(Im(f)) ⊂ Im(f) ou encore : −→v ∈ Im(f)⇒ g(−→v ) ∈ Im(f).

(Car : −→v ∈ Im(f) signifie ∃−→u ∈ E : −→v = f(−→u ). D’où g(−→v ) = g[f(−→u )] = fog(−→u ) = f [g(−→u )]).

3. En particulier : Ker(P (f)), Im(P (f)) sont stables par f .

45.3 Commutant d’un endomorphisme (cyclique) 48.3, 49.1

1. Soit A, Ap = O en dim. n. Vérifier si fp−1(−→u ) 6= −→0 que (−→u , f(−→u ), ...fp−1(−→u ) libre) donc p 6 n.

2. Cas d’un endomorphisme nilpotent d’indice n (fn = O, fn−1 6= O) et dim(E) = n.

(a) Soit −→u tel que fn−1(−→u ) 6= −→0 . Montrer que (−→u , ..., fn−1(−→u )) est une base de E. Matrice ?
Inversement, vérifier que cette matrice donne un exemple de tel endomorphisme.

(b) Soit g un endomorphisme ; notons g(−→u ) =
∑

06k6n−1

ak.f
k(−→u ) (sur la base) et P =

∑

0ek6n−1

ak.X
k.

Si gof = fog, montrer que g = P (f). Soit C(f) = {g : gof = fog}.
(c) Vérifier que C(f) est une sous-algèbre de L(E) et préciser sa dimension.

3. Cas d’un endomorphisme avec valeurs propres distinctes. Soit A = diag(α1, ..., αn) avec valeurs

propres distinctes. Montrer que dans ce cas (aussi) : (I,A, ...An−1) est une base de C(A).

45.4 Endomorphisme nilpotent d’indice n en dim. n ; 45.3

Soit f un endomorphisme nilpotent d’indice n (fn = O, fn−1 6= O) avec dim(E) = n.

1. Vérifier que : Fk = Ker(fk) = Im(fn−k), qui est de dimension k, 0 6 k 6 n ; et Fk stable par f .

(La suite Ker(fk) est croissante ; possède un plus petit indice pour laquelle elle stationne -à voir,
assez facile-, valant n. Et à chaque pas, la dim. doit augmenter que de 1. Idem pour Im(fn−k)
décroissante et Th. du rang ; enfin Im(fn−k) ⊂ Ker(fk) et même dimension. f(Fk) ⊂ Fk : aisé)

2. En sens inverse si F est un sous e.v. stable par f , soit p le plus petit entier tel que F ⊂ Fp.

Avec −→a ∈ F tel que fp(−→a ) =
−→
0 , fp−1(−→a ) 6= −→0 , vérifier que dim(F ) = p et enfin que F = Fp.

3. Soit l’équation en g : g2 = f . Montrer que forcément g ∈ C(f) puis qu’elle est ici impossible.

45.5 Composition d’Applications Linéaires et étude du rang

1. Avec f/Ker(gof), montrer que : dim Ker(gof) 6 dim Ker(g) + dim Ker(f). [Pareil que :]

2. Montrer que : rg(f) 6 rg(gof) + dim Ker(g) ou : rg(gof) > rg(f) + rg(g) − dim(F ).

45.6 Les idéaux bilatères de L(E) sont {O} et L(E), si dimE finie

(Bien que L(E) non corps. Alors que si vrai pour idéaux à gauche et à droite, c’est un corps).

Si u 6= O, D droite et H hyperplan, montrer ∃ v,w : Ker(vuw) = H, Im(vuw) = D. Conclure.

107



46 Exercices sur les Matrices Mn(K) et Mn,p(K)

46.1 Dans Mn(K), A + B = AB ⇒ AB = BA

Vérifier que (I −A)(I −B) = I. En déduire que I −A est inversible et que AB = BA.

46.2 Inverse de matrices par blocs inversibles !

Soit An. On note B =

(
A 2A
A A

)
. Inverser la matrice

(
1 2
1 1

)
.

Montrer que B est inversible si et seulement si A l’est. Et calculer B−1 en fonction de A−1.

46.3 Un célèbre Théorème d’Hadamard [corrigé]

1. Introduction : Soit A =

(
1 2
3 4

)
. Comment voir si A est inversible sans dét(A) ?

� Voir Im(A) : On sait que les vecteurs colonnes forment une famille génératrice de Im(A).

[Non pas une base ! ex : les vecteurs colonnes de B =
(

1 2
3 6

)
sont évidemment liés −→v 2 = 2−→v 1].

Im(A) = V ect(

(
1
3

)
,

(
2
4

)
) : Ici vecteurs non colinéaires, Im(A) de dim. 2, dans R2 : Im(A) = R2.

� ou voir Ker(A) = {−→0 } : Résoudre A.X = O. Ici comme les 2 vecteurs colonnes de A sont

non colinéaires (libres : la raison est donc la même) on trouve X = O ou

(
x
y

)
=

(
0
0

)
.

[Ne pas faire les deux par le Théorème du rang : dim(Im(A)) + dim(Ker(A)) = 2].

2. Soit A = (aij) une matrice telle que : ∀i, | aii | >
n∑

j 6=i, j=1

| aij |. Montrer que A est inversible.

(a) On dit que A est à diagonale strictement dominante. Pour une matrice 3x3, cela veut dire :
| a11 |>| a12 | + | a13 | et | a22 |>| a21 | + | a23 | et | a33 |>| a31 | + | a32 |.

A1 =

(
1 2
3 4

)
non dans cette hypothèse 1 6> 2 mais inversible ! A2 =




2 + i 1 1
2 8i 5
1 2i 4


 oui !

(b) Vrai aussi pour matrices 4x4 ... On le fait sans déterminant ! Cas des matrices 3x3 :

(c) Contraposée. Si A non inversible, ∃α, β, γ non tous nuls tels que α−→v 1 + β−→v 2 + γ−→v 3 =
−→
0 .

(Les vecteurs colonnes sont liés). Supposons que | β | est celui de plus grand module :

| β |= max(| α |, | β |, | γ |) > 0. Alors on va voir que la contradiction vient de Ligne 2 :

On a ainsi αa21 + βa22 + γa23 = 0 donc −a22 =
α

β
a21 +

γ

β
a23. D’où la contradiction :

| a22 | = |
α

β
a21+

γ

β
a23 | 6 |

α

β
a21 | + |

γ

β
a23 | 6 |

α

β
| . | a21 | + |

γ

β
| . | a23 | 6 | a21 | + | a23 | .

46.4 (*) Projecteurs f, g non nuls : fog − gof = λ.f + µ.g

1. Si λ 6= 1, 0 Avec fg − gfg = λfg + µg, vérifier que (1− λ)fg(−→x ) ∈ Im(g), d’où fg(−→x ) ∈ Im(g) ;

puis Im(f) ⊂ Im(g) donc gf = f . Ainsi fg = (λ+1)f +µg (1). De plus : fgf = (λ+1)f +µgf
ou f = f + (λ+ µ)f donc λ+ µ = 0 ; et fg = (λ+ 1)f + µfg (2) : comme µ 6= 0, fg = g ; ainsi :

Si λ = −1, rien d’autre : proj. de même image gf = f, fg = g. Et si λ 6= −1, 0, 1 : f = g.

2. Si λ = 0 gfg − gf = µg, fg − gfg = µg : fg − gf = 2.µ.g donc µ = 0 : proj. qui commutent.

3. Si λ = 1 fg − gfg = fg + µg ⇒ gfg = −µ.g ; gfg − gf = gf + µ.g donne alors gf = −µ.g, d’où
fg = f . Puis f = fgf = −µ.fg = −µ.f donc µ = −1. fg = f, gf = g : proj. de même noyau.
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47 Déterminants n x n (et Trace)

47.1 Divers déterminants par blocs

1. Calculer :
(

In Xnp

O B

)
.

(
A Y

Opn Ip

)
. Que conclure ? (déterminants par blocs).

2. Montrer que d = det
(

A −B
B A

)
= det(A + iB).det(A − iB) par opérations élémentaires.

Et en particulier, si A,B réelles : d > 0. Et si A,B commutent : d = det(A2 +B2).

3. Si D inv., M =
(

A B
C D

)
=

(
I B
O D

) (
A − BD−1C O

D−1C I

)
et CD = DC ⇒ det(M) = det(AD −BC).

Résultat encore vrai si D non inv. par densité ; faux si CD 6= DC. (Contre-ex. avec B = I2...)

4. Soit M =
(

A B
C D

)
inv., M−1 =

(
A′ B′

C′ D′

)
; avec M .

(
Ip B′

0 D′

)
, vérifier que det(M).det(D′) = det(A).

D’où M ∈ On ⇒ det(A) = ±det(D). [SiD inv.,M.
(

X
Y

)
=

(
Z
T

)
:

(
E.X = Z − BD−1.T , D.Y = T − C.X

E = A − BD−1C : complement de Schur

)
.]

47.2 (*) Divers autres calculs de déterminants

A =

∣∣∣∣∣∣∣∣

0 x y z
−x 0 t u
−y −t 0 v
−z −u −v 0

∣∣∣∣∣∣∣∣
, B =

∣∣∣∣∣∣∣∣

a −b −c −d
b a d −c
c −d a b
d c −b a

∣∣∣∣∣∣∣∣
, C =

∣∣∣∣∣∣∣∣∣

c1 b b...
a c2 b...
a a c3 b...
...
a a... a cn

∣∣∣∣∣∣∣∣∣
, a 6= b, Dn =

∣∣∣∣∣∣∣∣∣

5 3 0...
2 5 3 0...
0 2 5 3 0...
...
0 0... 0 2 5

∣∣∣∣∣∣∣∣∣
, En.

A = (vx− uy + tz)2 ; B = (a2 + b2 + c2 + d2)2, [tB.B !] ; C : ϕ(x) = det(Ci,j + x.Ei,j) = α.x + β ! ϕ(−a), ϕ(−b) connus :

(a−b).C = a.Π(ck−b)−b.Π(ck−a). Rem. Si ∀k, ck = c : v.p. de C alignées ou cocycliques ; avec le polynôme caractéristique :

a(X + b − c)n = b(X + a − c)n et {M : MU/MV = cte} : médiatrice de [U, V ] ou cercle ... Dn = 5.Dn−1 − 6.Dn−2... ;

En = det(v + x1e1, ..., v + xnen) : En = x1...xn + v1.x2...xn + x1.v2.x3... + ... (*) : Et voir aussi les dét. "circulants" ...

47.3 Trouver les matrices A, 3x3 : ∀M, det(M +A) = det(M)

(Ind. Avec M = xI, A admet 0 comme seule v.p. donc semblable à une matrice triang. sup.

stricte ; puis avec des matrices de permutation, ex : E21 + E32 + x1E13 (...) trouver A = O.)

47.4 Comparer les polynômes caractéristiques de ABn et BAp (...)

1. Polynôme caractéristique de An1B1n ? (Indication : rg(...) 6 1 et Trace.)

2. Qu’obtient-on avec les déterminants pour :
(

λIn −A
−B Ip

)
.

(
In 0
B λ.Ip

)
et l’autre produit ? Conclure.

[Si n > p : det(λ.In −AB) = λn−pdet(λ.Ip −BA) ; voir le cas : λ = 0, BAp, ABn.] Note. Si A ou B

carrée, est inversible, AB et BA semblables : AB = A.BA.A−1 ; faux si A =
(

1 0
0 0

)
, B =

(
0 1
0 0

)
.

D’où det(Ip +BA) = det(In +AB). Si U = (xi.yj) = X.tY : det(I +U) = 1+
∑
xi.yi = 1+tX.Y

et si ce déterminant est non nul, (In +X.tY )−1 = In− 1

1 + tX.Y
.X.tY [obtenue formellement].

47.5 Résultant de deux polynômes P et Q, p = degr(P ), q = degr(Q)

1. Si les polynômes P et Q ont un facteur commun D, de degré > 1, montrer :

∃A 6= O, B 6= 0 : AP = BQ, degre(A) < degre(Q), degre(B) < degre(P ).

2. En cas contraire, si P et Q sont sans facteur commun (pgcd(P,Q) = 1, avec le Théorème

de Gauss pour la divisibilité, montrer que l’égalité précédente est impossible.

3. Déduire : pgcd(P,Q) 6= 1⇔ (P,XP, ...Xq−1P,Q,XQ, ...,Xp−1Q) liée, donc de déterminant nul.

4. CNS pour que X3 + pX + q ait une racine au moins double ? [Réponse classique connue].
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47.6 Dans Mn(R), si B de rang 1 : det((A + B)(A− B)) 6 det2(A)

[Se placer en base judicieuse et calculer : det(−→u 1,
−→u 2, ...,

−→u n +−→v ).det(−→u 1,
−→u 2, ...,

−→u n −−→v ) ...]

47.7 Déterminant et rang de la comatrice et tcom[tcom(A)] ?

1. Soit A carrée inversible. Montrer que le déterminant de la comatrice vaut : [det(A)]n−1.

Montrer, toujours si A inversible, que c(A) inversible et c[c(A)] = [det(A)]n−2.A. Puis

2. (a) Si A non inversible, cas : rg(A) 6 n− 2 ? (⇒ c(A) = O).

(b) Puis voir l’autre cas : rg(A) = n− 1 ? (⇒ rg[c(A)] = 1).

3. Enfin : Tout vecteur propre de A l’est aussi pour tcom(A) ; et si A diagonalisable, celle-ci aussi.

Et si rg(A) = n− 1, λ1 = 0, Tr[tcom(A)] = λ2 x ... x λn. (λ2 peut être nul ...)

1. Corrigé. La comatrice est la matrice dont le terme général a′ij est le cofacteur ∆ij .

Rappelons que le Mineur Dij est le déterminant obtenu en supprimant Ligne i et Colonne j et que

∆ij = (−1)i+j .Dij . On a la formule fondamentale A.tcom(A) = det(A).In et commutativité !

An,n inv. ⇔ rg(A) = n⇔ Ker(A) = O ⇔ det(A) 6= 0 : det[tcom(A)] = det[com(A)] = [det(A)]n−1.

Si det(A) 6= 0, c(A).tc[c(A)] = det(A)n−1.In ; or c(A).tA = det(tA).In : c[c(A)] = [det(A)]n−2.A.

On va voir que les cas où det(A) = 0, les relations soulignées subsistent (en lisant 00 = 1) :

2. (a) Si rg(A) 6 n− 2 , n > 2 : n−1 vecteurs colonnes quelconques extraits sont liés ; en tronquant
ces vecteurs d’une ligne, ils restent liés ; donc tout mineur Dij vaut 0. D’où com(A) = O.

La 1ère relation soulignée reste vraie ; la 2è aussi : A = O si n = 2, det(A) = 0 si n > 3.

(b) Si rg(A) = n− 1 , n > 2 : dim(Ker(A)) = 1 et det(A) = 0. La 2è formule encadrée donne

Im[tcom(A)] ⊂ Ker(A) : rg[tcom(A)] = rg[com(A)] 6 1. En fait, rg[com(A)] = 1, car :

On peut supposer, dans A que les n− 1 premières colonnes sont libres par exemple. Soit A′

cette matrice n lignes, n− 1 colonnes extraite de A. On a rg(A′) = rg(tA′) ; donc dans tA′

n−1 lignes, n colonnes, on peut extraire n−1 colonnes libres ; on a donc trouvé un mineur

(un déterminant n− 1 lignes, n− 1 colonnes) non nul ; d’où com(A) 6= O, donc de rang 1.

Voyons que les relations soulignées sont encore vraies (la 1ère : facile) ; pour la 2è :

– Cas n = 2, en lisant ici 00 = 1 ! A la main : com(com(A)) = A, si n = 2 toujours.

– Cas n > 3 : avec rg(A) = n− 1, on a vu que rg[tcom(A)] = 1, donc rg[tcom(A)] 6 n− 2,

rg[com(A)] 6 n− 2 ; et avec (a) : com[com(A)] = O. Donc 2è relation vraie aussi.

3. Cas A inversible ou rg(A) 6 n− 2, aisé : tc(A) = cte.A−1 ou O. Cas rg(A) = n− 1, rg[tc(A)] = 1 :

Si A.X = λ.X 6= 0, λ.tc(A)X = 0 (car det(A) = 0) ⇒ X ∈ Ker[tc(A)] ; si X 6= 0, AX = 0 :
A.tc(A).X = 0 donc tc(A)X ∈ Ker(A) de dim 1, tc(A).X = µ.X. Et : (sur C) avec A = P.T.P−1,
T triang. sup. et λ1 = 0, posons At = P.Tt.P

−1, Tt = T + t.In inv. : Tr[tc(At)] = t.[un terme borné]
+ (λ2 + t)...(λn + t) ; faire alors t→ 0 avec la continuité des déterminants et de la Trace.

Note. On peut approcher une matrice quelconque par des matrices inversibles : Mn(K)) est un e.v. de dim. finie

normé avec n’importe quelle norme (elles sont "équivalentes" par Th.) par ex. ‖A − B‖ = max(| aij − bij |) : cela

revient à étudier n2 suites. Dans la suite Ap = A− 1

p
In, il y a au plus n valeurs de p, pour lesquelles ces matrices sont

non inversibles (1/p valeur propre). Une fois exclues ces valeurs, reste une suite de matrices convergeant vers A !

47.8 Avec Eij base canonique de Mn(R), une forme linéaire

1. Calculer Eij.Ekl. (Trouver δjkEil) [Note : Ei.
tEj = Eij, Tr(A.Eij = Tr(Eij.A) = aj,i.]

2. Soit φ une forme linéaire telle que φ(AB) = φ(BA). Montrer que φ est proportionnelle à la trace.
(Exprimer φ(Eij .Ekl). cf. 25.9.)

3. Variante : Si ϕ est une forme linéaire : ϕ(A) = ϕ(B), si A semblable à B (noté A s B), idem.
(Voir que : Eii s Ejj, Eij s Ekl pour i 6= j, k 6= l. Puis U = (1) s n.E11.)
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48 Réduction des endomorphismes

48.1 Des questions sur les matrices diagonalisables (dim. finie)

1. Valeurs propres : racines du polynôme caractéristique. Et : dim(Eλ) 6 ωλ (ordre de multiplicité).

2. Racines carrées d’une Matrice diagonalisable A : matrices M telles que M2 = A =




0 0 0
1 1 0
2 1 2


 .

(a) Montrer que A est diagonalisable de suite. [Si matrice triang. les v.p. se lisent sur la diagonale ;

(dét. d’une matr. triang.) Et une matrice ayant des vp distinctes est diag. (cond. suffisante).

(b) Puis que AM = MA ; puis en base nouvelle, que M ′ est diagonale ; nombre de solutions ?

[Il y a 4 solutions avec M ′ = diag(0,±1,±
√

2)]

3. (a) Vérifier que A =

(
1 1
0 1

)
est non diagonalisable même sur C. [Corrigé. Plusieurs façons :

� Le SEP(1) est de dimension 1, non 2, sinon on aurait f(−→ ) = −→ ! [f(−→ ) = −→ı +−→ ]

� Ou sans calcul : Si diagonalisable, P−1AP = diag(1, 1) = I2 donnerait A = I2.]

(b) Vérifier que B =

(
cos(π/2) −sin(π/2)
sin(π/2) cos(π/2)

)
=

(
0 −1
1 0

)
est non diagonalisable sur R.

Une rotation de π/2 fait penser au complexe i ! Vérifier que les vp sont : ± i !

4. Montrer que B =
(

4A 2A
−3A −A

)
diag. ⇔ A diag. Ind : P =

(
−2I −I
3I I

)
; C = P−1B.P =

(
A O
O 2A

)
.

5. Soit des endomorphismes de Cn tels que gof = α.f . Montrer que f et g ont un vecteur propre

commun. [Si f n’a que des v.p. nulles, f est nilpotent ; prendre −→u : fp−1(−→u ) 6= −→0 , fp = O.]

6. Soit B =

(
O In
An O

)
; montrer que det(B−λ.I2n) = (−1)n.det(A−λ2.In). Si AV = λ.V , W =

(
V

µ.V

)

µ2 = λ, vérifier que BW = µ.W . En déduire sur C : (A diag., inversible) ⇒ B diagonalisable.

Inversement si B diagonalisable, avec rg(B) = rg(B2), montrer que (A est diag. et aussi inv.) !

7. (*) Sur C, montrer que : A et B ont une v.p. commune ⇔ ∃Un,n 6= O : A.U = U.B.

[Corrigé : A.X = λ.X; tB.Y = λ.Y ⇒ U = (X.tY )n,n de rang 1 convient. Inversement :

AU = UB ⇒ Ak.U = U.Bk ; d’où P (A).U = U.P (B). Avec le polynôme caractéristique de

B factorisé (Cayley-Hamilton), on a : (A− λ1In)(...)(A − λnIn).U = O ; et donc forcément

un facteur non inversible ; par suite, une valeur propre (v.p.) de B est aussi v.p. de A.]

48.2 f : M =(C1, ..., Cn) ∈Mn(R) 7→M ′ = (C ′
1, ..., C

′
n), C ′

i =
∑
Ck − Ci

Calculer det(M ′). f est-elle diagonalisable ? (n = 3 pour commencer).

48.3 Au sujet des endomorphismes cycliques ; les cas diagonalisables

1. Si dim(E) = n, f ∈ L(E) est dit cyclique si ∃−→u : fk(−→u )k>0 soit génératrice. Exemples ?

2. Montrer que : −→u , ...fn−1(−→u ) est une base de E ; quelle est dans cette base, la matrice dite

"compagnon (du po-ca)" ? vérifier : po-min=poca. Cas A =




0 1 0
0 0 1
0 0 0


 ? B =




0 1 0
0 0 0
0 0 0


 ?

3. Soit f diagonalisable. En déduire f cyclique ⇔ les v.p. sont distinctes.
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48.4 Endomorphisme nilpotent (d’indice quelconque) en dim. finie (...)

1. Montrer qu’un end. est nilpotent ⇔ 0 seule valeur propre dans C. (po-ca scindé ⇒ trigonalisable)

2. Trois ⇔ : f nilpotent ⇔ ∃B base, avec matrice triangulaire supérieure stricte (ou po-ca Xn) ⇔
(*) Tr(fp) = 0, p = 1...n (⇐ formules de N. 49.2,

∑
λp

k = 0...) ⇔ (**) ∃B : A = B.A−A.B.

[(⇒) On a : M ∈ Ker(γA: M 7→ AM −MA) ⇒ AM nilp. ⇒M ∈ Ker[tA: M 7→ Tr(AM)] ; donc
(Ker γA ⊂ Ker tA) ∃φ : tA = φoγA ; or toute f.l. est un p.s. ∃B : φ = tB ; d’où tA = tBA−AB !

(⇐) On a : BAk −AkB = k.Ak ; mais γB n’a pas une inf. de v.p. distintes, c’est que A est nilp. !]

48.5 Dans E = C0(R), éléments propres de la Transformation de Hardy

Eléments propres de l’end. f 7→ Tf(x) =
1

x
.

∫ x

0

f(t)dt, si x 6= 0 et Tf(0) = f(0). [Indications :

Continuité de Tf en x = 0 :
1

x

∫ x

0

f(t)dt −→
x→0

f(0). Avec une primitive F de f C0 :
F (x)− F (0)

x
...

Linéarité : voir si x = 0. Puis Tf dérivable si x 6= 0. Tf = λ.f : E.D.Lin. Et réciproque ... ]

48.6 P ∈ E = Rn[x]7→ u(P ) = x(1− x)P ′ + n.x.P : end. ? Eléments propres ?

1. Corrigé. E e.v. de dim. : n+ 1. Endo : le risque do(u(P )) = n+ 1 ne se produit pas (...)

2. Puis : u(P ) = λ.P , P 6= O conduit à une E.D. Linéaire du 1er ordre. [Cas λ = 0 : Ker(u) ...]

(a) Pour cette E.D.Lin. une fraction rationnelle à décomposer et intégrer ! (3 intervalles ...)

(b) Trouver P = µ. | x |λ . | 1− x |n−λ. Or au plus n+ 1 valeurs propres ! mais P : polynôme,
de degré 6 n ! D’où λ = k ∈ {0, ..., n} : n+ 1 valeur propres distinctes ; ainsi l’end. est
diagonalisable ! (Pk base de vecteurs propres.) D’où Ker(u), ... Rang, etc.

48.7 Polynôme annulateur, par ex. po-ca : Th. de Cayley-Hamilton 48.12

1. Vérifier que : λ v.p. de f ⇒ P (λ) v.p. de P (f) ; et Eλ(f) ⊂ EP (λ)(P (f)). Cas P (f) = O ?

Puis que : f diag. ⇔
∑

Eλ = E ⇔ (en dim finie)
∑

dim(Eλ) = dim(E) ⇔ le poca est scindé et

dim(Eλ) = ωλ pour chaque v.p. ⇔ Il existe un polyn. annul. scindé, simple, non nul : Théorème.

Alors les projecteurs spectraux sont : pi = Li(f), Li polynômes de Lagrange ; f j =
∑

λj
k.pk.

2. Montrer que B =
(

4A 2A
−3A −A

)
diag. ⇔ A diag. Ind. P =

(
−2I −I
3I I

)
; C = P−1B.P =

(
A O
O 2A

)
.

3. Utilisations (a) Si u diagonalisable et E1 stable par u, alors : u/E1
est diagonalisable.

(b) Si u est diagonalisable : E1 est stable par u ⇔ il est engendré par des Vecteurs propres.

(c) Soit E un C e.v. de dim. n. Montrer que : u diag. ⇔ [u2 diag. et Ker(u) = Ker(u2)].

4. (a) Exemples : Soit M =
(

O B
A O

)
A,B inversibles complexes. Et N =

(
C In

0 C

)
.

� Alors : M diag si et seulement si AB diagonalisable. (AB = A.BA.A−1.)

� Puis : P (N) = 0⇔ P (C) = P ′(C) = 0. N peut-elle être diagonalisable ?

(b) (Ex. bizarre). Soit u, v ∈ L(E) : fu(v) = uov. Alors fu endomorphisme de L(E) ;
Sp(u) = Sp(fu) ; SEP (fu, λ) = {v : Im(v) ⊂ SEP (u, λ)} ; P (fu) = fP (u).
Et, en en dimension finie : fu diagonalisable ⇔ u diagonalisable.

[En effet : Voir que P (fu)(v) = P (u)ov. Puis : ⇒ Prendre P annulateur de f , v = Id.
⇐ Prendre P annulateur de u (avec le Théorème).]

(c) Si u diagonalisable : v commute avec u ⇔ v laisse stable chaque sous espace propre de u.

(d) Si v commute avec u et (u, v) diagonalisables, il y a une base commune de Vecteurs propres.
Généraliser. (Des endomorphismes diagonalisables qui commutent sont simultanément diag.)

(e) Si f ∈ L(E) : f + a2f
2 + ...+ ap.f

p = O ⇒ E = Ker(f)⊕ Im(f). Et ⇐ en dim. finie.
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48.8 Soit f, g, h tels que : f p = αp.g + βp.h, p = 0, 1, 2 ; α 6= β (f 0 = Id)

1. Pour d0(P ) 6 2, vérifier que : P (f) = P (α).g + P (β).h.

2. Avec Π(x) = (x− α)(x− β), montrer que f est diagonalisable de valeurs propres ∈ {α, β}.
3. Avec Π1 = x− α, vérifier que h =Π1(f) / Π1(β), g analogue, sont tels que : hog = goh = O.

4. Reste de la division euclidienne de Π2
1 par Π = Π1.Π2 ? Déduire que hoh = h et conclure.

48.9 Comment calculer P (A), quand A est une matrice diagonalisable

1. Pour An, soit on diagonalise : long car matrice de passage à inverser ...

2. Soit avec un polynôme annulateur : reste de Xn dans la division par
∏

(X − λi)

3. Soit : avec les polynômes de Lagrange Li(u) projecteur d’image Eλi
de noyau ⊕Eλj

, j 6= i.

P (u) =
∑

P (λi)Li(u), par exemple P (u) = un. (Li(u) base de K[u].)

Ex. : A =




0 0 1/2
1 0 1/2
0 1 0


. Lim An ? vp 1,

−1± i

2
; lim An = L1(A) = ...

1

5
(2A2 + 2A+ I).

48.10 Si a 6= b, f ∈ L(E), f 2 − (a + b)f + ab.Id = O est diagonalisable

1. Solution. X2 − (a+ b)X + ab = 0 a pour racines a et b. Et λ valeur propre ⇒ λ = a ou b.

2. Et comme a 6= b, Ker(f − aId) et Ker(f − b.Id) sont en somme directe ! De plus ici :

f2 − (a+ b)f + ab.Id = O ou (f − aId)o(f − b.Id) = O ou bien E = Ker(f − aId)o(f − b.Id),
les 2 sous ev précédents sont supplémentaires : (*) Par analyse-synthèse, on voit que forcément
−→u =

1

b− a
[(f(−→u )− a−→u )− (f(−→u )− b−→u )] = −→u 1 +−→u 2. Aisément (alors) : −→u 1 ∈ Ker(f − bId) ...

48.11 Sous espaces caractéristiques pour f "singulier" (non injectif)

Soit f ∈ L(E), dim(E) finie. On pose N = ∪Ker(fk), I = ∩Im(fk), k > 0. Montrer que :

1. Ker(fk) est croissante ; puis que si Ker(fk) = Ker(fk+1) alors elle stationne. Déduire avec pmin

∃p ∈ N : N = Np = Ker(fp), I = Ip = Im(fp), p 6 dim(E) ( np = dimN = dim(Ker(fp)) > p).)
(Les suites stationnent à partir du même indice par le Théorème du rang ...)

2. N ,I stables par f ; f/N nilpotent d’indice p, f/I bijectif ; E = N ⊕ I donc
(

np = ordre de mult. de
la vp 0 dans le po.ca

)
.

3. Il y a un seul couple N, I vérifiant ces 3 propriétés. (Si F,G conviennent : f q(F ) = {0}, donc

F ⊂ N ; f(G) = G (f/G bij.) donc G ⊂ I ; inclusion stricte impossible sinon F ⊕G ( N ⊕ I.)
4. Avec f/Ik

déduire que dk = rg(fk)− rg(fk+1) (diminution des rg(fk) = augm. des nk) est décroissante.

5. Cas fn = O (np = n). [k 6 p⇒ n1+k−1 6 nk 6 k.n1]. n1 = 1 (n1 − n0 = 1)⇒ p = n⇒ n1 = 1 !

48.12 (*) Quelques résultats divers en compléments (parfois)

1. Montrer que des sous espaces propres en somme directe (donc vecteurs propres libres). [Cours.]

2. Montrer le "Lemme des Noyaux" : P,Q premiers entre eux ⇒ KerPQ(f) = KerP (f)⊕KerQ(f).

[PQ(f) = P (f)oQ(f) ... Une preuve utilise une "relation de Bezout". (*)]

3. En dim. finie, notion de Polynôme minimal et Thèorème de Cayley-Hamilton ? (*)

Preuve avec −→v ,A−→v , ..., Am−1−→v , base de V ect(Ak−→v ) de dim. m 6 n et "matrice compagnon" ?

[Note. Bien sûr, les vp. sont racines de tout polynôme annulateur.]

4. Sous e. caractéristiques : Ki = Ker(f − λi.In)mi , mi ordre de mult. de λi dans le polynôme

caractéristique PA. Si PA scindé, Ki stable par f , dim(Ki) = mi et E = ⊕Ki. D’où :

"la décomposition de Dunford" A = ∆ +N , ∆.N = N.∆, ∆ diagonalisable, N nilpotente.
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49 Commutant, polyn. caractéristique, systèmes différentiels

49.1 Dimension du commutant C(A) d’une matrice carrée A

1. Montrer que C(A) est un sous e.v. deMn(C) et un anneau contenant C[A] (polynômes en A).

2. Si A est diagonalisable avec λ1 de multiplicité ω1 ; ... λk, ωk montrer que dim C(A) =
∑

ω2
i .

(>
∑

ωi = n) Tandis que dim K[A] = k avec (X − λ1)...(X − λk) comme polynôme minimal.

Et donc : C(A) = K[A]⇔ ∀i, ωi = 1⇔ Sp(A) de cardinal n.

3. On va montrer qu’on a toujours : dim C(A) > n. Soit D = {M ∈Mn(C) : card(Sp(M)) = n}.
(a) Déjà, montrer que toute A ∈Mc(C) est limite d’une suite d’éléments de D.

(Avec A = PTP−1, prendre Tp = T + diag(1/p, 2/p, ..., n/p) car tii + i/p = tjj + j/p a lieu
pour au plus un p ; donc pour p assez grand, Ap ∈ D et Ap → A).

(b) Soit ϕA : X ∈Mn(C) 7→ AX −XA de matrice Φ (de taille n2xn2 avec un choix de base). Et
r = rg(Φ), donc un (déterminant) mineur d’ordre r de Φ est non nul ; or c’est un polynôme
en les coeff. de A, donc C0 : Dij(Φp)→ Dij(Φ) 6= 0, d’où pour p assez grand, rg(Φp) > r.

En déduire que : n = dim[Ker(Φp)] 6 dim[Ker(Φ)] = dim[C(A)].

49.2 Formules de Newton et application au polyn. caractéristique

1. Avec : χA(λ) = χ(λ) = det(A − λ.In) = a0.λ
n + ...+ an = a0(λ− λ1)...(λ− λn), montrer que

χ′(λ)

χ(λ)
=

∑

16k6n

1

λ− λk
=

1

λ

∑

16k6n

∑

p>0

(
λk

λ

)p

=
1

λ

∑

p>0

Tr(Ap)

λp
pour | λ |> max(| λk |).

Puis (x = 1/λ) que : n.a0 +(n−1)a1.x+ ...+1.an−1.x
n−1 = (a0 +a1.x+ ...+an.x

n).
∑

p>0

Tr(Ap).xp.

2. En déduire (méthode des Traces) que les coefficients du polyn. caractérisque vérifient :

−k.ak = a0.T r(A
k) + a1.T r(A

k−1) + ...+ ak−1.T r(A) 1 6 k 6 n. [Tr(Ap) =
∑

λp
k.]

3. Et donc que : (A nilpotente) ⇔ (Tr(Ak) = 0, 1 6 k 6 n).

49.3 Résoudre les divers systèmes différentiels suivants (...)

1. Résoudre le système : X ′(t) = A.X(t)

(a) Avec A =




0 −r q
r 0 −p
−q p 0


. [A semblable à A′ =




0 0 0
0 0 −ω
0 ω 0


 et X ′ = U ∧X.

Puis X1,X2 solutions ⇒ < X1,X2 > = cte donc ‖X‖ = cte, si X solution. Puis

< U.X > = cte ; déduire que les trajectoires des solutions non constantes sont des cercles.

(b) Avec : A =




0 1 1
1 0 1
1 1 0


 ? Avec A =




1 2 −1
2 4 −2
−1 −2 1


 ? [diagonalisables.]

(c) – En général, montrer que det(eA) = etr(A) ; donc eA inversible. (Triang. dans C).

– Si A =
(

0 −a
a 0

)
, vérifier que eA =

(
cos(a) −sin(a)
sin(a) cos(a)

)
et enfin

– Que : X ′ = AX, X(t0) = X0 a pour solution : X = e(t−t0)AX0.

2. Simple remarque sur un système différentiel autonome (NON Lin.). Courbes intégrales de :

x′(t) = x2 − y2, y′(t) = 2xy. [Plusieurs sol. Avec z(t) = x(t) + i.y(t) : z′(t) = z2(t) ; ou bien

(x2 − y2).y′/x = 2xy homogène en x, y : y = u.x, x =
k.u

1 + u2
. En polaires aussi : ρ = k.sin(θ).]
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50 Dualité -formes linéaires- en dimension finie -en général-

50.1 Espace dual en dim. finie (sans flèche parfois sur les vecteurs)

Soit E∗ = L(E,K) : c’est un e.v. sur K. Si −→x ∈ E, ϕ ∈ E∗, on note : < ϕ,−→x > = ϕ(−→x ).

1. Si E de base (e1, ...en), soit e∗i : e∗i (ej) = δij (symbole de Kronecker). Montrer que c’est une

base (dite base duale) de E∗ et donc dim(E∗) = dim(E). Note : e∗i dépend de tous les ej !

Puis que : <
∑

µi.e
∗
i ,
∑

λj.ej > =
∑

λk.µk [crochets de dualité]. Egalement montrer que :

2. E∗∗ est naturellement (canoniquement) isomorphe à E, en dim. finie. [x =
∑
e∗j (x)ej , ϕ =

∑
ϕ(ej)e

∗
j ].

50.2 Avec : ϕ1, ...ϕp, p 6 n formes linéaires en dimension n

Montrer l’équivalence : (ϕ1, ..., ϕp) libres ⇔ dim
(
Ker(ϕ1) ∩ ... ∩Ker(ϕp)

)
= n− p.

50.3 Changement de bases dans E∗. Un exemple en dim. 2

Sur R2, soit 2 bases (e1, e2); (u, v) ; de bases duales (e∗1, e
∗
2); (u∗, v∗). Si P =

(
a b
c d

)
, P−1 =

(
p q
r s

)
:

Vérifier que e2 = q.u+ s.v, et : u∗(e2) = q. Déduire que la matrice de changement de bases dans E∗,

avec les vecteurs en colonnes vaut tP−1. Exemple. Si u∗(−→x ) = x− y, v∗(−→x ) = x+ y et si en lignes

L =
(

1 −1
1 1

)
: L.P = I2

(
car col. de
P : u, v

)
.
(

Donc chang. de
base dans E∗, bis

)
:

tL = tP−1.
(

Base anté−duale : u, v
V ecteurs colonnes de P

)
.

50.4 En dim. finies, transposée d’une A.L. et dualité ; rang

1. Transposée d’une matrice. Soit E et F , 2 e.v. de bases e1, ...ep et f1, ..., fn ; (e∗i , f
∗
j bases duales).

Si f ∈ L(E,F ) de matrice A ; l’appl. linéaire tf : F ∗ → E∗, ψ ∈ F ∗ 7→ ψof =tf(ψ) ∈ E∗ vérifie

∀x ∈ E, ψ ∈ F ∗ < ψ, f(x) > = <tf(ψ), x > et s’appelle : transposée de f . Montrer que sa matrice

en bases duales f∗j , e∗i , est : tA. [Car αji =< f∗j , f(ei) > ; βij =<tf(f∗j ), ei > ; donc βij = αji.]

2. Montrer que rg(f) = rg(tf), nombre maximal de colonnes (ou de lignes) indépendantes.

50.5 Plan vectoriel invariant par un endomorphisme de R3, avec tf

Soit (a, b, c) 6= (0, 0, 0). Et f de matrice A3,3. Montrer que :

Le plan vectoriel Π : ax+ by + cz = 0 est invariant par f ⇔ t(a, b, c) vecteur propre de tA.

Solution. Soit ϕ 6= O de matrice L = (a b c) ou tL en base duale ! On veut : ϕ(−→x ) = 0⇒ ϕ(f(−→x )) = 0 ;
or ϕ base de la droite vect. des formes lin. nulles sur Π, d’où ∃ λ : ϕof = λ.ϕ ou tf [ϕ] = λ.ϕ par équiv.

50.6 Forme bilinéaire non dégénérée b, en dimensions finies (E ≡ E∗)

1. Montrer que (X,Y ) ∈ RpxRn 7−→ tY.M.X [de façon à avoir Mn,p] est bilinéaire.

2. Soit b bilinéaire sur ExF de matrice M . Vérifier qu’on a 2 applications u : E → F ∗ et v : F → E∗ :

b(x, y) = <u(x), y>F = <v(y), x>E de matrices M et tM . Et [b non dégénérée (b(x, y) = 0, ∀y ∈ F )

⇒ x =
−→
0 E , (b(x, y) = 0 ∀x ∈ E) ⇒ y =

−→
0 F ] ⇔ u, v injectifs. (Avoir M.X = On,1 ⇒ X = Op,1...)

3. Donc : dim(E) = n et b non dég. ⇒ dim(F ) = n. On identifie F ∗ à E ; E∗ à F . (u, v isomorph.)

4. Et, si forme bilinéaire canonique sur E∗xE, dim(E) finie : (ϕ, x) ∈ E∗xE 7→ <ϕ, x> = ϕ(x), alors
u = IdE∗ ; v : E → E∗∗ est l’identification naturelle (canonique déjà vue) de E∗∗ et E. (Non dég.)

5. Cas E = F , b dég. ou non. [b sym.]⇔ b(ej , ei) = b(ei, ej) ou M sym. Ici q(x) = b(x, x) f. quadr. :

polyn. homogène de degré 2 (⇒ rel. d’Euler) et b(x, y) =
1

2
[q(x+y)−q(x)−q(y)] =

1

4
[q(x+y)−q(x−y)].

b définit l’orthogonalité ; E⊥ = Ker(b) = Ker(q) : det(M) (discriminant) 6= 0⇔ b non dégénérée.

115



50.7 Formes b. symétriques sur E, dim(E) finie (ex : relativité et 51.13)

1. Pour une f.b.s. on définit : x isotrope si x ⊥ x ; E⊥ ⊂ I(q) = {x ∈ E : q(x) = 0} cône isotrope.

E1 isotrope si E1 ∩ E⊥
1 6= {

−→
0 } ; et totalement isotrope si b/E1

= O ou E1 ⊂ E⊥
1 ou E1 ⊂ I(q).

2. Cas b non dégénérée. Rappel : e1, ...en base ; e∗1, ..., e
∗
n base duale. Ne pas parler de x∗ seul !

(a) Si ϕx : y 7→ b(x, y) = < ϕx, y > ∈ E∗, x ∈ E 7→ ϕx ∈ E∗ est un isomorphisme X 7→M.X.

Exercice. Dans R2, si b(x, y) = x1y1 − x2y2 et (u, v) autre base de matrice P en base −→ı ,−→
et u∗ = ϕa1 , trouver a1. [Col.1 de M−1.tP−1 en base −→ı ,−→ ! ici, M = M−1 = diag(1,−1).]

(b) Si E1 sous e.v. de dim. r, dim(E⊥
1 ) > n− r. [E⊥

1 noyau de r formes lin. b(ei, .) pas forc. ind. !

Mieux θ : x ∈ E1 7→ ϕx ∈ E∗, Ker(θ) = E1 ∩Ker(q), (Im(θ))o = E⊥
1 , (Im(θ))o orthog. E,E∗

⇒ dimE1+dimE⊥
1 = dimE+dim(E1∩Ker(q))]. b/E1

non dég. (E1∩E⊥
1 = {−→0 })⇒ E = E1⊕E⊥

1 .

Note : si b non dég., égalité des dim., donc E⊥⊥
1 = E1 mais E1, E

⊥
1 pas forc. suppl. !

[b(x, y) = x1y1−x2y2 : E1 = V ect
(

1
1

)
; E⊥

1 = E1]. E = E1⊕E⊥
1 aussi possible avec E⊥⊥

1 6= E1 !

(c) F.b.s. ⇔ ∃ B orthogonale. Si ∃x 6= −→0 , q(x) 6= 0 : prendre x⊥... Si tout x ∈ E isotrope : ici

q = O, b = O ... ⇒ b(x, y) =
∑
αi.λi.µi. Ex. M =

(
0 1
1 0

)
. Décomp. en carrés, méthode de Gauss :

q(x) =
(x1 + x2)2 − (x1 − x2)2

2
; si P−1 =

(
1 1
−1 1

)
, P =

1

2

(
1 −1
1 1

)
.

tPMP =
1

2

(
1 0
0 −1

)
et M ’congruentes’ 52.3.

(d) Si K = C, ∃B o.n. ek : une seule f.b.s. non dég. sur Cn. (⇒M = tQ.Q ; e1 + i.e2 isotrope.)

(e) Cas où : K = R. Pour une f.b.s. positive (pas forcément définie), on a les inégalités de C-S
et de Minkowski. La première entraine que Ker(b) = ensemble des vecteurs isotropes !

Déduire que pour une f.b.s. positive : "définie" ⇔ non dégénérée (et alors Base o.n.).

Cas général. ∃Borthogonale : b(e1, e1) = 1 = ... = b(er, er) ; b(er+1, er+1) = ... = b(es, es) = −1 ;
b(es+1, es+1) = ... = b(en, en) = 0. (r, s) indép. de B, "signature de b" : Th. d’inertie de Sylvester.

50.8 Formes b. sym. non dégénérées en dimension finie, car(K) 6= 2 : adjoint

1. Pour f ∈ L(E), montrer : ∃! f∗ ∈ L(E) [rien à voir avec base duale ici], b(f(x), y) = b(x, f∗(y))
dit "adjoint" de f . Et, si b(x, y) =tY.M.X =tX.M.Y ; f de matrice A ; f∗ : A′, alors :

A′ = M−1.tA.M [ou idem avec la transposée de F ∗ dans E∗ : ϕ = tA.ψ d’où, avec E∗

identifié à F , etc : tM.Y =tA.M.X ou Y = tM−1.tA.M.X, donc Y = M−1.tA.M.X.]

Ainsi, dans le cas de base orthonormée pour b, la matrice de f∗ est donc A′ = tA. [Mais

si on reprend q(x) = x2
1 − x2

2 et A =
(

a b
c d

)
, alors A∗ =

(
a −c
−b d

)
! Cas q(x) = 2x1x2 ?]

2. On déduit : (f + g)∗ = ..., (λ.f)∗ = ..., (gf)∗ = f∗og∗, (f∗)∗ = f , et aussi : det(f∗) = det(f),
rg(f∗) = rg(f), Tr(f∗) = Tr(f). Et si f inversible, f∗ aussi avec : (f∗)−1 = (f−1)∗.

Enfin, si F est un sous e.v. (ici !) stable par f , alors F⊥ est stable par f∗.

3. Groupe orthogonal b(u(x), u(y)) = b(x, y) ou b(u(x), u(x)) = b(x, x) ou f∗f = Id ou f−1 = f∗ ;

alors det(f) = ±1. (Si une base orthonormée, c’est comme vu avec un produit scalaire.)

4. Application linéaire symétrique relativement à b : f∗ = f . Cas où B orthonormée : la matrice est

symétrique. Si K = R, cf. Th. de réduction avec le produit scalaire hermitien ou autrement !

50.9 Réduction d’une 2è f.b.s. b2 ayant une f.b.s.d.p. b : p.s. sur K = R. 52.3

1. En base orthonormée B pour b (il y en a ! Une autre possibilité est le "procédé de Gram-Schmidt")

soit A =matrice de q2 ; B′ une autre base o.n. pour b : q2(x) =tXAX =tX ′.tPAP.X ′ donc
A′ =tPAP = P−1AP : ainsi A et A′ sont semblables ; même "poca" de racines forcément réelles βk ;
appelées suite des invariants de q2 relativement à b. [50.7.(c) : 1,−1, avec autre matrice P ∈ O.]

2. Il existe aussi une A.L. f : E → E telle que dans B, b2(x, y) = b(x, f(y)) = b(f(x), y) (de matrice
sym. réelle A) qui est par Théorème fondamental diagonalisable en base B′ o. n. pour la forme
bilinéaire b : B′ est donc aussi orthogonale pour b2 ; ici : b2(x, y) =

∑
βi.λ

′
i.µ

′
i. Ex. : coniques.
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51 E.v. préhilbertien réel (f.b.s.d.p.) E.v. euclidien (dim. finie)

51.1 (*) Résoudre dans R3 e.v.e. orienté

−→x +−→a ∧ −→x =
−→
b . (Ind. un syst. lin. A.X = B dépend du fait A inversible ou non ; sol : )

– Si on fait des calculs, on prend une base o.n.d. judicieuse telle que : −→a = a−→ı ,−→b = b1
−→ı + b2

−→ .

Alors





x = b1

y − az = b2

ay + z = 0
est de déterminant principal 1 + a2 = 1 + ‖−→a ‖2 6= 0. Solution unique.

Mieux : Ker(−→x 7→ −→x +−→a ∧ −→x ) = {−→0 } : end. inj. donc bij. en dim. finie : solution unique, bis.

– Essayons une solution géométrique avec : −→x = α.−→a +−→y , −→y : dans −→a ⊥ ! idem
−→
b = β.−→a +−→c .

Alors : α = β (Même composante sur −→a ) (1) et −→y +−→a ∧−→y = −→c (dans −→a ⊥) (2).

On sait qu’il y a une et une seule solution ! Faire −→a ∧ ... = −→a ∧ ... dans la dernière : (3) ...

et avec (2) (3) : [1 + ‖−→a ‖2]−→x =
−→
b + (−→a �

−→
b ).−→a +

−→
b ∧−→a .

– Cas ‖−→a ‖ = 1. Si ft(
−→x ) = −→x + t.−→a ∧ −→x , vérifier que f−1

t =
1

1 + t2
(f−t + t2.p−→a ) et que fto(f−t)

−1

est un paramétrage des rotations d’axe V ect(−→a ) sauf des 1/2 tours (où il faudrait t =∞ = tan
θ

2
.)

[Et ϕ : −→u 7→ −→a ∧ −→u vérifie ϕ3 = −ϕ. En déduire un polynôme annulateur de ft de degré 3 et f−1
t .]

51.2 Dans E = R3 e.v.euclidien (orienté)

1. Montrer que les réflexions engendrent O3(R). Et que les demi-tours engendrent O+
3 (R).

2. Identité de Jacobi : Vérifier que −→a ∧ (
−→
b ∧ −→c ) +

−→
b ∧ (−→c ∧ −→a ) +−→c ∧ (−→a ∧−→b ) =

−→
0 .

51.3 Au sujet des similitudes vectorielles (...)

1. Montrer que, si −→u , −→v unitaires : −→u +−→v ⊥ −→u −−→v .

2. Soit f un endomorphisme en e.v. préhilbertien tel que : −→x ⊥ −→y ⇒ f(−→x ) ⊥ f(−→y ).

(a) Montrer que, si −→u , −→v unitaires : ‖f(−→u )‖ = ‖f(−→v )‖.
(b) En déduire ∃k ∈ R+ avec ‖f(−→x )‖ = k.‖−→x ‖. (Cas k 6= 0 ? cas k = 0 ?)

51.4 Proj. orthogonal en dim. finie, norme de Frobénius 55.7

Soit E euclidien de base o.n. B ; p un projecteur (pop = p) de rang r. (p proj⊥ ⇔ p∗ = p cf. 50.8)

1. (a) Montrer que : p est orthogonal ⇒
∑
‖p(ek)‖2 =

∑
(ek � p(ek)) = Tr(p) = r. (1 6 k 6 n.)

(b) Inversement si
∑
‖p(ek)‖2 = r, M = Matr(p,B), voir que ‖tM‖2F = ‖M‖2 =

∑
‖p(ej)‖2 = r

puis : <tM,M > = Tr(M2) = Tr(M) = r et enfin que : ‖tM −M‖2 = 0. Conclure.

2. Inégalités avec une matrice de projecteur orthogonal en base on.

Soit A : A2 = A, tA = A. Montrer que 0 6
∑

aij 6 n et
∑
| aij |6 n.

√
rg(A).

– Corrigé. Si tV = (1, ...1), tV AV = ‖AV ‖2 et vaut aussi
∑

aij > 0 ; puis B = I −A.

– Et : Si A′ = (| aij |), U = (1)n2 , ! dans Rn2
: (A′ � U)2 6 ‖A′‖2.‖U‖2 = n2.

∑
a2

ij.

On conclut avec :
∑

a2
ij = tr(tA.A) = tr(A) = rg(A).

– Remarques. � Pour p⊥ sur V de base o.n. −→u 1, ...,
−→u r, sa matrice vaut :

∑
Ui.

tUi, i 6 r.

� Pour un automorphisme orthogonal, arriver de même à n =
∑

a2
ij 6

∑
| aij | 6 n.

√
n.

3. Matrice de la symétrie orthogonale / H : x1 + x2 + ...+ xn = 0. Et base orthonormée de H ?
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51.5 Droite des moindres carrés, minimiser
∑

(yi − a.xi − b)2

Soit Y =



y1

...
ym


, X =




x1

...
xm


, V =




1
...
1


 : Montrer que le minimum existe et vaut : dist2(Y, V ect(X,V ))

obtenu pour un seul couple. Si U = aX+bV , Y −U ⊥ X,V équivaut à : < aX+bV,X > = < Y,X >, ...

a. < X, V > +b.‖V ‖2 = < Y, V >, a.‖X‖2 + b < V,X > = < Y,X > :
(

‖X‖2
< V, X >

< V, X > ‖V ‖2

)
.

(
a
b

)
=

(
< Y, X >
< Y, V >

)
.

Puis que : a.X + b = Y (la droite passe par G) et a = σXY / σX2 (avec la covariance).

51.6 (**) Orthogonalité de polynômes et racines réelles (...)

1. t 7→ ω(t), C0([a, b],R∗+) donnant le p.s. <f, g>=
∫ b

a

f(x)g(x)ω(x)dx sur R[x], soit Pn o.n. : d0Pk = k,

coeff. dom. ak> 0. Si αn =
an+1

an
: Pn+1 = αn.x.Pn + βn.Pn − γn.Pn−1, γn> 0. [x.Pn−1 =

an−1

an
.Pn +

∑
µk.Pk.]

2. Soit x1 < ... < xp les racines sur ]a, b[ où Pn change de signe. Avec Pn ⊥ Q(x) = (x− x1)...(x − xp)
si p < n, montrer que p = n ; et par récurrence avec q.1) que les racines de Pn−1 séparent celles de Pn.

3. Et ∃! λk :
∫ b

a

Q(t)ω(t)dt =
∑
λk.Q(xk), ∀Q ∈ Rn−1[x] ; puis par div. par Pn, ∀Q ∈ R2n−1[x] ! intégra-

tion de Gauss, λk = ‖Lk‖2 > 0, Lk polyn. de Lagrange, degré n− 1. [i 6= j :< Li, Lj >=< Pn, Q >= 0

car deg(Q) = n−2 > 0 ; ‖Lk‖2 =< Lk,
∑
Lk >=< Lk, 1 > ; (vrai si n = 1)] Si f C2n, ∃!H ∈ R2n−1[x] :

H(xi) = f(xi),H
′(xi) = f ′(xi). f(x) = H(x)+

P 2
n(x).f (2n)(c)

a2
n.(2n)!

, |
∫ b

a

f(x).ω(x)dx−
∑

λk.f(xk) |6 ‖Pn‖2.M2n

a2
n.(2n)!

.

51.7 Cardinal d’une famille obtusangle, en dimension n (...)

C’est une famille de vecteurs : −→u i �−→u j < 0 si i 6= j, avec dim(E) = n. Montrer que :

1. Une famille obtusangle de cardinal p est telle que −→u 1, ...
−→u p−1 est libre. Et donc : p 6 n+ 1.

(Par récurrence sur n > 1 : Si on a −→u 1, ...,
−→u p+1 obtusangle en e.v.e. de dimension n+ 1, on prend

−→u p+1 et −→v 1 = −→u 1 − α1.
−→u p+1, ... −→u p − αp.

−→u p+1 de façon à être dans −→u ⊥
p+1 ; alors observer que

−→v 1, ...
−→v p est obtusangle en dim. n ; puis −→v 1, ...

−→v p−1,
−→u p+1 libre et aussi −→u 1, ...

−→u p−1,
−→u p+1.)

2. Montrer l’existence d’une famille obtusangle de cardinal n+ 1 en dimension n. (Récurrence)

3. Si les angles sont égaux pour une telle famille, quelle est sa valeur ? (Prendre les vecteurs

unitaires −→u i �−→u j = cos(θ), −→u 1 + ...+−→u n+1 =
−→
0 ; alors cos(θ) =

−1

n
.)

(Note. Avec
∑

16i6p−1

ai
−→u i =

−→
0 , certains introduisent l’astucieux −→v =

∑

16i6p−1

| ai | −→u i : ‖−→v ‖2 6 0 !)

51.8 Un hyperplan de Mn(R)n > 3 contient N nilpotente, M inv.

Ind. ∃A : M ∈ H ⇔ Tr(A.M) = 0, toute forme lin. étant un p.s. ; puis A = PBP−1 avec bi,1 = 0, i > 3.

SiN = E1,n :N 6= O, N2 = O, Tr(BN) = 0 ; M = P.N.P−1 convient.
(

Si n = 2, S2 de dim 3 ne contient
aucune matr. nilpotente non nulle

)
.

M inversible : A = QJrP
−1,M = PNQ−1, Tr(AM) = Tr(JN), N = E21 +E32 + ...+En1 convient.

51.9 En utilisant f ∗ en question 1, et f ∗of en question 2 (...)

1. Si f ∈ L(R3) (e.v.e.) laisse un plan P stable, montrer que P⊥ est stable par f∗. cf. 50.5, 50.8

2. Si f ∈ L(E) (e.v.e.), montrer ∃ (−→u k) b.o.n. : (f(−→u k)) orthogonale [−→u k o.n. diagonalisant f∗f .]

51.10 Calcul d’adjointe (existence non assurée en dim. infinie)

1. Dans l’e.v. euclidien E, montrer que f(−→u ) = (−→a .−→u ).
−→
b a pour adjoint f∗(−→u ) = (

−→
b .−→u )−→a .

2. Dans E = R3 e.v.e. orienté, f(−→u ) = −→ω ∧ −→u a pour adjoint f∗(−→u ) = −−→ω ∧ −→u .

3. Dans E = R3 e.v.e. orienté, f(−→u ) = (−→a ∧ −→u ) ∧−→b a pour adjoint f∗(−→u ) = (
−→
b ∧ −→u ) ∧ −→a .

4. Dans Mn(R), avec p.s. usuel, montrer que M 7→ A.M −M.A a pour adjoint N 7→ tAN −N tA.
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51.11 Liens entre f et f ∗ dans E, e.v.euclidien (ou e.v.h. ...)

1. Vérifier : Ker(f∗) = Im(f)⊥, Im(f∗) = Ker(f)⊥, dim Ker(f − λ.Id) = dim Ker(f∗ − λ.Id).
2. Montrer : Ker(f∗of) = Ker(f), rg(f∗of) = rg(f). [Dessus les dim ; cas λ = 0 puis (f − λ.Id)∗]
3. Déduire que : Im(f∗of) = Ker(f∗of)⊥ = Ker(f)⊥ = Im(f∗). Et donc que :

4. Ker(fof∗) = Im(f)⊥ ; Im(fof∗) = Im(f). [Note. Ligne 1 vraie pour une f.b.s. non dég.]

5. Vérifier que fof∗ = f∗of ⇔ f(x)/f(y) = f∗(x)/f∗(y)⇔ ‖f(x)‖ = ‖f∗(x)‖, ∀x, y ∈ E.
(

ici meme
noyau !

)

6. Autre exercice (*) Montrer que fof∗of = f ⇐⇒ fof∗ proj. orthogonal.

Corrigé. ⇐ : fof∗of et f égaux sur Ker(f) et sur Ker(f)⊥ = Im(f∗) car fof∗ proj.
⇒ : proj. facile, orthogonal car fof∗ de plus sym. ; et si on veut sur Im(fof∗) = Im(f)// Im(f)⊥.

51.12 Inégalité d’Hadamard et conséquences (cf. 52.2 pour fin)

1. Soit E un e.v. euclidien. [...] le produit mixte (déterminant en base o.n. directe quelconque).

Montrer que : | [u1, ..., un] | 6 ‖u1‖.....‖un‖. (uj supposés libres ! Avec le procédé de Schmidt.)

� Sol. Si matr. de chang. de bases Pej→uj = Pej→aj .Paj→uj ; a1 = u1, a2 = u2 + α21a1 ... avec
(aj) orthogonale, det(Paj→uj) = 1 ⇒ det(u1, u2, ...) = det(aj) = ±

∏
‖ak‖ et

∏
‖ak‖ 6

∏
‖uk‖.

� 2ème point de vue, simple changement de présentation : M = O.Ts (on a pris une base o.n. cette
fois, ǫi = ai/‖ai‖, tii > 0). | det(M) |= det(T ) =

∏
tii enfin 0 6 tii = < ui.ǫi > 6 ‖ui‖.

2. Soit A symétrique et positive. Montrer que : aii > 0 et que 0 6 det(A) 6
∏

aii.

� aii = (ei, Aei) > 0. Puis : A =tM.M (connu 52.2) det(A) = det(M)2 6 ‖m1‖2....‖mn‖2 =
∏

aii.

� Ou si A > O ! Multipliant Ligne i et Colonne j de A par γi, γj on a encore une matrice symétrique

positive ; on choisit γ2
1 .a11 = γ2

2 .a22 = ... = 1 ; [det(A′)]1/n 6
1

n
.Tr(A′) (cf. 52.1) termine ...

� Ou toujours si A > O ou det(A) > 0, avecD = diag(1/
√
akk), det(DAD), Tr(DAD) = n, conclure.

Remarque A =tM.M > 0⇒A =tT.T dite décomposition de Cholesky t2ii 6 aii

(
et : A = tT∆T,

”1” sur diag de T

)
.

3. ⇒ Si An,n réelle, avec tA.A, montrer : det(A)2 6
∏

i

(
∑

k

a2
ki). Décomposition "Q.R" ou d’Iwasawa? :

4. Si A ∈ GLn(R) : A = O.T de façon unique, O ∈ O, Ttriang.sup,coeff.>0. [tAA =tTT ; O = A.T−1...]

51.13 (*) Propriétés de l’orthogonal. Quelques contre-exemples

1. Montrer que (dim. quelc., f.b.s. dég. ou non) : F ⊂ F⊥⊥, (F +G)⊥ = F⊥ ∩G⊥ ; ici F,G sous e.v.

2. Et en dim. finie, si b non dég. : montrer, avec le résultat précédent, que (F ∩G)⊥ = F⊥ +G⊥.

[Solution : (F ∩G)⊥ = (F⊥⊥ ∩G⊥⊥)⊥ = (F⊥ +G⊥)⊥⊥ = F⊥ +G⊥.] Mais attention :

Si M =

(
1 0
0 0

)
, (V ect(−→ı )∩ V ect(−→ı +−→ ))⊥ = R2 ; V ect(−→ı +−→ )⊥ = V ect(−→ı )⊥ = R.−→ : ⊃ stricte.

3. Même avec un produit scalaire, un cas où E 6= F ⊕ F⊥ et F 6= F⊥⊥ : (en dim. infinie !)

(a) Si E = R[X], F = X.R[X], < P, Q >=

∫ 1

−1

P (t)Q(t)dt, montrer que F⊥ = {O}. Donc : F 6= F⊥⊥.

(b) Montrer que E = {suites réelles,
∑
u2

n converge} est un e.v. (2 | uk.vk |6 u2
k + v2

k) avec
∑
uk.vk

p.s. ; si F sous. e.v. des suites nulles à partir d’un certain rang, vérifier que F⊥ = {O}.
4. Un cas où E 6= F ⊕ F⊥ et F = F⊥⊥ : Soit E = C([−1, 1],R), F=l’e.v. des f. dont la restriction à

[0, 1] est nulle, G celles dont la restriction à [−1, 0] est nulle. Même p.s. Montrer F⊥ = G, G⊥ = F ,

et E 6= F ⊕ F⊥. (Exemple de 2 sous e.v. fermés de somme non fermée : son adhérence vaut E).

5. Si (f/g) = f(0).g(0)+
∫ 1

−1

f(t).g(t)dt F , G idem, montrer ici que F ⊕F⊥ est fermé ; donc non dense.
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52 Endomorphismes symétriques. Formes quadratiques.

52.1 Si A symétrique, positive, montrer : det(A)1/n 6 1/n.Tr(A)

Pour f endomorphisme symétrique, f est positif (défini positif) si (f(−→u ) �−→u ) > 0,∀−→u 6= −→0 (ou >).

Ceci équivaut à valeurs propres > 0 ou strictement > 0. Pour A en b.o.n., ak,k = f(−→ek) �−→ek .

1. Ci-dessus : Comparaison moyenne arithmétique-moyenne géométrique des valeurs propres (> 0 ici).

2. Si A sym. réelle, montrer : inf
tXAX
tXX

= inf(λk) 6 ak,k 6 sup
tXAX
tXX

= sup
f(x) � x

x � x
= sup(λk).

3. (*) Soit A symétrique réelle avec λ1 > λ2 > ... > λn. Montrer ∀k, 1 6 k 6 n que
∑

i6k

aii 6
∑

i6k

λi.

[B o.n., B′ o.n. diag. A. ej =
∑

i

(ej .e
′
i).e

′
i ⇒ ajj = u(ej).ej =

∑

i

λi(ej.e
′
i)

2 6
∑

i6k

...+ λk(1−
∑

i6k

...).

D’où ajj 6 λk+
∑

i6k

(λi − λk)(e
′
i.ej)

2 ; avec
∑

j6k

(e′j .ei)
2 6 1, conclure.]

4. Soit A, B symétriques, C = AB +BA (symétrique) et A définie positive.

Si A =
(

λ 0
0 1

)
, B =

(
2 1
1 1

)
sont positives, vérifier que C n’est pas forcément positive !

Si C est définie positive, avec tXCX = 2.tXABX, X vect. propre de B, vérifier que B aussi.

5. A sym. réelle, λk > 0⇔ det(Ak) > 0,1 6 k 6 n (critère de Sylvester). [⇐
(
51.12 : ∃T triang. sup. inv.

A =tTT ; et réc. sur n.

)
]

52.2 (*) Diverses inégalités avec les matrices symétriques réelles

1. Si A,B sym. réelles, montrer que : 2. | Tr(AB) | 6 Tr(A2) + Tr(B2). [ind. : ‖A−B‖2 > 0.]

2. A,B sym. positives : 0 6 Tr(AB) 6 Tr(A).T r(B). [B = D ⇒ Tr(AB) = Tr(
√
DA
√
D) > 0 avec

tX.MX, etc. Et Tr(AB) = Tr(tAB) 6 ‖A‖.‖B‖ ; ‖A‖2 = Tr(tA.A) = Tr(A2) =
∑
λ2

i 6 (
∑
λi)

2.]

3. Si A symétrique réelle, λk > 0 : ∃ ! matrice C symétrique réelle, A = C2, µk > 0. A =tC.C !

[Unicité (*) : Si A = C2
1 : C1 commute avec A donc sous e.p. de A stables par C1 (P−1 =tP )

A = P.




λ1In1
0 ...

...

... ... λqInq


 .P−1, C1 = P.




M1 0 ...
...
... ... Mq


.P−1. Puis M2

i = λi.Ini donc vp de Mi :

+
√
λi seulement. Enfin tC1 = C1 ⇒Mi diagonalisable. Donc Mi = +

√
λi.Ini obligé.] D’où la

Décomposition polaire de Cartan : Si f automorphisme, avec g = f∗of sym., défini, positif et

h l’unique racine symétrique définie positive de g : f = roh [r = foh−1] où r orthogonal, uniques.

Rem . Idem f = h′r′, h′2 = ff∗ ; r = r′ ⇔ f−1h′f = h ; or vrai : carrées égaux et h, h′ positifs !

4. (*) An = A,B sym. positives : det(A+B) > det(A)+ det(B), det(A+B)
1
n > det(A)

1
n + det(B)

1
n .

(a) Si vp. strictement positives pour A, soit A = C2, C sym. réelle, à vp. strict. positives. Alors
M = C−1BC−1 est sym., positive. A+B = C(I+C−1BC−1)C ⇒ det(A+B) = det(A).P (−1),
P (λ) polynôme caractéristique de M , de vp γi ∈ R+. Voir que

∏
(1+ γi) > 1+

∏
γi termine.

Et si det(A) = det(B) = 0 avec tX(A+B)X > 0, vérifier que le résultat subsiste.

(b) Montrer :
∏

(1 + γi)
1/n > 1+

∏
γ

1/n
i [ln(1 + ex) convexe] et la 2è inégalité.

5. (*) An, Bn symétriques, positives. α, β > 0, α+ β = 1 : (det(A))α.(det(B))β 6 det(αA+ βB).

Si n = 1, inégalité de convexité. Pour n > 1 : si A = a.I, a > 0, diagonaliser B et cas n = 1.

cas A inversible : A = H2, H symétrique ; α.A+ β.B = H(αI + βH−1BH−1)H et
< X,B′X > = tY BY > 0, Y = H−1X ... cas A non inversible : α.A+ β.B positive !

Autre solution. Si ek base o.n. diagonalisant α.A + β.B de v.p. µk = α.a(ek) � ek + β.b(ek) � ek,
alors µk > (a(ek) � ek)

α.(b(ek) � ek)
β ; l’inégalité d’Hadamard

∏
a′ii > det(A) termine (51.12).
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52.3 Réduction, en simultané, d’une f.b.s.d.p. b et d’une f.b.s. b2

Soit A =
(

2 1
1 2

)
. Montrer ∃ P : tP.A.P = In. [P =

(
1/

√
2 −1/

√
6

0 2/
√

6

)
, décomp. de Gauss de tXAX . Atten-

tion : non semblables mais "congruentes"]. Et en b.o.n. pour b, réduire b2 de matrice B =
(

2 −2
−2 −4

)
.

[M =
(

1 −
√

3

−
√

3 −1

)
=tPBP [= P−1(A−1B).P !] s. diag(2,−2), Π−1 =tΠ : ∃Q tQAQ = In, tQBQ = D.]

52.4 (*) A, B sym., cas AB diag. sur R (en plus de AB = BA⇔ AB sym)

1. A est à vp.>0 : Ex.52.3 avec A−1, tQA−1Q = In, tQBQ = D ... [
(

1 1
1 1

)
.
(

2 −1
−1 0

)
non diag. !]

ou : AB autoadjoint pour le p.s. tX.A−1Y ! ou encore : AB =
√
A.[
√
A.B
√
A].(
√
A)−1, [...] sym.

2. A,B sym. positives : si λ 6= 0 de C =
√
AB
√
A, vérifier : X ∈ Eλ(C) 7→

√
AX ∈ Eλ(AB) inj.

si λ = 0, vérifier : tY BY = 0 ⇒ BY = 0 et avec X ∈ Ker(C), Y =
√
AX, Ker(C) = Ker(B

√
A) ;

puis Im(BA) ⊂ Im(B
√
A), rg(AB) = rgt(AB) 6 rg(B

√
A), dimKer(AB) > dimKer(C) et finir.

52.5 Valeurs propres et vecteurs propres de X tX (sym., sous e.p.⊥)

1. Soit X 6= O ; observer que rg(X.tX)n,n = 1, tr(X.tX) =tX.X = x2 et Im(X.tX) = V ect(X).

2. Si A ∈ GLn(R) : det(A+X.tX) = det(A).(1+tX.A−1X). [Si P ∈ O : C1 =
X

x
= P.U , tU = (1, 0, ...0)

A = PBP−1 : det(A+X.tX) = det(B + x2U.tU) = det(A).det(I + x2.B−1U.tU) ; ce dernier dét.

valant aussi ∆ = 1 + k.x2 = 1 + x2.tU.B−1U , (k : 1er terme de B−1). Enfin ∆ = 1 +t X.A−1X.]

52.6 Quand a-t-on deux projecteurs orthogonaux qui commutent ?

1. Si f = pGopF = pF opG, montrer que f est un projecteur, puis autoadjoint : f = pH .

En utilisant que F = {−→u : ‖pF (−→u )‖ = ‖−→u ‖}, montrer que H = F ∩G.

2. En considérant F = (F ∩G)⊕⊥ F1, G = (F ∩G)⊕⊥ G1, montrer qu’une condition nécessaire et

suffisante (C.N.S.) est : F = (F ∩G)⊕ (F ∩G⊥) (et par symétrie G = (G ∩ F )⊕ (G ∩ F⊥).

[Cond. Suffisante. Nécessaire aussi. −→u ∈ F, −→u = −→a +
−→
b +−→c ∈ F ∩G⊕⊥ G1 ⊕⊥ G

⊥, donne
−→a +

−→
b = pG(−→u ) = pGopF (−→u ) ∈ F ∩G ⇒ −→b ∈ F ∩G (par diff.),

−→
b =

−→
0 et −→c ∈ F ∩G⊥. Fini.]

52.7 (*) Question intéressante partant d’une base quelconque (...)

Soit −→e 1,
−→e 2 une base quelconque et f(−→u ) = (−→e 1 �−→u )−→e 1 + (−→e 2 �−→u )−→e 2.

1. Montrer que f est un endomorphisme, symétrique, défini, positif. Matrice A ?

2. Par diagonalisation en base o.n. de f , montrer que : ∃ g ∈ S+ : g2 = f−1.

3. Montrer que g(−→e 1), g(
−→e 2) est orthonormée [mais 6= −→ı ,−→ ou

−→
I ,
−→
J ].

[Corrigé. Soit une base initiale B0 : −→ı ,−→ o.n. Si P est la matrice de changement de bases :
A =tP.P (matr. de Gramm), A0 = P.A.P−1 = P.tP en base o.n. : d’où end. sym. positif défini. En

diagonalisant f en base o.n.
−→
I ,
−→
J : g existe, est unique, de matrice B0 en base −→ı ,−→ : B2

0 = A−1
0

et tB0 = B0. g(
−→e 1), g(

−→e 2) ont pour matrice en base −→ı ,−→ : B0.P = U ; alors tU.U = I2 est aisé.
Sans matrice : g(−→ei ) � g(−→ej ) = −→ei � f−1(−→ej ) et f−1(−→ej ) = −→u tel que −→u �−→ej = 1,−→u �−→ei = 0 si i 6= j.]

52.8 Matrice et déterminant de Gram. Des calculs de distance (...)

Soit E un e.v. muni d’un produit scalaire (préhilbertien). G = Matr(−→u i �−→u j), g = det(G) i, j 6 p.

1. Montrer que : −→u 1, ...
−→u p libre ⇔ g 6= 0. Même : rg(−→u k) = rg(G).

2. On suppose −→u 1, ...
−→u p libre ; V = V ect(−→u 1, ...,

−→u p). Pour −→v ∈ E, montrer que :

δ2(−→v , V ) =
g(−→u 1, ...,

−→u p,
−→v )

g(−→u 1, ...,
−→u p)

δ désignant la distance (avec la proj⊥). [Ind. prendre une base o.n.

−→e1 , ...,−→ep de V ′ ⊃ V , alors G =tP.P . Idem avec −→e1 , ...,−→ep ,−→e de V ect(−→u 1, ...,
−→u p,
−→v ) si −→v 6∈ V .]
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52.9 Avec tA, A ∈Mn,p(R) : Ker(tA.A) = Ker(A), 51.11, 53.4, 55.7

1. Montrer que tA.AX = O ⇒ tXtA.AX = ‖AX‖ = 0 et donc A.X = O. Déduire que :
Ker(tA.A) = Ker(A) et Tr(tA.A) =

∑
a2

ij , norme de Frobénius : cf. 55

Note. (tA.A = A.tA et A nilpotente) ⇒ A = O. [tA.A diag., nilp. donc nulle ; Tr(...) = 0 ... ]

2. Déduire que : Im(AtA) = Im(A). (Avec rg(A) = rg(tA) = rg(tA.A) = rg(A.tA).)

3. Maintenant n = p ; et donc tA est la matrice de l’adjointe f∗ de f . cf. 51.10 s.

Avec E = Ker(f)⊕⊥ Im(f∗) (rappelé, mais à voir) montrer que : f2 = fof∗ ⇒ f = f∗.

[−→u ∈ Ker(f)⇒ f2(−→u ) = fof∗(−→u ) =
−→
0 donc f∗(−→u ) =

−→
0 avec 1). Puis : (f∗)2 = fof∗ ; donc

−→v ∈ Im(f∗)⇒ f∗(−→v ) = f∗(f∗(−→u )) = f(f∗(−→u )) = f(−→v ). Avec sous e.v. suppl. ⊥ laissé : fini.]

4. Toujours avec n = p. Montrer que tA.A et A.tA sont orthogonalement semblables.
(En général : ABn,n et BAn,n ont même polynôme caractéristique : cf. 47.6. Et ici - matr. sym- etc.)

52.10 Produit d’Hadamard. On pose ici A ∗B = C où cij = aij.bij (...)

1. Vérifier queMn(R) est ainsi une algèbre commutative, associative et unitaire.

2. Que A,B symétriques positives ⇒ C aussi. (Théorème de Schur).

3. Idem avec strictement positives. [Voir aussi Wikipedia.]

4. Déduire : O 6 A 6 B, O 6 A′ 6 B′ ⇒ A ∗A′ 6 B ∗B′. (i.e. B −A sym. positive ...)

Corrigé de 2) 3) : Posons A = U2, U symétrique positive, B = V 2, idem. On a ici :

cij = (
∑

k

uki.ukj) . (
∑

l

vli.vlj). D’où tX.(A ∗B).X =
∑

k,l

(
∑

i

ukivlixi)
2) > 0, etc*. Autre sol. :

2) : A = P .




α2
1 0 ...
0 ...
... ...


 .

tP = P .




α1

0
...



(
α1 0 ...

)
.tP + ... = α2

1.U1.
tU1 + ... (U1, 1ère col. de P .)

A = α2
1.U1.

tU1+... B = β2
1 .V1.

tV1+... A∗B =
∑

i,j

α2
i β

2
j (Ui.

tUi)∗(Vj .
tVj)=

∑

i,j

α2
iβ

2
j (Ui∗Vj).

t(Ui∗Vj)

[U.tU = (tU.U).Π, Π proj⊥.] 3) : Si A,B > 0, tXCX = 0⇒ (Ui∗Vj) �X = 0 = Ui �(Vj ∗X),X = O.

52.11 En e.v.e., si f ∈ L(E), ||| f |||2 6 1 : Ker(f − Id) = Ker(f∗ − Id) 6= 53.4

1. Montrer que ‖f∗(−→u )‖2 = (−→u �fof∗(−→u )) 6 ‖−→u ‖.‖f∗(−→u )‖ (‖f(−→v )‖ 6 ‖−→v ‖). D’où ||| f∗ |||2 6 1.

2. Puis que Ker(f − Id) = Ker(f∗ − Id) (= Im(f − Id)⊥). [Ind. Si f(−→u ) = −→u , ‖f∗(−→u ) − −→u ‖2 =

‖f∗(−→u )‖2 +‖−→u ‖2−2.−→u �f∗(−→u ) 6 2.‖−→u ‖2−2.f(−→u ) �−→u = 0 ; donc f∗(−→u ) = −→u ; réciproque, idem.]

3. Avec E = Ker(f − Id)⊥⊕Im(f − Id), déduire que lim
p→+∞

1

p

∑

06k6p−1

fk(x) = p⊥(x) sur Ker(f − Id).

52.12 Paramétrisation de Cayley, exponentielle d’une matrice antisymétrique

1. Soit A antisymétrique (⇒ seule v.p. réelle 0, I +A inversible). Montrer que R = (I −A)(I +A)−1

est orthogonale directe et −1 non vp. (I−A, I+A et inverses commutent, t(I+A) = I−A : même

dét.) ; [AX = O ⇔ RX = X ; et si A =
(

0 −t
t 0

)
, R =

1

1 + t2

(
1− t2 2t

−2t 1− t2

)
(t = tan(ϕ), | ϕ |< π

2
...]

Inv. : Ω étant orthogonale, avec −1 non vp. (donc ∈ O+) : I + Ω inversible et (I −Ω).(I + Ω)−1 est

antisymétrique (c’est A). [Noter que f(x) =
1− x
1 + x

est involutive et transforme U− {−1} en R.i.]

2. On pose ‖M‖ = n.sup | mij | (pour que ‖MN‖ 6 ‖M‖.‖N‖) et on prend exp(A) avec la série.

Si tA = −A, vérifier que : texp(A) = exp(tA) = exp(−A) = exp(A)−1 donc orthogonale et

même directe (avec une forme triangulaire sur C). Et, si AX = O, alors exp(A).X = X.

Enfin, de l’égalité exp
(

0 −t
t 0

)
=

(
cos(t) −sin(t)
sin(t) cos(t)

)
, déduire que exp n’est pas injective.

Mais exp bij. Sn → S++
n . [eA = eB : F ss e.p de A stable par eB et B (eB .B = B.eB) ; mêmes V.pr.]
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53 E.v. préhilbertien complexe

53.1 Forme sesquilinéaire (K = C). Forme sesquil. hermitienne

1. On garde la notation b(., .) pour les formes sesquilinéaires, sesqui=1 et
1

2
contraction de semisque.

Une forme sesquilinéaire est linéaire/1er vecteur et semi-linéaire/au 2ème : b(x, λ.y) = λb(x, y)

(par ex.). Elle est dite hermitienne si : b(y, x) = b(x, y) ; il suffit que ce soit vrai sur une base.

Exemples. Sur Cn : tY .M.X, tY .X ; Sur Mn(C) : Tr(tB.A) ; Sur C(I,C) :
∫

I

f(t).g(t).w(t)dt.

(Première notation : cf. 50.6, M ′ =tPMP . Hermitiennes ⇔ tM = M , t 7→ w(t) à valeurs réelles.)

2. Montrer que : Une forme sesquilinéaire est hermitienne ⇐⇒ b(x, x) est réel tout le temps.

(avec 4.b(x, y) = b(x+ y, x+ y)− b(x− y, x− y)− i.b(x+ iy, x+ iy) + i.b(x− iy, x− iy).
Donc au passage si b sesquilinéaire : b(−→u ,−→u ) = 0, ∀−→u ∈ E ⇒ b = O (6= cas des f.bilinéaires).

3. Orthog. pour b s.h., vecteurs isotropes, Ker(b) = E⊥ ; Si E⊥ = {−→0 }, on dit b "non dégénérée" ;

det(M) appelé discriminant, en dim. finie : cf. forme bilinéaire symétrique en dim. finie.

4. Existence de base orthogonale : b(e1, e1) = 1 = ... = b(er, er), b(er+1, er+1) = −1 = ... ,
b(es+1, es+1) = 0 = ... = b(en, en). (r, s) indépendant de la base. Par contre : x 7−→ ϕx = b(x, .)

lin. de E dans E
∗

[(λ,ϕ)→ λ.ϕ)] ; isomorphisme en dim. finie si b non dégénérée. Dans ce cas :

pour F sous e.v. de E (encore !) dim(F⊥) = dim(E) − dim(F ) et (F⊥)⊥ = F

(En général, dim(F⊥) > dim(E)− dim(F ) ; et égalité des dim. 6⇒ Suppl. ! cf. 50.7.4 )

5. Que f soit dégénérée ou non, si F sous e.v. de E ici : f/F non dégénérée (qui est F⊥ ∩ F = {−→0 })
⇔ F non isotrope (pas de vecteur 6= −→0 de F orthogonal à F ) ⇔ en dim. finie F ⊕ F⊥ = E.

6. Adjoint en dim. finie si b sesquilinéaire hermitienne non dégénérée. L’isomorphisme entre E et E
∗

permet de définir l’adjoint de f ∈ L(E) (noté f∗ s’identifiant à un élément de L(E)).

Si f de matrice A, la matrice A∗ de f∗ est telle que A∗ = M−1.tA.M (car M =tM ) ; et

si on a une base orthonormée, A∗ = tA, trans-conjuguée. Note : (λ.f)∗ = λ.f∗, det(A∗) = det(A).

53.2 Cas particulier essentiel de produit scalaire hermitien. Ex.

1. Quand la forme hermitienne est positive, on dit e.v. préhilbertien. Montrer les inégalités de (C-S)
et de (Minkowski). En déduire dans ce cas que Ker(b) = {Vecteurs isotropes}. Et :

"définie" ⇔ non dégénérée : "e.v.p. séparé". Si dim(E) finie (e.v. hermitien), on a une base o.n.

2. Calcul en base o.n. : ‖−→u +−→v ‖2 = t(U + V ).(U + V ) = ‖−→u ‖2 + ‖v‖2 + −→u /−→v + −→v /−→u .

3. Identités à voir ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re(x/y) ‖x+ iy‖2 = ‖x‖2 + ‖y‖2 − 2Im(x/y)

4.(x/y) = ‖x+ y‖2 − ‖x− y‖2 − i‖x+ iy‖2 + i‖x− iy‖2 et Théorème du parallélogramme.

4. Groupe unitaire si b non dégénérée en dim. finie : b(u(x), u(y)) = b(x, y) ou b(u(x), u(x)) = b(x, x)

ou u∗u = Id ou ... u−1 = u∗ et alors | det(u) |= 1. Si base o.n. (p.s.h.), A∗ = tA, et : tA.A = In.

Montrer que toutes les v.p. complexes sont de module 1. (En particulier avec coefficients réels).

5. Application linéaire hermitienne relativement à b p.s.h. : f∗ = f ; cas f sym. réelle ?

(a) Cas d’une base orthonormée : la matrice A de f dans une telle base est "hermitienne" : tA = A.

(b) Avec le produit scalaire hermitien, montrer pour un endomorphisme hermitien de valeur propre
λk, vérifie : λi(x/y) = λj(x/y) ; d’où vp réelle ; et sous espaces propres orthogonaux.

(c) Même hyp. : Montrer que si F sous e. stable, alors F⊥ aussi ; en déduire l’existence :

(d) D’une base o.n. et d’une matrice diagonale réelle telles que U−1AU = D avec U−1 = tU .
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53.3 Au sujet des projections et des symétries orthogonales (...)

1. Vérifier que l’hyperplan (
∑

ai.xi = 0) est ⊥ à V ect(
∑

aiei). Et pF (x) =
∑

(x/ek)ek =
∑

(ek/x)ek.

2. Si E e.v.h. (dim finie et p.s.h.) et si x 6= y vérifient ‖x‖ = ‖y‖, montrer que [il existe une réflexion

s : s(x) = y]⇔ (x/y) ∈ R (ou Im(x/y) = 0). Dans ce cas s est unique : sym. / V ect(y − x)⊥.

53.4 Si f normal (fof ∗ = f ∗of) en e.v.h. Ker(f − λ.Id) = Ker(f∗ − λId) ...

1. (a) Avec ‖f∗(u)−λ.u‖2 = ‖f∗(u)‖2+ | λ |2 .‖u‖2−λ.f∗(u)/u−λ.u/f∗(u) = ‖f(u)−λ.u‖2 conclure.

(b) Mieux. f normal ⇒ Ker(f) = Ker(f∗) 51.11 et f − λ.Id est normal. [M. vect. propres.]

(c) En déduire que deux Sous espaces propres associés à deux vp. distinctes sont orthogonaux.

2. (a) De Eλ stable par f et f∗, déduire que E⊥
λ est stable par f∗ et stable par f∗∗ = f . Puis que :

(b) f normal⇔ diag. unitairement. Et A = H+i.H ′ (hermitiennes) : A normale⇔ HH ′ = H ′H.

(c) Sur C : f normal matr.⇔ ∀F stable, F⊥ stable ⇔ ∃P : f∗ = P (f)⇔ tr(fof∗) =
∑ | λk |2.

53.5 Décomposition de Schur : trigonalisation unitaire. Conséquence

1. Soit A une matrice complexe. Montrer que A est trigonalisable par une matrice unitaire.

2. Solution et remarques : On trigonalise A : T = P−1A.P . Puis : par le procédé de Schmidt, on

orthonormalise les colonnes de P : ∃ S triangulaire supérieure : P.S = Π soit unitaire : Π∗ = Π−1.

Alors : S−1.T.S = Π−1.A.Π est triangulaire supérieure et elle est unitairement semblable à A.

Si A réelle scindée ou non, A semblable orthogonalement à A′ =



R11 R12 ...
0 R22 ...
...


 , Rii bloc 1,1 ou 2,2

avec deux vp 6∈ R conjuguées. Et sur C : A normale AA∗ = A∗A⇔ A unitairement diagonalisable.

53.6 Décomposition en Valeurs singulières sur un exemple (tA.A ...)

1. SiA = 1
√

2
.




0 0 0

−1 −3 −
√

3

1 −3
√

3
0 0 0


, vérifier : A∗A=




1 0
√

3
0 9 0√
3 0 3


 =PD2P ∗, P=



−
√

3/2 1/2 0
0 0 1

1/2
√

3/2 0


 ,D = diag(0, 2, 3).

2. Si M = A.P.∆, ∆ = diag(0, 1/2, 1/3), vérifier que M∗M = diag(0, 1, 1) ; déduire que les 2 derniers

vecteurs colonnes de AP s’écrivent (2q2, 3q3), q2, q3 orthonormés de C4. On complète en une base

o.n. : q1, q2, q3, q4 de C4, de matrice Q ∈ U4 ; (alors que : P ∈ U3 et 02, 22, 32 : les vp de A∗A).

3. En déduire que Q∗.A.P =
(

diag(0, 2, 3)
0 0 0

)

4,3

= As dite SV D pour "singular values decomposition".

4. Avec AA∗, que A et A∗ ont même valeurs singulières, cf. 47.4 et An,n inv. ⇔ valeurs sing. 6= 0.

53.7 Pseudo inverse A+ de An,p, en e.v.e. : éq. de Penrose (et autre ps-i)

1. X est dit "pseudo solution" de A.X = B si AX = p⊥(B) sur Im(A) [∗]. Montrer que [∗]⇔
(B −AX) � AY = 0, ∀Y ⇔ tA.A.X =tA.B, possible ! Si X1 sol., les autres : X = X1 +Ker(A).

2. Parmi les X sol, montrer ∃ ! S de norme minimum (sol. normale). [Avec les suppl. orthogonaux :

Im(tAA) et Ker(tAA)] ; et que cette solution est exactement de plus orthogonale à Ker(tAA).

3. (a) Vérifier avec q.2 que B 7→ S est linéaire. S = A+(B), A+ ps.-inv. au sens des moindres carrés.

(b) Avec tA.A =
∑
ρi.Πi, 0 6 ρ1 < ρ2..., Πi matrices des proj⊥ associées, vérifier queA+ =

∑

ρ>0

1

ρj

Πj .
tA.

(c) Exemple : si A1,p 6= O, vérifier que A+ = 1/a2. tA où a2 = A.tA. En général, vérifier que :

(d) A+A =
∑

ρ>0

Πj, A
+A, AA+ sym., AA+A = A, A+AA+ = A+. [A+A, AA+ proj.⊥ sur Im(tA), Im(A).]

(e) Unicité si MA,AM sym et AMA = A,MAM = M : tAAM = (tAtM tA)tM tA =tAtM tA =tA :

MB p-sol. et M = MAM =tAtMM : MB ∈ Im(tA). Donc M =A+. Et (A+)+ = A, (tA)+ =t(A+).

Notes. � Si −→u i V.p. de tA.A pour ρi = σ2
i , A =

∑

ρ>0

A.Ui.
tUi =

∑

ρ>0

σi.Vi.
tUi, A+ =

∑

ρ>0

1

σi

Ui.
tVi ; SV D.

� Si f ∈ L(E,F ), gfg = g, fgf = f : gf proj., Ker(gf) = Ker(f), Im(gf) = Im(g), ĝ −1 = f̂ ; où ĝ = g/Im(f). Et si An,n :

� MAM = M, AMA = A, AM = MA : autre ps-i. AM = M ′AMA = M ′A ⇒ M = MAM ′ = M ′ ; ... ⇔ Ker(A) ∩ Im(A) = {−→0 } !
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54 Séries de Fourier

54.1 Notations. Divers résultats généraux rappelés

1. On prend (f/g) =

∫ a+2π

a
f(t)g(t)dt : p.s. sur C2π e.v. des f. 2π-périod., continues de R dans C.

Mais on prendra aussi CM2π.

Soit : Pn = V ect(eikt,−n 6 k 6 n) = V ect(1, cos(t), sin(t), ..., sin(nt)), C-e.v. Pour f ∈ Pn :

On a : f(x) =
n∑

k=−n

cke
ikx =

a0

2
+

n∑

k=1

(ak.cos(kx) + bk.sin(kx)), ck =
ak − ibk

2
, c−k =

ak + ibk
2

et ak = ck + c−k, bk = i.(ck − c−k), k ∈ N (b0 = 0)

Aussi : ‖f‖2 =
1

2π

∫ π

π
| f(t) |2 dt =

n∑

−n

| ck |2=
| a0 |2

4
+

1

2

∑
(| ak |2 + | bk |2). (∗)

2. En général, notons u0 = c0 =
a0

2
, un = c−ne

−inx + cne
inx = ancos(nx) + bnsin(nx). Alors

∑
un normalement conv. ⇔

∑
| an |,

∑
| bn | conv. ⇔

∑
| cn |,

∑
| c−n | conv. Et :

si S(x) =

+∞∑

n=0

un(x) cn =
1

2π

∫ π

−π

S(t).e−intdt, an =
1

π

∫ π

−π

S(t).cos(nt)dt, bn =
1

π

∫ π

−π

S(t).sin(nt)dt.

3. Inversemment, partant de f , 2π-périod., on pose an, bn, cn comme ci-dessus : série de Fourier.

� (On a : c−n(f) = cn(f) ; donc) f réelle ⇒ an, bn réels.

� (Si : g(x) = f(−x), cn(g) = c−n(f) ; donc) f paire ⇒ bn = 0 ; f impaire ⇒ an = 0.

� f(x+ π) = f(x) entraine a2p+1 = b2p+1 = 0 ; f(x+ π) = −f(x) entraine a2p = b2p = 0.

� Pour f CM1, on note Df la fonction dérivée, là où elle existe et sinon : 0. Alors

Si f est 2π-périod., continue et C1 par morceaux : cn(Df) = i.n.cn(f). Surtout :

(a) On a donc vu que si la série converge normalement, c’est la série de Fourier de sa somme.

(b) La proj⊥ de f sur Pn est égale à Sn(f), somme partielle d’ordre n : ‖f‖22 = ‖Sn‖22 + ‖f −Sn‖22.

54.2 Théorème de convergence en moyenne quadratique

1. On a : Pour f CM2π, la suite Sn converge en moyenne quadratique vers f .

Corollaire : Formule de Bessel-Parseval. C’est (∗) avec n = +∞.

2. Notes : a) Soit f̃(x) =
f(x+) + f(x−)

2
, appelée régularisée de f . Ceci va servir ensuite.

b) On déduit que f continue, 2π-périod. est nulle si et seulement si ses coeff. de Fourier sont nuls.

Analogue : Egalité de deux fonctions continues si et seulement même coeff. de Fourier.

54.3 Les Théorèmes de convergence ponctuelle (...)

1. Convergence normale. Si f est continue, 2π-périod., C1 par morceaux, la SF converge normalement

sur R et a pour somme f . | cn(f) |=| 1

i.n
.cn(f ′) |6 1

2
.(

1

n2
+ cn(f ′)2) et Th. de Parseval pour f ′.

2. Théorème de Dirichlet. Si f est 2π-périod., C1 par morceaux, alors la SF converge sur R et a

pour somme f̃(x) : la régularisée !

(Démonstration (*) : On arrive à Sn =
1

2π

∫ π

−π

f(x− u)Dn(u)du où Dn =
n∑

−n

eikt =
sin(n+ 1/2)u

sin(u/2)

est appelé noyau de Dirichlet. Une telle intégrale est appelée produit de convolution.)
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54.4 Exemple avec f(x) = x sur [0, π[, f impaire 54.7

Trouver : bn = 2.
(−1)n+1

n
;
∑

p>0

(−1)p

2p+ 1
=
π

4
;
∑ (−1)n+1sin(n)

n
? et (Parseval)

∑

n>1

1

n2
=
π2

6
.

54.5 Exemple avec f(x) = x sur [0, π[, mais ici, f paire

Trouver : f(x) =
π

2
− 4

π
.
∑

p>0

cos(2p+ 1).x

(2p+ 1)2
. Retrouver :

∑ 1

n2
et trouver :

∑ 1

n4
=
π4

90
.

54.6 Autres ex. et développement de
sin(π.t)

π.t
en produit infini

1. (a) Soit f(x) = ch(λ.x) sur [−π, π] et 2.π-périodique. Montrer que :

f(x) = ch(λ.x) =
sh(λ.π)

λ.π
+

2.λ.sh(λ.π)

π
.
∑

n>1

(−1)n.cos(n.x)

n2 + λ2
sur [−π, π]. En déduire

(b) que : 2.
∑

n>1

λ2

n2 + λ2
=
λ.π.ch(λ.π) − sh(λ.π)

sh(λ.π)
. λ = i.α : π.α.cot(π.α) = 1 + 2.

∑

n>1

α2

α2 − n2
.

(Avec g′(t) =
∑

n>1

2t

t2 − n2
, t ∈]− 1, 1[ et une Conv. Unif., on déduit

sin(π.t)

π.t
=
∏

n>1

(1− t2

n2
).)

et : 2.
∑

n>1

(−1)n.λ2

n2 + λ2
=
λ.π − sh(λ.π)

sh(λ.π)
. (On peut aussi prendre f(x) = eλ.x sur [−π, π[).

2. Avec f(x) = eα.x sur [−π, π[, α 6∈ Z.i, en déduire :
∑

n>0

cos(n.x)

α2 + n2
et

∑

n>0

sin(n.x)

α2 + n2
.

3. Avec f(x) = sup(sin(x), O), déduire :
∑

n>0

(−1)n

4.n2 − 1
. Et | sin(x) |= 2

π
(1 +

∑

k>1

2.cos(2kx)

1− 4.k2
).

(Dans cette dernière relation, on ne peut certainement pas dériver terme à terme 2 fois ... )

54.7 Quelques autres relations bien remarquables (...)

Soit a ∈]0, π[. Et f 2.π périodique, paire : f(x) = 1 sur [0, a] et 0 sur ]a, π].

Montrer que :
∑

n>1

sin(n.a)

n
cos(n.x) =

π − a
2

pour x ∈ [0, a[. Cas x = 0 ? a = 1 ?

Et
∑

n>1

sin2(na)

n2
=

(π − a).a
2

(Ici f(x) = 1 sur [0, a[ ; 0 sur [a, 2π[ ou Th. de Parseval.)

Déduire
∑ (−1)n.sin(na)

n
=
−a
2

et
∑ sin(2na)

n
=
π

2
− a (Ligne 1 avec x = a, x = π).

54.8 Comment avoir f π−périodique ? cf. 54.1.3 (...)

Soit f C0, 2π-périodique telle que ∀k ∈ N : a2k+1 = b2k+1 = 0. Montrer que f est π−périodique.

[Ind : Les coefficients de Fourier de g(x) = f(x+ π)− f(x) sont nuls et Th. de Parseval.]

54.9 Pour une certaine série entière, on montre que an → 0 ...

Soit la série
∑

n>0

an.z
n avec R = 1. Si |

∑
an.z

n |6 M , ∀z : | z |< 1, montrer que an → 0.

Pour 0 6 r < 1, f(z) =
∑

an.z
n =

∑
an.r

n.ei.n.θ est convergente ; an.r
n sont les coefficients de Fourier.

Par le théorème de Parseval,
∑
| an |2 .r2n =

1

2.π

∫ 2.π

0
| f(r.eiθ) |2 .dθ 6 M2. On fait tendre r vers 1

(*) par Théorème de convergence croissante :
∑
| an |2 convergente ; donc an → 0 (n→ +∞).
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54.10 Développement en série de Fourier sans intégrales (série entière)

1. 1er exemple. (a) Décomposer en éléments simples :
2.X

X2 + 2.Xch(a) + 1
, a > 0. Puis :

(b) Déterminer la SF de f(x) =
1

cos(x) + ch(a)
, avec X = eix. [

1

sh(a)
.(1+

∑
k>1(−1)k2.cos(k.x)

ek.a
).]

(c) Déduire pour n ∈ N :

∫ π

0

cos(nt)

cos(t) + ch(a)
dt =

(−1)n.π.e−na

sh(a)
.

2. Autre exemple. Développer en ’S.E.’ : x 7→ 1− x2

1− 2.x.cos(θ) + x2
[= 1+ 2.

+∞∑

k=1

xk.cos(k.θ), | x |< 1.]

3. Si on développe en ’S.F.’ : θ 7→ 1− x2

1− 2.x.cos(θ) + x2
, on se sait pas calculer les an ; mais avec ce

qui précède ((*) à voir permutation de symboles... ) : a0 = 1, an = 2.xn, pour x ∈]− 1, 1[.)

4. DSF de θ 7→ 1

5− 4.cos(θ)
? [

sin(θ)

1− 2.x.cos(θ) + x2
=

1

2i
(

ei.θ

1− x.ei.θ − (...)) =
∑

n>0

xn.sin(n+ 1).θ.

on peut faire 2) et 4)fin ensemble avec
1− x.e−i.θ

(1 − x.ei.θ).(1− x.e−i.θ)
=... ]

5. Montrer par une transformation d’Abel que
∑ sin(n.x)√

n
est convergente sur R (conv. Unif. sur

tout segment de ]0, 2.π[, donc somme g(x), C0 sur R\2.π.Z). Existe-t-il f C.p.m., 2.π périod., de

S.F.
∑ sin(n.x)√

n
? [Rép. Non, avec le th. de Parseval bn =

1√
n

ne peuvent être des coeff. de F.]

6. Si f C0(R) 2.π-périod. avec cn > 0, ∀n ∈ Z, alors f est la somme de sa S.F. :

. Si 0 6 r < 1, vérifier que lim
n→+∞

∑

−n6k6n

ck.r
|k| =

1

2π

∫ 2.π

0

(1− r2).f(t).dt

1− 2r.cos(t) + r2
.

. Avec f = cte, en déduire la valeur de l’intégrale ! et avec | f |6 M , lim
n→+∞

∑

−n6k6n

ck.r
|k| 6 M ;

et que la série de terme cn + c−n, n ∈ N∗ converge. Conclure.

(La SF est normalement Cv et a même coeff. de Fourier que f , donc sont égales).

7. Remarque. Si f C0(R) 2.π-périod. : (f est C∞)⇔ (np.cn et np.c−n tendent vers 0, ∀p ∈ N).

54.11 Au sujet de l’inégalité de Wirtinger
∫ 2π

0

| f |2 (t).dt 6

∫ 2π

0

| f ′ |2 (t).dt

Soit f C1 2π périodique, telle que

∫ 2π

0
f(t)dt = 0.

1. Montrer que : ∀n ∈ Z, cn(f ′) = i.n.cn(f) ; et c0(f
′) = c0(f) = 0.

2. Avec la formule de Parseval, en déduire que :

∫ 2π

0
| f |2 (t).dt 6

∫ 2π

0
| f ′ |2 (t).dt.

3. Variante. Pour f C1([0, 1],R), f(0) = f(1) = 0, on va trouver :
∫ 1

0

f ′2 > π2

∫ 1

0

f2.

(a) Vérifier que :
∫ 1

0

f ′(t).f(t).cot(π.t)dt = −
∫ 1

0

f ′(t).f(t).cot(π.t)dt + π.

∫ 1

0

f2(t).(1 + cot2(π.t)).dt.

(b) Et donc que : −2

∫ 1

0

f ′(t).f(t).π.cot(π.t)dt + π2.

∫ 1

0

f2(t).cot2(π.t).dt = −π2.

∫ 1

0

f2(t).dt.

(c) Puis que :
∫ 1

0

(
f ′2(t)− π2.f2(t)

)
.dt =

∫ 1

0

(
f ′ − π.cot(π.t).f(t)

)2
.dt. Conclure et cas d’égalité ?

On peut aussi déduire q.3 de q.2 en posant : g impaire, 2π-périod. et sur ]0, π] g(t) = f(t/π).
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55 Espace vectoriel normé (réel, de dimension finie souvent)

55.1 Topologie sur R, R2 et obtention de Théorèmes (connus)

1. Soit f injective, C0, d’un intervalle I dans R. Sur A = {(x, y) : x > y} convexe, donc connexe par

arcs, φ : (x, y) 7→ f(y) − f(x)

y − x
ne s’annule pas : Im(φ) ⊂ R+∗ ou R−∗ et f strictement monotone.

2. ⇒ Preuve du Th. de Rolle gén. : Si f a même limite aux bords de I, f non monotone si non cte ...

3. ⇒ Preuve du Th. de Darboux : Si f ′(x1) < 0, f ′(x2) > 0, f non monotone ; donc non injective ...

4. D’Alembert-Gauss. d0(P ) > 1, | P | a un minimum en z0 (| P |→ +∞ en∞, {z, | z |6 r} compact).
Q(z) = P (z0 + z) = c0 + cm.z

m + zm+1.R(z), c0, cm 6= 0 ; 0 min. : avec λ.d : dm = −c0/cm, finir.

55.2 Topologie sur R, R2, etc. Intérieur, Adhérence, Frontière (...)

1. � (E, d) est un "espace métrique " ou encore d est une distance si : d est à valeurs dans R+ et
d(P,Q) = 0⇔ P = Q, d(Q,P ) = d(P,Q) enfin d(P,R) 6 d(P,Q) + d(Q,R).

� Une distance permet de définir les "voisinages" d’un point M0 : toute partie contenant une boule
ouverte de centre M0 et de rayon > 0 ; puis les "ouverts" : voisinages de chacun de leurs point
(∅ aussi), et les "fermés" : complémentaires. d dist. ⇒ Arctan(d), inf(1, d), d/(1 + d) aussi.

� Plus généralement, une topologie est définie par la donnée des ouverts. Cas "métrisable" ?

2. � L’intérieur d’une partie A noté
0
A est l’ensemble des points intérieurs de A : un point est dit

"intérieur" si A voisinage de ce point. Montrer que
0

A est le plus grand ouvert inclus dans A.

� L’adhérence d’une partie A noté
−
A est l’ensemble des points adhérents à A : un point est dit

"adhérent" à A si tout voisinage de ce point rencontre A.

Montrer que :
−

A est le plus petit fermé contenant A ; que ∁
0

A =
−−

∁A et ∁
−

B =
0

∁B ; que :
0

Â ∩B =
0
A ∩

0
B,

0

Â ∪B ⊃
0
A ∪

0
B. Si A = [−1, 0[ ∪ ]0, 1[ ∪ {2, 3}, préciser :

0

A,
−

A,
0

A,
0

A.

� Frontière : Fr(A) =
−

A ∩
−−

∁A = Fr(∁A) donc fermé ; Fr(Q) = R = Fr(R\Q),
0
Q = ∅,

−
Q = R.

Ex. ∁Fr(A) =
0

A ∪
0

∁A ; Fr(A) =
−

A\
0

A ; Fr(
0

A), F r(
−

A) ⊂ Fr(A). (A ∩B = ∅, B ouvert) ⇒
0

A ∩
0

B = ∅.

A ouvert ⇔ A ∩ Fr(A) = ∅, A fermé ⇔ Fr(A) ⊂ A. [(4) : A ⊂ ∁B,
−

A ⊂ ∁B,
0

A ∩B = ∅ ... ]

3. Une partie A (de R par ex.) est "rare" si
0
−
A = ∅. (Une partie finie, Z : rares.) Montrer que :

A rare ⇔
−

A rare ⇔
−

A = Fr(
−

A) ⇔
0

∁A dense. Et qu’une réunion finie d’ensembles rares est rare.

4. Distances équivalentes (a.d2 6 d1 6 b.d2, a, b > 0)⇒ Topol. unif. équivalentes (Id bi-unif.-continue)

⇒ topol. équivalentes (Même topologie ou Id bi-continue). Sur R, d1 et d2(x, y) =| x2 − y2 | ?

55.3 Convexité dans Rn par exemple. Si C convexe, adhérence, intérieur

1. Montrer que C convexe⇒
o
C (facile) C convexes. [a, b ∈ C, c = ta+(1− t)b,0 < t < 1 ; cǫ = taǫ +(1− t)bǫ...]

2. Si C convexe, a ∈
o
C, b ∈ C ; montrer que [a, b[⊂

o
C. [Boule(a, r > 0) ⊂ C, Cone(bǫ, Boule) ⊂ C...]

3. Si C convexe, a, b ∈ C, alors : [a, b] ⊂ Fr(C) ou ]a, b[⊂
o
C. [Avec q.1 et le Lemme d’intériorité q.2.]

4. Si C convexe et
o
C 6= ∅ : C =

o

C (q.2),
o

C =
o

C (si c ∈
o

C, ∃b ∈ C : c = tb+ (1− t)a si t→ 1− ; et q.2.)

Donc Fr(C) = Fr(C) = Fr(
o

C). En général : (
o

C1 = ∅,
o

C2 = ∅)⇒
o

C1 ∪C2 = ∅. [Si B(a, r > 0) ⊂ C1 ∪ C2

et
o
C2 = ∅, on peut trouver n + 1 points affinement libres de C1 ∩ B ; comme C1 convexe, on en déduit :

o
C1 6= ∅.] Enfin :

5. Aff(C) = E ⇒
o

C 6= ∅. [E = {
∑

λk.xk/
∑

λk} = {x +
∑

λk .(xk − x)/
∑

λk} ⇒ ∃x, xk dans C affinement libres ; etc.]
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55.4 Suites et topologie en espaces métriques. Cf. aussi ’suites de Cauchy’

1. Montrer que : a est adhérent à A ⇔ Il existe une suite d’éléments de A convergeant vers a.

2. Montrer : A fermé (vide aussi) ⇔ Toute suite de A convergente (limite finie), converge dans A.

3. a est dit valeur d’adhérence de (un)n>0 si ∀ V voisinage de a, l’ensemble des indices n : un ∈ V
est infini. Valeurs d’adhérence de (−1)n ? d’une suite convergente ? de ((−1)n.n) dans R ?

(Par contre une suite bornée avec une seule valeur d’adhérence converge vers elle ; avec la compacité).

4. En espace métrique, on peut définir de manière équivalente (*) la compacité par la propriété de
Borel-Lebesgue (avec les recouvrements ouverts) ou de Bolzano-Weierstrass (avec les suites).

(B-W) est, au choix : De toute suite de A, on peut extraire une sous-suite convergeant dans A.
ou : Toute suite de A possède au moins une valeur d’adhérence dans A. (∅ est compacte)

Exemples de compacts : Toute partie finie. Segments de R (par dichotomie). Rbarre = [−∞,+∞]. Une
partie fermée d’une partie compacte est compacte. Les compacts de R (Rn) sont les fermés-bornés.

Mais dans E = C0([0, 1],R), ‖...‖∞ , la boule unité fermée Bf est fermée, bornée, non compacte :
fn valant 1 sur [1/n, 1 − 1/n], 0 en 0 et 1, affine par morceaux : sans valeur d’adhérence dans Bf .

5. (*) Si f uniformément continue sur ]0, 1[, montrer que f a des limites en 0+, 1−. (Suites de Cauchy.)

55.5 Partie ni ouverte ni fermée de M2(R). Image de fermé/ouvert !

1. A = {A ∈M2(R) : An bornée } est ni fermé [
(

1 ǫ
0 a

)
, 0 < a < 1 ; puis a = 1] ni ouvert [

(
1 + α 0

0 0

)
.]

2. L’image de F fermé de C par P ∈ C[X] est un fermé (si P = Cte, clair). Et d’un ouvert est un
ouvert si P 6= Cte. [a) Si P (zn), (zn ∈ F ), converge vers Z ∈ C et P non constant, forcément (zn)
bornée ; compacité : on extrait une sous-suite converg. vers z ∈ F . Et Z = P (z) ∈ P (F ) forcément.
b) Prenons P unitaire, b = P (a), z ∈ D(0, ǫ) ; si P (X) − b − z s’annule en ui, P (a − X) − b − z
s’annule en a− ui, d’où Π(a− ui) = −z ; donc ∃i :| a− ui |< ǫ1/n ; ainsi D(b, ǫ) ⊂ P (D(a, ǫ1/n)).]

55.6 Au sujet des diverses normes dans un espace vectoriel (...)

1. Caractérisation de l’équivalence des normes avec les suites.

Montrer : [∃ a, b : a.N(−→u ) 6 N ′(−→u ) 6 b.N(−→u )] ⇔ Mêmes suites convergentes et mêmes limites.

(Pour ⇐ : Sinon, ∃−→u n 6=
−→
0 : N ′(−→u n) > n.N(−→u n) ; −→v n =

−→u n√
n.N(−→u n)

est contradictoire).

Note. Dans R[X], (Xn) tend vers O pour les 2 premières normes ; vers 1 pour la dernière !

max(
ak

k + 1
)k>0,

∑ | P (k)(0) |
(k + 1)!

et max(| P (1) |, ak

k + 1
)k>1.

2. Norme et boule unité. Soit C une partie convexe, fermée bornée, symétrique / O, contenant une

boule ouverte de centre O. On pose Ex = {λ > 0,
x

λ
∈ C} ; j(x) = inf(Ex).

(a) Montrer que Ex non vide. Puis que : λ ∈ Ex, µ ∈ Ey =⇒ λ+ µ ∈ Ex+y. Puis que :

(b) Eαx =| α | .Ex. (cas α = 0 ?) Conclure que j est une norme de boule unité fermée C.

3. En dimension finie, dans E = R3 e.v.e. orienté usuel, série (normalement) convergente dans L(E).
Soit f(−→u ) = −→a ∧ −→u . On pose a = ‖−→a ‖ 6= 0. Montrer l’existence de : r = exp(f) (ce qui est :

r =
∑ 1

k!
.fk). Puis préciser la rotation r. (r =Id+

sin(a)

a
.f +

1− cos(a)
a2

.f2 ; ror∗ = Id ...)

4. En dim. infinie. Norme dans E e.v. des suites réelles bornées : soit ‖u‖ = sup | un |, n ∈ N

Pour f : u 7→ v avec vn = un+1 − un. Montrer que f est continue et calculer sa norme.

5. Applications contractantes en dimension finie. (Cf. espace métrique complet et suite de Cauchy)

(a) Dans E de dim. finie, soit f contractante : ‖f(y)− f(x)‖ 6 k.‖y − x‖ avec k < 1.
Montrer que la suite (un) : un+1 = f(un) converge ; de plus vers l’unique point fixe de f .

(b) Dans R[X] avec f(P ) = 1 +X.P/2, montrer que (un) peut diverger.

6. Cas de compacité. Si K compact, f : −→u 6= −→v ⇒ ‖f(−→u ) − f(−→v )‖ < ‖−→u − −→v ‖, ∃ ! l : f(l) = l.
[Ind. −→u 7→ ‖f(−→u )−−→u ‖ a un minimum en l. Si non nul : ‖f [f(−→u )]− f(−→u )‖ < ‖f(−→u )−−→u ‖ ...]
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55.7 (*) X 7→ A.X, A ∈ Mn(K). Norme subordonnée (...)

Une norme matricielle vérifie ‖B.A‖ 6 ‖B‖.‖A‖. Exemples : normes subordonnées (mais ici ‖Id‖ = 1)

sup‖f(−→u )‖‖−→u ‖61 ou bien le plus petit k : ‖f(−→u )‖ 6 k.‖−→u ‖. Alors ‖gof‖ 6 ‖g‖.‖f‖ et ‖fk‖ 6 ‖f‖k.
1. Si on prend ‖X‖∞ = max(| xk |) et ||| ... ||| la norme subordonnée : ||| A |||∞= supi (

∑

j

| aij |).

2. Si on prend ‖X‖1 =
∑

k

(| xk |), montrer que : ||| A |||1= supj (
∑

i

| aij |) = ||| A∗ |||∞.

3. Si on prend ‖X‖2 et A symétrique, montrer que ||| A |||2= max{| λ |, λ valeur propre}.
Généralisations. A normale, ||| A |||2= ρ(A) ; et ∀A ∈Mn(C), ||| A |||22=||| A∗.A |||2= ρ(A∗.A) =||| A∗ |||22.
En effet : ||| A |||22= sup

‖A.X‖2
‖X‖2 = sup

X∗A∗AX

X∗X
= ρ(A∗A) et les valeurs propres de A∗A sont positives.

4. Vérifier que N(A) = sup(| aij |) est une norme
(

non matricielle
non subordonnée

)
: A =

(
1 −1
−1 1

)
, N(A2) 66 N(A)2.

5. Etudier la norme matricielle de Frobénius (ou de Schur) : (Tr(tA.A))1/2 (provenant d’un p.s.)

(C-S) : | cij |26 ‖Li de B‖22.‖Cj de A‖22 ⇒N(C)2 6 N(B)2.N(A)2. Non subord. : N(In) =
√
n.

6. Exercices : ρ(A) 6 ‖A‖ si norme matr. ‖A‖22 6 ‖A‖1.‖A‖∞ ‖M‖2 6 ‖M‖F 6
√
n.‖M‖2.

Solutions : (1) Si Av = λ.v, | λ |.‖|v, ..., v‖| = ‖|Av, ..., Av‖| 6 ‖|A‖|.‖|v, ..., v‖|. (1) ⇒ (2) avec A∗

(3) ‖M‖22 : plus grande vp. de M∗M (dite carré d’une valeur singulière > 0 de M) ; ‖M‖2F =leur somme.

55.8 Soit E de dim. finie, f ∈ L(E) : ||| f p ||| bornée 52.11

1. Montrer que E = Ker(f − Id)⊕ Im(f − Id).
[Si x = f(x), x = f(t)− t, x = f2(t)− f(t)... donc (télescopie) n.x = fn(t)− t ; forcément x =

−→
0 .]

2. Pour −→u ∈ E, calculer lim
n→+∞

[−→u + f(−→u ) + ...+ fn−1(−→u )]/n. [Proj. sur Ker(f − Id) // Im(f − Id).]
3. Si dim(E) infinie, montrer que c’est faux : P 7→ X.P ∈ R[X] avec ‖P‖ = max(| ak |) vérifie

Ker(f − Id) = {−→0 } et Im(f − Id) = {Q : Q(1) = 0} sont non supplémentaires.

Notes . Pour A ∈Mn(C), Am bornée ⇔ | λ | 6 1 et si µ ∈ U, dim(Eµ) = ω(µ).
. En e.v.e. si projecteurs orthogonaux ou endomorphismes orthogonaux : somme orthogonale.

55.9 Hyperplan non fermé en dimension infinie ; cas : H fermé

1. Dans E = R[x], soit la norme : ‖
∑

ak.x
k‖ = maxk | ak |. (Nombre fini de coefficients non nuls)

et E1 = {P ∈ R[x] : P (1) = 0}. Montrer que E1 = E. (Calculer lim Pn, Pn = 1− 1

n
.
∑

16k6n

Xk).

2. Soit ϕ une forme linéaire. Montrer que H = Ker(ϕ) fermé ⇒ ϕ C0. [Autre sens : vrai et connu]

Corrigé de ⇒ Soit ϕ 6= 0, ϕ(−→ı ) = 1. Comme E\H ouvert, ∃r > 0 : B(−→ı , r) ⊂ E\H. Par transl.
de vecteur −−→ı , B(O, r) ⊂ E\H1, H1 = −−→ı +H. Montrons : ∀−→u ∈ B(O, r), | ϕ(−→u ) |< 1 ; ceci
suffira. Sinon −→v = −→u /ϕ(−→u ) est dans B(O, r) et vérifie ϕ(v) = 1 : qui contredit B(O, r)∩H1 = ∅.

55.10 Dans Mn(K) : montrer que exp(A) est un polynôme en A

En général : si
∑

αk.A
k une série entière convergente. Montrer que S (somme) est un polynôme en A !

Corrigé. Soit d = d0(Π), polynôme minimal de A. F = {P (A), d0(P ) 6 d− 1} est un sous e.v. deMn(K)

de dim. finie. ∀Q ∈ K[X] : Q(A) ∈ F . Si Sn =
∑

06k6n

αk.A
k, Sn ∈ F , fermé ; sa limite S est dans F .

55.11 Distance à une partie A 6= ∅, en e.v. normé E (...)

1. Soit dA(−→u ) = inf{‖−→u −−→a ‖,−→a ∈ A}. Montrer : | dA(−→u )− dA(−→v ) | 6 ‖−→u −−→v ‖. (dA C0 sur E).

2. Si A est convexe, montrer que dA est une application convexe.

3. Si A est fermée et E de dim. finie, montrer : ∃−→a −→u : dA(−→u ) = ‖−→u −−→a −→u ‖ ; −→a −→u est-il unique ?
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56 Courbes de R2, R3. Fonctions R→ Rn

56.1 Cas R2 : centre de courbure, C.I.R., développante

Rappel de ces notions sur un exemple.

– Prenons le cas d’une cycloïde Γ, décrite par un point A fixé à un cerceau de centre Ω roulant sans glis-
ser sur un plan, le point de contact étant P . La normale à la cycloïde en A est la droite AP car P est
le centre instantané de rotation (CIR) du solide cerceau. Mais P n’est pas le centre de courbure !

Soit le solide AXY (AX Tangente à la cycloïde en A, A lié au cerceau et décrivant la cycloïde) :
le centre de courbure de la cycloïde est le C.I.R. de ce solide-ci (connu) et cf. ce qui suit.

– Développantes : Le centre de courbure C en un point M d’une courbe Γ est tel que M = C + λ.
−→
t ,
−→
t

en C ∈ C, en exprimant que
−−→
dM

dσ
, σ sur C, est colinéaire à −→n , on obtient

dλ

dσ
= −1 ou λ = −σ + λ0 ou

bien σ+CM = Cte avec σ = Arc-C0C. Si MM1 = cte, M et M1 décrivent des "courbes parallèles"

appelées : développantes de C. En imaginant un fil fixé en C0, épousant l’arc C0-C, de longueur Cte

on voit que C est le CIR du solide (M,−−→n ,−−→t ), celui-ci roulant sans glisser sur C.

A noter : λ = − rayon de courbure sur la développante ! D’où Arc-C1C2 = R2(Γ) −R1(Γ) ...

– Exercices. Vérifier qu’une développante de cercle

{
x = Rcos(θ)
y = Rsin(θ)

est Γ :

{
x = R(cos(θ) + θ.sin(θ))
y = R(sin(θ)− θ.cos(θ))

Voir les points stationnaires de Γ (cas précédent) ; et en général ?

– Retour à la cycloïde initiale soit θ =
−→
ΩA,
−→
ΩP

l’élément de longueur est ds = PA.dθ d’une part. D’autre part
−→
PA,
−→
PΩ =

π

2
− θ

2
(π) et donc le solide

AXY (dont C est le CIR) tourne de
dθ

2
; ce qui fait que CA = 2.PA ! De plus, soit A′ le point

diamétralement opposé à A : on a
−−→
A′C = 2

−→
ΩP = −2R−→ . Ainsi : C décrit une cycloïde translatée

de la cycloïde initiale de vecteur π.R−→ı − 2R−→ (car A′ décrit aussi une cycloïde) !

Autre solution géométrique : Soit Q diamétralement opposé à P .

A′Q est tangente en A′ à son lieu (car tangente ⊥ PA′) ; et parallèle à AP . Si I est le sym. de A par

rapport à P ,
−−→
QP = 2

−→
ΩP =

−→
A′I : I translaté de A′, décrit donc une cycloïde et AI

est tangente au lieu de I (car QA′ tangente au lieu de A′) : I décrit donc l’enveloppe des normales en A !

– Remarque. Inversons la figure haut-bas ; les arches de C tiennent lieu de joues donnant un pendule

cycloïdal Γ ; sa période est indépendante de l’amplitude des oscillations ! (Th.dû à Huyghens.)

– Exercice. Une caustique par réflexion.

Des rayons venant de −∞ dans le sens des y se réfléchissant sur la cycloïde en A passent par Ω.

La caustique est donc l’enveloppe des droites (A,Ω) : X.cos(θ)− Y.sin(θ) = R
(
θ.cos(θ)− sin(θ)

)
.

Montrer par calcul que leur enveloppe est une nouvelle cycloïde déduite de l’initiale par Hom(O, 1/2).
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56.2 Courbes de R2 : exercice sur les développantes

Soit I le centre de courbure en M ∈ C ; P ∈ Γ, Γ développante, sur la tangente en M .

1. Soit Q le milieu de [MP ]. Dessin ? Cas particulier des développantes de cercles ?

2. Montrer que la tangente en Q à la courbe décrite par (Q) est perpendiculaire à (PI).

(s abscisse curviligne sur C ; 2.
−−→
OQ = 2.

−−→
OM + (k − s)−→T ; et

−→
PI = R.

−→
N − (k − s)−→T .)

56.3 Exemple de courbes de R3. Plan osculateur

1. Soit t 7→




x = cos2(t)
y = cos(t).sin(t)

z = sin(t)
la "fenêtre de Viviani". Projections sur les plans de coordonnées ?

[On dit que M est bi-régulier si F ′(t), F”(t) libres : ils déterminent le plan osculateur en M(t)].

2. Cas général. On suppose que t 7→ −−→OM(t) ∈ R3 est telle que F (p)(t0), 1er vecteur non nul ; F (q)(t0),

1er vecteur non colinéaire au précédent. (M0, F
(p)(t0), F

(q)(t0)) est alors appelé plan osculateur.

(a) En général, F ′(t0),F”(t0),F
(3)(t0) base : vérifier que la courbe traverse le plan osculateur.

(b) Et que, pour tout autre plan tangent, la courbe reste localement d’un même côté du plan.

56.4 Courbure et Torsion pour les courbes de R3

(a) Courbure dans R3. Par définition
1

R
= ‖d

−→
T

ds
‖ > 0 et

d
−→
T

ds
=

−→
N

R
.
−→
B =

−→
T ∧−→N : vecteur binormal.

(b) On définit le rayon de torsion algébrique
1

T =
d
−→
N

ds
�
−→
B ; alors

d
−→
N

ds
= −
−→
T

R
+

−→
B

T et
d
−→
B

ds
=
−−→N
T à voir.

Certains prennent le signe opposé pour T
1. Hélice circulaire 56.5. Montrer que R =

r2ω2 + h2

r.ω2
; T =

r2ω2 + h2

h.ω
> 0, si h > 0. [Note : les courbes

de R2 tournant dans le sens trigonométrique ont un rayon de courbure R > 0]. Vérifier aussi que

angle(
−→
k ,
−→
B ) = cte = π/2 − V , V = (

−→
T ,
−→
k ). Lieu du centre de courbure ? (autre hélice).

2. En pratique utiliser • les formules de Frenet si
−→
T assez simple ; • ou

−→
V = v.

−→
T ;
−→
Γ =

dv

dt
.
−→
T +

v2

R

−→
N ;

−→
V ∧−→Γ =

v3

R

−→
B : R,

−→
B ,
−→
N =

−→
B ∧ −→T ;

−→
S = ∗−→T +∗−→N +

v3

RT
−→
B (suraccélération) : T avec le produit

mixte [
−→
V ,
−→
Γ ,
−→
S ] : R =

‖−→V ‖3

‖−→V ∧ −→Γ ‖
, T =

‖−→V ∧ −→Γ ‖2

[
−→
V ,
−→
Γ ,
−→
S ]

(
Si dβ = angle de 2 binormales proches,T = ds/dβ : −→w =

−→
V ∧−→

Γ

d−→w =
−→
V ∧ −→

S dt,−→w ∧ (−→w + d−→w ) ≃ ‖−→w ‖2dβ
−→
T = [

−→
V ,

−→
Γ ,

−→
S ]

−→
V dt ...

)

3. En général : sphère osculatrice à une courbe ! Son centre P est-il centre de courbure ? non ...

Sol. Posons
−−−→
M0P0 = λ

−→
N + µ

−→
B ; avec s au lieu de ∆s : P0M

2 −P0M
2
0 = 2

−−−→
P0M0.

−−−→
M0M +M0M

2 =

− λ.s2

R
+
λ.s3

3R2
.
dR

ds
− µ.s3

3RT + s2 + s3.ǫ [
−−−→
M0M = s

−→
T +

s2

2

−→
N

R
+
s3

6
(
−−→T
R2
− 1

R2

dR

ds

−→
N +

−→
B

RT ) + s3−→ǫ ] :

Choisir λ = R et µ = T .dR
ds

! Tangente au point P en écrivant maintenant
−−→
MP = R.

−→
N + T dR

ds

−→
B

−→
dP

ds
= [

R

T +
d

ds
(T dR

ds
)]
−→
B. Et

d
−−→
MP 2

ds
=

d

ds
[R2+T 2(

dR

ds
)2] = 2.

dR

ds
.T .[RT +

d

ds
(T dR

ds
)]
(

d’où : P fixe
⇒ Rayon fixe.

)

4. (*) Soit O,M,N, 3 points d’un arc C2 d’un e.a.e. Montrer que : lim
M,N→O,O

OM.ON.MN

A(OMN)
= 4.RO.

(Paramétrage normal :
−−→
OM = s−→ı +

s2.cO
2
−→ + s2−→ǫ ). [Voir aussi le cas OMN sur un cercle !]

5. (*) Soit M1(s) = M(s) + λ(s).
−→
N (s) ; on suppose que courbure c(s) et torsion θ(s) ne s’annulent pas.

Si la normale principale de M1 [qui est ⊥ à la tangente et voir ∀M, t :

−−→
dM

dt
∧ (

−−→
dM

dt
∧
−−→
d2M

dt2
) colinéaire

à
−→
N ! ] est confondue avec celle de M , montrer que : λ = Cte et λ.c(s) + k.θ(s) = 1 où k = cte.
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56.5 Définition, caractérisation des hélices [corrigé]

1. Définition. ∃−→k (unitaire) fixe tel que : (H1) (
−→
T (s),

−→
k ) = V fixe. (

π

2
−V : angle de l’hélice)

•Hélice circulaire, pas
2π.h

ω





x = r.cos(ω.t) = r.cos(θ) aussi
y = r.sin(ω.t) = r.sin(θ) idem

z = h.t = k.θ; k =
h

ω
,K =

√
r2 + k2





cos(V ) =
k

K
, tan(V ) =

r

k
, T =

k

cos2(V )
=

r2

k.sin2(V )
=

r

cos(V ).sin(V )

Lieu du centre de courbure θ 7→ (
−k2

r
cos(θ),

−k2

r
sin(θ), k.θ), autre hélice circulaireH′ etH′′ = H !

(la notion de ’développée’ est plus compliquée ici ; en général, 2 droites de R
3 sont non coplanaires, pas d’enveloppe de droites)

• Une autre hélice





x = m.e−t.cos(t)
y = m.e−t.sin(t)

z = e−t
ici tracée sur le cône de révolution : x2 + y2 −m2.z2 = 0.

• 3ème hélice





x = 3.t
y = 3.t2

z = 2.t3
Ici R = τ =

3(1 + 2t2)2

2
; angle

π

4
avec

−→ı +
−→
k√

2
;
−→
N =

(−2t, 1 − 2t2, 2t)

1 + 2.t2
.

• En général, axe Oz ; si σ absc. curv. dans Oxy, x = x(σ), y = y(σ), z = p.σ+q ; cos2(V ) =
p2

1 + p2
.

Donc ds2 = dσ2.(1 + p2) ; s = k.σ, k =
√

1 + p2 ; s =
k

p
(z − q). Ainsi : s = ax+ by + cz + d ;

et inversement ici, en dérivant les 2 membres /s, on a :
−→
K �
−→
T = 1 ; hélice d’axe

−→
K(a, b, c).

Par ex., si x = α.t, y = βt2, z = γt3, a-t-on une hélice ? ds2 = (adx+ bdy + cdz)2 conduit à

b = 0 et α2 + 4β2t2 + 9γ2t4 = (a.α+ 3cγt2)2 ou à a = 1, c2 = 1, 6c.α.γ = 4β2 ; ou encore à

c = ǫ, 3ǫ.α.γ = 2β2. Axe= (1, 0, ǫ) ; γ =
2β2

3α.ǫ
: on retrouve, en particulier, le 3è cas ci-dessus.

2. Autres caractérisations.

(H1) ⇒ (H2) La normale reste perpendiculaire à
−→
k . [Dériver (

−→
k .
−→
T = cos(V ).]

(H2) ⇒ (H3) La binormale fait aussi un angle constant avec
−→
k .

[
−→
k .
d
−→
B

ds
= − 1

T (
−→
k .
−→
N ) = 0 donc (

−→
k .
−→
B ) = cte et angle (k,

−→
B ) constant.]

(H3) ⇒ (H4) rapport
R

T constant. [Avec (
−→
k .
−→
B ) = cte, dérivant : (

−→
k .
−→
N ) = 0 donc (

−→
k .
−→
T ) = cte.

Si
−→
k =

−→
T cos(V ) +

−→
Bsin(V ), 0 =

cos(V )

R
− sin(V )

T :
R

T = cot(V ).
(

ou ± si

autre
−→
k

)
Th. de Lancret.]

(H4) ⇒ (H1) (J. Bertrand) [Ayant
R

T = cot(V ), V = cte, soit
−→
k =

−→
T cos(V ) +

−→
Bsin(V ) ; alors ...

d
−→
k

ds
=
−→
0 d’où

−→
k constant. Puis (

−→
k .
−→
T ) = cos(V ) donc (

−→
k ,
−→
T ) = cte. D’où équivalences.]

On a encore H5,6,7 [vu : z = p.σ + q ci-dessus, p = cot(V ) = tan(α), α =
π

2
−V ] et H8 :

� H5,6,7 (Hélice d’axe
−→
k ) ⇔ dz = cte.ds (

d2z

ds2
= 0)⇔ ds = cte.

√
dx2 + dy2 = cte.dσ, σ abscisse

curviligne de m(x, y, 0) ⇔ dz = cte.dσ noté : dz = p.dσ, ds =
√

1 + p2.dσ, ds =

√
1 + p2

p
.dz.

� Egalement : H8 Hélice ⇔ (R/r = cte, T /r = cte) où r est le rayon de courbure de m(x, y, 0).

⇒
−−→
dM

dσ
=
−→
t + p

−→
k ,
−→
T =

1
√(
−→
t + p

−→
k ),

d
−→
T

dσ
=

1
√
d
−→
t

dσ
:
√
.

−→
N

R
=

1
√
−→n
r
⇒ −→N = −→n ; [on a choisi

r > 0 avec une bonne orientation de σ]
R

r
= (1 + p2) ; et

−→
B =

−→
T ∧ −→N =

1
√(
−→
t + p

−→
k ) ∧ −→n =

1
√(
−→
k − p.−→t ) ⇒ d

−→
B

du
=
−p
√
−→n
r

;
√
.
−−→N
T =

−p
√
−→
N

r
; donc

T
r

=
1 + p2

p
. Et ⇐ : c’est (H4) ⇒.

Remarque. (Puiseux) Si R et T sont constants, on a une hélice circulaire (avec (H8).)
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3. Hélice sur une surface de révolution : x = r.cos(θ), y = r.sin(θ), z = f(r) ; courbes θ = θ(r).

(a) Vérifier que : cos2(V ) =
f ′2(r)

1 + r2θ′2(r) + f ′2(r)
. (∗)

(b) Par exemple, si f(r) =
r

m
, cône de révolution x2 + y2 = m2.z2, trouver que : k.

dθ

dr
=

1

r
;

k.θ = ln
r

r0
et donc : x = r0.e

k.θ.cos(θ), y = r0.e
k.θsin(θ), z = r0e

k.θ/m (d’où 1.Ex 2).

Les projections orthogonales sur Oxy sont ici des spirales logarithmiques.

(c) Cas f(r) =
r2

2p
: hélices tracées sur un paraboloïde de révolution (*).

L’égalité (∗) donne : (
dθ

dr
)2 =

tan2(V )

p2
− 1

r2
.

� Ici (**) vérifier que c’est l’équation diff. des développantes de cercles, qui sont ainsi les proj⊥.

sur Oxy : si x = R(cos(t)+t.sin(t)), y = R(sin(t)−t.cos(t)) ; ⇒ tan(θ) =
sin(t)− t.cos(t)
cos(t) + t.sin(t)

r2 = R2(1 + t2) ; d’où
1

cos2(θ)
dθ =

t2.R2.dt

x2
; mais cos2(θ) =

x2

R2(1 + t2)
; r.dr = R2(t.dt)

donc : dθ =
t.dr

r
et (

dθ

dr
)2 =

t2

r2
; finalement (

dθ

dr
)2 =

1

R2
− 1

r2
, R =

p

tan(V )
.

� D’autre part si on prend le cône circonscrit de 1/2 angle V à son sommet (0, 0,−zr), on a :

tan(V ) =
r

2zr
=

r

r2/p
=
p

r
. C’est exactement le rayon R voulu, celui du cône circonscrit !

56.6 Courbe tracée sur une sphère ; une surface (...)

1. Soit Γ un arc C∞. Montrer que : Γ est tracé sur une sphère ⇔ T .d
2R

ds2
+
dR

ds

dT
ds

+
R

T = 0.

2. Montrer que si le centre de la sphère osculatrice est fixe, la courbe est tracée sur une sphère fixe.

3. Montrer que : (Γ est tracé sur la sphère de rayon a) ⇒ R2 + T 2.(
dR

ds
)2 = a2. Réciproque ?

Solution. a. Γ tracée sur une sphère de centre Ω⇔ −−→
ΩM(s)�

d
−→
M

ds
= 0⇔ ∃u, v,C∞ :

−−→
ΩM =

u(s)
−→
N (s) + v(s)

−→
B (s). En dérivant, on obtient :

−→
T = u′.

−→
N + u(−

−→
T

R
+

−→
B

T ) + v′.
−→
B − v.

−→
N

T .

Donc u = −R, v = +T .u′, u = −T .v′ et l’égalité. Réciproque vue en 56.4.4, refaite en b).

b. Si la Sphère osculatrice 56.4 a un centre fixe, avec a) : R2 + T 2(
dR

ds
)2 = cte = a2 = P0M

2 !

c. Ayant
−−→
ΩM = −R.−→N (s)− T .dR

ds

−→
B (s), on en déduit l’implication. Réciproque fausse : hélice

circulaire à pas constant (on a seulement MP 2 = cte) ; mais elle est vraie si dR/ds 6= 0.

4. Des remarques sur la "fenêtre de Viviani" 56.3 : Γ x = sin(2.t), y = 1− cos(2.t), z = 2.cos(t).

(a) Vérifier que Γ est inclus dans une sphère de centre O.

(b) Puis que Γ est inclus dans le cylindre : x2 + (y − 1)2 = 1.

(c) Puis dans le cylindre 2.y + z2 = 4. Puis encore que :

(d) α.(x2 + y2) + β.z2 + 2.(β − α)y − 4.β = 0 et, avec α = −β = 1, que Γ ∈ Cône à préciser.

5. Courbe M(
−→
T ,
−→
N,
−→
B ) tracée sur une surface⊥−→n (

−→
t =

−→
T ,−→g = −→n ∧ −→t ,−→n ) ; −→g normale géodésique.

Courbure normale, géodésique, torsion géodésique (1/Rn, 1/Rg, 1/Tg) vérifient :




0 −γg −γn

γg 0 −τg

γn τg 0




d
−→
t /ds d−→g /ds d−→n /ds

−→
t−→g−→n
.

Trièdre de Darboux-Ribaucour (
−→
N,−→n ) = ϕ :

−→
N = −→g sin(ϕ)+−→n cos(ϕ) : γn = γ.cos(ϕ), γg = γ.sin(ϕ).

−→
B = −−→g cos(ϕ)+−→n sin(ϕ) : τg = τ+

dϕ

ds
. C0, C, c.de.courbure-sections M,

−→
t ,−→n ;M,

−→
t ,
−→
N : cercle de

Meusnier ρ = ρ0.cos(ϕ). γg = 0, ∀M : géodésique ; τg = 0, ∀M : ligne.de.courbure ; cos(ϕ) = 0 : ligne.asymptotique.
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57 Fonctions Rp → Rn. Continuité. Surfaces

57.1 Les quadriques ; cf. formes quadratiques

1. R2 : Voir l’étude des coniques dans R2 affine (euclidien). [En particulier : centre de symétrie].

2. R3 : Ellipsoïde ; Hyperboloïde à 1 ou 2 nappes ; Paraboloïde elliptique ou hyperbolique ; Cône de
degré 2 ; Cylindres : parabolique, elliptique ou hyperbolique ; ou connu (ex : point x2+y2+z2 = 0).

57.2 Les cylindres (plus généralement)

1. Un cylindre est donné par (u, v) 7→M(u, v) = m(u) + v.
−→
K0 où m(u) décrit une courbe. Dessin ?

2. Vérifier que le plan tangent en un point régulier du cylindre contient la "génératrice" de ce point.

3. Vérifier que l’on a un cylindre ⇔ l’équation est du type f(P,Q) = 0 où P = 0 et Q = 0 sont deux
plans sécants selon une droite donnant la direction du cylindre. [P = λ,Q = µ : droites parallèles].

57.3 Les cônes (plus généralement)

1. Plus généralement, un cône est donné par (u, v) 7−→M(u, v) = Ω + v.
−−→
Ωm(u), Ω étant son sommet.

2. Vérifier que le plan tangent en un point régulier du cône contient la génératrice de ce point.

3. Vérifier que l’on a un cône si et seulement si l’équation est du type f(
P

R
,
Q

R
) = 0 où P = 0, Q = 0

R = 0 sont 3 plans sécants (au sommet du cône). Exemple : f(
y

x
,
z

x
) = 0, cône de sommet O.

Ex. Cône se sommet S0 circonscrit à x2 + y2 + z2 − 2Rz = 0 ? [xx0 + yy0 + zz0 −R(z + z0)]
2 =

(x2
0 + y2

0 + z2
0 − 2Rz0)(x

2 + y2 + z2 − 2Rz). Ombre au flambeau portée sur xOy ? Faire z = 0.

57.4 Les surfaces de révolution (...)

1. Une surface de révolution est obtenue en faisant tourner une courbe Γ autour d’une droite ∆.

2. (a) Vérifier que xy+yz+zx−x−y−z+1 = 0 est une surface de révolution [avec σ1 = x+y+z = P
σ2 = xy + yz + zx, S2 = x2 + y2 + z2 = Σ, arriver à : P 2 − Σ− 2P + 2 = 0.] Dessin ?

(b) Montrer que : (x− y)2 + (y − z)2 + (z − x)2 = 1 est un cylindre de révolution à préciser.

(c) Vérifier de même que det.circulant(x, y, z) = 0 est aussi une équation de surface de révolution.

3. En général montrer qu’une surface de révolution a une équation du type f(P,Σ) = 0 où P = 0 est
l’équation d’un plan, Σ = 0 l’équation d’une sphère (l’axe passant par son centre, orthogonal à P ).

57.5 Rappels au sujet du plan tangent (...)

Si

(
u
v

)
7→ F (u, v) =




x = x(u, v)
y = y(u, v)
z = z(u, v)


 C1 vérifie

−→
∂F

∂u
(u, v),

−→
∂F

∂v
(u, v) libres, on dit que M(u, v) est

régulier ; ces vecteurs définissent le plan tangent en M .

Rappel Si la surface est définie par f(x, y, z) = 0, f(M0) = 0, f C1 avec
−−→
gradf(M0) 6=

−→
0 , le plan

tangent en M0 est ⊥ −−→gradf(M0) = (f ′x(M0), f
′
y(M0), f

′
z(M0)). Equation ? Cas de la sphère ?

57.6 Position de la surface par rapport au plan tangent

On suppose ici : z = ϕ(x, y), ϕ,C2. Sachant que ϕ(a+ h, b+ k) = ϕ(a, b) + p.h+ q.k+
1

2
[r.h2 + 2s.hk+

t.k2] + o(h2 + k2) avec les notations de Monge et la formule de Taylor-Young à l’ordre 2, en déduire que

– Si s2 − rt < 0 : la surface au voisinage du point est sur (si r > 0) ou sous (si r < 0) le plan tangent.

– Si s2 − rt > 0 : la surface au voisinage du point traverse le plan tangent.
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58 Surfaces particulières (*)

58.1 Surface réglée M(u, v) = m(u) + vG(u), G(u) vecteur ne s’annulant pas

1. Vérifier que le plan tangent en un point régulier d’une surface réglée contient sa génératrice.

2. Et que cylindres, cônes et l’hélicoïde droit x = v.cos(u), y = v.sin(u), z = h.u, sont "réglées".

58.2 (*) Les surfaces réglées développables (dont cônes, cylindres ...) 59.5

1. Si génératrices ∦ xOy : x = av + α, y = bv + β, z = v ; a, b, α, β fonct. de u. Plan tangent PM :

Y − bZ − β = m(X − aZ −α), m =
b′z + β′

a′z + α′ f. homogr.(z) indique que PM pivote autour de la gén.

Si z →∞, plan asymptotique relatif à la génér. : b′(X − α)− a′(Y − β) + (ba′ − ab′)Z = 0, Pa.

Quand PM ⊥ Pa, on dit ’point central’ de la gén. et leur ensemble est ’la ligne de striction’ de S.

(S) développable si en tout point rég. d’une gén. quelc. PM est le même (⇔ α′b′ − β′a′ = 0). 30.5.

2. Si gén. ‖ xOy, x = v, y = m.v+n, z = h ; m,n, h fonct. de u. PM : Z −h =
h′

m′x + n′ (Y −mX −n).

Pa (x→∞) : Z = h ; plan central Y = mX + n obtenu si xcentral =
−n′

m′ = xenv. dans Oxy des dr.

Y = mX + n : la ligne de striction n’est ici que son contour apparent, ‖ Oz. (m = cte : cylindre).

Une surface réglée à plan directeur dont les gén. rencontrent une droite fixe est un "conoïde" (droit

si Droite ⊥ Plan) ; ci-dessus n = O, donc : z = ϕ(
y

x
). Exemples : l’hélicoïde droit 58.1 ; et (**) le

conoïde de Plücker : surface réglée, de degré 3, z.(x2 + y2) = a.(x2 − y2) ; aucune développable.

3. Ex. Si 58.1 et −→m′(u),
−→
G(u) libre

(
si liée

après

)
, montrer que : (la surf. est dév.) ⇔ −→m′(u),

−→
G(u),

−→
G ′(u) liée.

58.3 Surface engendrée par les tangentes à une courbe gauche C2 birégulière

1. Si Γ : u 7→ m(u) est bi-régulière, la réunion des tangentes est (S) réglée : (u, v) 7→ m(u) + v.−→m′(u).
Alors, plan osculateur=plan tangent, hors de Γ où les points sont non réguliers. S est développable.

2. (*) Réciproque. Soit (S) développable : (u, v) 7→ m(u) + v.
−→
G(u) avec −→m ′(u),

−→
G(u) et

−→
G(u),

−→
G ′(u)

libres [cône, cylindre exclus]. (S) développable : −→m′(u) = λ(u).
−→
G(u) + µ(u).

−→
G ′(u), λ, µ C1.

� Avec det−→
G(u),

−→
G ′(u)

(

−−→
∂M

∂u
,

−−→
∂M

∂v
) , vérifier que (u, v) non régulier ⇔ v + µ(u) = 0. On dit "arête

de reboussement" A : u 7→M [u,−µ(u)] = m(u)− µ(u)
−→
G(u) = g(u), env. des droites de S :

� Vérifier que : −→g ′(u) = [λ(u)− µ′(u)].−→G (u), et −→g ” sont libres. Et enfin que :

� (S′) engendrée par les tangentes à A (u,w) 7→ g(u) + w.−→g ′(u) coïncide avec (S). Avec hyp. :

Si (S) C2, (S) développable ⇔ ∃ !A tracée sur S : S = ∪ des tangentes à A. 59.5.

58.4 Cône et cylindre circonscrit à une surface d’équation f(x, y, z) = 0

1. Contour apparent cylindrique dans une direction donnée. Cylindre circonscrit.
−→
U = a−→ı +b−→ +c

−→
k

donnant la direction, exprimer que l’équation en t, f(x+ a.t, y + b.t, z + c.t) = 0, (x, y, z) ∈ S,

a une racine double (droite tangente). Exemple avec la sphère ? Cas où la direction est
−→
k ?

Remarques : � Cas d’une quadrique : le contour apparent est une courbe plane, donc une conique.
� Si contour apparent de direction Oz (dit "horizontal"), de f(x, y, z) = 0 : le plan tangent est

parallèle à Oz, d’où
−−→
grad f(M) ⊥ −→k : f(x, y, z) = 0 et f ′z(x, y, z) = 0. En project. sur xOy

(horizontale) éliminer z entre ces équations. De même, on dit "frontal" si direction est Ox.

� Si on a la surface en paramétrique M = F (u, v), on exprime que : (
−→
U ,
−−−−→
∂F/∂u,

−−−−→
∂F/∂v) est liée.

2. Contour apparent conique issu d’un point donné Ω. Cône circonscrit. Exemple avec la sphère ?

Si Ω




a
b
c


, poser





X = a + λ(x − a)
Y = b + λ(y − b)
Z = c + λ(z − c)

et exprimer que l’équation en λ a une racine double. 57.3.
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58.5 Equ. différentielle des lignes de niveaux ; et de plus grande pente

1. Les lignes de niveau d’une surface S : ses sections par les plans horizontaux ; lignes de plus grande
pente : les trajectoires orthogonales. Si z = ϕ(x, y) et (notations de Monge) p = ϕ′

x(x, y), etc.

Lignes de niveaux z = ϕ(x, y) et z = z0 donc
(

dx
dy

)
col. à

(
−q
p

)
ou z = ϕ(x, y) et p+ q.y′ = 0.

2. Lignes de plus grande pente : z = ϕ(x, y) et (dx, dy, dz) col. à (−q, p, 0)∧ (p, q,−1) = (p, q, p2 + q2).

Il suffit de dire : z = ϕ(x, y) et
(

dx
dy

)
col. à

(
p
q

)
; ou z = ϕ(x, y) et p.y′ − q = 0.

Deux exemples. (P.H.) 2pz = x2 − y2 ? rép : 2pz = x2 − y2; xy = µ. 13.3.

Cylindre : x = cos(u) + v.α, y = sin(u), z = v.γ ?

proj. sur Oxy des L.de p.g.p. : tractrices x− x0 = ln | tanu
2
| +cos(u), y = sin(u) !

3. Hélices : z = ϕ(x, y) et angle V = cte entre
−−→
dM et

−→
k . [1 + y′2 + (p + qy′)2].cos2(V ) = (p + q.y′)2

ou [1 + y′2 + (p+ qy′)2].sin2(V ) = (1 + y′2) : λ2(1 + y′2) = (p+ q.y′)2 et z = ϕ(x, y).

4. Loxodromies du grec loksos=oblique, dromos=course : coupent les lignes de niveau à angle constant.

[Sur terre, donc avec les méridiens et le pôle]. (p2 + q2)[1 + y′2 + (p+ qy′)2].cos2(α) = (py′ − q)2
(p2 + q2)[...].sin2(α) = (p+ qy′)2.(1 + p2 + q2) ; (py′ − q)2.tan2(α) = (p+ q.y′)2.(1 + p2 + q2).

[Hélices et loxodromies coïncident dans le seul cas des surfaces cylindriques verticales. L.de p.g.p. ‖ Oz.]

58.6 De la formule de Laguerre au 1/2 plan de Poincaré 4.6, 29.11

1. Soit A et B sur un cercle C. Si U ∈ C, l’angle ̂(U,A), (U,B) est indépendant de U ; de même le

birapport [UA,UB,UI, UJ ], I, J points (cycliques) du cercle : il y a un lien ! Si O centre de C :

̂(U,A), (U,B) =
−1

2i
.ln([UA,UB,UI, UJ ])

(
I, J : points cycliques

UI, UJ droites isotropes

)
et ̂(O, A), (O, B) = 2. ̂(U, A), (U, B).

Ayant A,B, I, J ∈ Cercle, on peut dire aussi birapport [A,B, I, J ] : indépendant de U ∈ Cercle.
D’où : (UA) ⊥ (UB)⇔ [UA,UB,UI, UJ ] en D.H. (formule de Laguerre, "candidat à l’X" !)

[Car la droite UA : y = x.tan(α) (ou y = x.tan(α) + a.t, dr. parallèle en coordonnées homogènes)

et UB : y = x.tan(β) coupent la droite de l’infini contenant les points cycliques I(1, i, 0), J(1,−i, 0)
aux points (1, tan(α), 0), (1, tan(β), 0) : [A,B, I, J ] =

i− tan(α)

i− tan(β)
:
−i− tan(α)

−i− tan(β)
= e2.i.(α−β)= e−2.i.θ.]

2. Soit le demi-plan H : y > 0 ; si A,B ∈ H, on nomme "droite A,B" le demi-cercle (ou demi-droite

⊥ Ox) passant par A,B centré sur Ox (exclu). Si z, z′ ∈ H, soit dk = k. | ln([z, z′, α, ω]) | ; α, ω
bords du

1

2
cercle, dk(i.t, i.t

′) = k. | ln(
t

t′
)|. C’est une distance ! (**) En effet : avec un D.L.

[z, z+u, α, ω] = 1−u.
(

1

z − α
− 1

z − ω

)
+o(u) d’où : dk(z, z+u) ∼

u→0
k.

| α− ω |
| z − α | . | z − ω | | u | ∼u→0

k.
| u |
y

car y. | α−ω |=| z−α | . | z−ω | (2.surface-triangle). D’où un "espace de longueurs" (Gromov) :

dk(A,B) = k.
∫ β

α

√
x′(t)2 + y′(t)2

y(t)
.dt (sur une "géodésique") [invariance deH par : z 7→ T (z) =

az + b

cz + d
,

a, b, c, d ∈ R, ad− bc = 1 et angles euclidiens préservés car T ′(z0) = 1/(cz0 + d)2, similitude directe.]

Géodésiques : avec la formule des variations d’Euler
∫ xB

xA

f(x, y, y′)dx extrémale ⇔ ∂f

∂y
− d

dx

∂f

∂y′= O,

vérifier qu’on a l’éq. diff. incomplète en x : −y.y” = 1 + y′2 ; et avec y′ = ϕ(y) :
ϕ(y).dϕ

1 + ϕ2(y)
=
−dy

y
,

de solutions : 1+ϕ2(y) =
k2

y2
; donc

y.y′
√

k2 − y2
= ±1 ; d’où −

√
k2 − y2 = ǫ.x+C. Et ainsi trouver :

(x− x0)
2 + y2 = k2 : ce sont les

1

2
cercles du début, auquels on doit joindre les

1

2
droites x = cte.

3. L’aire est Aire(D) = k2.
∫ ∫

dx.dy

y2
d’où pour le triangle hyperbolique d’angle α, β, γ (Gauss-Bonnet)

Aire(T ) = k2(π − α− β − γ). Cas A(a,
√
R2 − a2), B(b,

√
R2 − b2), C(∗,∞) :

∫ b

a
dx

∫ ∞
√

R2−x2

dy

y2
= ...

Aire = ... = k2(π − α− β) ; cas A,B,C : tracer les parallèles à Oy en A,B,C, additivité (Gauss).
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59 Fonctions Rp → Rn. Dérivation. Extremum des f. numériques

59.1 Soit la conique d’équation a.x2 + 2.b.x.y + c.y2 = 1 (*) cf. 29.3

1. CNS pour que ce soit une ellipse ? [a+ c > 0, ac− b2 > 0]. Réduction et aire ? (
π√

ac− b2
).

2. Et aussi avec les extrema de x2 + y2 sur l’ellipse (extrema liés), trouver la longueur des axes.

59.2 Chercher f C1 : les normales à z = f(x, y) rencontrent Oz

Trouver : z = ϕ(x2 + y2) ; ce sont les surfaces de révolution autour de Oz.

59.3 Soit f de classe C1 : R2 → R ; question théorique (...)

1. Dérivées partielles de : (x, y, z) 7−→
∫ z

y

f(x, t)dt ?

2. Soit u, v de classe C1. Dérivée de : x 7−→
∫ v(x)

u(x)

f(x, t).dt ?

59.4 Des dérivées partielles mixtes : à comparer (...)

1. Soit f(x, y) = x.y.
x2 − y2

x2 + y2
et f(0, 0) = 0. f est-elle continue ? de classe C1 ?

2. Existence et calcul de f”xy(0, 0) ; f”yx(0, 0) ? Conclusion ? [Idem g(x, y) =
x3.y

x2 + y2
.]

59.5 Quelques équations aux dérivées partielles

1. Résoudre : x.f ′x(x, y) + y.f ′y(x, y) =
√
x2 + y2, x > 0, en passant en polaires.

(Trouver f(x, y) =
√
x2 + y2 +H(y/x) où H est une fonction dérivable.

En effet en posant g(ρ, θ) = f(ρ.cos(θ), ρ.sin(θ), obtenir :
∂g

∂ρ
= 1 .)

2. Trouver f C2 telle que : ϕ(x, y) = f(y/x) soit solution de ϕ”x2 + ϕ”y2 = 0. (Laplacien.)

3. Avec u = x.y, v = x/y, y > 0, résoudre x2.ϕ”x2(x, y) − y2.ϕ”y2(x, y) = 0, ϕ C2(]0,+∞[2).

4. Surface enveloppe d’un plan variable dépendant d’un paramètre : développable !

Soit A.x+B.y +C.z = D (1) une famille de plans (P ) : A, ...,D dépendant de λ. cf. 30.5 58.3.

– Comme l’éq. dérivée est un plan A′.x+B′.y+C ′.z = D′ (2), la "courbe caractéristique" est une droite

(G) et la surface enveloppe (
∑

) est une surface réglée. Et ∀M ∈ (G), le plan tangent à (
∑

) est (P )

[cf. cas R2] qui reste le même quand M varie le long de (G) : c’est une surface développable.

– Son arête de rebroussement, A, est telle que (1), (2) et (3) : A”x+B”y + C”z = D”. En effet :
la courbe des fonctions x(λ), ..., obtenue avec (1,2,3), vérifie en dérivant (1) avec (2) ; puis dérivant (2)

avec (3), éq. : (4a,b) Ax′ +By′ + Cz′ = 0, A′x′ +B′y′ +C ′z′ = 0 : la tangente est donc bien (G).

– Et le plan osculateur à A n’est autre que (P ) ; car dérivant (4a), avec (4b), Ax” +By” + Cz” = 0 : le

plan vectoriel associé contient
−−→
d2M/dλ2. Donc toute surface engendrée par les tangentes à une courbe

gauche A, est une surface développable, enveloppe des plans osculateurs à la courbe A.

– On dit "arête de rebroussement" car si M ∈ A, M = O, (G) = Oz, (P = Oxz), section dans Oxy :

z = t, x ≃ a.t2, y ≃ b.t3 car t = 0⇒ x′ = y′ = y” = 0 ; d’où rebroussement dans Oxy ! Enfin :

– (S) z = ϕ(x, y) est enveloppe de ses plans-tangents : Z = pX + qY − (px+ qy − z), dépendant de 2

paramètres x, y. Dépendance de 1 seul [ramenant à (1)] ⇔ rel. entre p et q et entre p et px+ qy − z ;

annuler 2 Jacobiens : D(p, q)/D(x, y), D(p, px+ qy− z)/D(x, y) et trouver : surf. dév. ⇔ rt− s2 = O.
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60 Fonctions Rp → Rn : Intégration. Champs de vecteurs

60.1 Un calcul très astucieux avec une intégrale double

Il s’agit de montrer que : I =

∫ 1

0

ln(1 + x)

1 + x2
dx =

π.ln(2)

8
.

1. Vérifier que : ln(1 + x) =

∫ 1

0

x

1 + x.y
dy.

2. Déduire que I =

∫ ∫
x

(1 + x2)(1 + xy)
dxdy =

∫ ∫
y

(1 + y2)(1 + xy)
dxdy sur le carré unité.

3. Déduire encore que 2.I =

∫ ∫
x+ y

(1 + x2)(1 + y2)
dxdy et conclure (Fubini).

60.2 Angle solide du carré 0 6 x 6 a; 0 6 y 6 a; z = h, vu de O

1. Montrer, en général, que c’est le flux de :

−−→
OM

OM3
.

[Qui est la surface correspondante -par vision conique de centre O -sur la sphère unité.]

2. Montrer dans le cas de l’exercice que :

−−→
OM

OM3
· −→n =

h

(x2 + y2 + h2)3/2
.

3. En passant en polaires *montrer que cet angle solide vaut µ =
π

2
− 2.Arcsin

h√
2(a2 + h2)

.

Vérifier si : h→ +∞; h→ 0 (ici, 1/8 de la sphère) ; h = a : ici c’est π/6.

60.3 Les intégrales de Fresnel calculées aussi grâce à une intégrale double

Existence et calcul de C =

∫ +∞

0
cos(t2).dt et S =

∫ +∞

0
sin(t2).dt.

On va calculer E =

∫ +∞

0
exp(i.t2).dt ; on rappelle que

∫ +∞

0
exp(−t2).dt =

√
π

2
.

1. Montrer l’existence de C et S.

2. On note I(a) =

∫ ∫

R+×R+

e(i−a)(x2+y2)dx.dy, pour a > 0.

Montrer en passant en polaires et en posant u = ρ2 que I(a) =
π(i+ a)

4(1 + a2)
.

3. En posant F (a) =

∫ +∞

0
e(i−a)x2

dx, vérifier que I(a) = [F (a)]2.

4. Montrer la continuité de F en 0.

On pourra écrire

∫ 1

0
+

∫ +∞

1
= G(a) +H(a) et, par parties : H(a) =

∫ +∞

1
e(i−a)x2

.x.
1

x
.dx =

−ei−a

2(i − a) + L(a) ; puis appliquer une conséquence du Théorème de la convergence dominée.

5. De : (

∫ +∞

0
ei.x

2
dx)2 =

i.π

4
, ou de :

∫ +∞

0
ei.x

2
dx = ±

√
2.π

4
.(1 + i), déduire que :

C = S = +

√
2.π

4
, la 2è étant positive [u = t2 et par parties, 1− cos(u) primitive de sin(u)].

———————————————
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Histoire et citations de scientifiques (souvent mathématiciens) ...

[De Marcel Berger, IHES + 15-10-2016.] C’est avec François Viète (Fontenay-le-Comte 1540, Paris 1603) que la France
entre dans les mathématiques modernes. Mieux, elles commencent avec Viète ... Cependant, il faut mentionner
brièvement Nicolas Oresme (≃ Bayeux 1325, Lisieux 1382) : on tend à l’oublier car surtout connu comme théologien ;
mais un historien soigneux comme Pierre Duhem a su montrer que dans ses écrits se trouvent en germe les notions
de coordonnée, de représentation graphique, de série convergente, d’exposant fractionnaire ; c’est aussi un théoricien
de la mécanique car il découvre l’expression mathématique du mouvement uniforme et uniformément accéléré.

Viète est avec Descartes le fondateur des notations algébriques modernes et de la mise en équation d’un problème ;
on lui doit aussi d’importantes contributions en trigonométrie et géométrie ... Il introduit les signes plus et moins et
c’est le premier à considérer un produit infini de nombres. Il arrive aussi à bout du problème d’Apollonius : construire
des cercles tangents à trois cercles donnés. Pour cela, il utilise les propriétés de l’inversion (connue également de
Descartes) mais ne considère pas cette transformation de façon systématique comme le fera Steiner au xixe siècle
... En trigonométrie, il trouve la formule pour cos(nx) et sin(nx). Il est aussi le premier à introduire la notion de
triangles sphériques réciproques (premier exemple explicite de dualité qu’elle soit algébrique ou géométrique).

Avec Descartes arrive une maîtrise de la géométrie avec coordonnées qui lui permet de résoudre d’un seul coup un
très vieux problème, celui du « lieu à quatre droites » : les Grecs avaient réussi à démontrer que, pour 3 droites D,
E, F, le lieu des points m tels que dist (m,D).dist(m,E) = k dist2(m,F), k constante était toujours une conique. Mais
Pappus n’avait pas trouvé la solution du problème pour 4 droites dist(m,D).dist(m,E) = k. dist(m,F).dist(m,G) :
encore une conique ! La recherche de ce lieu est emblématique du génie de Descartes : il montre d’abord que toute
équation du second degré est l’équation d’une conique ; puis que la distance d’un point à une droite est une fonction
affine des coordonnées. La définition du lieu entraîne alors que la courbe cherchée est une conique. Il est amusant
de noter que Descartes se trompait (en partie seulement) et que c’est Roberval (1602-1665, physicien lui aussi,
l’homme de la balance qui porte son nom) qui lui fit remarquer que le lieu se composait en fait de deux coniques.
En effet, la distance d’un point à une droite est la valeur absolue d’une forme linéaire ; donc choix entre 2 signes,
d’où 2 coniques. En réalité, Descartes prenait bien soin du signe, de sorte qu’il résolvait le problème en précisant de
quel côté de la droite on se plaçait (ensemble constitué d’une ellipse et d’une hyperbole pour un k convenable). On
doit aussi à Descartes la fameuse formule qui énonce que pour tout polyèdre (convexe), le nombre des sommets plus
celui des faces et moins celui des arêtes vaut toujours 2. Mais l’attribution à Euler de cette formule est justifiée,
car Descartes ne la donne pas de manière explicite et, surtout, à la différence d’Euler, il n’en « fait rien ».

Mais examinons en quoi Descartes, avec sa « dictature des coordonnées », a nui à Desargues. Gérard (ou Girard)
Desargues (Lyon 1591-1661) est le prophète de la géométrie projective, le premier à commencer à fondre dans une
théorie les propriétés de perspective pratiquées heuristiquement par peintres et graveurs. Architecte et ingénieur
militaire (a-t-il participé au siège de La Rochelle en 1628 aux côtés de Descartes ?) Desargues rencontre certainement
ce dernier à Paris et gagne vite son estime. Il crée de toutes pièces la géométrie projective en introduisant les «
points à l’infini » : communs à toutes les droites parallèles. Dans un ouvrage fondamental "Brouillon project" (50
exemplaires en 1639) il révolutionne la théorie des coniques : « toutes les mêmes » car pour lui hyperbole et ellipse
(voire cercle) c’est la même chose si on les regarde du bon point de vue ! Ce dont Pascal ne manquera pas de se
servir pour son « hexagramme mystique ». On a pu dire que le livre de Viète contenait en germe la géométrie
moderne ; l’oeuvre de Poncelet, continuateur de Desargues et Pascal, semble plus encore mériter cet éloge.

Mathématicien complet, géomètre, fondateur du calcul des probabilités, algébriste, physicien, philosophe et penseur
chrétien, Blaise Pascal (ClermontFerrand 1623, Paris 1662) est l’un des mathématiciens les plus géniaux, même
si sa mort prématurée, son dilettantisme, son mysticisme et ses passions multiples l’ont empêché d’être parmi
les plus féconds. Pascal partage avec Ramanujan et Galois le titre de « greatest might-have-been in the history
of mathematics ». Doté d’une énorme capacité de travail et d’une rapidité hors du commun, il est l’un des plus
doués parmi les savants universels. Après son Traité des coniques, publié à 16 ans, il fonde avec Fermat le calcul
des probabilités, construit sa machine à calcul. Algébriste, il est l’un des premiers à utiliser systématiquement le
principe de récurrence, cela pour les propriétés du fameux triangle. Il crée la brouette et les transports en commun.
Joueur invétéré avant sa conversion, il a aussi inventé et produit industriellement une machine à calculer en 50
exemplaires. Impossible ici de ne pas mentionner à nouveau qu’il fut un grand physicien (comme presque tous les
grands savants jusqu’au xxe siècle), doublé d’un philosophe. Après sa conversion du 23 novembre 1654, il abandonne
pratiquement toute recherche scientifique. Il est alors écrivain dans Les Provinciales et philosophe chrétien dans
Les Pensées (oeuvre inachevée). Cependant, il publie encore des travaux, débouchant presque sur l’invention du
calcul infinitésimal, Leibniz écrivant : « C’est en lisant Pascal qu’une lumière me vint » (lisant ses travaux sur
la cycloïde, entamés durant sa période mystique, alors qu’une rage de dents l’empêchait de dormir). Il s’est aussi
adressé à Fermat au sujet des probabilités, car il n’était pas sûr de lui : bel exemple de modestie scientifique. Pascal
est pourtant aussi sur le point d’inventer le calcul intégral, comme Fermat l’était pour le calcul différentiel. Pour
les géomètres, Pascal est aussi célèbre par son théorème sur les coniques, qu’il appelait hexagramme mystique. Sa
preuve ramène par projection le cas général au cas du cercle ; mais pour le cercle, elle reste un mystère ...

Clairaut n’a certes pas la même envergure que les précédents, mais fut le premier à s’attaquer à la théorie des
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courbes et des surfaces de l’espace. Pour les courbes, son oeuvre est riche, entre autres par l’expression analytique
de leur courbure. On lui doit la notion de plan osculateur. La notion de torsion ne viendra qu’à la suite des travaux
de Monge ; mais, pour les surfaces, c’est un précurseur de l’oeuvre de Monge. Clairaut est le premier à avoir abordé
l’étude du subtil mouvement de la Lune (suivi bientôt par d’Alembert), par des calculs du second ordre (c’est-à-dire
en négligeant les puissances d’ordre supérieur du rapport de la masse de la Lune à celle du Soleil), à avoir calculé
l’avance du périgée. Il prévoit aussi le périgée de la comète de Halley avec moins d’un mois d’erreur, alors même
que les masses de Saturne et Jupiter étaient mal connues à l’époque. Ainsi Clairaut constitue-t-il une transition,
et l’on a pu dire à juste titre que, si le xviie siècle fut celui des courbes, le xviiie fut celui des surfaces.

Que s’est-il passé avant la Révolution ? Entre « Le temps de Descartes et de Fermat », et la Révolution française,
on trouve : « Newton et Leibniz » (calcul infinitésimal) « L’ère Bernoulli » « L’âge d’Euler »... avant que Cauchy
ne résolve définitivement les questions infinitésimales avec la notion de limite. En effet, sans elle, les Anglais
travaillaient avec les « fluxions », les Allemands avec les infiniment petits, toutes choses maniées habilement avec
des résultats remarquables, mais sans définitions précises. Euler (né à Bâle, mais qui fit la plus grande partie de
sa carrière en Russie, appelé par la grande Catherine sur la recommandation de Bernoulli, et à Berlin) se sert du
calcul infinitésimal pour résoudre un nombre immense de problèmes ; la dynastie des Bernoulli contribue aussi à
cette évolution (on n’oubliera pas non plus le Français Guillaume de L’Hôpital). Si l’on ne devait retenir qu’une
des innombrables formules d’Euler, la voici : ei.π = −1 (mais aussi Dzeta(2) ...) Euler domine le début du xviiie
siècle, mais, pour la suite, il doit partager cette gloire avec Lagrange ... Le calcul intégral se développe aussi mais,
à ces époques, l’intégrale est simplement conçue comme l’opération inverse de la dérivation. Il faudra attendre en
particulier le 20ème siècle et Lebesgue pour clore pratiquement ces questions essentielles ...

– "D’où vient qu’un boiteux ne nous irrite pas et un esprit boiteux nous irrite ? A cause qu’un boiteux
reconnait que nous allons droit et qu’un esprit boiteux dit que c’est nous qui boitons. Sans celà nous en
aurions pitié et non colère. (...)

– Car enfin, qu’est ce que l’homme dans la nature ? Un néant à l’égard de l’infini, un tout à l’égard du
néant, un milieu entre rien et tout. Infiniment éloigné de comprendre les extrêmes, la fin des choses et
leur principe sont pour lui invinciblement cachés dans un secret impénétrable, également incapable de
voir le néant d’où il est tiré, et l’infini où il est englouti". Blaise Pascal (Pensées) né le 19 juin
1623 à Clairmont (aujourd’hui Clermont-Ferrand) en Auvergne ; et mort le 19 août 1662 à Paris.

– "Nous avons raison de penser que les nombres premiers sont un mystère que l’esprit humain ne pénétrera
jamais..." Léonard Euler (1707 Bâle - 1783 Saint Pétersbourg)

– " Il existe pour ces sortes d’équations un certain ordre de considérations métaphysiques qui planent
sur les calculs et qui souvent les rendent inutiles ... Sauter à pieds joints sur les calculs, grouper les
opérations, les classer suivant leur difficulté et non suivant leur forme, telle est selon moi la mission des
géomètres futurs. Je rêve d’un temps où l’égoïsme ne régnera plus dans les sciences, où on s’associera
pour étudier, au lieu d’envoyer aux académiciens des plis cachetés, on s’empressera de publier ses
moindre observations ... et on ajoutera : «je ne sais pas le reste»." Galois (1811-1832).

– "En mathématiques, nous sommes davantage des serviteurs que des maîtres ... " Hermite (1822-1901).

– Cauchy (1789-1857) un des plus grands mathématiciens du 19è siècle :
" Je crois en la divinité de Jésus-Christ avec Tycho Brahé, Copernic, Descartes, Newton, Fermat, Leib-
nitz, Pascal, Grimaldi, Euler ; Guldin, Boscovich, Gerdil ; avec tous les grands astronomes, physiciens,
mathématiciens des siècles passés... Ma conviction ne se nourrit pas du lait maternel des préjugés héri-
tés, mais provient de recherches profondes... Je suis franchement catholique comme le furent Corneille,
Racine, La Bruyère , Bossuet, Bourdaloue, Fénelon, comme beaucoup des plus éminents de notre temps
... Je partage la foi profonde que : Ruffini, Hauy (le fondateur de la théorie des cristaux), Pelletier et
Laênec (les inventeurs de la quinine et du stéthoscope) Freycinet (la navigateur immortel de la corvette
« Uranie ») Ampère (le célèbre révélateur de l’électro-dynamique), Coriolis et tant de savants éminents
de nos jours, confessèrent de vive voix, par leurs écrits et leurs actions."

– Mais ... Gauss, Euler, Pfaff, n’étaient pas moins dévots que Cauchy. Euler faisait la prière du soir
avec toute sa famille (...) Carl Friedrich Gauss, surnommé : "le Prince des mathématiciens" (« le
plus grand mathématicien de tous les temps » ?) dans une lettre adressée à Parkas Bolyai :
" A présent, adieu, mon bon ami ! Qu’il te soit doux, le rêve que nous nommons vie, ce goût précurseur
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de la vie véritable qui nous attend dans notre vraie patrie. Là, les chaînes du corps paresseux, l’espace
limité, les coups de fouet des souffrances terrestres, l’amas de nos besoins et de nos désirs puérils ne
pèseront plus sur l’esprit ressuscité... Et lorsque la dernière heure aura sonné, ce sera une joie de pouvoir
déposer notre fardeau et de voir disparaître le voile épais, qui couvrait nos yeux".
Voir aussi en Italie la tombe d’un de ses étudiants, le très grand mathématicien Bernhard Riemann !

– "J’ai beaucoup étudié, beaucoup appris et j’ai la foi religieuse du paysan Breton.
Si après avoir étudié davantage, je parviens à savoir plus encore, j’arriverai, je le sens, à avoir
la foi de la paysanne Bretonne" ! Louis Pasteur 2020 "rues Pasteur", en France (1822-1895).

– "La science (...) est contrainte à admettre l’existence de lois physiques à titre de postulat primordial
et préalablement à toute démarche, afin de pouvoir vivre et se développer." Max Planck (1858-1947).

Signalons un autre grand physicien contemporain (CNRS,CERN) : Bernard d’Espagnat, +2015.

– Pascal encore : "l’homme n’est qu’un roseau ... mais c’est un roseau pensant" ! Et analogue à ses "trois
ordres", de François de Sales (saint patron des journalistes) : "L’homme est la perfection de l’univers ;
l’esprit est la perfection de l’homme, l’amour celle de l’esprit, la charité celle de l’amour". Enfin :

– "An equation for me has no meaning, unless it express a thought of God." Ramanujan (1887-1920).
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