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Lycée Etienne Mimard, Saint-Etienne

M+ Cours de Mathématiques Sup

un chapitre 0 puis 33+10 chapitres. Table des matières p. 297s.

ch.01-06 : Nombres réels et complexes, géométrie-1

ch.07-15 : Analyse en une variable réelle. Suites (R ou C)

ch.16-25 : Espaces : R2, R3. Algèbre linéaire, géométrie-2

ch.26-29 : Polynômes, Fract. rat., Intégrales et primitives

ch.30-33 : Développements Limités. Séries. Probabilités.

ch.34-43 : 10 chapitres en complément (ancien programme).

Le programme (avec "Informatique et Sciences du Numérique") accentue le calcul fondamental.

Exemple en lien avec le second degré : le "nombre d’or" phi (1,618) venant de Phidias (Parthénon)

Rectangles d’or emboités
L

l
= ϕ Spirale d’or dans rectangle d’or Théatre d’Epidaure

en peinture, Vélasquez et Léonard de Vinci ... (cf. p.43)

A mes chers parents et famille, à Clément-Marie ;

à mes camarades, collègues et élèves.

M.Henri Chambon, 19 rue Saint-Joseph, Saint-Etienne.

Révisions en 2026
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Exercices d’introduction (corrigés après)

1. Simplifier la somme : 1 1 + 2 + 3 + ...+ 100

2. Simplifier aussi : 2 1 + 2 + 22 + ...+ 263

3. Résoudre l’inéquation :
1

x+ 1
6

2

x− 1

4. Factoriser sur R le polynôme x3 − 1

5. Factoriser aussi sur R : x4 + x2 + 1

6. Résoudre l’équation : sin(2x− π/3) = cos(3x+ π/3)

7. � Montrer que les médiatrices d’un triangle sont concourantes.

� Déduire que les hauteurs sont concourantes.

8. Soit 2 points A et B situés du même côté d’une droite D :

trouver M ∈ D tel que AM +MB soit minimum.3

1Question posée à Gauss, vers 6-7 ans, qui l’occupa peu de temps.

2Problème célèbre : 1 grain en case 1 ; 2 sur la 2è ; ... 263 sur la 64ème du jeu d’échecs.

3C’est le trajet de la lumière, selon le principe optique de Fermat ; il contient les lois de Descartes.
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Chapitre 0

Les entiers. Vocabulaire, raisonnements

0.1 Ensemble N = {0, 1, 2, ...}
0.1.1 Raisonnement par récurrence

Déjà
Pour montrer une proposition dépendant de l’entier n ∈ N, notée P (n), il suffit de montrer

� que P (0) est vraie [initialisation] et puis :
� si P (n) est vraie, alors P (n+ 1) est vraie [hérédité].

0.1.2 Exemples

1. A bien savoir et facile : 1 + 2 + ...+ n =
n(n+ 1)

2
.

� Si on initialise à 0, on convient qu’une somme vide est nulle. (Idem, un produit de 0 terme vaut 1).

Puis notons Gn le membre de gauche au rang n, Dn celui de droite.

� On a de plus : Gn+1 = Gn + (n+ 1) =
HRn

n(n+ 1)

2
+ (n+ 1) = ... Dn+1 (aisément !)

En fait il y a une meilleure démonstration : On écrit S = n+ (n− 1) + ...+ 2 + 1
d’où par addition : 2.S = n paquets valant (n + 1) chacun. Fini.

2. A bien savoir, essentiel : Pour q 6= 1, 1 + q + q2 + ...+ qn =
1− qn+1

1− q =
qn+1 − 1

q − 1
.

Par récurrence comme ci-dessus. Observer qu’il y a (n+ 1) termes dans le menbre de gauche Gn.

Autre démonstration : Avec Sn = 1 + q + q2 + ...+ qn, on a :
q.Sn = q + q2 + ...+ qn + qn+1. Donc Sn(1− q) = 1− qn+1. Fini.

Remarques 1) Si q = 1, le membre de gauche vaut : n+ 1.

2) Un calcul à bien voir : q + q2 + ...+ qn = q(1 + ...+ qn−1) = q.
1− q(n−1)+1

1− q .

3) Exercice : n = 2, q =
b

a
⇒ a3 − b3 = (a− b)(a2 + ab+ b2) a3 + b3 = (a+ b)(a2 − ab+ b2)

4) Enfin par exemple :
x3 − 1

x− 1
−→
x→1

3. (La fraction vaut 1 + x+ x2 ; cf. dérivée de f(x) = x3 en 1)

3. Tout nombre dans N∗\{1} admet au moins un diviseur premier

Par récurrence forte. [à bien voir] � Déjà, le début est à 2 !
� Ensuite, on suppose le résultat vrai jusqu’au rang n. Alors, soit n+ 1 est premier ; soit il admet
un diviseur a avec 1 < a < n+ 1 ; alors a admet un diviseur premier p, et p divise n+ 1. Fini.

Remarques. 1) Le résultat démontré va être utilisé juste après.

2) On peut montrer que ∀n > 2 s’écrit de manière unique comme produit de facteurs premiers.
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0.2 Autres raisonnements

0.2.1 Par l’absurde. Exemple P = {2, 3, 5, ...} ens. des nombres premiers, est infini

Sinon, on aurait P = {p1 = 2, p2 = 3, p3 = 5, ...pN} fini ; considérons le nombre 1 + 2.3.5...pN :

il n’est divisible ni par 2, ni 3, ni 5... ni par pN , donc par aucun nombre premier ; impossible !

0.2.2 Par Analyse-Synthèse : (pour une ⇔)

On examine un sens ⇒ puis l’autre ⇐

Exemple. Résoudre (1)
√

2− x = x. Domaine : x 6 2.

� Analyse : Si x solution, en élevant au carré, forcément (2) x2 = 2− x ; forcément x ∈ {1,−2}.
� Synthèse : Inversement, en reportant, une seule solution convient x = 1. [(1) 6⇐⇒ (2) ! ]

Autre exemple plus significatif, plus tard :

Toute application R→ R s’écrit de façon unique comme somme d’une appl. paire et d’une impaire.

0.2.3 Contraposée : p⇒ q a même sens que l’implication Non q ⇒ Non p, notée
q ⇒ p (c’est-à-dire : toutes deux vraies ou toutes deux fausses.)

Exemple 1. p=il fait beau ; q=je sors [réfléchir à ces 2 implications de même signification].

Exemple 2. Pour n ∈ N, on a n2 pair ⇒ n pair.

Il est plus commode de montrer la contraposée, à savoir : si n impair, alors n2 impair.

Supposons n impair ou n = 2k + 1 ; alors n2 = 4k2 + 4k + 1 est impair. Terminé.

0.2.4 Par Contre-exemple : (Exemple du contraire)

Un nombre premier est irréductible. Par analogie, on parle de polynôme irréductible.

Un polynôme strictement positif sur R est-il forcément irréductible ? non !

Contre-exemple : x4 + x2 + 1 = (x2 + 1)2 − x2 = (x2 + x+ 1)(x2 − x+ 1).

0.3 Ensemble Z = {...− 2, −1, 0, 1, 2, ...}
0.3.1 Les deux opérations : + et .

Un mot sur chacune des 2 opérations :

2− 7 = 2 + (−7), −7 étant le symétrique de 7. Et la règle des signes pour "�"

0.3.2 La notation n.Z

9.Z = {9.k, k ∈ Z}. De même : 2.Z signifie l’ensemble des entiers relatifs pairs.

0.3.3 La division euclidienne dans Z

1. Théorème Soit a ∈ Z, b ∈ Z∗. Alors ∃!(q, r) (quotient, reste) tels que a = b.q + r avec 0 6 r <| b |.
Démonstration laissée en exercice (sur Z, on sème des grains espacés de | b |).
Exemples : 22 = 7.3 + 1 tandis que : −22 = (−7).4 + 6.

2. Définition On dit que b divise a (noté b/a) si a = b = 0 ou si b 6= 0 et r = 0 ; ce qui est a = b.q.
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0.4 Ensembles généraux

0.4.1 Ensemble P(E)= ensemble des parties de E

Exemple. Si E = {a, b, c}, alors P(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c = E}} : 8 parties.

En général | E |= n⇒| P(E) |= 2n. En effet, par récurrence :

� Si n = 0, E = ∅ tandis que P(E) = {∅} : ensemble constitué d’une partie, la partie vide !
� Passage au rang n+ 1 : Soit E = {x1, x2, ..., xn, x}. Il y a les parties ne contenant pas x , au nombre de

2n par hypothèse de récurrence à l’ordre n (HRn) et celles contenant x ; mais ici, il y en a autant
que de celles ne contenant pas x car on leur adjoint exactement x ! D’où 2n + 2n = 2.2n = 2n+1.

0.4.2 Propriétés (A ou CEA étant le complémentaire de la partie A dans E)

On a :

A = B ⇔ A ⊂ B et B ⊂ A [dém. par double inclusion]

A ∩B = Ā ∪ B̄ et aussi A ∪B = Ā ∩ B̄ [lois de Morgan]
Associativité de ∩ et aussi associativité de ∪

Distributivité de ∩/∪ : A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C) et aussi de ∪/ ∩ .

Pour A ∩B = Ā ∪ B̄ : � Soit on fait un dessin en position générale appelé "diagramme de Wenn"
� Soit par double inclusion : si x est dans la partie Gauche, montrer qu’il est dans la Droite ; et vice-versa.

Définitions
On définit A\B par A\B = {x : x ∈ A et x 6∈ B} = A ∩ B̄ [différence]

et A∆B par A∆B = (A\B) ∪ (B\A) [différence symétrique].

La différence symétrique (correspondant au "ou" exclusif) est associative : le plus simple pour
ceci est de faire un diagramme de Wenn. Et aussi A∆B = (A ∪B)\(A ∩B) clairement.

0.4.3 Relation d’ordre

1. D’abord produit cartésien de 2 ensembles.

Définition ExF est défini par ExF = {(x, y)/ x ∈ E, y ∈ F}. Exemple :

Si E = {a, b, c} et F = {1, 2} , alors ExF comprend 6 couples (a, 1) (a, 2) (b, 1)(b, 2) (c, 1) (c, 2).
Au passage : | ExF | = | E | . | F |

2. Relation

Définition
Une relation R est définie par la donnée d’une partie GR (comme graphe) de
ExF par : si x ∈ E, y ∈ F , xRy si (exactement par définition) : (x, y) ∈ GR.

Ci-dessus :
Si GR = {(a, 2), (b, 1), (b, 2)} , a n’est pas en relation avec 1 ; mais a est en relation avec 2.

3. Relation d’ordre

Définition R est une relation d’ordre si elle est réflexive, antisymétrique, transitive. Ici E = F .

Ce qui est : ∀x ∈ E, xRx ; (xRy et yRx)⇒ x = y (antisymétrie) ; et (xRy et yRz) =⇒ xRz.

Deux exemples (de relation R.A.T.)

– Dans R la relation 6 est une relation d’ordre.

– Dans P(E) la relation ⊂ est une relation d’ordre. Par contre ici, on peut en général trouver 2
parties A et B telles que A 6⊂ B et B 6⊂ A : on dit que l’ordre est partiel ; dans R il est dit total.

(Une relation d’ordre sert à "ordonner" les éléments d’un ensemble).

0.4.4 Relation d’équivalence

1. Définition R est une relation d’équivalence si elle est : réflexive, symétrique, transitive (R.S.T.)

Symétrique signifiant : Si xRy alors forcément yRx. Explication de ces axiomes : cf. le théorème.
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Exemple. Soit E l’ensemble des élèves d’une école ; et la relation R telle que aRb si a et b ont le
même âge. C’est clairement une relation d’équivalence. Donnons une

Définition
En général, (ceci pour une relation d’équivalence notée parfois R.S.T.) on appelle

classe de x, notée x̂, l’ensemble des éléments en relation avec x : x̂ = {y ∈ E/xRy}
Dans notre exemple, il y aurait la classe des élèves 14ans ; celle des élèves de 15ans ; etc.
On voit que ces classes forment une "partition" de l’ensemble des élèves : une partition étant une

famille de parties disjointes (non vides) dont la réunion est tout l’ensemble E.

2. Théorème (C’est un fait général) 4

Se donner une relation d’équivalence (R.S.T.) sur E, ou "une partition" de E, c’est pareil car
Les classes d’équivalence forment toujours une partition de l’ensemble E.

3. Un exemple classique et important : les congruences dans Z (en lien avec l’arithmétique)

La relation dans Z : xRy si x− y multiple de 9 (x− y ∈ 9.Z) est R.S.T. (C’est facile).

Il y a 9 classes d’équivalence : {9k} , {9k + 1} , ..., {9k + 8} qui forment bien une partition de Z.

0.5 Exercices corrigés

0.5.1 Médiatrices d’un triangle concourantes. Hauteurs concourantes

1. Médiatrices : On a M ∈ Médiat[A,B] ⇐⇒ MA = MB. Puis : O ∈ Médiat[A,B] et [B,C]
⇒ OA = OB, OB = OC ; donc OA = OC d’où O ∈ Médiat[A,C] ; centre du cercle circonscrit !

2. Hauteurs : Faire directement les hauteurs est difficile. On le déduit des médiatrices concourantes,

car en traçant par chaque sommet les parallèles aux côtés opposés, on s’aperçoit que les
hauteurs du triangle initial sont les médiatrices d’un nouveau triangle ! Donc concourantes.

0.5.2 Bissectrices (intérieures et extérieures) concourantes

1. Bissectrices intérieures

les bissectrices intérieures sont concourantes en I centre du cercle inscrit. De plus si S est la
surface du triangle, r le rayon du cercle inscrit, p le demi-périmètre 2p = a+ b+ c : S = p.r.

La démonstration est facile et analogue au cas des médiatrices avec :
I ∈ Biss-int (AB,AC) ⇐⇒ dist(I,AB) = dist(I,AC).

Car si I ∈ Biss-int BAC ∩ Biss-int CBA, alors dist (I,AB)=dist(I,AC)=dist(I,BC). Ainsi I est
sur la troisième bissectrice intérieure. Et avec IAB, IBC, ICA, on a aisément la relation S = p.r.

De plus Si la bissectrice issue de A coupe BC en A1, alors :
A1B

A1C
=
AB

AC
.

En effet, traçons la parallèle issue de C à (A,A1), coupant (A,B) en D. Voyons que AC = AD :
Facile avec des angles "alternes-internes " A1AC, ACD et "correspondants" BAA1, ADC égaux.

2. Bissectrices extérieures (Démonstration analogue au cas des bissectrices intérieures)

La bissectrice intérieure de A et les 2 bissectrices extérieures de B et C sont concourantes
en IA centre d’un cercle ex-inscrit de rayon rA ; et de même 2 autres cercles ex-inscrits.

De plus J et JA étant les projections orthogonales de I et IA sur (B,C) : CJ = BJA = p− c.
(Pour CJ = BJA seul, on peut dire BCIIA sur un cercle de centre A∗, milieu de B̂C et de IIA ...)

4 (*) Démonstration facultative : Montrons que 2 classes distinctes sont disjointes par contraposée. Si z ∈ x̂ ∩ ŷ, soit
t ∈ ŷ. On a xRz , yRz et yRt ; donc : xRz et zRy (symétrie) et yRt, d’où xRt (transitivité), soit : t ∈ x̂. Ainsi ŷ ⊂ x̂ . De
même (symétrie de l’hypothèse) ŷ ⊂ x̂ ; soit x̂ = ŷ. Enfin, la réunion des classes disjointes donne E car x ∈ x̂ (réflexivité).
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En effet (difficile !)
� Notons K et L les projections orthogonales de I sur (C,A) et (A,B) ; et encore :
x = AL = AK, y = BL = BJ, z = CJ = CK. Alors x+ y+ z = p, x+ y = AB = c, d’où z = p− c.
� Notons JA = proj⊥(IA) sur (B,C);Y = BJA. En prenant 2 tangentes issues de A au cercle
exinscrit, on a : x+y+Y = x+z+a−Y ; comme a = y+z, on déduit : Y = z ou BJA = JC = p−c.

3. Les médianes concourantes est une question affine qui ne dépend pas des angles : vue plus tard.

Résumé du ch.0
1. N : ens. des entiers naturels. Raisonnement par récurrence [noter l’orthographe]. Ex. :

1 + 2 + ...+ n =
n(n+ 1)

2
1 + q + q2 + ...+ qn =

1− qn+1

1− q ∀n ∈ N, n > 2,∃p ∈ P divisant n.

sans oublier a3 − b3 = ... provenant de (2) et a3 + b3 = ...
Pour 1) et 2) il y a une démonstration bien meilleure qu’une récurrence ! 3) sert ensuite :

2. Autres raisonnements

1. Raisonnement par l’absurde : P est infini !

2. Raisonnement par Analyse/Synthèse. Montrer un sens ⇒ ; puis l’autre ⇐
3. Raisonnement par contraposée. Exemple : n2 pair =⇒ n pair (utile après.)

4. Contre-exemple. x4 + x2 + 1 factorisable sur R, bien que sans racine réelle.

3. Z : ensemble des entiers relatifs

1. Opérations + et � avec la règle des signes.

2. La notation nZ = {n.q, q ∈ Z}. (2.Z ensemble des nombres pairs.)

3. Surtout la division euclidienne : on la retrouvera pour les polynômes.

4. Ensembles généraux

1. Ensemble des parties de E. | E |= n⇒| P(E) |= 2n.

2. Intersection, réunion, complémentaire : Dém. par double inclusion ; propriétés.

3. Relation définies par un "graphe" de ExF . Relation d’ordre : définition, exemples.

4. Relation d’équivalence : même chose qu’une partition de l’ensemble. (Des exercices corrigés)

Remarques (de logique) :
1) Depuis le début, on a donc beaucoup de "notions premières" : déjà la langue ! Et des axiomes : ainsi

un énoncé est vrai ou faux (principe du tiers exclus) ; ou le célèbre "postulat d’Euclide" (d’un point
pris hors d’une droite, on peut mener une et une seule parallèle à la droite).

2) Autre donnée : le programme ! cette nouvelle année scolaire du 3ème millénaire après Jésus-Christ.5

Pour connaitre l’année au calendrier musulman, multiplier l’année par 0,97 (rapport de l’année lunaire
à l’année solaire grégorienne) et ajouter 622 : pourquoi 622 ? Et qu’en est-il du calendrier juif ?
(D’autres calendriers encore ; par ex. chinois ...)

5En 1800, Gauss −l’un des plus grands mathématiciens de tous les temps− calcula par algorithme la date de Pâques ...
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M+ Exercices: Ensembles N,Z. Raisonnements. PTSI

1. (a) On pose u0 = 1, u1 = 1+
1

1
, un+1 = 1+

1

un
; calculer u13 à la calculatrice. Limite ?

(b) Pour un =
∑

06k6n

(−1)k

k + 1
, calculer u43 à la calculatrice. [On verra la limite au ch.28.]

2. (a) Simplifier la somme (preuve) : Sn = 1 + 3 + 5 + ...+ (2n+ 1).

(b) Montrer que : 12 + 22 + ...+ n2 =
n(n+ 1)(2n+ 1)

6
(par récurrence, 1ère méthode).

(c) (*) 2è méthode. Vérifier que (1 + h)3 = 1 + 3.h+ 3.h2 + h3, puis faire la somme des cas

où h = 1, 2, ...n. En déduire une forme simplifiée de : S2(n) = 12 + 22 + ...+ n2.

(d) Montrer par récurrence sur n que : 13 + 23 + ...+ n3 =
n2(n+ 1)2

4
noté S3(n).

3. Sur un échiquier de 64 cases, on pose un grain de blé à la 1ère et on double à chaque case.

Nombre total de grains ? (*) Nombre de milliers d’années de productions mondiales nécessaires ?

4. (a) et (b) : Montrer les deux équivalences :

(A ∩B = A ∩ C et A ∪B = A ∪C)⇔ B = C ; A ∪ (B ∩ C) = (A ∪B) ∩ C ⇔ A ⊂ C.

(c) Résoudre l’équation A∪X = B dans P(E). [Ind. Si A 6⊂ B ... si A ⊂ B ... | P(A) | solutions.]

5. Concernant la définition de relation :

(a) Si Card(E) = n, combien peut-on définir de relations sur E ? (*) de relations réflexives ?

(b) Si E = R montrer que xℜy si sin(x) = sin(y) est une relation d’équivalence ; classe de π/6 ?

Indication sur (a)1) ExE a n2 éléments ; d’autre part, il y a autant de relations sur E que de

parties de ExE (les graphes possibles). Celà donne 2(n2) relations. Attention 2(n2) 6= (2n)2 = 22n.

6. (*) Soit u0 = 0, u1 = 1, un+2 = un+1 + un. Montrer que un > n− 1. (Donc un −→
n→+∞

+∞).

[Ind. par réc. n > 2⇒ un > n−1 ; départ : deux indices n = 2, n = 3, et si n > 2, 2n−1 > n+1.]

7. Constructions géométriques :

(a) A et B étant du même côté de la droite D, trouver M ∈ D tel que AM +MB soit minimum.
Indications : Existence de M ? Unicité ? Construction si un et un seul trajet ?

� La clé est de considérer le point A′ symétrique orthogonal de A par rapport à D.
� A noter qu’il s’agit d’une trajectoire de lumière : angle d’incidence = angle de réflexion.

(b) Idem, mais cette fois A et B sont de part et d’autre d’une rivière limitée par D et D′ parallèles
et traversée perpendiculairement. Indication : La clé est cette fois de translater la rivière ...

(c) Etant donnés 2 droites D et D′ et 2 points A et B , trouver M ∈ D et M ′ ∈ D′ tels que
A,B,M,M ′ soit un parallélogramme. Discuter. [La clé est de considérer une translation]

(d) Etant donné un point A et 2 droites D et D′, trouver M ∈ D et M ′ ∈ D′ tels que AMM ′ soit
équilatéral. Discuter. [La clé est de considérer ici une rotation d’angle 60o]

(e) Etant donné un triangle A,B,C trouver M ∈ (A,B);N ∈ (A,C);P,Q ∈ (B,C) tels que
MNPQ soit carré. (On peut supposer B et C aigus). [Cette fois, homothétie de centre A !]



Chapitre 1

Les nombres réels. Equat. et inéquations

1.1 Ensemble Q des rationnels

1.1.1 Q, avec les opérations +, �

D’abord Q =
{a
b
, a ∈ Z, b ∈ N∗

}
. Ensuite on a r, r′ ∈ Q =⇒ r + r′ ∈ Q et r.r′ ∈ Q.

Exemples : 0, 33 =
33

100
∈ Q 0, 333... =

1

3
∈ Q 0,999...=1=1,000... ∈ Q (cf. après)

(Ainsi certains nombres ont deux développements décimaux)

Exercice Montrer que x ∈ Q⇔
{

x admet un développement décimal
périodique à partir d’un certain rang.

Preuve sur des exemples (pour une bonne compréhension) :

⇒ x = 22/7 a un développement décimal périodique de période de longueur au plus 6. C’est obligatoire ;
pourquoi sans calcul ? (Car les restes sont dans {0, ...6} : répétition !)

⇐ x = 13, 0519171917... rationnel car : x = 13, 05 + 10−2y où 10000y = 1917 + y ! donc y ∈ Q, x ∈ Q.

(On peut achever le calcul et trouver une fraction représentative ; sauf erreur
362517

27775
.)

1.1.2 On montre que
√

2 6∈ Q

Par l’absurde, supposons
√

2 =
a

b
fraction irréductible. On a : a2 = 2.b2 donc a2 est pair ; celà entraine a

pair (cf. contraposée). Posant alors a = 2k, k entier, on arrive à b2 = 2k2 ; donc aussi b pair : impossible.

et donc :
√

2 a donc un développement décimal non périodique, même à partir d’un certain rang.

Les réels :
On va considérer l’ensemble R des nombres réels : nombres ayant au moins un

développement décimal périodique ou non, même à partir d’un certain rang :
√

2 ∈ R.

Exercice Soit r ∈ Q. Montrer : s 6∈ Q ⇒ r + s 6∈ Q. (Donc
√

2− 1 6∈ Q)
(Contraposée : On a r + s ∈ Q⇒ s = (r + s)− r ∈ Q par différence !)

1.1.3 Avec des racines cubiques : a =
3

√
9 + 4.

√
5 +

3

√
9− 4.

√
5 ∈ N

On suppose connu que (u+ v)3 = u3 + 3u2v + 3uv2 + v3 ou bien : (u+ v)3 = u3 + v3 + 3uv(u+ v)

et que 3
√
α.β = 3

√
α. 3
√
β. Alors, en élevant au cube, a (notation : a = u+ v) est solution de

x3 = 18 + 3.x ; mais x3 − 3.x− 18 = (x− 3)(x2 + λ.x+ 6), avec λ = 3 aisément.

D’où un trinôme avec ∆ < 0 ; donc 3 est la seule racine réelle et, par suite, forcément : a = 3.

9
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1.2 Ensemble R des nombres réels

1.2.1 R, +, � Vocabulaire non à savoir

1. R a été défini comme l’ensemble des nombres ayant au moins une écriture décimale.

2. 2 opérations reliées

+ est interne dans R (x, y ∈ R⇒ x+ y ∈ R), et





+ est Commutative x+ y = y + x
Associative (x + y) + z = x+ (y + z)

0 est Neutre pour +
Enfin tout élément a un symétrique pour +

[Pour le moment, on dit que (R,+) est un "groupe" commutatif (ou abélien).]

� est interne, et





Commutative
Associative

1 est Neutre pour �

avec de plus :

Les deux opérations + et � sont reliées par la Distributivité : a.(b+ c) = a.b+ a.c.

[On résume ici en disant, pour le moment : "anneau commutatif" (� commutative)].

Mais on a mieux (R,+, �) est un "corps" commutatif car, en plus "d’anneau" :

Tout élément non nul est inversible pour la multiplication : "�"

Remarques 1) (Q,+, �) est aussi un corps commutatif. Comment le distinguer de R ? après

2) (C,+, �) est aussi un corps commutatif. Voici de suite une distinction entre R et C :

3. R est "un corps ordonné" : " ≤ " est une relation d’ordre (ch.0) compatible
avec + et � par λ > 0 : x 6 y ⇒ z + x 6 z + y et : x 6 y, λ > 0 ⇒ λ.x 6 λ.y.

Alors que sur C, pas d’ordre compatible avec les opérations. Dire ”z > 0” est une FAUTE.

(On a l’ordre lexicographique −du dictionnaire− sur C ; mais non compatible avec les opérations).

1.2.2 Définitions capitales

1.

Soit A ⊂ R. On dit que A est majorée (par M ∈ R) si ∀x ∈ A, x 6 M ; M est un majorant.
M est dit le maximum de A si de plus M ∈ A ; et analogue pour minorant et minimum.

Enfin β est la borne supérieure de A, notée sup(A), si β est le plus petit majorant de A.

Exemples
1) A = N n’est pas majorée ; on note sup(A) = +∞.
2) A = [0, π[ : 7 est un majorant ; π aussi. Pas de maximum, ici ! sup(A) = π 6∈ A.
3) A = {1/n, n ∈ N∗} est majorée par 1 ; qui est le maximum. Et :
A est minorée par 0 ; mais pas de minimum : inf(A) = 0 6∈ A (inf est le plus grand minorant).

2. Propriété qui distingue R de Q, donc fondamentale (dite de "la borne supérieure") (ceci est lié à

la définition de R) : Toute partie non vide, majorée de R admet une borne supérieure dans R.

Ceci est faux pour Q : Si B = {r ∈ Q tels que r2 6 2}, sup(B) =
√

2 : n’existe pas dans Q.

Conséquence : Toute partie non vide, minorée, possède une borne inférieure dans R.

(Par symétrie /O, la borne inférieure étant le plus grand minorant.)
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1.2.3 La droite numérique

1. On représente R par une droite orientée munie d’une unité ; nombres et points se correspondent.

2. Valeur absolue, définition. | X |= X si X > 0 et | X |= −X si X 6 0. | 4 | = | −4 | = 4.

Exemple : | 1− 2x | = 2x− 1, si x > 1/2 ; 1− 2x, sinon.

Noter que : | x− x0 | < r ⇔ x ∈]x0 − r, x0 + r[ car | x− a |=distance(x, a).

Propriétés | x+ y | 6 | x | + | y |. D’où :
∣∣ | x | − | y |

∣∣ 6 | x+ y | 6 | x | + | y |.
Démonstration
1) Le plus simple est d’élever au carré (équivalence dans R+) et x.y 6 | x | . | y |
2) A RETENIR (ce sera pareil sur C) :

On a : x = (x+ y) + (−y) ; d’où | x | 6 | x+ y | + | (−y) | donc | x | − | y | 6 | x+ y | ;
et on permutte ensuite x et y. Fini.

3) Remarque. En échangeant y en −y :
∣∣ | x | − | y |

∣∣ 6 | x− y | 6 | x | + | y |.

3. Approximation par des rationnels.

Propriété Entre 2 réels a < b, il y a toujours un rationnel dans ]a, b[ ; donc une infinité.

Démonstration. Il suffit de traiter le cas 0 6 a < b (sinon, on s’y ramène aisément).

On peut trouver n ∈ N tel que 1/n < b− a : on fixe un tel n. [L’idée est de "semer" des nombres
k

n
, k ∈ N sur la droite] On considère alors l’ensemble FINI { k :

k

n
< b} ; soit p son maximum ;

alors p/n convient : il reste à voir que p/n > a ; laissé en exercice avec 1/n < b− a.
Remarques
1) Etant donné un réel x, il existe donc une suite de rationnels (même croissante) qui tend vers x.
2) On prend parfois des rationnels particuliers : les décimaux {k/10n, k ∈ Z, n ∈ N}.
3) Dans ]a, b[, a < b, on a toujours aussi un irrationnel. r ∈]a−

√
2, b−

√
2[∩Q : r+

√
2 convient !

Graphe de x 7→ | 2.x− 1 | : 10,50

1

0

x et de x 7→ E(x) :

0

2

x

2
0

1

1.2.4 Partie entière d’un réel

1. Définition E(x) ou [x] désigne l’entier le plus près à gauche de x. x = E(x) + f, 0 6 f < 1.

2. Exercices 1) Courbe de x 7→ E(x) [E(x+ 1) = E(x) + 1] 2) de x 7→ E(1/x) si x > 0.

1.3 Opérations avec les exposants rationnels

1.3.1 Les étapes pour xr, r ∈ Q.

1. Cas r ∈ N.
x2, x3, ... sont connus. Avec x0 = 1 on a xm+n = xm.xn; xm.n = (xm)n; (x.y)n = xn.yn

2. Cas r ∈ Z−. Pour étendre la 1ère relation, on doit poser x−1 =
1

x
pour x 6= 0.

Alors : (x−1)n = (xn)−1, n ∈ N noté x−n et les 3 relations s’étendent (à voir).
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3. x1/n ?
n = 2 : y = x1/2 ⇔ {y > 0 et y2 = x}, soit y =

√
x, x > 0.

n = 3 : y = x1/3 ⇔ {y3 = x}, soit y = 3
√
x, x ∈ R.

Le cas n pair : comme 1) ; n impair : comme 2).

4. xr ? On prend x > 0 sinon comparer (−5)1, [(−5)2]1/2, [(−5)1/2]2 qui n’existe pas sur R.
Ensuite :
1ère chose : on s’assure que (xp)1/q = (x1/q)p, p ∈ Z, q ∈ N∗ noté xp/q (1).
2ème chose : on s’assure que si p/q = p′/q′ alors xp/q = xp

′/q′ noté xr (2).
Enfin, avec ceci, on vérifie que les trois relations s’étendent. [laissé en exercice]

Démonstrations de 1) et 2). Désignons par G et D les membres de gauche et droite :

1) On a Gq = xp par définition et Dq = [(x1/q)p]q = [(x1/q)q]p = [x]p d’après les étapes 1) 2) 3).
Comme G et D sont positifs, ils sont égaux.

2) De même, on vérifie que Gqq
′
= Dqq′ et G et D sont positifs : ils sont égaux.

1.3.2 Exemples

1. Attention
√
x2 =| x | !

2. Simplifier la quantité : y =
5

√
8.x3.

3
√

2x−4. Trouver y =
3
√

4.x, x ∈ R∗.

1.3.3 Remarque

Et pour un exposant irrationnel : 10
√

2 ? Réponse : on passe par les ln, exp :

ab = eb.ln(a), a > 0. Noter aussi que ln(x2) = 2.ln | x | sur R∗.

1.4 Equations usuelles

1.4.1 Algébriques

1. Définition : Une équation du type P (x) = 0, avec P polynôme est dite algébrique.

2. Le second degré : a.x2 + b.x+ c = a(x− z1)(x− z2). En développant et en identifiant :

La somme des racines de a.x2 + b.x+ c = 0 vaut
−b
a

, et leur produit vaut
c

a
.

Cas de x2 − 3x − 4 = 0. −1 est racine ; l’autre vaut donc +4, avec le produit.

3. Inversement z1 et z2 sont racines de (x− z1)(x− z2) = 0 ; on note s = z1 + z2, p = z1.z2 ; alors

Connaissant la somme s et le produit p de deux nombres, ils sont solution de x2 − s.x+ p = 0.

1.4.2 Irrationnelles

1. Une équation irrationnelle comporte un ou plusieurs radicaux, en général.

2. Exemple. Résoudre
√
x+ 1 = x− 1. Le domaine est x > −1 ; il ne faudra pas l’oublier ...

– Ensuite Première façon : on procède par implications. Forcément sur D, x+ 1 = x2− 2x+ 1 ou

x2 − 3x = 0 ; forcément x ∈ {0, 3}. Mais on étudie la réciproque ! Solution unique : x = 3.

– Deuxième façon : procèder par équivalences (ce qui exige plus de soin). Vérifier sur D que :√
x+ 1 = x− 1 ⇔

(
x+ 1 = x2 − 2x+ 1 et x− 1 > 0

)
. Etc. Même réponse.
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1.5 Inéquations

1.5.1 Algébriques

1. On peut faire l’étude de la fonction : x 7→ f(x) (pour savoir signe et racines).

Exemple x > 0 ⇒ f(x) = x+ 1/x > 2 par étude de f sur ]0,+∞[.

2. Pour x 7→ f(x) = ax2 + bx+ c, a, b, c ∈ R, soit on a 2 racines réelles, soit 1, soit 0 :

Le signe du trinôme ax2 + bx+ c, a 6= 0 est celui de "a" à l’extérieur des racines.

� Si pas de racines réelles, considérer qu’on est toujours à l’extérieur.

� La courbe représentative est une parabole (tournée vers le haut ⇐⇒ a > 0).

1.5.2 Irrationnelles

1. Attention : a 6 b 6⇒ a2
6 b2 mais 0 6 a 6 b⇒ a2

6 b2

Et aussi : a2
6 b2 6⇒ a 6 b mais a2

6 b2 ⇒ | a | 6 | b |.

2. Exemple
√
P (x) 6 Q(x). Résoudre l’inéquation (1)

√
x+ 1 < x− 1.

Domaine D : x > −1. Puis sur D : x− 1 obligatoirement positif : x > 1.

On peut donc élever au carré ; et on a même une équivalence :

(1)⇐⇒ x+ 1 < x2 − 2x+ 1, x > 1. D’où : x2 − 3x > 0, x > 1, x > −1. Solutions : ]3,+∞[.

3. Exemple différent Q(x) 6
√
P (x). Résoudre (2) x− 1 6

√
x+ 1.

Domaine D : x > −1. Mais ensuite, on va ici étudier deux "tiroirs" :

Cas x− 1 < 0 : on ne peut pas élever au carré ; c’est heureusement inutile. [−1, 1[ solutions.

Cas : x > 1 : (2)⇐⇒ x2 − 3x 6 0 ; donc [1,+∞[∩[0, 3] = [1, 3]. Toutes les solutions : [−1, 3].

1.5.3 (*) En compléments : deux exercices corrigés

1. Inéquation avec paramètre : discussion. Résoudre : | x |6 x+ a.

� Le domaine de définition de chaque terme est R. Mais il faut déjà que x+ a > 0, x > −a.
� Sur [−a,+∞[ , l’inéquation équivaut à x2

6 x2 + 2a.x+ a2 ou à : −2.a.x 6 a2. Donc :

si a < 0 (−2a > 0) on obtient : x 6
a2

−2a
=
−a
2

: Ici
−a
2
< −a. Pas de solution si a < 0

Et si a > 0 (−2a < 0) x >
a2

−2a
=
−a
2

: Ici
−a
2
> −a. Solutions : [

−a
2
,+∞[ si a > 0.

Bien sûr l’inéquation a une interprétation géométrique confirmant notre réponse.

2. Résoudre
√
x+ (x+ 1) =

√
x+ 2 (1) sur le Domaine x > 0.

On a (1) ⇒ x2 + 2x− 1 = −2(x+ 1).
√
x (2) en élevant au carré.

et (2) ⇒ x4 − 6x2 − 8x+ 1 = 0 (3) en élevant encore au carré.
Etudiant f(x) = x4 − 6x2 − 8x+ 1, on voit que f , décroissante sur [0,2] puis croissante, admet
une racine a sur [0, 1] et une autre b sur [2, 3]. A ce stade on sait que (1) a au plus 2 solutions !

� Etudions la réciproque de (2) ⇒ (3). Les solutions de (2) sont exactement celles de (3) telles
que x2 +2x− 1 < 0 (car A2 = B2 ⇒ − | A |= − | B |). Soit c =

√
2− 1, on a f(c) = 8− 8.

√
2 < 0

d’où : c ∈]a, b[. Pour avoir x2 + 2x− 1 < 0 on doit être à gauche de c ; b est donc exclue.
� Etudions la réciproque de (1)⇒ (2). Ici, équivalence car les 2 membres de (1) étant positifs !

En résumé une et une seule solution : la racine a de f(x) qui est dans ]0,
√

2− 1[.
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M+ Exercices: Les nombres Réels. Equations, Inéquations. PTSI

1. Sachant que 2,7< e <2,8 ; puis 1, 7<
√

3 <1,8 ; enfin 3,1< π <3,2 : majorer
π −
√

3

e
(positif).

Tout étant positif, pour majorer N/D, on majore N et on minore D. Idem pour majorer a− b.
Autre règle pratique : on ne majore qu’en valeur absolue ; ou alors attention aux signes !

2. (a) Rappeler une factorisation de a3 − b3 ; Puis de a3 + b3.

(b) A ne pas confondre avec (a+ b)3 : développer cette expression. Cas de (a− b)3 ?

3. (a) Montrer que x = 13, 0519171917... est un rationnel à explisciter sous forme de fraction.

(b) Simplifier la quantité y =
5

√
8.x3.

3
√

2x−4. (Trouver
362517

27775
et

3
√

4x si x 6= 0)

4. Equations, Inéquations

(a) Résoudre l’inéquation | x− 1 | + 2. | x+ 1 | 6 3 | x | selon divers intervalles de R.

(b) (*) Résoudre | x− y | + | x+ y |= 4 en dessinant les points solutions dans le plan R2.
[D’abord le cas : x− y > 0 et x+ y > 0, qui correspond −à voir− à 1/4 de plan].

(c) Résoudre les inéquations en x : x+ a+ 2a(x− 1) < 0 ; et (d) ax2 − (a+ 1)x+ 1 > 0.

5. Quantificateurs (juste la définition)

(a) Que dire de x ∈ R si : ∀ε > 0, | x |< ε ?

(b) Soit A ⊂ R. Que dire de β ∈ R si : (∀x ∈ A, x 6 β et aussi ∀ε > 0, ∃x ∈ A : x > β − ε) ?

6. Une inégalité

(a) Montrer que : ∀ x > 0 : x+ 1/x > 2

(b) En déduire, pour ak dans R+∗, que : (a1 + a2...+ an)(1/a1 + 1/a2 + ...+ 1/an) > n2.

7. Graphes de :
(a) y = E(x) (partie entière) (b) (*) y = E(1/x), x > 0 (c) (*) y = x.E(1/x), x > 0.

8. Bornes supérieures et inférieures des parties suivantes (savoir la définition)

(a) {(−1)n + 1/n, n ∈ N∗}
(b) (*) {| a+ b.

√
2 | ; a, b ∈ Z et (a, b) 6= (0,0)}. [Admis : (

√
2− 1)n = an + bn.

√
2, an, bn ∈ Z]

9. Questions diverses sur les réels (*)

(a) Montrer que : 0 6 E(2x) − 2E(x) 6 1 ; et que : E(
E(nx)

n
) = E(x) n ∈ N∗.

(b) Montrer que le nombre réel :
√

2 +
√

3 n’est pas rationnel.

(c) Montrer que :
3

√
7 + 5.

√
2 +

3

√
7− 5.

√
2 est rationnel.

10. (a) Résoudre : (*) | x | 6 x+ a. Discuter.

(b) Résoudre : (*)
√
x+ (x+ 1) =

√
x+ 2



Chapitre 2

Le second degré. x→ ax2 + bx + c,
ax + b

cx + d
...

2.1 Paraboles

2.1.1 Paraboles d’axe // Oy : x 7→ a.x2 + b.x + c, a 6= 0.

1. Parabole que l’on peut construire avec la dérivée

La dérivée s’annule pour x =
−b
2a

. Avec a.x2 + b.x+ c = a.(x− z1)(x− z2) on déduit :

z1 + z2 =
−b
a

, z1.z2 =
c

a
donc :

z1 + z2
2

=
−b
2a

est le milieu des racines (réelles ou non).

2. Qu’on peut aussi construire sans la dérivée :

Exemple y = −x2 + x+ 2, par translation de repère : X = x− x0, Y = y − y0 !

On écrit la "forme canonique" y = −(x2 − x− 2) = −[(x− 1

2
)2 − 2− 1

4
] = −(x− 1

2
)2 +

9

4
.

Donc si on pose

{
X = x− 1/2
Y = y − 9/4

[nouvelle origine Ω(
1

2
,
9

4
)], on a : Y = −X2. Aisé.

Tracé
x

y

2

2

0
0

et vérifications : point

(
x = 0
y = 2

)
; racines : −1 et (donc) +2.

2.1.2 x 7→
√

x = f(x) : Demi-parabole d’axe Ox

1. La courbe :

(a) On rappelle que (
√
x)′ =

1

2.
√
x

. Tracé ci-dessous.

(b) En réalité : y =
√
x =⇒ y2 = x, demi-parabole ; l’autre moitié : y = −√x (dessous).

Remarque : Les notations sont parfois y2 = 2px.

x
y

x

5

y

0

1,9

x

1

-2 0 x

2

0

2. Cas : x 7−→ ±√x, x 7−→
√
x− 2, x 7−→ √x+ 2 ; x 7−→

√
−x et x 7−→

√
2− x.

15



16 CHAPITRE 2. LE SECOND DEGRÉ. X → AX2 +BX + C,
AX +B

CX +D
...

2.2 Hyperboles

2.2.1 Hyperboles équilatères : y =
ax + b

cx + d
, c 6= 0, ad− bc 6= 0.

1. Un cas traité : y =
2x− 1

x+ 1
sans nécessité de dériver.

Divisant 2x− 1 par x+ 1 on a : y = 2− 3

x+ 1
;

{
X = x+ 1
Y = y − 2

translation de

repère ... qui conduit à : Y = −3/X. Tracé

y

5

x

0
-1

et vérifications ...

(en particulier, les intersections avec les axes !)

2. Cas général : y =
ax+ b

cx+ d
, c 6= 0, ad− bc 6= 0

Hyperbole d’asymptotes parallèles aux axes : donc orthogonales : on dit hyperbole "équilatère".

2.2.2 Cas : y =
ax2 + bx + c

dx + e
: hyperbole avec asymptote oblique

1. Exemple. y =
−x2 + 3x

x− 2
= −x+ 1 +

2

x− 2
en divisant −x2 + 3x = (x− 2)(−x+ 1) + 2

Sur la deuxième expression, la dérivée est facile et ici : y′ = −1− 2

(x− 2)2
> 0 pour x 6= 2.

2 asymptotes : x = 2 verticale et y = −x+ 1 : asymptote oblique car

Une droite yD = a.x+ b est asymptote à une courbe yC = f(x) si on a : yC − yD −→
x→∞

0.

Dans le cas d’asymptote oblique, on a : a = lim
x→∞

f(x)

x
(6= 0) ; puis b = lim

x→∞
f(x)− a.x.

Enfin si on peut, on cherche à savoir si c’est b+ ou b− ou si y − (a.x+ b) tend vers 0+ ou 0−.

Dans notre cas y− (−x+1) =
2

x− 2
est, de plus, de signe connu [0+ en +∞ ; 0− en −∞] : courbe

au dessus en +∞ de l’asymptote ; en dessous en−∞ ; passe parO... tangente ?

y

x

4

4

2

0
2

-2

0-2

2. Note : Si y =
ax2 + bx+ c

dx+ e
, d 6= 0, numérateur 6= 0, on a : (dx+e).y = ax2 + bx+ c ; une "conique"

car :

Définition
On appelle conique toute courbe d’équation de degré 2 :

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 en repère orthonormé ou non.

Hors programme Sauf cas dégénérés, une conique est une parabole, une ellipse ou une hyperbole.

(Cas dégénérés :

∅ y2 = −1 ; point x2 +y2 = 0 ; droite double y2 = 0, 2 droites parallèles y2 = 1 ou sécantes y2 = x2.)
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2.3 Cercles et ellipses :

2.3.1 Cas de x 7−→
√

1− x2

1. On obtient la moitié du cercle trigonométrique x2 + y2 = 1. (y = −
√

1− x2 l’autre moitié)

2. Plus généralement le cercle de centre C(a, b), de rayon R > 0 : (x− a)2 + (y − b)2 = R2.

2.3.2 Cas de x 7−→ 1

2
.
√

1− x2

1. Définition. L’application M(x, y) 7−→ (x′ = x, y′ =
1

2
.y) est appelée dilatation (ou affinité) de

base Ox, de direction Oy, de rapport
1

2
: cercle

{
x = cos(t)
y = sin(t)

x
y

ellipse

{
x = cos(t)

y =
1

2
.sin(t)

Par cette affinité, le cercle trigon. (décrit par M) a pour image l’ellipse (décrite par M ′) d’équation

y′ =
1

2

√
1− x′2 ; et revenant aux lettres usuelles

(
x
y

)
on a la courbe image : y =

1

2

√
1− x2.

2. Note : Une ellipse a pour "équation réduite"
x2

a2
+
y2

b2
= 1 ou en paramétriques :

{
x = a.cos(t)
y = b.sin(t).

2.4 Quelques problèmes du second degré

2.4.1 On pose f(x) = α.x2. Montrer que la tangente en M(x, y) coupe Ox en T (x/2, 0)

Solution : On va mettre comme lettres M0(x0, α.x
2
0) pour que ce soit plus clair.

Equation de la Tangente Y − f(x0) = f ′(x0).(X − x0) ou Y − α.x2
0 = 2.α.x0.(X − x0).

Donc Y = 0⇒ X = x0 −
x0

2
=
x0

2
si x0 6= 0 (supposé). D’où une construction de la tangente.

x
y

fig 2. et fig.3. pour après

0

y

x

2

0
2 0

y

x

2

0
2

2.4.2 Soit f(x) = α.x2. Montrer que la normale en M(x, y) coupe Oy en K tel que
QK = cte, Q = proj⊥(M, Oy) (si 2 droites ⊥ le produit des pentes vaut −1)

Equation de la Normale Y − f(x0) =
−1

f ′(x0)
.(X − x0) ou Y − α.x2

0 =
−1

2.α.x0
.(X − x0).

X = 0⇒ Y = α.x2
0 +

1

2.α
. D’où QK =

1

2.α
indépendant de x0 choisi sur la parabole.

2.4.3 Soit f(x) = α.x2. Trouver c tel qu’on ait : f(b)− f(a) = (b− a)f ′(c)

Trouver c =
a+ b

2
ce qui donne une propriété géométrique de la parabole d’axe // Oy.
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2.4.4 Trinômes x2 − x− 1 (nombre d’or) ; et x2 + x+ 1 (racines cubiques de 1)

1. x2 − x− 1 est réductible sur R, de racines
1±
√

5

2
. ϕ =

1 +
√

5

2
≃ 1, 618 nombre d’or".

ϕ2 = ϕ+ 1 (car x2 = x+ 1) d’où ϕ2 ≃ 2, 618 [⇒ ϕ =
√

1 + ϕ =

√
1 +

√
1 + ϕ ...]

1

ϕ
= ϕ− 1 ≃ 0, 618 (car x = 1 +

1

x
) [⇒ ϕ = 1 +

1

ϕ
= 1 +

1

1 + 1
ϕ

...]

2. x2 + x+ 1 est irréductible sur R. ∆ = −3 = (i.
√

3)2 racines sur C : j et j j =
−1

2
+ i.

√
3

2
.

Et comme x3 − 1 = (x− 1).(x2 + x+ 1) car a3 − b3 = (a− b)(a2 + a.b+ b2), les racines de

x2+x+1 vérifient forcément x3 = 1 : racines cubiques de 1 donc j3 = 1, 1 + j + j2 = 0.

(Si on connait la notation d’Euler : j = ei.2.π/3, j = e−i.2.π/3 = ei.4.π/3 = j2 ; ou j2 = 1/j, j = 1/j

car j, j sont de module 1). Finalement : x2 + x+ 1 = (x− j)(x − j2) sur C.

Changeant x en −x, x2 − x+ 1 est irréductible sur R ; x2 − x+ 1 = (x+ j)(x + j2) sur C.

2.4.5 Cas de paramètre : m.x2 + (m + 1).x + (m + 1) = 0

1. Montrer que si m < −1, ou m >
1

3
, il n’y a pas de racine en x. Cas m = −1 et m =

1

3
?

2. Que si −1 < m < 0, il y a 2 racines en x de plus de signes opposés. Cas m = 0 ?

3. Que si 0 < m <
1

3
, il y a 2 racines en x, de plus : négatives. Faire un tableau selon m.

Cas : m = −2, −1, −1/2, 0, 1/4, 1/3, 1, 2 ; y = f(x) :

x

y

0
0

-5

2.4.6 Exemple précédent : comment savoir la position de x0 = −1 / aux racines

1. Dire : x0 entre les racines ⇔ −(m+ 1)−
√
−3m2 − 2m+ 1

2.m
< −1 <

−(m+ 1) +
√
−3m2 − 2m+ 1

2.m

� est non seulement peu commode (c’est clair)

� mais de plus faux si m < 0 vu que la racine à droite est plus petite que celle de gauche !

2. Méthode : Si f(x) = a.x2 + b.x+ c = a(x− x1)(x− x2), a.f(x0) = a2.(x0 − x1).(x0 − x2)

Donc : x0 extérieur aux racines ⇐⇒ f(x0) du signe de "a".
Et si pas de racines réelles, x0 toujours extérieur, f(x0) toujours du signe de a.
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Quand x0 extérieur, pour savoir quel côté, comparer x0 à la demi-somme
−b
2a

.

3. Dans l’exercice : trouver que −1 est toujours extérieur aux racines ; et :

−1 est à droite des racines ⇔ m ∈]0,
1

3
].

2.4.7 (*) Soit l’ellipse d’équation
x2

a2
+

y2

b2
= 1 ...

On la coupe par une famille de droite de direction fixe Dλ : y = m.x+ λ (donc parallèles).

1. Vérifier qu’à l’intersection on a une équation de degré 2 en x.

x
y

2. Justifier sans autre calcul quasiment que les milieux des points d’intersection sont alignés.

(Trouver xI =
x′ + x”

2
= p.λ, p fixe. Puis yI = q.λ, q fixe. D’où

−→
OI col. à −→u (p, q).)

2.4.8 (**) Inéquation avec paramètre : exercice

Résoudre : x− a 6
√
x+ a en discutant selon a.

1. Domaine : x > −a.
Puis on va discuter la position de x par rapport à a ; donc de la position de a par rapport à −a ;
donc de a par rapport à 0. D’où :

2. cas a > 0 ou −a 6 a [−a, a] est solution ; puis sur [a,+∞[ élèvons au carré :
on a une inéquation de degré 2 et il faut placer a par rapport aux racines.

Rappel

Si f(x) = px2 + qx+ r, f(a) est du signe de p pour a extérieur aux racines et de −p, sinon.
Pour a extérieur, le comparer à la demi somme −q/2p, pour savoir s’il est à gauche ou à droite.

Ici f(x) = x2 − (2a+ 1)x+ a2 − a. Et on doit avoir : x > a ∩ [x1, x2]...

On réunit alors les 2 casiers : Solutions [−a, a] ∪ [a, x2] = [−a, x2]

3. cas a 6 0 ou a 6 −a Sur le domaine, chaque membre est positif ; on peut élever au carré
et on a une équivalence ! Par contre, il faut placer −a par rapport à des racines éventuelles ...

Solutions a < −1/8 : aucune.

−1/8 6 a 6 0 : entre les deux racines, voilà les solutions.

Comme vérification, le cas a = −1/8, une seule solution : Tangence !

2

2
0

1

0

x

1
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M+ Exercices: Quelques problèmes du second degré. PTSI

1. Tracer la parabole d’équation y = −x2 + x+ 2 sans dériver mais par translation de repère.

Vérifier avec les intersections avec les axes.

2. Tracer l’hyperbole d’équation y =
2x− 1

x+ 1
sans dériver si possible ; et vérifier, idem.

3. Résoudre : (a)
√

2− x > 2 (b)
√
| x− 3 | 6 x− 1 (c) x− 3 6

√
(1− x)(x− 2)

(d) x− 2 6
√
| x− 8 | (e*) Placer −2 par rapport aux racines de m.x2 + (m+ 1).x+ 1.

4. Tracer l’hyperbole d’équation : y =
2.x2 + 3.x+ 2

x+ 1
. [y =

−x2 + 3.x

x− 2
vue en cours.]

5. Soit F (0, p/2) et D : y = −p/2. Lieu de M(x, y) équidistant de F et de D ?

[Trouver : la parabole d’équation : x2 = 2.p.y. (F est le foyer, D la directrice).]

6. On coupe la parabole y = α.x2 par des droites de direction fixe y = m.x+ λ. m est donc fixe

Que dire des milieux des points d’intersection obtenus quand λ varie ?

7. On coupe l’hyperbole y =
α

x
par des droites de direction fixe y = m.x+ λ.

Que dire des milieux des points d’intersection ? Note : le repère peut être ici non orthonormé !

8. On coupe l’hyperbole y =
α

x
par une droite D : y = a.x+ b.

On note {A,B} les points d’intersection de D et de l’hyperbole et {C,D} les points d’intersection

de D et des asymptotes. Montrer que [A,B] et [C,D] ont même milieu.

9. (*) Théorème de la puissance d’un point/ un cercle. Soit C(C,R) un cercle et D(A,−→u ) une droite ;

avec ‖−→u ‖ = 1. Si −→u varie en direction et si D∩C contient 2 points M,M ′, le produit AM.AM ′ est
constant et vaut puiss(A/C) = CA2−R2 = d2−R2, appelé : puissance du point A par rapport à C.

D :
−−→
AM = λ.−→u . C :

−−→
CM2 = R2. Donc : (

−→
CA+

−−→
AM)2 = R2 donne : λ2+2.λ.(−→u �

−→
CA)+

−→
CA2−R2 = 0,

car ‖−→u ‖ = 1. Vérifier alors : λ.λ′ = (λ.−→u ) � (λ′−→u ) =
−−→
AM �

−−→
AM ′ =

−→
CA2 −R2. Divers cas de figure

(A sur le cercle, intérieur ou extérieur : dans ce cas-ci, prendre aussi une tangente...) ?



Chapitre 3

Ak
n, Ck

n, Binôme. Injections et surjections

3.1 Arrangements, combinaisons

3.1.1 Définitions

Soit un ensemble à n éléments, Akn désigne le nombre de k-uplets rangés (k 6 n) possibles ;
on dit nombre d’arrangements ;

Et Ckn, encore noté

(
n
k

)
désigne le nombre de parties (non rangées) de k éléments parmi n ;

on dit nombre de combinaisons ou nombre de choix.

Exemple. Soit n = 5, k = 3 ; E = {a, b, c, d, e}
• Arrangements de 3 éléments parmi 5 : il y a (a, b, c) (a, b, d) (a, b, e) ; donc 3 commençant par (a, b, ?)
et si on commence par (a, c, .) ou (a, d, .) ou (a, e, .) celà fait donc 4.3 cas à ce stade [avec les (a, b, .)].

Et comme on peut commencer par b, c, d ou e (5 cas équivalents), celà fait A3
5 = 5.4.3 = 60.

• Combinaisons : C3
5 =

(
5
3

)
= 10 car on a exactement les cas : {a, b, c} {a, b, d} {a, b, e} {a, c, d}

{a, c, e} {a, d, e} {b, c, d} {b, c, e} {b, d, e} et {c, d, e}.

Remarques C0
n =

(
n
0

)
= 1 (seul choix : la partie vide) et Cnn =

(
n
n

)
= 1 (la partie pleine).

C1
n =

(
n
1

)
= n Ckn = Cn−kn ou

(
n
k

)
=

(
n

n− k

)
(Choisir k éléments ensemble, c’est en laisser n−k).

3.1.2 Calcul de Ak
n

On a : Akn = n.(n− 1).(n − 2)...(n − k + 1) =
n!

(n− k)! en convenant que : n! = n.(n− 1)...1 0! = 1.

Voir déjà que (n+ 1)! = (n + 1).n! pour n > 0. Ci-dessus, celà faisait A3
5 = 5.4.3 =

5.4.3.2.1

2.1
= 60.

Démonstration
Supposons E = {x1, x2, ..., xn}. Comptons les k-uplets (ordonnés, donc) :

On va supposer que x1 est en 1ère position : il suffira alors de multiplier le résultat par n car il y a n
cas identiques, à savoir x2, ... ,xn pourraient être en 1ère position !

A ce stade, (x1, ?, ...) , on a (n− 1) posibilités équivalentes pour le 2ème casier car x1 exclus ! On va
donc supposer, de même, que l’on a (x1, x2, ?, ...) et on multipliera (à nouveau) par (n− 1) cette fois.

On poursuit jusqu’à arriver à (x1, ..., xk) : au total n(n− 1)...(n − (k − 1)) cas ; terminé.

On a donc : Ann = n! façons de ranger n éléments parmi n (encore une fois 0 ! =1).

21
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3.1.3 Calcul de Ck
n (en le reliant à Ak

n)

On a Akn = k! . Ckn ; d’où Ckn =
Akn
k!

ce qui donne : Ckn =

(
n
k

)
=

n!

k!.(n− k)!

Démonstration. Comptons les k-uplets (ordonnés). 1ère façon : il y en a Akn ; 2ème façon : on choisit les

Ckn =

(
n
k

)
parties à k éléments ; et on range chacune d’elles de Akk = k! façons ; d’où k! . Ckn k-uplets.

Forcément Akn = k! . Ckn.

Exemples. Revoir que

(
n
k

)
=

(
n

n− k

) (
n
1

)
= n ... et en plus C2

n =

(
n
2

)
=
n(n− 1)

2

3.1.4 Autre calcul : Triangle de Pascal

On a l’égalité Pour n > k > 1 : Ckn = Ck−1
n−1 + Ckn−1 ou bien

(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
.

Voici comment celà fonctionne :

C0
0 =

(
0
0

)
= 1 (1ère ligne ; où n = 0)

C0
1 =

(
1
0

)
= 1 C1

1 =

(
1
1

)
= 1 (ligne où n = 1)

C0
2 =

(
2
0

)
= 1 C1

2 =

(
2
1

)
= 2 C2

2 =

(
2
2

)
= 1

...

chaque terme (sauf 1ère ligne ; où n = 0) étant somme de celui au dessus et dessus à gauche (si personne,
mettre un zéro) ; ou encore le même triangle avec les valeurs :

1 (1ère ligne ; où n = 0)
1 1 (ligne où n = 1)
1 2 1
1 3 3 1
1 4 6 4 1 (5ème ligne !)
...

Démonstration. On pourrait vérifier cette égalité avec la valeur ci-dessus.
Mais on va faire une autre preuve sans calcul ! Voici : Les parties à k éléments (n > k > 1)

. soit contiennent x1 : il faut exactement choisir (k − 1) éléments (x1 connu) parmi (n− 1)

. soit ne contiennent pas x1 : exactement choisir k éléments parmi (n− 1) (hors x1 exclus). Fini.

Exercices

1. Calculer C3
5 =

(
5
3

)
(déjà vu) par le triangle de Pascal.

2. Montrer que le produit de n entiers naturels consécutifs est toujours divisible par n!
(en reconnaissant un coefficient binômial dans la fraction).

Remarques 1

1
� Ces divers coefficients permettent des calculs de dénombrements.

� Les Ak
n ont permis d’atteindre les Ck

n =

(
n
k

)
fondamentaux comme on va le voir.

� On va voir aussi d’autres relations importantes sur ces coefficients.
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3.2 Le binôme de Newton

3.2.1 Exemples

On a : (a+ b)2 = a2 + 2a.b+ b2 et donc : (a− b)2 = a2 − 2a.b+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 et donc : (a− b)3 = a3 − 3a2b+ 3ab2 − b3

3.2.2 Théorème

(a+ b)n =
n∑

k=0

(
n
k

)
an−k.bk =

n∑

k=0

Ck
na

n−kbk. (a− b)n =
n∑

k=0

(−1)k.

(
n
k

)
an−kbk =

n∑

k=0

(−1)k.Ck
na

n−kbk.

Démonstration. On peut faire une récurrence (fastidieuse) avec (a+ b)n+1 = (a+ b)n.(a+ b).

Directement : Dans (a + b)n = (a + b).(a + b)...(a + b), n fois, on aura (pour une raison d’homogénéité)
que des termes du type an−k.bk ; combien ?

Dans les n paquets (a+ b), il faudra exactement choisir (combinaisons) k paquets où l’on sélectionne "b" ;

dans les autres facteurs, on prendra alors "a". Ainsi, celà fait donc Ckn =

(
n
k

)
termes.

(Exemple : nombre de termes en a2b dans (a+ b)3 ? choisir b dans le 1er ou 2ème ou 3ème facteur).

3.2.3 Relations importantes

On a : Ckn =
n

k
.Ck−1
n−1 ou bien :

(
n
k

)
=
n

k

(
n− 1
k − 1

)
, n > k > 1 ;

(1 + 1)n =

n∑

k=0

Ckn=

n∑

k=0

(
n
k

)
= 2n =| P(E) | si | E |= n (somme d’une ligne)

si n > 1 : C0
n − C1

n + C2
n − ... = 0; ou bien

(
n
0

)
−
(
n
1

)
+

(
n
2

)
− ... = 0 ; si n > 1 donc :

si n > 1 : C0
n + C2

n + C4
n + ... = C1

n + C3
n + ... = 2n−1 ou

∑

j

(
n
2j

)
=
∑

j

(
n

2j + 1

)
= 2n−1

Ckk + Ckk+1 + ...+Ckp = Ck+1
p+1 ou

∑

k6j6p

(
j
k

)
=

(
p+ 1
k + 1

)
(somme d’une colonne du triangle ici)

Démonstration
1) peut se voir par calcul facile ; (aussi par raisonnement comme pour le triangle de Pascal)

2) Ckn =

(
n
k

)
est aussi le nombre de parties à k éléments ; on retrouve | P(E) | ;

3) Développer (1− 1)n ; retenir cette idée qui sera généralisée avec les complexes !

4) conséquence de 3) en tenant compte de 1) ; ne pas oublier : n > 1 ;

5) Ckl = Ck+1
l+1 − Ck+1

l ou :

(
l
k

)
=

(
l + 1
k + 1

)
−
(

l
k + 1

)
pour l > k avec, si l = k, Ck+1

k =

(
k

k + 1

)
= 0.

En ajoutant ces égalités on a des simplifications "dominos" ou "télescopiques" classiques : à bien voir !

Note On aurait pu faire ici une récurrence sur p ; la clé étant aussi un emploi réitéré de la formule du

triangle de Pascal (avec, bien sûr, la relation immédiate : Ckk = Ck+1
k+1 = 1 ou

(
k
k

)
=

(
k + 1
k + 1

)
= 1.)

3.2.4 Résumé à bien savoir. Attention à ne pas confondre :

n∑

k=0

Cknx
k =

n∑

k=0

(
n
k

)
xk = (1 + x)n redonne le binôme si x =

b

a
et

k=n∑

k=0

xk =
xn+1 − 1

x− 1
donnant

an+1 − bn+1 = (a− b)(an + an−1.b+ ...+ a.bn−1 + bn) si x =
b

a
. a3 − b3 = ... ? a3 + b3 = ... ?
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3.3 Injections. Surjections

3.3.1 Fonctions et applications

1. Définitions

Une fonction f : E −→ F est une correspondance (ou une relation de E vers F )
telle que chaque x ∈ E ait au plus une image dans F.

Une application de E dans F est une fonction telle que chaque x ∈ E ait
une et une seule image dans F.

Exemples
1) x 7→ 1/x est une fonction de R dans R. C’est une application de D = R∗ dans R. On dit que
D = R∗ (ou Df ) est le domaine de définition de f .

2) x ∈ R 7→ y ∈ R tes que x2 + y2 = 1 (cercle trigonométrique : partie de RxR appelée graphe),
n’est pas une fonction (car 1/2 a deux images ±

√
3/2). (Donc, non application)

3) x 7→ y tel que x = y2 n’est pas une fonction de R dans R. Idem.

4) E = {1, 2, 3, 4}; F = {a, b, c}; f : 1 7→ a, 1 7→ b, ... ne peut être une fonction.

5) E = {1, 2, 3, 4}; F = {a, b, c}; f : 1 7→ a, 2 7→ a, 3 7→ c, 4 7→ b est une application.

6) On notera F([a, b],R) l’ensemble des applications de [a, b] dans R.

2. Composition : On définit, quand c’est possible, la composée par gof(x) = g[f(x)].

Exemple. f : () 7→ ()2, g = ln ; gof(x) = ln(x2), fog(x) = ln2(x) ; ce n’est pas pareil !

Propriété : La composition (dès qu’elle existe) est toujours associative.

En effet notons f(x) = y, g(y) = z ; alors g[f(x)] = g(y)

. (hog)of(x) = hog[f(x)] = hog(y) = h[g(y)] = h(z) et

. ho(gof)(x) = h[gof(x)] = h[g(f(x))] = h[g(y)] : idem.

Notations. Si A ⊂ E, f(A) désigne la partie de F suivante {f(x), x ∈ A}.
Ainsi, dans l’exemple 5) : f({2, 3}) = {a, c} ou sin(R) = [−1, 1].

De même si B ⊂ F , on définit f−1(B) = {x ∈ E : f(x) ∈ B}. (On n’a pas dit f bijective !)

Ainsi, dans l’exemple 5), f−1({a, c}) = {1, 2, 3} ou sin−1({0}) = {k.π, k ∈ Z}.
Avec ces notations, précisons le domaine de gof : Il faut exactement que x ∈ Df et f(x) ∈ Dg ;

donc (à ne pas savoir !) x ∈ Df et x ∈ f−1(Dg) : Dgof = Df ∩ f−1(Dg).

3. Nombre d’applications de E dans F si E,F finis :

Notons | E |= p et | F |= n (attention à cette inversion des lettres voulue -cf matrices-)

Théorème : Il y a exactement np (ou | F ||E|) applications de E dans F .

(C’est pourquoi, l’ensemble des applications de E dans F , noté F(E,F ) est aussi noté FE).

Démonstration. Supposons E = {x1, ..., xp}; F = {y1, ..., yn}.
Alors x1 a n images possibles : on fait un choix et on multipliera la réponse par n ; x2 a aussi n

images possibles ; etc. Au total, celà fait exactement np cas possibles.

Exemple. Nombre de façons de répartir 30 élèves en 3 classes Allemand, Espagnol, Italien ?

On est dans le cas précédent : cela fait 330 possibilités.
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3.3.2 Injections

1. Définition
On suppose déjà que f est une application de E dans F : Tout x de E a une et une seule image.

Une application est dite injective (ou injection) si tout élément de F a au plus un antécédent.

Exemples essentiels à comprendre

1) x ∈ R 7→ x2 ∈ R est non injective car y = 4 a deux antécédents +2 et −2.
2) Par contre x ∈ R+ 7→ x2 ∈ R est injective !
3) Si E = {1, 2, 3, 4}; F = {a, b, c}; f : 1 7→ a, 2 7→ a, 3 7→ c, 4 7→ b, est non injective car y = a

possède 2 antécédents.

2. En pratique. On a, pour une application f de E dans F :

f injective ⇐⇒ [x 6= x′ =⇒ f(x) 6= f(x′), ∀ x, x′ ∈ E] ⇐⇒ [f(x) = f(x′) =⇒ x = x′].

C’est-à-dire, pour montrer f injective, on montre une implication (ou sa contraposée).

3. Théorème. Nombre d’injections si E,F sont finis :

Si E a p éléments et F en a n ; alors : si | E |>| F |, il y a 0 injection ;
si | E |= p 6 | F |= n, il y a : n.(n− 1)...(n − p+ 1) = Apn injections.

Démonstration. Supposons E = {x1, ..., xp} F = {y1, ..., yn} et p 6 n.
Alors x1 a n images possibles : on fait un choix, par ex. y1 et on multipliera la réponse par n ;
x2 possède, alors, n− 1 images possibles car y1 est interdit ... Et xp aura, pour finir, n− (p− 1)

images possibles. D’où : n(n− 1). ... .(n− p+ 1) cas.

Remarque. Une injections de {1,2,3} dans {a, b, c, d, e}, celà revient à ranger 3 éléments parmi 5 ;
par ex : 1 7→ b, 2 7→ c, 3 7→ a : ou encore (b, c, a) cela fait donc -à nouveau- : 5.4.3 cas !

3.3.3 Surjections

1. Définition
On suppose déjà que f est une application de E dans F : Tout x ∈ E a une et une seule image.

Une application est dite surjective (surjection) si tout élément de F a au moins un antécédent.

Exemples essentiels à comprendre

1) x ∈ R 7→ x2 ∈ R est non surjective car y = −4 n’a pas d’antécédent.
2) Par contre x ∈ R 7→ x2 ∈ R+ est surjective !
3) Si E = {1, 2, 3, 4}; F = {a, b, c, d}; f : 1 7→ a, 2 7→ a, 3 7→ c, 4 7→ b est non surjective car y = d

ne possède pas d’antécédent.

2. En pratique. En notant f(E) = {f(x), x ∈ E} on a, pour une application f de E dans F :

f surjective ⇔ f(E) = F ⇔ ∀y ∈ F l’équation en x : f(x) = y, a au moins une solution.

Exemples ci-dessus

Dans 1) Ici, on avait f(R) = R+ 6= R : f non surjective. (On dit aussi inclusion stricte ()
Dans 3), on avait f({1, 2, 3, 4}) = {a, b, c} ( {a, b, c, d} : f non surjective.

3. Nombre de surjections si E,F sont finis :

Cette question est plus difficile et ne sera pas utile. Exercice (*) :

� Si E a p éléments et F n ; alors si | E | < | F |, il y a 0 surjection
� si | E |= p > | F |= n, on a : Sp,n = n(Sp−1,n + Sp−1,n−1).
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3.4 Bijections

3.4.1 Définition

On suppose déjà que f est une application de E dans F : Tout x de E a une et une seule image.

1. Une application est dite bijective (bijection) si tout élément de F a un et un seul antécédent.

C’est dire f à la fois injective et surjective.

2. En pratique. f bijective ⇔ ∀y ∈ F l’équation en x : f(x) = y a une et une seule solution en x.

Exemple : x ∈ R 7→ x3 ∈ R bijective ; l’équation x3 = 4 a une et une seule solution : x =
3
√

4.

3.4.2 Existence de la bijection réciproque

1. Théorème

Si f est bijective de E dans F , on peut définir une application de F dans E, notée f−1, à

savoir y 7→ x, son seul antécédent ; celle-ci aussi bijective et f−1of = IdE , fof−1 = IdF .

Dém. laissée en exercice. (IdE signifiant x ∈ E 7→ x ∈ E)

2. Exemples Voir sur le même dessin, les graphes de f et f−1 :

1) x ∈ R+ 7→ x2 ∈ R+ est bijective, de bijection réciproque :
√
...

2) x ∈ R 7→ x3 ∈ R est bijective, de bijection réciproque : 3
√
...

3) f(x) = 2.x− 1 est bijective de R dans R ; f−1(x) =
1

2
(x+ 1).

4) La fonction ln est bijective de R+∗ dans R, de réciproque exp.

3. Note Quand f est seulement une application, on parle de f−1(B), B étant une partie de F !

3.4.3 Nombre de bijections si E, F sont finis

1. Théorème
Si E a p éléments et F en a n ; alors si | E |6=| F |, 0 bijection (clair).
Si | E |=| F |= n, FINI, on a [f injective] ⇔ [f surjective] ⇔ [f bijective].

Il y a donc Ann = n! bijections possibles.

Démonstration. Si | E |=| F |= n , FINI.

• f inj. =⇒ f surj. : Quand f est injective, il est facile de voir que f est bijective de E sur f(E) ;
donc ici | E |=| f(E) |= n. Ayant f(E) ⊂ F , de même cardinal FINI, il est égal à F .

• f surj. =⇒ f inj. : Si f n’était pas injective, on aurait | f(E) |< | E |= n =| F | ; f ne pourrait
être surjective ! On a fini. Attention : f peut être ni injective, ni surjective !

2. Définition

Une bijection de E dans E est appelée permutation ; Si | E |= n, il y a donc n! permutations.

Exemple : x 7→ x3 bijective de R dans R. Si E = {a, b, c} a 7→ b, b 7→ c, c 7→ a bijective.

3. Attention Si E est infini, on peut trouver une application de E dans E :

. injective, non surjective : par exemple n 7→ n+ 1 dans N

. et surjective non injective : 0 7→ 0 et n > 1 7→ n− 1 !

3.4.4 Autres propriétés

1. Composition :

La composée de 2 injections est injective ; la composée de 2 surjections est surjective.
Donc la composée de 2 bijections est bijective.
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Démonstration facile dès qu’on a assimilé les définitions :

1) Soit x 6= x′ alors f(x) 6= f(x′) vu que f est inj. ; puis g[f(x)] 6= g[f(x′)] vu que g injective.
Donc gof(x) 6= gof(x′) : d’où gof injective

2) f sujective signifie f(E) = F ; puis g surj. signifie g(F ) = G. or, aisément, gof(E) = g[f(E)].
Donc gof(E) = G : c’est gof surjective.

3) Résulte de 1) et 2).

2. Une réciproque :

Si gof est injective, alors f est injective ; si gof est surjective, alors g est surjective.

Démonstration
1) Supposons l’existence de x1 6= x2 avec f(x1) = f(x2) (f non injective).

Alors clairement gof(x1) = gof(x2) : gof non inj. [On pouvait éviter la contraposée !]
2) Supposons g non surjective, alors g(F ) ( G ; à fortiori gof(E) ( G : gof non surjective.

Conséquence

Une application f : E −→ E est dite involutive si fof = Id (Id : x 7−→ x).

Si f est involutive, forcément f est bijective et f−1 = f (exemples : symétries).

En effet f sera à la fois injective et surjective car Id est bijective ; d’où f bijective.
Puis on a : f−1 = f−1ofof = f .

3. Exemples
Trouver des involutions (autre que Id) :
� de R dans R ;
� puis de R∗ dans lui-même ;
� puis du plan affine P = R2 dans lui-même.

Solution
• x ∈ R 7−→ y ∈ R tels que x+ y = a ; ou bien f(x) = a− x.
• De même : x ∈ R∗ 7−→ y ∈ R∗ tels que x.y = k 6= 0.
• Voici des exemples et contre-exemples :

1) Une translation t−→u de vecteur −→u dans le plan affine P = R2 est une bijection mais non involutive

(f−1 6= f) sauf si −→u =
−→
0 auquel cas t−→u = IdP !

2) Les symétries par rapport à un point sont involutives ; ou encore :
3) les symétries par rapport à une droite D1, de direction D2 non parallèle à D1 sont involutives ;

Un cas particuler est celui des symétries orthogonales.

Facultatif :

4) Une rotation rA,α de centre A, d’angle α, est bijective non involutive sauf si α = 0 ou π (2π).
5) Une homothétie hA,k de centre A, de rapport k 6= 0, est bijective non involutive sauf si k = ±1.

Dessins ?

Exercice 2

2 En complément :

� Si x 6∈ Q, montrer que : 1 − x 6∈ Q.

� Déduire que f :

{
x ∈ Q 7−→ x

x ∈ R\Q 7−→ 1 − x
vérifie fof = Id ; donc bijective (involutive).

� Dessin de f ? Soit maintenant : g : 1/2 7→ 0 ; 0 7→ 1/2 ; x 7→ x sinon :

� Justifier que gof est bijective de R dans R ; continue en aucun point ! (cf. ch. Continuïté)



28 CHAPITRE 3. AKN , C
K
N , BINÔME. INJECTIONS ET SURJECTIONS

M+ Exercices: Ak
n, C

k
n, binôme. Injections, surjections. PTSI

1. Développer l’expression de (a+ b)5.

2. Rappeler les relations du cours au sujet des coefficients binômiaux : Ckn encore noté

(
n
k

)
.

3. Avec f(x) = (1+x)n, simplifier
n∑

k=0

k.Ckn =
n∑

k=0

k.

(
n
k

)
= A ;

n∑

k=0

1

k + 1
Ckn =

n∑

k=0

1

k + 1
.

(
n
k

)
= B.

4. Calculer A (précédent) d’une autre façon (au moins). Pour la suite, mettre les autres notations :

5. Avec
n∑

j=2

C2
j =

n∑

j=2

(
j
2

)
= C3

n+1 =

(
n+ 1

3

)
, calculer S2(n) = 12 + 22 + ...+ n2 (3ème méthode).

6. (Une 4ème) Trouver P (x) = a.x3 + b.x2 + c.x tel que P (x)− P (x− 1) = x2. En déduire S2(n).

7. (*) Montrer que

k=p∑

k=0

Ckm.C
p−k
n = Cpm+n (cf. coefficient de xp dans (1+x)m+n). Valeur de

n∑

k=0

(Ckn)
2 ?

8. (*) On considère tous les nombres à 6 chiffres sans répétition formés avec 1,2,3,4,5 et 6. Combien
y en a-t-il ? Quel est le 500ème ? (516243) Le rang de 362145 ? (343ème) Leur somme ?

9. Trouver une application injective non surjective de N dans N ; puis surjective non injective.

10. Trouver une bijection entre N et Z.

11. Montrer que gof injectif et f surjectif ⇒ g injectif. Et gof surjectif et g injectif ⇒ f surjectif.

12. (*) Montrer que Cn2n =
(2n)!

(n!)2
6

4n√
2n+ 2

pour n > 1. Amélioration : 6
4n√

3n+ 1
.

13. (*) Soit n droites du plan en position générale. Nombre de régions obtenues ? [1+C2
n+1]

14. (*) Dans le plan, on considère n points tels que 3 quelconques soient non alignés.
On trace les droites obtenues. Nombre de points nouveaux, au plus, par intersection ? [3.C4

n]

15. (**) Théorème de Cantor : Montrer qu’il n’existe pas de bijection de E dans P(E).
(Si f en était une, considérer {x ∈ E : x 6∈ f(x)}.)

16. (**) Tirages avec remises : On tire k boules, avec remise à chaque fois, parmi {b1, b2, ..., bn}.

(a) Si l’ordre les boules tirées importe, vérifier qu’il y a nk tirages. Sinon, c’est plus difficile :

(b) Kk
n étant le nombre de tels tirages, calculer K2

3 et K3
2 . Montrer que Kk

n est le nombre de
solutions entières de x1 + x2 + ...+ xn = k (xp=nombre de tirages de bp) et vaut Ckn+k−1 :

. soit par récurrence (*) sur n+ k avec Kk
n = Kk

n−1 +Kk−1
n ;

. soit choisir n− 1 cloisons parmi n− 1 + k objets (cloisons et boules) !



Chapitre 4

Trigonométrie. Equat. et inéquations
trigonométriques

4.1 Equations trigonométriques

4.1.1 Fonctions sin, cos, tan, cot

1. Graphe de sin et cos sin′ = cos, cos′ = −sin [Ceci sera démontré plus tard]

x

1
y 0

x

y

0,7
0

x

y

0,7
0

2. Graphe de tan

tan(x) =
sin(x)

cos(x)
π-périodique, impaire, de dérivée : tan′(x) =

1

cos2(x)
= 1 + tan2(x)

3. Graphe de cot

cot(x) =
cos(x)

sin(x)
=

1

tan(x)
π-périodique, impaire ; cot′(x) =

−1

sin2(x)
= −

(
1 + cot2(x)

)

4.1.2 Equations fondamentales

1. Théorème
cos(y) = cos(x)⇐⇒ y = ±x+ k.2.π (1)

sin(y) = sin(x)⇐⇒ y = x+ k.2.π ou y = π − x+ k.2.π (2)
tan(y) = tan(x)⇐⇒ y = x+ k.π. (3) k ∈ Z

2. Démonstration (1) et (2) se voient bien avec le cercle trigonométrique (après).

(3) Soit on connait la fonction tan ... soit sin(x).cos(y)− sin(y).cos(x) = sin(x− y) [après].

3. Exemple Résoudre sin(2x− π/3) = cos(3x+ π/3)

Solution : On peut ramener un sinus à un cosinus par la formule sin(x) = cos(π/2 − x) ! Puis (1).

Trouver : x =
π

10
+ k.

2.π

5
, k ∈ Z ; x =

−7.π

6
+ k′.2.π, k′ ∈ Z.

29
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4.2 Trigonométrie circulaire

4.2.1 A connaitre

1. Déjà cos2(x) + sin2(x) = 1 (Théorème de Pythagore) et tan(x) =
sin(x)

cos(x)
.

2. Puis





sin(a+ b) = sin(a).cos(b) + sin(b)cos(a)
sin(a− b) = sin(a)cos(b) − sin(b)cos(a)
cos(a+ b) = cos(a)cos(b) − sin(a)sin(b)
cos(a− b) = cos(a)cos(b) + sin(a)sin(b)

D’où





tan(a+ b) =
tan(a) + tan(b)

1− tan(a)tan(b)

tan(a− b) =
tan(a)− tan(b)

1 + tan(a)tan(b)

Formules d’addition ; qui donnent les formules de duplication :

3. D’où





cos(2a) = 2cos2(a)− 1 = 1− 2sin2(a) = cos2(a)− sin2(a) ;

sin(2a) = 2sin(a)cos(a) donc tan(2a) =
2.tan(a)

1− tan2(a)

cos2(a) =
1 + cos(2a)

2
; sin2(a) =

1− cos(2a)
2

; 1 + cos(x) = 2.cos2
x

2
; 1− cos(x) = 2.sin2x

2

4. Et





sin(a+ b) + sin(a− b) = 2sin(a)cos(b)
sin(a+ b)− sin(a− b) = 2cos(a)sin(b)
cos(a+ b) + cos(a− b) = 2cos(a)cos(b)
cos(a+ b)− cos(a− b) = −2sin(a)sin(b)

ou





sin(p) + sin(q) = 2.sin(
p+ q

2
).cos(

p − q
2

)

sin(p)− sin(q) = 2.cos(
p + q

2
).sin(

p− q
2

)

cos(p) + cos(q) = 2.cos(
p + q

2
).cos(

p − q
2

)

cos(p)− cos(q) = −2.sin(
p+ q

2
).sin(

p− q
2

)

Que l’on peut retenir par l’ordre choisi et "si co co si co co − si si" (Somme ↔Produit).

5. En fonction de "la tangente de l’arc moitié" :

sin(x) =
2t

1 + t2
, cos(x) =

1− t2
1 + t2

, tan(x) =
2t

1− t2 fractions rationnelles en t = tan(
x

2
).

6. A ne pas confondre avec : sin2(x) =
tan2(x)

1 + tan2(x)
cos2(x) =

1

1 + tan2(x)
(moins essentielles).

Les formules d’addition seront prouvées avec le produit scalaire. Les autres en ré-
sultent :

Ainsi : sin(2a) =
2sin(a)cos(a)

cos2(a) + sin2(a)
; en simplifiant par cos2(a), on trouve 5)a). Idem pour 6)a).

4.2.2 Remarques

1. Attention : sin2(x) 6= sin(2x) !

2. Sont essentielles aussi : cos(
π

2
+ a) = −sin(a), sin(

π

2
+ a) = cos(a)... En particulier :

En repère orthonormé, 2 droites y = mx+ p, y = m′x+ p′ sont orthogonales ⇐⇒ m.m′ = −1

En effet : m = tan(a) et m′ = tan(a+
π

2
)...
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4.3 Inéquations trigonométriques

4.3.1 Résoudre : sin(x) > 1/2

Avec le cercle (fig. 1) :
π

6
+ 2k.π 6 x 6

5.π

6
+ 2k.π ; réunion d’une infinité d’intervalles.

4.3.2 Résoudre : cos(2.x) < 1/2

Idem (fig. 2) mais diviser par 2 :
π

6
+ k.π < x <

5.π

6
+ k.π même k dans chaque membre et k ∈ Z.

4.3.3 Résoudre : sin(x) + cos(x) 6 1.

1. Propriété a.cos(x) + b.sin(x) s’écrit
√
a2 + b2.cos(x− ϕ) (Si a = b = 0, évident).

Sinon : (
a√

a2 + b2
,

b√
a2 + b2

) vérifie X2 + Y 2 = 1 ; donc s’écrit cos(ϕ), sin(ϕ). Finir !

2. L’exemple devenant : cos(X) 6 cos(π/4), X = x− π/4 ... (fig.3). A finir.

4.3.4 Résoudre : tan(3.x) < 1

cf. graphe de tan. (fig.4)
−π
2

+ k.π < 3.x <
π

4
+ k.π et on divise par 3.

0
-0

x

y -0
0

x

y -0
0

x

y

x

y

0,7
0

1

x

-0,5

0,5

1
0

0,5

-1

0-0,5-1

4.3.5 (*) Une courbe en paramétrique avec de la trigonométrie

1. Tout est dans le domaine d’étude. F : t ∈ R 7−→
{
x(t) = a.cos3(t)

y(t) = a.sin3(t)
(Astroïde fig.5.)

F (t+ 2π) = F (t) montre qu’un intervalle de longueur 2π donne tout ; on le centrera plus tard !
Demi-période : F (t+π) = −F (t) un intervalle de longueur π suffit en faisant une symétrie /O(0,0).
Puis : x(t+ π/2) = −y(t); y(t+ π/2) = x(t) un intervalle de longueur π/2 suffit en faisant une

rotation d’angle π/2.
Maintenant, on va changer t en −t, donc on centre notre intervalle en t = 0 : [−π/4, π/4]. Ce

changement de t en −t montre que De = [0, π/4] suffit en faisant de plus la symétrie /Ox.

Attention pour la courbe : Faire les symétries en sens inverse, à partir du "motif" t ∈ [0, π/4].

2. Tableau de Variations sur [0,π/4] On prend a > 0.

−−→
dM

dt
=

(
x′(t) = −3a.cos2(t)sin(t)

y′(t) = 3a.sin2(t)cos(t)

)
.

(Ces dérivations seront vues plus tard).

� Pour t = 0, point stationnaire A. Tangente ?

−−→
dM

dt
est col. à

(
−cos(t)
sin(t)

)
donc col. à

−→
i , car t = 0.

� Pour t = π/4, point B : on a OB =
a

2
et

−−→
dM

dt
colinéaire à

(
−1
1

)
. Enfin : Graphe ?



32 CHAPITRE 4. TRIGONOMÉTRIE. EQUAT. ET INÉQUATIONS TRIGONOMÉTRIQUES

M+ Exercices: Equat. Inéquations trigonométriques sur R PTSI

1. Reprendre les équations trigonométriques fondamentales et résoudre : sin(2x− π
3
) = cos(3x+

π

3
)

2. (a) Calculer sin(
π

12
) avec

π

12
=
π

3
− π

4
. Puis avec :

π

12
=

1

2
.
π

6
et sin2(a) =

1− cos(2a)
2

.

(b) Calculer comme ci-dessus, 2ème façon, le réel : cos(
π

8
).

(c) Condition Nécessaire et Suffisante, en repère orthonormé, pour que 2 droites :

y = mx+ p, y = m′x+ p′ soient orthogonales ? Réponse et preuve.

3. Transformer en somme sin(3.x).sin(x) et en produit : sin(3x) + sin(x).

4. Formules donnant sin(x), cos(x) en fonction de t = tan
x

2
; puis en fonction de T = tan(x).

(Réponse partielle : sin(x) =
2.tan(x/2)

1 + tan2(x/2)
à ne pas confondre avec : sin2(x) =

tan2(x)

1 + tan2(x)
)

5. Trigonométrie facile (mais essentielle). Simplifier le produit :

k=n∏

k=1

cos(x/2k).

6. (*) Soit α ∈]0,
π

2
[ avec tan(2.α) = 2.

√
2. Calculer tan(α). Puis sin(α).

7. Trigonométrie dans un triangle : A+B + C = π

(a) Montrer que : sin(2A) + sin(2B) + sin(2C) = 4.sin(A).sin(B).sin(C).

(b) (*) Montrer que : cos2A+ cos2B + cos2C = 1− 2. cosA. cosB. cosC.

(c) (*) Montrer que : tanA+ tanB + tanC = tanA. tanB. tanC.

8. Equations trigonométriques. Résoudre : cos(2x) =
1

2
puis : cos2(x) + cos2(2x) + cos2(3x) = 1

(poser C = cos(2x).)

9. Inéquations trigonométriques. Résoudre :

(a) cos(2x) > 1/
√

2 ; puis −1/
√

2 6 cos(2x) 6 −1/2 ;

(b) (*) enfin cos(x).cos(2x).cos(3x) > 1/4. (poser C = cos(2x).)

10. (*)

{
x = R[t− sin(t)]
y = R[1− cos(t)] Etude à faire : Domaine d’étude : se ramener à [0, π].

(a) Tableau avec t, x′(t), x(t), y′(t), y(t) ? Tangente au point "stationnaire" :

(b)

−−→
dM

dt
=

(
x′(t)
y′(t)

)
= 2.R.sin

t

2
.

(
sin(t/2)
cos(t/2)

)
... [ce dernier vecteur donnant la tangente]

Courbe ? (voici une arche de "cycloïde") : 50

2

0



Chapitre 5

Complexes : Aspect algébrique et
trigonométrique

5.1 Forme algébrique z = x + iy

5.1.1 Généralités

1. Définition

Posons i2 = −1, i 6∈ R ; on définit alors C = {z = x+ iy, x, y ∈ R} tel que :
z = z′ ⇔ (x = x′, y = y′); z + z′ = x+ x′ + i(y + y′); z.z′ = xx′ − yy′ + i(xy′ + x′y).

2. Propriétés. (C,+, .) est un corps commutatif (comme Q ou R ) (Vocabulaire : cf. R.)

De plus, on constate que R ⊂ C et qu’il s’agit d’une extension des opérations.

Démonstration
1) La loi + s’interprète comme l’addition vectorielle −→u (x, y) +−→v (x′, y′) et ainsi

(C,+) groupe abélien est facile. [Revoir le ch. R pour les définitions non exigibles]

2) La loi � est commutative, 1+i.0 est Neutre. Comment voir l’associativité (z.z′).z” = z.(z′.z”) ?
– soit on fait un calcul (long ... ) !
– soit on considère R[x], ensemble des polynômes à coeff. réels, muni des lois usuelles + et "�"

En identifiant polynômes et fonctions polynômes ! on sait que (P1.P2).P3 = P1.(P2.P3)
et chaque fois que l’on a "x", il suffit de lui substituer i ... (*)

3) Lien entre les lois : z.(z′ + z”) = z.z′ + z.z”. A ce stade, on a un "anneau commutatif".

Enfin, tout élément non nul est inversible pour � :
1

x+ iy
=

x− iy
x2 + y2

, si (x, y) 6= (0, 0).

3. Remarques

1) La multiplication par un réel : λ.z, λ ∈ R s’interprète aisément comme λ.−→u .
Pour la multiplication par un complexe : z′ = a.z voir la section II.

2) L’égalité z′ = z + cte s’interprète :

– soit comme une translation du plan : z′ = z + z0

– soit comme un changement de repères par translation : Z = z − z0 ou

{
X = x− x0

Y = y − y0

A revoir ! [exemple : la courbe d’équation y = 2 +
−1

x− 1
’est’ aussi Y =

−1

X
.]

33
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5.1.2 Conjugaison et module

1. Définition

z = x− iy, | z |=
√
x2 + y2 = OM généralisant la valeur absolue. noter | z |2 = z.z.

Attention : 1) Pas de 6 dans C.

2) On n’écrit pas
√
... d’un complexe, sauf s’il est réel positif.

2. Théorème sur la conjugaison

z + z′ = z + z′; z.z′ = z.z′; z = z. (Facile et laissé).

Remarques :

1) D’où aussi (
1

z
) =

1

z
(le conjugué de z.

1

z
valant le produit des conjugués ; et aussi 1.)

2) On a aussi | z |= 1 ⇔ z =
1

z
.

3. Conséquence sur le module

| z.z′ |=| z | . | z′ |. Car : | z.z′ |2= z.z′.z.z′ = z.z′.z.z′ =| z |2 . | z′ |2.

Remarques :

1) Et donc également | 1

z
| = 1

| z | , | z
z′
| = | z || z′ | .

2)




ℜe(z) =

z + z

2
,

ℑm(z) =
z − z
2.i

ou bien

{
z + z = 2.ℜe(z),
z − z = 2.i.ℑm(z)

Donc

{
z réel ⇔ z = z et
z imag. pur ⇔ z = −z.

3) Puis aisément : | ℜe(z) | 6 | z | et | ℑm(z) | 6 | z |.

4) [Et aussi U = {z/ | z |= 1} "groupe abélien" pour la multiplication ; plus tard.

En effet pour 4) :

Loi interne dans U ; puis 1 ∈ U et si z ∈ U, alors 1/z ∈ U : celà suffit.]

5.1.3 Le module comme norme

1. Théorème

z 7→| z | est une norme, c’est-à-dire | z |∈ R+ et encore 3 points :
| z |= 0 ⇔ z = 0

∀λ ∈ R : | λ.z | = | λ | . | z |
| z + z′ | 6 | z | + | z′ | .

En effet
Pour l’ inégalité (qu’entre réels positif) !

Elever chaque membre au carré | u |2= u.u puis :

z.z′ + z.z′ = 2.ℜe(z.z′) 6 2. | ℜe(z.z′) | 6 2. | z.z′ | = 2. | z | . | z′ |. Fini.

(Bien sûr, c’est aussi : ‖−→u +−→v ‖ 6 ... si on l’avait déjà prouvé).

2. Conséquence

On en déduit encore
∣∣ | z | − | z′ |

∣∣ 6 | z + z′ | 6 | z | + | z′ |.

En effet : Pour l’autre inégalité, c’est comme dans le cas de R, à revoir.
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5.2 Forme trigonométrique z = ρ.ei.θ, ρ =| z |> 0

5.2.1 Définition. Formules d’Euler et opérations

• Pour z = x+ iy 6= 0, on pose cos(θ) = x/ | z |, sin(θ) = y/ | z | . Donc z =| z | .[cos(θ) + i.sin(θ)]

En particulier, tout complexe de module 1 s’écrit : cos(θ) + i.sin(θ).

• On note

{
cos(θ) + i.sin(θ) = eiθ

cos(θ)− i.sin(θ) = e−iθ
ou par équivalence





cos(θ) =
eiθ + e−iθ

2

sin(θ) =
eiθ − e−iθ

2i
.

Théorème
ei.0 = e0 = 1 | eiθ |= 1 e−iθ = ei.(−θ) = eiθ (l’inverse)

et : ei(α+β) = ei.α.eiβ grâce aux formules d’addition.

5.2.2 Interprétation de la multiplication dans C

Soit z′ = a.z. Posons z = ρ.ei.θ, a = r.ei.α. Alors z′ = r.ρ.ei(α+θ).

On retrouve le module du produit ; et on voit que les argument (angles) s’ajoutent.

Exemple Dessiner de 2 façons z′ = (1 + i).z = z + i.z pour z donné.

5.2.3 Formule de Moivre

Théorème On a (ei.θ)n = ei.n.θ, n ∈ N. Ou bien : [cos(θ) + i.sin(θ)]n = cos(n.θ) + i.sin(n.θ).

En fait vrai même si n ∈ Z ; voir le cas n = −1. Sera utilisé en fin de chapitre.

Le cas n = 2 cos(2.x) + i.sin(2.x) =
(
cos(x) + i.sin(x)

)2
d’où : cos(2.x) = ... sin(2.x) = ...

Faire personnellement le cas n = 3 ...

5.2.4 Somme ou différence de eiα, ei.β

D’abord un rappel

{
eiθ + e−i.θ = 2.cos(θ)

eiθ − e−i.θ = 2.i.sin(θ)

Ensuite Pour eiα ± ei.β, on met la demi-somme des arguments en facteur

eiα + ei.β = ei(α+β)/2.
(
ei(α−β)/2 + ei(−α+β)/2

)
= e

i.(α+β)
2 .2.cos(

α − β)

2
.

eiα − ei.β = ei(α+β)/2.
(
ei(α−β)/2 − ei(−α+β)/2

)
= e

i.(α+β)
2 .2.i.sin(

α − β)

2
.

5.2.5 Exemple sur ce qui précède

Simplifier la somme : C = 1 + cos(x) + cos(2x) + ...+ cos(nx).

Méthode à savoir : Posons Z = 1 + eix + ...+ einx. Alors, avec 1 + q + ...+ qn connue :

Z =
ei(n+1)x − 1

eix − 1
=
ei.(n+1)x)/2.2i.sin[(n + 1)x/2]

ei.x/2.2i.sin(x/2)
=
sin[(n+ 1)x/2]

sin(x/2)
.ei.n.x/2

ou bien Z =
sin[(n+ 1)x/2]

sin(x/2)
.[cos(

n.x

2
) + isin(

n.x

2
]. Et donc : C =

sin (n+1)x
2

sinx2
.cos

nx

2
.

car C est la partie réelle [que l’on peut avoir par (Z + Z)/2 si nécessaire].

Vérifier sur quelques cas : n = 0, n = 1; (x = 0 avec sin(h)/h−→
h→0

1 (*).)
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5.3 Conséquences algébriques

5.3.1 Equation zn = 1

Théorème
L’équation zn = 1 a n racines : eik.2π/n, k = 0, 1, ..., n − 1 par exemple, appelées

les n racines nième de l’unité ; leur ensemble est noté Un et forme polygone régulier.

Deux exemples (Démonstration au numéro suivant) :

1) n = 3 z3 = 1 possède 3 racines sur C : U3 = {1, j = ei.2π/2, j2 = j = e4iπ/3} ; et donc : j3 = 1 ;

1

j
= j = j2 ; 1 + j + j2 = 0 (avec 1 + q + ...qn si l’on veut). Dessin :

Attention : sur C, on n’écrit pas
3
√

1 car on ne sait pas laquelle est-ce ! On dit une racine cubique ...

2) n = 5 Posons ωk = eik.2π/5 et ω = ω1 = e2.π/5 ; alors les 5 racines 5ème sont 1, ω, ω2, ω3, ω4.
On a : ω5 = 1 1/ω = ω = ω4 (ω5 = 1) et 1 + ω + ...+ ω4 = 0. Faire un dessin.

5.3.2 Equation zn = a, a 6= 0

Théorème
L’équation zn = a possède n racines sur C, sommets d’un polygone régulier à n côtés.

De plus, si ωk = eikπ/n et z1 une racine, les racines sont : z1.ωk, k = 0, 1, ..., n − 1

Exemples

1) x3 = 8 : sur R une solution ; sur C trois solutions : 2; 2j; 2j2 (triangle équilatéral), car (x/2)3 = 1.
2) x4 = −1 ; (4 racines : eiπ/4, e3.iπ/4 et les conjuguées) puis (*) factoriser x4 + 1 sur C et sur R.

(Début : on peut poser x = ρ.eiθ, −1 = ei.π... Voir que les racines sont aussi 2 à 2 opposées !)
3) A4 = B4 ⇐⇒ A = B.ωk, ωk ∈ {1, i, −1, −i} = U4. Donc 4 cas sur C !

Démonstration du Théorème :

1) Posons z = ρ.eiθ, a = r.eiα ; alors zn = a⇐⇒
{

ρn = r
n.θ = α(2.π)

; ou ρ = n
√
r sur R+ et θ =

α

n
+
k.2.π

n
.

2) De plus, si zn1 = a, l’équation devient (z/z1)
n = 1. Donc z/z1 = ωk est une racine nième de l’unité.

5.3.3 Le second degré [Un bon exemple suffit]

1. L’équation z2 = ∆, plutôt notée ici δ2 = ∆.

• Une méthode trigonométrique vient d’être vue (2 racines opposées : ±δ avec δ2 = ∆).

• Voici une méthode algébrique :

Posons δ = u+ iv et ∆ = p+ iq ; δ2 = ∆⇔
{
u2 − v2 = p (1)
2.u.v = q (2)

⇔




u2 − v2 = p (1)
2.u.v = q (2)

u2 + v2 =
√
p2 + q2 (3)

En effet, faire (1)2 + (2)2 ; mais il y a un moyen meilleur, faire | δ2 |=| ∆ |. Astuce ! D’où δ.

2. az2 + bz + c = 0, a 6= 0, coefficients complexes.

Comme dans R, avec ∆ = b2 − 4ac = δ2 : az2 + bz + c = a[(z +
b

2a
)2 − ∆

4a2
] = a(z − z1)(z − z2)

Il y a deux solutions qui sont donc
−b± δ

2a
; leur somme vaut z + z′ =

−b
a

, leur produit zz′ =
c

a
.

Si coefficients réels, les racines sont réelles ou complexes conjuguées. Car ∆ = −k2 ∈ R− ; δ = ±i.k
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3. Rappels

• Ayant la somme s et le produit p de 2 complexes, ils sont solutions de : x2 − s.x+p=0.

• La demi-somme est le milieu des racines. (Note. Voici des "formules réduites" :

Si on a : az2 + 2.b′z + c = 0, en posant : ∆′ = (b′)2 − ac, (δ′)2 = ∆′, les racines sont :
−b′ ± δ′

a
)

• Dans le cas de coefficients et racines réelles soit f(x) = ax2+bx+c. Pour avoir la position d’un réel

x0 par rapport aux racines (si ∆ > 0), on a f(x0) est du signe de a⇐⇒ x0 extérieur aux racines.

S’il est extérieur, on compare x0 avec la demi-somme, pour savoir s’il est à gauche ou à droite ...

Résoudre

1) z2 + z + 1 = 0
2) z2 − z + 1 = 0
3) z2 = z
4) z4 + 2z2 + 4 = 0
5) z2 − (5− 14i)z − 2(5i + 12) = 0. Solutions :

1) Racines
−1± i.

√
3

2
c’est-à-dire j et j2 ! et x2 + x+ 1 = (x− j)(x − j2).

2) En changeant x en −x : x2 − x+ 1 = (x+ j)(x + j2)

3) Attention : ne pas dire qu’il n’y a que 2 racines ! z = ρ.eiθ conduit à ρ2.e2iθ = ρ.e−iθ ; alors
ρ = 0 ; ou bien ρ = 1 et 3θ = 0(2.π) D’où 4 racines : {0, 1, j, j2}. [z = x+ i.y possible]

4) Equation "bicarrée" ; on peut poser Z = z2 ...
5) Ici ∆ = 25− 196− 140i+ 40i+ 96 = −75− 100i = −25(3 + 4i) ; soit u, v : (u+ i.v)2 = 3 + 4i,

on trouve ±(2 + i) donc δ = ±5i.(2 + i) = ±5(−1 + 2i) etc ; vérifier par somme et produit.

5.3.4 Théorème de D’Alembert-Gauss

1. Enoncé (admis)

Tout polynôme de degré n > 1 à coefficients dans C se factorise en produit de polynômes

de degré 1 : P (x)=a0x
n+a1x

n−1+...+an = a0(x-z1)(x-z2)...(x-zn). (∗)
Les racines étant distinctes ou confondues : on dit que tout polynôme est scindé sur C.

2. Formules de Viète. Notons





σ1 = z1 + z2 + ...+ zn
σ2 = z1.z2 + ...+ zn−1zn

σ3 = z1z2z3 + ...
...

σn = z1.z2....zn

"fonctions symétriques élémentaires" ;

Elles sont liées aux coefficients par σ1 = −a1/a0; σ2 = +a2/a0; ... σk = (−1)k.ak/a0; ...

Démonstration. Conséquence de (∗) : développer et identifier !

Exemples

1) Revoir le cas du second degré ! Cas de a.z3 + b.z2 + c.z + d ?

2) (*) Soit P (x) = x3 + px+ q. Calculer S2 = z2
1 + z2

2 + z2
3 à l’aide de p et q.

Réponse. S2 est aussi une fonction symétrique ; mais on ne dit pas "élémentaire".

S2 = (z1 + z2 + z3)
2 − 2(z1z2 + z1z3 + z2z3) donc S2 = σ2

1 − 2σ2 = 02 − 2p.

3. Remarque. Soit z une racine de P ; c’est-à-dire : a0.z
n + ...+ an = 0.

En conjugant, avec u+ v = u+ v et u.v = u.v, on obtient : a0.z
n + ...+ an = 0.

Notant alors P (x)= a0.x
n + a1.x

n−1 + ...+ an, on en déduit :

• Si z est une racine de P , alors z est une racine de P et surtout :

• Si P est à coefficients réels (P = P ), les racines non réelles sont conjuguées.
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5.3.5 Exemples

1. Factoriser x4 + x2 + 1 par 3 méthodes.

1) Ayant les racines de z2 + z + 1 (j, j2), on doit résoudre x2 = j. Astuce : j = j4 donc x = ±j2
et pour les 2 dernières, il suffit de conjuguer. x4 + x2 + 1 = 1.(x− j)(x − j2)(x+ j)(x+ j2)

2) On peut voir que j est une racine (1 + j + j2 = 0) ; donc j aussi (polynôme à coefficients réels)

et −j, −j aussi par parité. Même réponse.

3) Autre astuce : x4 +x2 +1 = (x2 +1)2−x2 = (x2 +x+1)(x2−x+1) sur R ; on sait finir sur C !

2. Si n > 2, vérifier que les n racines de xn − 1 = 0 ont une somme nulle.

1ère façon : 1 + ω + ...+ ωn−1 = ... avec ω 6= 1.

2ème façon : O centre de symétrie du polygône régulier.

3ème façon : les formules de Viète ! (σ1 = −coeff. de xn−1/coeff. de xn ...)

3. (*) Résoudre (z + 1)n = (z − 1)n (Eq) équation polynômiale de degré n− 1 (n− 1 racines).

z = 1 non racine et (Eq) ⇔ (
z + 1

z − 1
)n = 1. Donc

z + 1

z − 1
= ωk (cf. les racines nièmes de 1) ;

on effectue : z + 1 = z.ωk − ωk ou z =
ωk + 1

ωk − 1
=
eikπ/n(eikπ/n + 1)

eikπ/n(eikπ/n − 1)
=

2cos(kπ/n)

2isin(kπ/n)
= −i.cot(k.π

n
),

avec k = 0, 1, ...n − 1 par exemple. Mais il faut exclure k = 0 : n− 1 racines.

Remarques 1) On peut voir aussi que : z racine ⇐⇒ −z racine sur l’équation ...

2) Avec le module voir dès le début que les racines sont dans R.i : | z − 1 |=| z + 1 | ;
AM = BM où A(1), B(−1), M(z) donc M sur la médiatrice de [AB] !...

5.4 Conséquences trigonométriques

5.4.1 (*) Calcul de certaines sommes (difficiles)

1. Calcul de C =
n∑

k=0

cos(a+ kx). Comme vu à la fin du II ... C =
sin[(n+ 1).x/2]

sin(x/2)
.cos[a+

nx

2
].

2. Cas de C =
n∑

k=0

Ckn.cos(a+ kx) =
n∑

k=0

(
n
k

)
cos(a+ k.x). Poser Z =

n∑

k=0

Ckn.e
i.(a+kx) =

n∑

k=0

(
n
k

)
.ei.(a+kx)

Alors Z = eia.(1 + eix)n = eia.[eix/2.2.cos(
x

2
)]n = 2n.[cos(

x

2
)]n.ei(a+

n.x
2

).

Chaque égalité à bien voir ! (Utiliser la formule de Moivre, le binôme de Newton, la somme

eiα + eiβ , le rappel ci-dessous...). Et donc : C = 2n.cosn(
x

2
).cos(a+

n.x

2
) (vérifié si x = 0).

3. Cas de C =

(
n
0

)
+

(
n
3

)
+ ... Comment aller de 3 en 3 ? Avec le complexe j !

(1 + j)n = C0
n +C1

n.j + C2
n.j

2 + C3
n + C4

n.j + ... [Mettre les nouvelles notations]

(1 + j2)n = C0
n + C1

n.j
2 + C2

n.j + C3
n + C4

n.j
2 + ...

(1+1)n = C0
n+C1

n+C2
n+ ... les 3 racines cubiques ! 3C = somme.des.lignes car 1+ j+ j2 = 0.

Puis voir que (1 + j)n = (1 + ei2π/3)n = [eiπ/3.2cos(π/3)]n = einπ/3 ; (1 + j2)n étant son conjugué

et rappel eix + e−ix = 2.cos(x), eix − e−ix = 2i.sin(x) Aussi : 1 + j = −j2 = eiπ/3... Finir !
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5.4.2 Expression de cosn(x), sinn(x) à l’aide de cos(px), sin(qx): Linéarisation

1. D’abord, il y a 2 opérations linéaires : addition, multiplication par une constante.

2. Exemples

On sait que cos2(x) =
1 + cos(2x)

2
, sin2(x) =

1− cos(2x)
2

(très utile pour les primitives !)

3. Méthode :

On part de cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix
2i

on élève à la puissance n ; puis le rappel.

� Cas de cos5(x) ?

� Cas de cos3(x).sin4(x) ? On peut mettre de suite des exponentielles partout ! Alors :

(a+ b)3; (a− b)4 connus ! C’est assez rapide en alignant les termes analogues ...

5.4.3 Expression de cos(nx), sin(nx) à l’aide de cosp(x), sinq(x) ; problème inverse

1. Exemples

On a cos(2x) = 2.cos2(x)− 1 = 1− 2sin2(x) = cos2(x)− sin2(x), sin(2x) = 2sin(x)cos(x)

Donc plusieurs écritures possibles ici, parfois !

2. Méthode : Départ eix = cos(x) + isin(x) exponentielle isolée ! ei.n.x = (ei.x)n ou bien :

F. de Moivre cos(n.x) + isin(n.x) = [cos(x) + isin(x)]n puis parties réelle et imaginaire.

� Faire le cas n = 3. Trouver : cos(3x); sin(3x) ; et déduire que tan(3x) =
3.tan(x)− tan3(x)

1− 3.tan2(x)
Réponse en Remarque ci-dessous.

� Et pour sin(3x).sin(5x) ? Transformer un produit en somme : cf Réels et trigonométrie.

Ici : sin(a).sin(b) =
−1

2
.[cos(a+ b)− cos(a− b)] ...

3. Remarque. cos(2x) = 2cos2(x)− 1, cos(3x) = cos3(x)− 3.cos(x).sin2(x) = 4.cos3(x)− 3.cos(x)

Cas de : cos(4x)... à l’aide de cos(x) seul ( ci-dessous) ?

Si on pose P0(x)=1, P1(x)=x, P2(x)=2.x2 − 1, P3(x)=4.x3−3.x, on constate au début

que Pn(cos(x)) = cos(nx). Ceci se généralise :

• soit par la formule de Moivre ;

• soit par récurrence avec : cos[(n + 1)x] + cos[(n− 1)x] = 2.cos(nx).cos(x).

De ceci, on en déduit l’existence de Pn. Il reste à voir leur unicité : cf. Polynômes.

(On dit : Polynômes de Tchébytchev de 1ère espèce)

Trouver : P4(x) = 8 x4 − 8 x2 + 1.

0-1
0

x

1
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M+ Exercices: Complexes. Aspect algébrique et trigonométrique. PTSI

1. Simplifier : (a) (1 + i.
√

3)6 ; (b)
(1 + i)4

(1− i)3 +
(1− i)4
(1 + i)3

.

2. Forme trigonométrique de z1 =

√
6− i.

√
2

2
, z2 = 1− i, z =

z1
z2

; déduire cos(
π

12
). Autre façon ?

3. (*) Module et argument de :
1 + cosx+ i.sinx

1− cosx− i.sinx.

4. Résoudre

(a) z4 = −1 puis factoriser X4 + 1 sur C et sur R.

(b) z2 − (5− 14i)z − 2(5i + 12) = 0. Somme des racines ?

(c) z2 = z̄ ; puis : (*) z5 = 9.z̄ (Trouver 7 solutions !)

(d) z4 + 2z2 + 4 = 0 ; puis : (*) z4 − 30z2 + 289 = 0.

(e) iz3 + (2i − 1)z2 − (i+ 4)z + 3(2i − 1) = 0 sachant qu’une racine est réelle.

(f) (*) (z + 1)n = (z − 1)n. Commentaires ? (*) Déduire ∀p ∈ N∗ :
∏

16k6p

cot(
kπ

2p+ 1
) =

1√
2p+ 1

.

5. Exprimer cos(4x) en fonction de cospx, sinqx. Idem pour sin(4x).sin(x).

6. Linéariser cos5x. Idem pour sin3x.cos2x et sin6x.

7. (*) Simplifier

(a)
n∑

k=0

Ck
n.cos(x+ kα) =

n∑

k=0

(
n
k

)
.cos(x+ kα)

(b) C0
n + C3

n + C6
n + ... ? puis C0

n − C2
n + C4

n − ... ?

(c) cos(x) + cos(x+ α) + cos(x+ 2α) + ...+ cos(x+ nα).

8. Montrer qu’une C.N.S. pour que (
1 + iz

1− iz )n = a ait une racine réelle est | a |= 1. Préciser-les.

9. (*) Equation de degré 3.

(a) Etudier l’équation z3 + pz + q = 0, sur C, en posant z = u+ v, avec 3.u.v + p = 0.

(b) Cas des coefficients (et racines) réels ?

10. (*) Pour n ∈ N∗ simplifier la somme : Sn =
n−1∑

k=0

(−1)k. ei.2kπ/n.

11. (*) Résoudre : (
z − i
z + i

)n + (
z − i
z + i

)n−1 + ...+ (
z − i
z + i

) + 1 = 0.

12. (*) Avec Z = z+
1

z
: z4−2(cosα+cosβ)z3+2(1+2cosα.cosβ)z2−2(cosα+cosβ)z+1 = 0. α, β ∈ R.

13. (*) Soit x0 = 1, y0 = 0; xn = xn−1 + yn−1, yn = yn−1 − xn−1. Avec xn + iyn , simplifier xn, yn,

An =

n∑

k=0

xk, Bn de même. [zn géom. ; yn = −
√

2
n
.sin(nπ/4), Bn =

√
2
n+1

.cos((n + 1)π/4) − 1].



Chapitre 6

Complexes : Aspect géométrique

6.1 Distances et angles

6.1.1 Distances

Avec | z |=
√
z.z = ‖−−→OM‖ = OM , M d’affixe z, on a | b− a |= AB = ‖−−→AB‖ A et B d’affixes a et b.

6.1.2 Angles

On a les relations : Arg(b− a) = (
−→
Ox,
−−→
AB)(2.π) Arg(b/a) = (

−→
OA,
−−→
OB)(2.π)

En effet

pour (1), prendre M tel que
−−→
OM =

−−→
AB ; pour (2), Arg(b/a) = Arg(b)−Arg(a).

Conséquence Arg
d− c
b− a =

−−→
AB,

−−→
CD (2.π) et | d− c

b− a |=
CD

AB
. D’où Arg

z − zA
z − zB

=
̂−−→

BM,
−−→
AM (2.π)

Remarques : Arg(−Z) = Arg(Z) + π. −Arg(Z) = Arg(Z) : à ne pas confondre.

6.1.3 Alignement. Orthogonalité

• Pour A 6= B A,B,C alignés ⇐⇒ ∃k ∈ R/ c− a = k(b− a)

Plus généralement
−−→
AB,

−−→
CD colinéaires ⇐⇒ d− c

b− a ∈ R.

• Pour A 6= B (A,B)(A,C) orthogonaux ⇐⇒ ∃k ∈ R.i/ c− a = k(b− a)

Plus généralement
−−→
AB,

−−→
CD orthogonaux ⇐⇒ d− c

b− a ∈ R.i.

6.1.4 Théorème du parallélogramme ou de la médiane : exercice

Soit un triangle OAB, I milieu de [A,B], J tel que I milieu de [O, J ] ; c’est-à-dire que OAJB est un

parallélogramme. Alors : OA2 +OB2 = 2(OI2 + IA2) =
1

2
(AB2 +OJ2)

(qui sera revu avec le produit scalaire). Formule analogue :

Si
−→
OI est d’affixe u,

−→
IA est d’affixe v, l’égalité se traduit par | u+ v |2 + | u− v |2= 2(| u |2 + | v |2).

Démonstration avec C :
On a | u+ v |2= (u+ v).(u+ v) = (u+ v).(u + v) =| u |2 + | v |2 +u.v + u.v

(à noter que u.v + u.v est réel par différence !) Idem : | u− v |2= ... Et faire la somme.

41



42 CHAPITRE 6. COMPLEXES : ASPECT GÉOMÉTRIQUE

6.1.5 Pentagone régulier à la règle et au compas : exercice

1. Soit ω = ei.2π/5 ; alors ω5 = 1, ω 6= 1.

Donc ω est racine de 1 + x+ x2 + x3 + x4 = 0 (les 4 racines étant ω, ω2, ω3, ω4 = ω).

2. Cette équation, du type x4 + a.x3 + b.x2 + a.x+ 1 = 0, est un cas particulier d’équation réciproque.

Pour la résoudre, on pose y = x+ 1/x (0 n’est pas racine !) alors : y2 − 2 = x2 + 1/x2.

Diviser par x2, reporter : y2 − 2 + a.y + b = 0 ou y2 + y − 1 = 0 dans notre cas : y =
−1±

√
5

2
.

Connaissant y, on peut revenir à x par une équation du second degré. Inutile ici :

x = ω = ei.2.π/5 ⇒ y = ei.2π/5 + e−i.2π/5 = 2.cos(
2π

5
) cos(

2.π

5
) =

√
5− 1

4
(cos(

4.π

5
) =
−1−

√
5

4
.)

3. Construction : Ayant une droite muni de points O et A tel que OA = 1, on sait construire la per-

pendiculaire à OA en O ; puis ...
√

5 =
√

12 + 22 ;
√

5− 1 ; puis

√
5− 1

2
puis

√
5− 1

4
et ω !

4. Remarque. Soit M0M1M2M3M4 ce pentagone régulier M0 d’affixe 1, M1 d’affixe ω.

Nous allons voir que
M0M2

M0M1
est égal au nombre d’or, noté usuellement ϕ.

• Déjà, une définition du nombre d’or : ϕ est la racine positive de x2 = x+ 1 (pour avoir le

carré, ajouter 1) ; ou de
1

x
= x−1 (pour avoir l’inverse, retrancher 1 ) ; c’est-à-dire ϕ =

√
5 + 1

2

• Maintenant, nous devons voir que | ω
2 − 1

ω − 1
|= ϕ :

On a : | ω + 1 | = | eiπ/5.2.cos(π
5

) | = −2.cos(4.
π

5
) = 2.(1 − 2.cos2(2.

π

5
)) =

√
5 + 1

2
. Fini.

(Pour relier cos(
π

5
) à cos(2.

π

5
), très astucieux de dire cos(

π

5
) = −cos(4.π

5
).)

5. Les angles du Pentagone régulier ; et les deux pentagones, convexe et croisé :

On a donc vu que : AC/AB = ϕ.
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Complément : Interventions du nombre d’or

– en architecture/et sculpture : le théatre d’Epidaure (fin du 4ème siècle avant Jésus-Christ). 34 gradins

près du théatre ; 21 ensuite ; or
34 + 21

34
= 1, 6176 ...

34

21
= 1, 619 ... ; alors que ϕ = 1, 618 ...

C’est d’ailleurs comme celà qu’est défini ϕ à savoir un rectangle de cotés x < y tels que si on enlève un
carré (x, x), il reste un rectangle semblable :

y

x
=

x

y − x = ϕ.

également : les pyramides, le Parthénon, les maitres d’oeuvres, la décoration arabe (Kairouan en
Tunisie ? Dôme à Jérusalem), la célèbre Pieta de Michel-Ange à Rome (Michel Ange, avec Raphaël
Sanzio et Léonard de Vinci, sont appelés : "les 3 génies de la Renaissance"). Aussi, une chapelle à
Notre Dame de Pitié à Bonson (42) ! par exemple. Enfin, un artiste assez récent : Le Corbusier ...

– en peinture : Le célèbre tableau de Léonard de Vinci, L’Annonciation. Les peintres : Nicolas Poussin
(Les Bergers d’Arcadie) ; Vélasquez (L’Adoration des Mages ; Saint Antoine abbé et Saint
Paul Ermite) ; Raphaël : (La Madone du Belvédère).

– /et gravure : Vierge à l’Enfant de Raphaël (tiré du "Que sais-je ?" sur le Nombre d’Or).

Ci-après : Le Parthénon. Au sculpteur grec Phidias, qui l’a décoré, on doit la lettre Phi.

Au Dôme du Rocher à Jérusalem (aussi 3ème ville "sainte" de l’Islam) :
Dans la décoration en mosaïque des murs extérieurs, les Arabes du VIIIème siècle ont utilisé

le rectangle
√

5 à l’intérieur du Rectangle d’or.

Michel-Ange, La Pieta Léonard de Vinci

Rectangles d’or :
L

l
= ϕ Spirale d’or dans rectangle d’or Théatre d’Epidaure

– en arithmétique/algèbre : ce qui précède. Et la suite de Fibonnaci (0, 1, 0 + 1 = 1, 1 + 1 = 2,
1 + 2 = 3, 2 + 3 = 5, ...) [un+2 = un+1 + un] en voyant que un+1/un s’approche du nombre d’or.

– en géométrie : Le pentagone régulier, ci-dessus. (Difficile/curieux : "l’ensemble de Mandelbrot".)

– et analyse : Les "fractions continues" [1, 1, 1...] = 1 +
1

1 + 1
1+ 1

1+...

, égale au nombre d’or.
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D’autres illustrations 1 :

Les deux triangles d’or (obtenus à partir du pentagone régulier) :

Et encore quelques oeuvres de peintres (ou sculpteurs déjà cités) en lien avec le nombre d’or :

– Vélasquez : l’adoration des Mages (Espagne)

– Léonard de Vinci : Sainte Anne, La Vierge et l’Enfant (Italie) 2

– � dans la nature : le Nautile (en spirale), le tournesol, la pomme de pin
� en architecture : Gaudi (en particulier La Sagrada Familia, à Barcelone)
� et d’autres tableaux ... la plupart étant aussi des trésors concernant la perspective ! 3

1 Des fractions continues, on déduit que : "ϕ =
1 +

√
5

2
est l’irrationnel le plus éloigné des rationnels" (Emile Borel).

2 Léonard de Vinci, qui a mis au point la technique du "sfumato" (= du "clair-obscur") "modèle vaporeux faisant
imperceptiblement passer le colori ou le ton, du clair à l’obscur" : cf. la "Perspective atmosphérique", Jan Van Eyck.

3 Paolo Uccello, Alberti ... au début de la perspective (difficile) ; cf. géométrie projective ...
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6.2 Tranformations (applications) M(z) 7→M ′(az + b), a 6= 0

6.2.1 Translations M(z) 7→ M ′(z′ = z + b)

1. La transformation M(z) 7→M ′(z′ = z + b) est une translation de vecteur (b1, b2) si b = b1 + ib2.

2. Note. Mais il y a un autre point de vue intéressant et déjà signalé : Z = z − z0 s’interpréte

comme une translation de repère ; nouvelle origine (x0, y0) ; ou bien : X = x− x0, Y = y − y0

6.2.2 Similitude affine directe M(z) 7→M ′(z′ = a.z + b) où a = r.ei.α 6= 0

1.

Si a = 1 c’est une translation connue. Si a 6= 1 une similitude "à centre" soit : la composée

commutative d’une rotation affine d’angle α = Arg(a) et d’une homothétie de rapport r =| a |,
chacune de centre le seul point fixe. Et la composée de similitudes affines directes en est une.

Démonstration. Plutôt, bien expliquer un exemple du cas général a 6= 1

• L’équation z′ = z (aux points fixes éventuels) ou a.z + b = z ou z(1− a) = b donne une et une

seule solution : z = z0, si a 6= 1. Par différence entre

{
z′ = az + b
z0 = a.z0 + b

on a : z′ − z0 = a.(z − z0),

z′ − z0 = r.eiα.(z − z0) qui s’interpréte comme une similitude à centre. Et cas a = 1 déjà vu.

• Si f : z 7−→ a.z+ b, g : z 7−→ c.z+ d , il est facile de voir que gof (6= fog en général) est du même

type gof : z 7−→ a.c.z + cte. Donc gof Translation ⇐⇒ a.c = 1. Dessins à faire !

2. Remarque. Une homothétie de centre M0, de rapport −2, est une similitude affine directe de

centre M0, de rapport +2, d’angle π. D’ailleurs on a une homothétie ou une translation ⇔ a ∈ R∗.

Homothétie Rotation Similitude directe

6.2.3 Déplacements M(z) 7→M ′(z′ = ei.α.z + b) : cas particulier où | a | = 1

1.

Description : Si α = 0(2.π), M(z) 7→M ′(z′ = ei.α.z + b) est une translation (vue) et

si α 6= 0(2.π) une rotation de centre l’unique point fixe, d’angle α : z′ − z0 = eiα.(z − z0)
Et : la composée de 2 déplacements est un déplacement (ou "isométrie affine positive").

Démonstration

Ci-dessus. Si a 6= 1 : z′ − z0 = eiα.(z − z0) interprété comme une rotation. Cas a = 1 connu.

2. Remarques. Exercices

1) La composée de 2 rotations affines planes est un déplacement : rotation ou translation !

2) Exemple. f : z′ = ei.αz + b ; g : z′ = e−i.αz + d ; gof : z′ = e−i.α(ei.αz + b) + d = ...
fog 6= gof en général ! et chacune est une translation.

3) Si b = 0, on dit rotation de centre O. On dira aussi : "rotation vectorielle" d’angle α.

4) La symétrie par rapport à M0 est une isométrie affine directe facile : rot(M0, π)
z + z′

2
= z0.

5) z′ = −j.z − j2 : rotation d’angle
−π
3

, de centre M0 : z′ = z ⇒ z = 1. [Et z′ − 1 = −j.(z − 1)]

6) (*) Exercice. Montrer qu’une "Condition nécessaire et suffisante" pour que A(a), B(b), C(c)
forment un triangle équilatéral direct est que a+ bj + cj2 = 0.

(On écrit :
c− a
b− a= eiπ/3 = −j2 car C se déduit de B par la rotation de centre A, d’angle π/3

et on effectue ; on peut trouver aussi c+ aj + bj2 = 0) ...
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6.3 Au sujet de M(z) 7→M ′(a.z + b), a 6= 0

6.3.1 Symétries orthogonales par rapport à une droite affine

1. Théorème. L’expression de la symétrie orthogonale / Ox est : z′ = z. Plus généralement :

z′ = e2.i.α.z est la sym. orthogonale par rapport à la droite d’angle polaire α, y = x.tan(α).

Démonstration
Posons z = ρ.eiθ ; z′ = ρ.eiϕ ; la symétrie par rapport à la droite voulue est telle que θ + ϕ = 2.α ;

(faire un dessin !) donc ϕ = 2α− θ ; d’où le z′ annoncé.

Faire attention à l’exposant 2.α et non pas α dans l’exponentielle ! Exemples :

z′ = e.i.α.z est la symétrie orthogonale / à la droite d’angle polaire
α

2
, y = x.tan(

α

2
) !

La symétrie orthogonale/Oy : z′ = ei.π.z = −z. Et z′ = i.z : symétrie orthogonale/y = x.

2. Par translation d’axes : (*)

La symétrie par rapport à la droite D passant par M0, d’angle polaire α, est telle que

z′ − z0 = e2iα.(z − z0) ou z′ − z0 = e2iα.(z − z0).

3. Composition (exercice possible)

Si s1 et s2 sont 2 symétries orthogonales par rapport à des droites, s2os1 est :

si parallèles, une translation de 2
−−−→
H1H2 ; si sécantes en I, une rotation [I, 2.D̂1,D2].

Démonstration
Cas 1) Si D1 = Ox et D2 : y = h. Mêmes abscisses et y1 + y = 0, y2 + y1 = 2h, d’où y2 = y + 2h.

Cas 2) Si D1 = Ox et D2 : y = x.tan(α). Alors z1 = z, z2 = e2.i.α.z1 donc z2 = e2.i.α.z. Fini.

Remarque : La composition est "non interne" dans l’ensemble des symétries orthogonales.

6.3.2 (*) Complément : isométries et similitudes affines indirectes

Hors du cours. Au plus une source d’exercices si le reste est assimilé. Type : z′ = a.z + b. 4

4 Description géométrique :

1. f : M(z) 7→M ′(e2.i.αz + b) (antidéplacements | a |= 1). Un antidéplacement est :

• une symétrie orthogonale, si elle a au moins un point fixe M0 ; (forme ci-dessus par différence).

• sinon, une "symétrie-glissée" ; c’est-à-dire la composée commutative sot = tos d’une telle symétrie avec une
translation le long de son axe ; de plus cette décomposition est unique.

� Unicité : Si f = sot = tos, fof = tot d’où t ; puis s !

� Existence : Soit s1 : M(z) 7−→M1(e
2.i.αz), t1 une translation de direction ei.(α+π/2) et t2 : ei.α ; on a f = t2ot1os1.

Il suffit de voir que t1 s’écrit s2os1, d’après la composition ci-dessus ; alors f = t2os2os1os1 = t2os2 et ici commutatif
(c’est clair, géométriquement).

2. f : M(z) 7→M ′(a.z + b), a 6= 0. z′ = a.z + b, dite similitude indirecte est :

• Si | a |= 1, on a une isométrie affine négative connue : le cas précédent.

• Si | a |6= 1, f a un et un seul point fixe I . C’est la composée commutative d’une symétrie orthogonale par rapport
à une droite passant par I et d’une homothétie de centre I , de rapport positif.

En effet, si | a |6= 1 ; une fois le point fixe unique vu (calcul mal commode !), par différence :

z′ − z0 = a.(z − z0) ; donc Z′ = a.Z par translation de repère ; ou : Z′ = r.ei.αZ. Fini.
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6.4 (*) Complément : au sujet de l’inversion géométrique

6.4.1 Définition :

f : M(z) 7→M ′(z′ =
k

z
), k ∈ R∗ est définie pour M 6= O ; et est telle que :

O,M,M ′ alignés et OM.OM ′ = k ; on l’appelle inversion de pôle O et de puissance k.

f est bijective de P∗ (= P\O) dans P∗ et f−1 = f. (=involutive) ; (souvent k = 1.)

En effet:

1) z′ =
k

z
se traduit par z′ =

k.z

| z |2 ou
−−−→
OM ′ =

k

OM2
.
−−→
OM noté (∗) ;

2) d’où O,M,M ′ alignés ; et
−−→
OM.

−−−→
OM ′ = k.

Pour f bijective de P∗ dans P∗ : fof = Id est clair géométriquement.

Et donc avec (∗)





x′ =
k.x

x2 + y2

y′ =
k.y

x2 + y2

et comme f−1 = f , on a aussi :





x =
k.x′

x′2 + y′2

y =
k.y′

x′2 + y′2

Remarque : changer k, c’est simplement faire une homothétie de centre O.

6.4.2 Image d’une droite : Théorème

Une droite passant par O, privée de O, est globalement invariante.
Une droite D ne passant par O a pour image un cercle passant par O,

privé de O, noté C∗. Et donc C∗ a pour image D !

En effet :
1) est clair ;

2) 1ère façon, calcul : x = a 6= 0⇔ a =
k.x′

x′2 + y′2
ou x′2 + y′2 − k

a
x′ = 0 : cercle passant par O.

x

20

y
0

Si C est le centre du cercle, on a OC ⊥ D.

2ème façon géométrique : Soit A(a, 0) et A′ son image. On peut se limiter à k > 0. Alors :

OA.OA′ = OM.OM ′ donne
OM ′

OA′ =
OA

OM
; les triangles OA′M ′ et OMA sont semblables

(par une similitude indirecte) ; et donc : on a un angle droit en M ′, comme en A. Dessin !

3) L’image d’un cercle passant par O est donc connue car fof = IdP∗ . Note 5

5 Exercice hors cours : Pour l’image d’un cercle ne passant pas par O, on utilise :

le théorème de "la puissance d’un point par rapport à un cercle" ... (vu plus tard).
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M+ Exercices: Complexes. Aspect géométrique. PTSI

1. Trouver les entiers n ∈ N tels que : (
√

3 + i)n ∈ R.

2. Indiquer une condition nécessaire et suffisante (C.N.S.) pour que :
z + 1

z̄ − 1
soit :

(a) réel (b) imaginaire pur. [Ici, trouver : x2 − y2 = 1 hyperbole équilatère].

3. Soit u =
z + 2i

z − i . Quel est

(a) l’ensemble des points M(z) tels que Arg(u) =
π

2
(π) ? [cercle]

(b) l’ensemble des points M(z) tels que | u |= 2 ? [cercle orthogonal au précédent : après !]

4. Montrer que si : | z |=| a |= 1 et 1 + z.a 6= 0, alors :
z + a

1 + z.a
∈ R.

5. Vérifier que :
| ℜe(z) | + | ℑm(z) |√

2
6 | z | 6 | ℜe(z) | + | ℑm(z) |. (Poser z = x+ iy)

6. Décrire les transformations

(a) z 7→ i.z ;

(b) z 7→ −j.z − j2 ;

(c) z 7→ −2i.z + 10− 5i ;

(d) z 7→ i.z̄ ; (moins connue)

(e) z 7→ j.z̄ + j − 1 en observant que M0(−1) est invariant.

7. Avec le théorème du parallélogramme : 2.(| u |2 + | v |2) = | u+ v |2 + | u− v |2

montrer qu’on obtient l’inégalité suivante : | u | + | v | 6 | u+ v | + | u− v |.

8. Soit a, b complexes distints de module 1 et z ∈ C. Montrer alors que :
z + abz̄

a− b ∈ R.i.

9. Soit a, b, c, d réels avec ad− bc = 1. Montrer que, pour cz + d 6= 0 : ℑm(
az + b

cz + d
) =

ℑm(z)

| cz + d |2 .

10. Figures simples

(a) C.N.S. pour que A(a), B(b), C(c),D(d) dans cet ordre, forment un parallélogramme ?

(b) (*) C.N.S. pour que A(z), B(z2), C(z3) forment un triangle équilatéral direct ?

11. Quel est l’ensemble des points M(z) tels que A(1),M(z) et P (iz) soient alignés ? [cercle].

12. (*) Soit a, b, c réels tels que eia + eib + eic = 0. Montrer que e2ia + e2ib + e2ic = 0.

[Indication : trouver {eia, eib, eic} = {eia, jeia, j2eia}.]

13. (*) Hors cours. Soit l’inversion de pôle O, de puissance 1 : Image d’une droite (2 cas) ?

d’un cercle (2 cas) ? [(*) Utiliser le théorème de la puissance d’un point/cercle : plus tard.]



Chapitre 7

Généralités sur les fonctions R dans R

7.1 Introduction

7.1.1 Recherche de symétries

1. T > 0 est une période de f si : ∀x ∈ Ddef , f(x+ T ) = f(x).

Exemple f(x) = cos(ω.x− ϕ) a une plus petite période : T = 2.
π

ω
.

2. f est paire si son domaine est symétrique par rapport à x = 0 et f(−x) = f(x) tout le temps.

Remarque x = a est axe de symétrie de f sur (a−α, a+α)⇐⇒ f(a+ h) = f(a− h),∀h ∈ [0, α).

3. f est impaire si son domaine est symétrique par rapport à x = 0 et f(−x) = −f(x) tout le temps.

Remarque Si f définie sur (a− α, a+ α) : A

(
a
b

)
centre de symétrie ⇔ f(a+ h) + f(a− h)

2
= b,

∀h ∈ [0, α). Qui s’écrit : x = a+h, a−h = 2a−x; donc f(x)+f(2a−x) = 2b(= cte),∀x ∈ Ddef .

7.1.2 Domaine de définition. Domaine d’étude

Rappel : Une fonction f : E −→ F est une correspondance (ou relation) telle que chaque x ∈ E ait au
plus une image dans F .

Exemples (Et bien voir certains exercices)

1. f : x 7−→ 1/x est une fonction de R −→ R. C’est une application du domaine de définition

Ddef = R∗ dans R. Son domaine d’étude serait Detude =]0,+∞[ avec l’imparité.

2. f : x 7−→ [sin(x)]cos(x). On connait ar si r ∈ Q, a > 0 en général. Mais si r 6∈ Q, on passe par

le ln : ab = eb.ln(a), a > 0. Donc f(x) = ecos(x).ln[sin(x)], sin(x) > 0. f est 2.π périodique.

Aussi, on peut choisir un domaine d’étude Detude = [−π, π] ; alors Ddef ∩Detude =]0, π[.

7.1.3 Quelques définitions. Et opérations

1. On dit que f est majorée (par M ∈ R) si f(x) 6 M tout le temps (M est un majorant) ;

minorée (par m ∈ R) si f(x) > m tout le temps ; et bornée si majorée et minorée.

On a : f bornée ⇐⇒| f | bornée (car f bornée par m et M =⇒| f | majorée max(| m |,M).

Remarque Si f(x) = 2x sur [2, 3[, max(f) n’existe pas ; mais sup(f) = 6.

2. On note F(I,R) l’ensemble des applications de I dans R (I, intervalle en général).

On définit f+g par (f+g)(x) = f(x)+g(x) ; (f.g)(x) = f(x).g(x) ; f 6 g par f(x) 6 g(x),∀x ∈ I.

Composition vue : toujours associative (quand elle est définie).
√
x2 =| x | ; ln(x2) = 2.ln | x |.
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7.2 Limite en un point x0 (généralités)

7.2.1 Hypothèses

1. Si x0 ∈ R, on supposera que f est définie au moins sur un intervalle ]x0 − α, x0 + α[, α > 0.

Si x0 = +∞, on supposera f définie au moins sur un certain ]A,+∞[, A > 0.

2. En résumé, on dira que f est définie sur un voisinage de x0 (mais x0 excepté, parfois).

7.2.2 Définition de la limite

1. Cas x0, l finis :
On dit que f(x) tend vers l quand x tend vers x0 et on note lim

x→x0

f(x) = l ou

plus souvent f(x)−→
x→x0

l si : ∀ǫ > 0,∃αǫ > 0/ | x− x0 |< αǫ =⇒| f(x)− l |< ǫ

Celà signifie que toute contrainte | f(x)− l |< ǫ, ǫ > 0 (ou encore f(x) ∈]l − ǫ, l + ǫ[) est réalisée
dès que x est suffisamment près de x0, proximité (x ∈]x0−αǫ, x0+αǫ[) qui dépend du ǫ > 0 choisi !

Cas x0 fini, l infinie : f(x)−→
x→x0

+∞ si : ∀B > 0,∃αB > 0 / | x− x0 |< αB =⇒ f(x) > B

Cas x0 infini, l finie : f(x) −→
x→+∞

l si : ∀ǫ > 0,∃Aǫ / x > Aǫ =⇒ | f(x)− l | < ǫ

Cas x0 et l infinis : f(x) −→
x→+∞

+∞ si : ∀B > 0,∃AB / x > AB =⇒ f(x) > B.

Remarques
� Analogue en −∞. Faire des dessins (surtout le 1er cas) !
� Avec les voisinages, les définitions sont unifiées.

2. Propriété. Une application a au plus une limite en x0 (unicité de la limite). En exercice.

7.2.3 En pratique

1. Limite à droite, limite à gauche.

Exemples. Dessins : en x = 2, x 7→ E(x). En π/2−, tan tend vers +∞ ; en π/2+, vers −∞.

Définition On dit que f(x) −→
x→x0−

lg si on impose de plus x < x0 ; analogue pour limite à droite ld.

Propriété Si f a une limite à gauche lg et à droite ld : f(x)−→
x→x0

l⇔
{
lg = ld(= l) et si f(x0)
existe : lg = ld = f(x0).

En exercice.

2. Remarques

• Lorsque x0 ∈ R, on peut poser x = x0 + h, h −→ 0 ; non pas x = h+ x0, dans ce contexte !

Et h = (x− x0) est "l’infiniment petit de référence". En ±∞, c’est h = 1/x.

• Si f est bornée au voisinage de x0 et si g(x)−→
x→x0

0, alors f(x).g(x)−→
x→x0

0 (facile)

Exemples
sin(x)

x
−→
x→+∞

0 ; x.(sin
1

x
) −→
x→0

0.

3. Cas essentiels de limite

• Dans la suite, on va utiliser ln(x) −→
x→+∞

+∞ ;
ln(x)

x
−→
x→+∞

0 (cf. ch. Fonctions élémentaires)

• Et si f dérivable en x0 ∈ R,
f(x)− f(x0)

x− x0
−→
x→x0

f ′(x0) ou bien
f(x0 + h)− f(x0)

h
−→
h→0

f ′(x0).
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7.2.4 Théorèmes généraux

1. Somme, produit

Soit f, g, f + g, f.g,
f

g
définies au voisinage de x0 ; si f(x)−→

x→x0

l, g(x)−→
x→x0

m, alors :

(f + g)(x) −→ l +m sauf +∞−∞ (indéterminé) ; λ.f(x) −→ λ.l ;

(f.g)(x) −→ l.m sauf 0.∞ (indéterminé) ;
f

g
(x) −→ l

m
sauf

0

0
.
∞
∞ ,

l

0
.

Sur le dernier cas l/0 :

On dit que g(x)−→
x→x0

0+, si de plus il existe un voisinage de x0 sur lequel de plus : g(x) > 0.

Dans ce cas, si l > 0, ”
l

0+
” n’est pas indéterminé mais vaut : "

(l > 0)

0+
= +∞" !

Vrai aussi pour les limites à gauche et à droite.

� Démonstration en exercice.

� Signalons l’équivalence [f(x)−→
x→x0

l]⇔ [Pour toute suite définie (un) : un → x0 ⇒ f(un)→ l]

Equivalence à voir ; elle ramène (si l’on veut) la preuve au cas des suites.

2. Composition

Si f(x)−→
x→x0

l, g(x)−→
x→l

m et si gof est définie au voisinage de x0, alors : gof −→
x→x0

m.

Exemple





Nous verrons que
ln(1 + h)

h
−→
h→0

1

et sin(x) −→
x→0

0 ici évident



 donc :

ln[1 + sin(x)]

sin(x)
−→
x→0

1.

Démonstration en exercice. [Note. Si f = g : x ∈ R∗ 7−→ 0, alors Dgof = ∅ !]

7.2.5 Inégalités

1. Théorème : Prolongement des inégalités (larges) par passage à la limite

Si f(x)−→
x→x0

l, g(x)−→
x→x0

m et si f 6 g au voisinage de x0, alors on a : l 6 m.

2. Théorème : d’encadrement ou des gendarmes

Si f(x)−→
x→x0

l, g(x)−→
x→x0

l et si f 6 h 6 g au voisinage de x0, alors : h a une limite qui vaut l.

� Ce dernier théorème donne l’existence de la limite ! � Démonstrations en exercice.

Exemple Montrons que sin′ = cos. [Et cos(x) = sin(x+ π/2) la dérivée de cos en résultera].

Cherchons : lim
h→0

1

h
.[sin(x0 + h)− sin(x0)] = lim

h→0
cos(x0).

sin(h)

h
+ sin(x0).

cos(h) − 1

h
.

Pour h > 0 petit, soit : M(cos(h), sin(h)), A(1, 0), P (cos(h), 0), Q(0, sin(h)), T (1, tan(h)).

On a PM 6 Arc(AM) ou sin(h) 6 h (car longueur de l’arc : cte.h ; cercle total : 1.2π ⇒ cte = 1).

Et Aire(OAMcurviligne) 6 Aire(OAT ) ; (AireOAM = Cte.h, Cte = 1/2) d’où 1/2.h 6 1/2.tan(h).

Donc cos(h) 6
sin(h)

h
6 1. Ceci est vrai même si h < 0, petit en valeur absolue, par parité.

D’où par encadrement
sin(h)

h
−→
h→0

1 (d’ailleurs clair). On déduit
1− cos(h)

h2
−→
h→0

1

2

En effet :
1− cos(h)

h2
=

1− cos2(h)
[1 + cos(h)].h2

=
sin2(h)

[1 + cos(h)].h2
ou bien : 1− cos(h) = 2sin2(

h

2
) ...

D’où :
1− cos(h)

h
=

1− cos(h)
h2

.h −→
h→0

1

2
.0 = 0. Qui montre donc que sin′(x0) = cos(x0).
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M+ Exercices: Généralités sur les fonctions: R −→ R PTSI

1. Composition : On définit, si c’est possible, la composée des applications par gof(x) = g[f(x)].

Vérifier que la composition est associative. Cas où gof 6= fog en se limitant à f, g affines ?

2. (a) Quel est le domaine de : f(x) = ln
x

1− x ? Possède-t-elle un centre de symétrie ?

(b) Mêmes questions pour les fonctions : g(x) = ln
1 + x

x(1− x) (et : h(x) = ln | 1 + x

1− x |.)

3. Graphes : f(x) =
x2

x+ 1
, g(x) =

x2 − 2

x+ 1
, sin, cos, tan, cot, | sin | (π-périodique)

h(x) =
x

1+ | x | (impaire, inj. non surj. R→ R) ; i(x) = x3 − x (impaire, surj. non inj. R→ R) ;

(*) j(x) = e−1/x2
; k(x) = x+ sin(x) ; l(x) = sin(

1

x
) ; x 7→ E(

1

x
) ; x 7→ x.E(

1

x
).

4. Une fonction à bien voir. Tracer le graphe de : f(x) = − | 1− x | + | 2.x+ 2 | [petite échelle].

5. Cours lim
x→+∞

sin(x)

x
lim
x→0

x.sin
1

x
lim

x→+∞
ln(x) lim

x→+∞
ln(x)

x
lim
h→0

sin(h)

h
lim
h→0

cos(h)− 1

h2
.

6. (a) x ∈ R 7→ y ∈ R tels que x2 + y2 = 1 (cercle trigonométrique : partie de RxR appelée

graphe) n’est pas une une fonction : pourquoi ? Que dire sinon ?

(b) Idem : x 7→ y tel que x = y2 est-elle une fonction de R dans R ? Graphe ?

7. Notations Si A ⊂ E, on définit f(A) comme la partie de F suivante {f(x), x ∈ A}.
De même, si B ⊂ F , on définit f−1(B) = {x ∈ E : f(x) ∈ B} f application.

(a) Préciser sin(R). Préciser sin−1({0}).
(b) Pour f(x) = x2 − 1, préciser f(R+) et f−1({0}).
(c) Cas où f 6= IdR et fof = IdR ? (Se limiter à f(x) = a.x+ b.)

(d) (*) Montrer en général que le domaine de gof vaut : Dgof = Df ∩ f−1(Dg).

8. Monotonie : Pourquoi est-il faux de dire que ”x 7→ 1

x
décroissante sur R∗" ? Que dire à la place ?

9. Pour f, g croissantes, lequel est-il faux parmi : (a) f + g est croissante (b) −f décroissante

(c) f.g croissante (d) Si f est de signe strictement constant, 1/f décroissante ?

10. Si f et g sont monotones et que gof existe, montrer que gof est monotone avec la règle des signes.



Chapitre 8

Calcul de limite des fonctions R dans R

8.1 Comparaison des fonctions

8.1.1 f négligeable devant g noté: f << g, (x −→ x0)

1. Définition
f est "négligeable" par rapport à g (ou infiniment petite ou g infiniment grande par

rapport à f) si
f

g
−→
x→x0

0 ou | g
f
| −→
x→x0

+∞. On note f = o(g) ou f << g (x→ x0).

Remarques :
1) Si on ne peut pas écrire le rapport, on dit f(x) = g(x).ǫ(x), ǫ(x)−→

x→x0

0.

2) Quand x −→∞, x2 << x3. Mais quand x −→ 0, x3 << x2.

3) Si on a seulement
f

g
bornée, on note f = O(g) : notations de Landau.

2. Théorème Quand x −→ +∞, 1 << lnβ(x) << xα << ax, β > 0, α > 0, a > 1.

� Pour celà, on dit : "l’exponentielle l’emporte sur la puissance".

� Et : "la puissance l’emporte sur le logarithme".

Démonstration Sur des exemples pour mieux comprendre !

1) Montrons : y =
ln1000(x)

x
−→
x→+∞

0.

On a : y = [
ln(x)

x1/1000
]1000 = [

1000.ln(x1/1000)

x1/1000
]1000 = cte.(

ln(t)

t
)1000, avec t = x1/1000

et on est ramené à la limite fondamentale
ln(t)

t
en +∞.

2) Montrons : y =
x1000

1, 01x
−→
x→+∞

0.

On a : ln(y) = 1000.ln(x) − x.ln(1, 01) = x.[1000.
ln(x)

x
− ln(1, 01)] ; [...]→ −ln(1, 01) < 0

donc ln(y)→ −∞, et y =
x1000

1, 01x
−→
x→+∞

0

3. Remarques

1) ln en 0+, est en lien avec ln en +∞ car : ln(1/t) = −ln(t). Ainsi : x.ln(x) −→
x→0+

0−

(Poser x = 1/t, t→ +∞. Puis ln(t)/t ...)

2) De même exp en −∞ est en lien avec exp en +∞ car : exp(−t) =
1

exp(t)
.
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8.1.2 f équivalente à g, quand (x −→ x0)

1. Définition

f est équivalente à g, noté : f ∼
x→x0

g, si f − g << g ou f(x)− g(x) = g(x).ǫ(x) ou

f(x) = g(x).[1 + ǫ(x)], ǫ(x)−→
x→x0

0 ce qui signifie chaque fois qu’on peut diviser par g

f ∼
x→x0

g ⇐⇒ f

g
−→
x→x0

1. Attention : ce n’est pas la différence qui tend vers 0 !

Ainsi

2x3 − 10x2 + 12x ∼
x→±∞

2x3 ; la différence tend vers −∞ !

2x3 − 10x2 + 12x ∼
x→0

12x ; le but des équivalents est de simplifier.

2x3 − 10x2 + 12x ∼
x→1

4 (la fonction constante 4) !

2x3 − 10x2 + 12x = 2.x(x− 2)(x− 3) ∼
x→2
− 4(x− 2) : à bien voir !

2. Equivalents fondamentaux, Théorème

On a : sin(x) ∼
x→0

x ; tan(x) ∼
x→0

x ; 1− cos(x) ∼
x→0

x2

2
ou bien : cos(h)− 1 ∼

h→0

−h2

2
ln(1 + x) ∼

x→0
x ou ln(u) ∼

u→1
(u− 1); ex − 1 ∼

x→0
x; (1 + x)α − 1 ∼

x→0
α.x (α fixe)

√
1 + x− 1 ∼

x→0

x

2

Démonstration

1) et 3) vus. 2) Ecrire
tan(x)

x
=
sin(x)

x
.

1

cos(x)
ou bien

tan(x)− tan(0)

x− 0
−→
x→0

tan′(0) = 1.

4) 5) 6) Idem :
f(x)− f(x0)

x− x0
−→
x→x0

f ′(x0) ; et par exemple [(1 + x)α]′ = α.(1 + x)α−1 à voir.

3. Propriétés

1) La relation f ∼
x→x0

g est une relation R.S.T. (relation d’équivalence, cf. ch 0)

2) Si f ∼
x→x0

g , il existe un voisinage de x0 sur lequel f et g ont même signe.

En particulier, elles sont nulles simultanément. (Car f(x) = g(x).[1 + ǫ(x)], ǫ(x)−→
x→x0

0.)

3) Si f ∼
x→x0

g et si g(x)−→
x→x0

l, alors f aussi.

4) Il y a compatibilité des équivalents avec le produit : f1 ∼
x→x0

g1, f2 ∼
x→x0

g2 ⇒ f1.f2 ∼
x→x0

g1.g2 et

le quotient, mais pas avec la somme (cf. après) Un résultat si g << f , f + g ∼
x→x0

f .

5) Si f ∼
x→x0

g et si f > 0, alors
√
f ∼
x→x0

√
g. (En exercice).

4. Trois fautes à éviter

1) Il n’y a que la fonction f identiquement nulle au voisinage de x0 qui est équivalente à 0.

Comme ce n’est jamais le cas en pratique, dire : "f ∼
x→x0

0" est une FAUTE.

De même dire : "f ∼
x→x0

∞ " est un NON SENS.

2) SOMME d’équivalents. Un cas où c’est faux : x+ x2 ∼
x→0

x, −x ∼
x→0
− x+ 3.x3 (ridicule, mais

c’est juste) ; par contre x2 ∼
x→0

3.x3 est faux.

3) ln et exp d’équivalents : x+ 1 ∼
x→+∞

x, mais ex+1 non équivalent à ex : le rapport vaut e !

Et : 1 + x ∼
x→0

1− x8, mais : ln(1 + x) ∼
x→0

x, tandis que : ln(1− x8) ∼
x→0
− x8 !

D’ailleurs, on dirait : 1 + x ∼
x→0

1 !

5. Remarque de rédaction (pour la pratique) Si l 6= 0, ±∞, on a : f(x)−→
x→x0

l ⇐⇒ f(x) ∼
x→x0

l.
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8.2 Exercices corrigés

8.2.1 Avec <<

1. Montrer qu’en 0, ln10(x) <<
1

x
(Dans f(x) = x.ln10(x) poser t = 1/x.)

2. Montrer qu’en −∞, ex <<
1

x123
(Dans f(x) = x123.ex, poser t = −x.)

3. (Facultatif) Trouver en +∞, f, g : 1 << g(x) << lnβ(x) << xα << ax << f(x), α, β > 0, a > 1.

(Par exemple f(x) = xx et g(x) = ln(ln(x)) ; il fallait y penser !)

8.2.2 Avec les équivalents

1. Donner un équivalent en 0 de ln(1 + sin(x)). En déduire lim
x→0

ln(x).ln(1 + sin(x)).

Non pas : 1 + sin(x) ∼
x→0

1 + x (somme d’équivalents) puis ln(1 + sin(x)) ∼
x→0

ln(1 + x)

(2ème faute : ln d’équivalents) [qui donnerait un résultat juste avec ln(1 + x) ∼
x→0

x ]

Mais : ln(1 + sin(x)) ∼
x→0

sin(x) (avec h = sin(x)→ 0) et donc ln(1 + sin(x)) ∼
x→0

x.

On en déduit par produit : f(x) = ln(x).ln(1 + sin(x)) ∼
x→0

x.ln(x) et ici, on a une forme

indéterminée connue (et à savoir) qui a pour limite 0 ; donc lim
x→0

f(x) existe et vaut 0.

2. Equivalent de f(x) = ln(x)− ln(2) au point 2. (Bien sûr : ln(x) ∼
x→2

ln(2).)

1ère façon. Avec x = 2 + h (donc h→ 0), ln(x)− ln(2) = ln
2 + h

2
= ln(1 +

h

2
) ∼
h→0

h

2
=
x− 2

2
.

2ème façon. Beaucoup d’équivalents ont été trouvé par la dérivée en un point. Ici, si on veut :

ln(2 + h)− ln(2)

h
−→
h→0

ln′(2) =
1

2
. Donc

ln(2 + h)− ln(2)

h
∼
h→0

1

2
et ln(x)− ln(2) ∼

x→2

x− 2

2
.

3. Equivalent en 0 de 2x − 1 ? On a : 2x − 1 = ex.ln(2) − 1 ∼
x→0

x.ln(2) !

4. (*) Equivalent en
π

2
de sin(x)+ cos(x)− 1 = y ? Avec x =

π

2
+ h on a y = cos(h)− sin(h)− 1

(attention : somme !) Dire : 1− cos(h) ∼
h→0

h2

2
<< sin(h) ∼

h→0
h donc y ∼

h→0
− h = −(x− π

2
).

5. (*) Equivalent quand x→ +∞ de tan
2.π.x

4.x+ 3
?

Attention : la fraction tend vers
2.π

4
=
π

2
(donc lui est équivalente) mais ”tan” n’existe pas en

π

2
!

Notons () =
2.π.x

4.x+ 3
. Alors tan() =

sin()

cos()
∼

x→+∞
1

cos()
!

Et comme () tend vers
π

2
, une façon facile est de dire : cos() = sin

(π
2
− ()

)
∼

x→+∞

(π
2
− ()

)
...

Or :
π

2
− () =

π

2
− 2.π.x

4.x+ 3
=

3.π

2.(4x + 3)
∼

x→+∞
3.π

8.x
. Finalement : f(x) ∼

x→+∞
8

3.π
.x
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8.2.3 Divers

1. lim
x→1

x− 1

xn − 1
?

Forme indéterminée
0

0
.

Posons x = 1 + h, h −→ 0 ; alors n fixé, (1 + h)n − 1 ∼
h→0

n.h d’où la limite existe et vaut
1

n
.

Plus simple :
xn − 1

x− 1
=
f(x)− f(1)

x− 1
−→
x→1

f ′(1)...

2. lim
x→∞

(1 +
1

x
)x ? [puis faire de même : lim

x→∞
(1− 1

x
)x ?]

Forme indéterminée 1∞.

(1 +
1

x
)x = ex.ln(1+ 1

x
). Avec les équivalents fondamentaux, l’exposant : x.ln(1 +

1

x
) ∼
x→∞

x.
1

x
, tend

vers 1. Par continuïté de l’exponentielle en 1, la limite cherchée existe et vaut lim
x→∞

(1 +
1

x
)x = e.

3. ln(x+ 1) ∼
x→+∞

ln(x) ? Aussi une question de limite si l’on veut : le rapport tend-il vers 1 ?

De plus, bien dire x+ 1 et non pas 1 + x en l’infini...

On a : x+ 1 = x.

(
1 +

1

x

)
; d’où ln(x+ 1) = ln(x) + ln(1 +

1

x
) ;

or : ln(1 +
1

x
) << 1 << ln(x) ! donc ln(x+ 1) ∼

x→+∞
ln(x).

4. lim
x→+∞

√
x+
√
x−√x ?

Forme indéterminée +∞−∞ ; ils sont de plus équivalents, car
√
x << x =⇒ x+

√
x ∼
x→+∞

x

puis g(x) =

√
x+
√
x ∼
x→+∞

√
x. Alors f(x) = g(x) − √x =

g2(x)− x
g(x) +

√
x

=

√
x

g(x) +
√
x

=
N

D
. On

sait que N ∼
x→+∞

√
x ; on pense que D ∼

x→+∞
2.
√
x. Pour contourner cette somme d’équivalents, on

écrit
N/
√
x

D/
√
x

: qui ramène à une somme de LIMITES ! Bref, la limite cherchée existe et vaut
1

2
.

Autre solution : Mettre
√
x en facteur et utiliser (1 + h)α − 1, si h→ 0 !

5. (*) lim
x→0

[
1 + x

1− x ]1/sin(x) ?

En 0+ forme indéterminée déjà ...

On a f(x) = e
1

sin(x)
.ln[...]

. Puis exposant ∼
x→0

1

x
.ln[...] ∼

x→0

1

x
.([...]− 1) , car ln(u) ∼

u→1
(u− 1). Ainsi :

l’exposant tend vers 2. Par continuïté de l’exponentielle en 2, la limite cherchée existe et vaut e2.

6. Complément : Un cas où la somme d’équivalents est permise (ne pas savoir) :

Si f(x) ∼
x→0

a.x, g(x) ∼
x→0

b.x et si a+ b 6= 0, alors : f(x) + g(x) ∼
x→0

(a+ b).x car :

on fait le rapport
f(x) + g(x)

(a+ b).x
=

f(x)

(a+ b).x
+

g(x)

(a+ b).x
; il tend vers

a

a+ b
+

b

a+ b
= 1.
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8.3 Questions théoriques

8.3.1 Continuité en x0 ∈ R
Si x0 est finie, et si f est définie en x0, la limite ne peut être que f(x0) si elle existe (facile).

Donc

{
Soit la limite n’existe pas : voir l’exemple suivant (x0 = 0 : cf. exercice).

Soit la limite existe et vaut f(x0) : c’est la définition de la continuïté en x0.

Exemple Voir la fonction caractéristique de la partie {0}, notée 1{0} :

{
x = 0 7→ 1;
x 6= 0 7→ 0.

Dessin ?

8.3.2 Cas où f est continue sur ]a, +∞[

Celà veut dire que f est continue en chaque point (cf. ch. Continuïté).

Donc en chaque point x0 tel que a < x0 < +∞ (a est fini ou −∞), f a une limite : f(x0).

Mais attention : on ne dit pas, ici, que f possède une limite en +∞ ; ni en a+ !

Exemples 1) x 7−→ sin(x) est continue sur R, mais ne possède pas de limite en +∞ !

2) Soit f(x) = sin(1/x), x > 0. Valeurs où f(x) = 0, où f(x) = 1,... Dessin ? Sans limite en 0+.

8.3.3 Théorème de la limite monotone

� Cas f est croissante sur ]0,+∞[ : f a forcément une limite en +∞. Et L finie ⇐⇒ f est majorée.

� Cas où f croissante sur (a, b) [intervalle fermé ou ouvert en a et b] et a < x0 < b. Alors f possède

en x0 une limite lg à gauche et ld à droire avec : lg 6 f(x0) 6 ld .
De même f possède une limite à droite en a et à gauche en b. Idem si décroissante.

Démonstration (*) en complément : Pour la limite à gauche en x0 :
Soit lg = sup{f(x), x < x0} ; on a bien sûr : ∀x < x0, f(x) 6 lg. D’autre part :
si ǫ > 0; ∃ c : a < c < x0 tel que f(c) > lg − ǫ par définition du sup (sinon lg − ǫ majorant).
Et comme f croissante : c < x < x0 =⇒ lg − ǫ < f(x) 6 lg ; ceci suffit.

Exemples 1) Comme ln est croissante, sur ]0,+∞[, l’existence d’une limite en +∞ est certaine !

2) Donner une fonction définie sur ]0,+∞[ croissante non continue ; une fonction non monotone ?

3) Fonction définie sur R ayant une limite à droite ou à gauche en aucun point.

Donc ni monotone ! ni continue !

Ainsi : la fonction caratéristique de la partie Q, notée 1Q :

{
x ∈ Q 7−→ 1;
x 6∈ Q 7−→ 0.

Dessin ?

(On utilise le résultat qu’entre 2 réels distincts, il y a toujours un rationnel et un irrationnel.)

8.3.4 Quelques propriétés

� Si f a une limite FINIE en x0, alors f est bornée au voisinage de x0. En effet :

Soit ǫ = 1 > 0 : possible. Il existe V , voisinage de x0 : x ∈ V =⇒ f(x) ∈]l − 1, l + 1[ ; bornée !

�

Si f(x)−→
x→x0

l > 0, en se limitant à l finie : ∃V , voisinage de x0 tel que : x ∈ V =⇒ f(x) >
l

2

En particulier, non seulement
1

f
existe sur V , mais encore elle est bornée : 0 <

1

f
<

2

l
.

Démonstration (Si on avait l = +∞, dire : f > 1 sur V !) [Ceci sert à certaines preuves.]

Soit ǫ = l/2 > 0. Alors, ∃V , voisinage de x0 tel que sur V, f(x) ∈]l − l

2
, l +

l

2
[ ce qui termine.
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M+ Exercices: Limites des fonctions: R −→ R PTSI

1. Calculer les limites suivantes

(x3 + x2).sin(x)

(1− cos(x)).(1 − exp(x)) , en 0 ;
1− sin(x)

(π/2 − x)2 , en π/2 ;
x3

tan(x)− sin(x)
, en 0 ;

sin(
π

4
− x).tan(2x), en π/4 ;

x.tan(x− π/3)
1− 2.cos(x)

, en π/3 ;
√
x2 − 2x− 1− x, en +∞ ;

ln(x).ln[1 + tan(x)], en 0 ;

√
1 + x

x3
/sin(

1

x
), en ±∞ ; sin(

1

x
).tan

2πx

4x+ 3
, en +∞ ;

(cos(x))1/x
2
, en 0 ;

xx − 1

sin(πx)
, en 1 ; x.E(

1

x
), en 0 ;

sin(x)− x
x3

, en 0 : plus tard.

2. Donner un équivalent de

(a) ln(3+h) en 0 ; puis ln(3+h)− ln(3) [c’est ln au voisinage de 3] ; (b) sin[ln(1+x)], en 0 ;

(c) ecos(x) − e, en 0 ; (d) [ln(1 + x)/ln(x)]x.ln(x), en +∞ ; (e) tan[πx/(2x+ 1)], en ±∞.

3. (*) Autres limites : Rappel si f ′(x0) 6= 0, alors f(x)− f(x0) ∼ f ′(x0).(x− x0) ; faux sinon.

x

ax − bx , en 0 ; x2.[e1/x − e1/(x+1)], en ±∞ ;
1− sin(x) + cos(x)

sin(x) + cos(x)− 1
, en π/2 ;

(Difficiles)
xa − ax
x− a , en a ;

sin(πx)− cos(πx/4)
2x − x2

, en 2 .

4. Quelques fonctions : (a) Faire le graphe de f(x) = x+ cos(x) (b) g(x) = x.cos(x)

(c*) Montrer que x 7−→ sin(x2) est non périodique (avec ses racines par exemple).

5. (*) Soit f définie croissante sur ]0,+∞[, telle que x 7−→ f(x)

x
soit décroissante.

Montrer que f est continue en chaque point. [Théorème de la limite monotone].

6. (*) Autre cas où la somme d’équivalents est possible [Ne pas savoir ; on verra les DL au ch.30].

Si f1(x) ∼
x→x0

g1(x), f2(x) ∼
x→x0

g2(x), g1 > O, g2 > O, alors : (f1 + f2)(x) ∼
x→x0

(g1 + g2)(x).



Chapitre 9

Continuité des fonctions R dans R

9.1 Généralités

9.1.1 Continuité en un point

Définition : f est dite continue en x0, si f est définie en x0 (⇒ x0∈ R) et f(x)−→
x→x0

f(x0).

Remarques

1) Soit f(x) =
sin(x)

x
, x 6= 0. On a f(x)−→

x→0
1.

On pose

{
f̃(x) = f(x), x 6= 0

et f̃(0) = 1
on dit qu’on a effectué un prolongement par continuité de f en 0.

2) La fonction x 7→ E(x) (partie entière) n’est pas continue en 0 ; continue à droite, mais pas à gauche.

9.1.2 Continuité sur un intervalle I

Attention : x 7−→ E(x) (partie entière) n’est pas continue en chaque point de [0,1[ car non continue en 0.
Mais sa restriction à I = [0, 1[ notée E/[0,1[ est, elle, continue en chaque point de [0,1[.

Définition : f est "continue sur un intervalle I" si sa restriction f/I est continue en chaque point de I.

Exemples 1) Si f est continue sur [a, b] et [b, c], alors elle est continue sur [a, c].

2) La fonction x 7−→ 1

x
est continue sur R∗.

9.1.3 Opérations sur les fonctions continues

1. Opérations linéaires. Produit , quotient
f, g continue en x0 =⇒ f + g aussi ; λ.f aussi ;
f.g aussi ; et si g(x0) 6= 0, f/g aussi

Démonstration de 4) en complément (*)

Il suffit de voir pour
1

g
. Or, si g(x0) 6= 0, g est non nulle dans un voisinage V de x0, et même

| 1/g | y est bornée par | 2/g(x0) | (cf. f(x)−→
x→x0

l 6= 0 au ch. Limites).

Donc : | 1

g(x)
− 1

g(x0)
| = | g(x)− g(x0)

g(x).g(x0)
| 6 2. | g(x)− g(x0) |

g2(x0)
.

Or, ∀ǫ > 0, ∃ un voisinage V ′ de x0 sur lequel | g(x)− g(x0) |< ǫ.g2(x0)/2.

Sur V ∩ V ′ on a, en conséquence, | 1

g(x)
− 1

g(x0)
|< ǫ ; ce qui termine.

Exemples

Les fonctions polynômes x 7−→ P (x) sont continues sur R. Les fractions rationnelles
x 7→ P (x)/Q(x) sont continues sur leur domaine (là où le dénominateur est non nul).

59
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2. Composée La composée de fonctions continues est continue (conséquence des limites).

Deux exemples

1) x 7−→ √x étant continue sur R+
� soit voir après : Fonction réciproque.

� soit directement : 0 6 x, y ⇒ | √y −√x | 6
√
| y − x |.

D’où x 7→
√

1 + x2 est continue sur R par composition.

2) De même, comme x 7−→| x | est continue sur R : Donc si f continue, alors | f | aussi. 1

Ensuite 3 théorèmes fondamentaux ADMIS :

9.2 Théorème des valeurs intermédiaires

9.2.1 1er énoncé

Soit f continue sur un intervalle I ; a, b ∈ I. Toute valeur y entre (intermédiaire) f(a) et f(b)
est atteinte pour au moins un x entre a et b : ∀y ∈ [f(a), f(b)], ∃ x ∈ [a, b] tel que f(x) = y.

ADMIS. [la dém. utilise la propriété de la borne sup ; on prend : x = sup{t tel que f(t) 6 y}.]

9.2.2 Exemples essentiels

1. Si f est continue sur [a, b] et si f(a).f(b) < 0, alors f s’annule au moins une fois sur ]a, b[.

2. Tout polynôme de degré impair à coefficients réels, s’annule au moins une fois sur R.

En effet si P (x) = a0.x
2p+1 + ..., a0 6= 0,

P (x)

a0
est positif pour x suffisamment "proche de +∞” :

∃A > 0 : x > A =⇒ P (x) > 1 ; et négatif si x suffisamment "proche de −∞” ; donc :
∃B < 0 : x 6 B =⇒ P (x) 6 −1 ; enfin toute application polynômiale est continue sur R.

3. Si f est continue de [a, b] dans [a, b], alors ∃l ∈ [a, b] tel que f(l) = l (l=point fixe de f). Dessin ?
En effet, g(x) = f(x)− x est continue comme f ; et vérifie g(a) > 0, g(b) 6 0 ; donc g s’annule !

4. Conséquence du Théorème des valeurs intermédiaires. Si f continue sur [a, b] ; et si de plus f est

strictement monotone, alors ∀y ∈ [f(a), f(b)], ∃ ! (unicité en plus) x ∈ [a, b] : f(x) = y. (Clair).

9.2.3 2ème énoncé

1. Définition pour commencer : une partie C (de R ou de R2...) est dite convexe si :
C = ∅ ou si ∀A,B ∈ C, le segment [A,B] est inclus dans C.

Exemples de partie convexe de R2 : l’intérieur d’une ellipse ; de partie non convexe de R2 : R∗ !
Propriété : Les parties convexes de R sont exactement les intervalles [laissé en exercice].

2. Autre rappel : Ayant une application f : E −→ F , on appelle Im(f) (image de f) {f(x), x ∈ E}.
Par exemple, l’image de R par la fonction sin est exactement : Im(f) = f(R) = [−1, 1].

3. Le théorème dit donc que tout point entre f(a) et f(b), est dans Im(f), donc que Im(f) est une

partie convexe de R. Ainsi L’image d’un intervalle par une application continue est un intervalle.

1 Note en complément (*) : Pour f, g données, on vérifie que





sup(f, g) =
f + g+ | f − g |

2

et inf(f, g) =
f + g− | f − g |

2

;

(utile à certaines démonstrations). En effet, prendre x tel que f(x) > g(x) ; puis x où f(x) 6 g(x).

Donc f, g continues =⇒ | f − g | continue ; puis sup(f, g) et inf(f, g) continues !

Cas particulier. On définit :

f+ par f+(x) = sup[f(x), 0] = max[f(x), 0] et f− par f−(x) = −inf [f(x), 0] = −min[f(x), 0].

(Voir le cas f(x) = x+ x2 sur R ; dessiner f, f+, f−.) Voir aussi que :

f+
> O, f−

> O; f− = sup[−f(x), 0] ; surtout :

{
| f |= f+ + f−

f = f+ − f− car





f+ =
1

2
(| f | +f)

f− =
1

2
(| f | −f) .
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9.3 Continuité sur un segment

9.3.1 Théorème des bornes atteintes

Enoncé : Toute application continue sur un segment est bornée et atteint ses bornes.

ADMIS.
Donc m = inf(f)[a,b] est FINI ; et ∃x1 ∈ [a, b] : m = f(x1). Idem pour M = sup[a,b](f) = f(x2).

Voir, par divers dessins, que les hypothèses sont utiles :

1) f(x) = 1/x sur ]0, 1] ; 2) g(x) = 1/x sur [1,+∞[ ; 3) h(x) = 1/x sur ]0, 1] et h(0) = 0.

9.3.2 En combinant les 2 théorèmes précédents

Conséquence : L’image d’un segment, par une application continue, est un segment.

En effet : f([a, b]) ⊂ [m = inf(f) = f(x1), M = sup(f) = f(x2)].

Inclusion inverse : Toute valeur entre f(x1) et f(x2) est dans f([a, b]) par le théorème des valeurs

intermédiaires. A bien comprendre.

9.4 Continuité de la bijection réciproque

9.4.1 Rappels sur injection, surjection

Déjà, on part d’une application f de E dans F . On note f(E) = {f(x), x ∈ E}.
1) f est surjective de E dans f(E), par définition de f(E) ! Et :

2) Si E est une partie de R et F = R, on a clairement : f strictement monotone ⇒ f injective.

3) Pour f bijective de E sur F (quelconques ici), on peut définir une application de F (et non pas P(F ))

dans E, notée f−1 : y 7→ son unique antécédent x ; elle est aussi bijective et f−1of = IdE , fof
−1 = IdF .

9.4.2 Théorème de la bijection

Soit f une application :





définie sur un intervalle I
strictement monotone

et continue;
alors :





f(I) est un intervalle
f est bijective de I sur f(I)

et f−1 est continue: f(I)→ I

Démonstration
f(I) intervalle : connu ;

f surjective de I sur f(I) ! et injective car strictement monotone ; donc bijective.

Est ADMIS : f−1 continue. Ici on voulait (en plus de la bijectivité) que f et f−1 soient continues !

Deux exemples

1) f : x ∈ R+ 7→ x2 ∈ R+ vérifie les hypothèses ; celà donne f−1(...) =
√
... continue sur R+. Dessin ?

2) f : x ∈ R 7→ x3 ∈ R vérifie les hypothèses ; celà donne f−1(...) = 3
√
... continue sur R ! Dessin ?

9.4.3 Arcsin (cf. dessins plus loin)

f = sin/[−π/2,π/2] vérifie les hypothèses du théorème. Sa réciproque est, par définition, l’application
Arcsin.

Donc : y = f(x) = sin(x), x ∈ [−π/2, π/2] ⇐⇒ x = Arcsin(y) = f−1(y), y ∈ [−1, 1].

Dessin de x = Arcsin(y) ? déjà fait : le même que celui de y = sin(x), x ∈ [−π/2, π/2] !

Dessin de y = Arcsin(x) ? on met x variable de f−1 ; symétrique /(y = x) de celui de f .

Attention 1) Arcsin est la fonction inverse (on préfère dire "réciproque") de sin/[−π/2,π/2] pour la

composition et non pour la multiplication. Ainsi Arcsin(x) 6= 1

sin(x)
!



62 CHAPITRE 9. CONTINUITÉ DES FONCTIONS R DANS R

2) On a sin(Arcsin(x)) = x sur [−1, 1] c’est-à-dire tout le temps. Par contre Arcsin(sin(x)) = x

que sur [−π/2, π/2] ; alors que Arcsin(sin(x)) est définie sur R : cf. exercices corrigés.

9.4.4 Arccos

f = cos/[0,π] vérifie les hypothèses du théorème. Dessin ?

Sa réciproque est Arccos. Arccos est donc la réciproque de cosinus-restreinte à [0, π].

Soit : y = f(x) = cos(x), x ∈ [0, π] ⇐⇒ x = Arccos(y) = f−1(y), y ∈ [−1, 1].

Dessin de y = Arccos(x) ? (on met x comme variable de f−1 ; symétrique de celui de f).

Propriété : Arcsin et Arccos sont définies, continues, sur [−1, 1] et Arcsin(x) +Arccos(x) =
π

2

Démonstration (Autre dém. au chapitre Dérivation)

Si a = Arcsin(x), b = Arccos(x), sin(Arcsin(x)) = x,∀x ∈ [−1, 1]; cos(Arccos(x)) = x,∀x ∈ [−1, 1];

et : sin(b) = +
√

1− cos2(b) car b = Arccos(...) ∈ [0, π] ; de même cos(a) = +
√

1− sin2(a) ;

donc : sin(a+ b) = x2 + (1− x2) = 1. Comme a+ b ∈ [−π/2, 3.π/2], forcément a+ b = π/2.

9.4.5 Arctan

Arctan est la fonction réciproque de tan/]− π/2, π/2[. Dessin ?

Remarques : tan(Arctan(x)) = x tout le temps, c’est-à-dire sur R ;

alors que : g(x) = Arctan(tan(x)) = x que sur ]−π/2, π/2[ ; ailleurs ? π-périodique !

Propriété :
Arctan est donc définie, continue sur R ; impaire, strictement croissante.

Et Arctan(x) +Arctan(1/x) = ǫ.
π

2
, ǫ = sign(x) : +1 si x > 0,−1 si x < 0.

Démonstration

La relation : soit G le membre de gauche. tan(G) =
...

1− 1
n’existe pas ; donc G(x) =

π

2
+ kx.π.

D’autre part : x > 0 =⇒ 0 < G < π et x 7−→ G(x) impaire. Terminé.

9.4.6 Arccot

Arccot est la fonction réciproque de cot/]0, π[. Dessin ?

Propriété Arccot est définie, continue sur R, strictement décroissante et Arctan(x) +Arccot(x) =
π

2
.

Démonstration (Autre dém. au chapitre Dérivation)

La relation : soit G le membre de gauche. On a : tan(Arccot(x)) =
1

cot(Arccot(x))
=

1

x
.

Donc tan(G) =
...

1− 1
n’existe pas ; d’où G(x) =

π

2
+kx.π. Voici une autre finale plutôt que d’encadrer :

x 7→ G(x) est continue sur R ; d’où x 7−→ kx =
(
G(x)− π

2

)
/π aussi et à valeurs dans Z : donc kx

est constant sur R, par le Théorème des valeurs intermédiaires ! et x = 0 =⇒ k0 = 0.

Notes en compléments 2

2 1) Un exercice assez facile. Soit f définie sur un intervalle I ; strictement monotone ; telle que f(I) soit un intervalle :
montrer que f est continue (avec le théorème de la limite monotone).

2) Les 3 théorèmes fondamentaux n’ont pas été démontrés (*).

3) Un autre énoncé : (*) Si f est bijective ; continue ; sur un intervalle I ; alors f est strictement monotone.

(Et donc f−1 est continue. Contre-exemple si non intervalle : f(−1) = 0 f(x) = 1/x, x > 0). [(x, y) 7→ f(y) − f(x)

y − x
continue sur le demi plan "connexe" x < y ; donc l’image est connexe et inclue dans R∗ !]
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Exercices Dessiner aussi : x 7−→ √x sur R+ (et () 7→ ()2 sur R+)

Et encore dessiner : x 7−→ 3
√
x sur R ! (et idem : observer la sym/(y = x) !...)
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9.5 Exercices corrigés

9.5.1 Simplifier sin(Arctan(x))

D’abord : tan(Arctan(x)) = x tout le temps (= sur R). Et : sin(a) = ± tan(a)√
1 + tan2(a)

.

Avec a = Arctan(x) prendre "+" car cos(a) > 0 donc sin et tan de même signe !

D’où : sin(Arctan(x)) =
x√

1 + x2
.

9.5.2 Montrer que Arccos(x) + Arccos(−x) = π

Notons f(x) = Arccos(x), qui est définie, continue sur [−1, 1].

1) Le résultat à prouver
f(x) + f(−x)

2
=
π

2
signifie exactement que (0,

π

2
) est centre de symétrie

pour le graphe de f . Résulte de la symétrie du graphe de cos/[0,π] (à prouver !) : 1ère solution.

2) Autre solution : 0 < G = f(x) + f(−x) < 2.π (pourquoi ?) puis ... sin(G) = 0, donc G = π.

9.5.3 Simplifier f(x) =Arccos
1 − x2

1 + x2

On se rappelle que
1− t2
1 + t2

= cos(2a), si t = tan(a).

Aussi, on pose x = tan(a), a ∈]− π/2, π/2[ (⇒ a = Arctan(x).)

On a alors : y = Arccos(cos(2a)) ; mais ceci ne vaut 2a que si 2a ∈ [0, π], c’est-à-dire que si x > 0.

Donc si x > 0, f(x) = 2.Arctan(x) ; et si x 6 0, on a : f paire ! D’où f(x) = 2. | Arctan(x) |.

9.5.4 Préciser Arcsin(sin(x)) et sin(Arcsin(x))

Arcsin est la réciproque : non de sin ; mais de sin/[−π/2,π/2]. D’où

1) sin(Arcsin(x)) = x tout le temps, soit sur [−1, 1]. Tandis que

2) Arcsin(sin(x)) est définie sur R, mais Arcsin(sin(x)) = x que sur [
−π
2
,
π

2
] ; ailleurs ?

x 7→ g(x) = Arcsin(sin(x)) est 2.π périodique. Et sur [
π

2
,
3.π

2
], posons x = π + h, h ∈ [

−π
2
,
π

2
].

Alors : Arcsin(sin(π + h)) = Arcsin(−sin(h)) = −Arcsin(sin(h)) = −h ! (pourquoi ?) = π − x.
Donc, pour x ∈ [

π

2
,
3.π

2
], g(x) = π − x. On finit aisément. Faire le dessin complet (de g sur R) !

De même, en plus facile : Arccos(cos(x)) puis Arctan(tan(x))...

9.5.5 Trouver f continue sur R : f(x + y) = f(x) + f(y), équation de Cauchy

1) On voit que f(x) = a.x convient ; on va voir que ce sont les seules.

2) Soit donc f telle que f(x+ y) = f(x) + f(y) ; on note f(1) = a. Alors :

� 1ère étape : Avec y = 0, aisément f(0) = 0 ; puis pour n ∈ N, f(x1 + ...+ xn) = f(x1) + ...+ f(xn) ;
en particulier f(n) = a.n pour n ∈ N.

� 2ème : Avec y = −x, on a aisément f impaire et donc f(n) = a.n est vraie aussi sur Z−.

� 3ème : Calcul de f(1/q), q ∈ N∗. On a q.f(1/q) = f(1/q) + ...+ f(1/q) = f(1/q + ...+ 1/q) = f(1) !
Donc q.f(1/q) = a. ou f(1/q) = a.1/q. Puis : f(p/q) ?
Si p ∈ N∗ p.f(1/q) = a.p/q et si p ∈ Z−, imparité de f . A ce stade : f(r) = a.r,∀r ∈ Q.

� 4ème : Cas x ∈ R\Q. C’est ici qu’on utilise la continuité.
Il existe une suite de rationnels convergeant vers x (prendre rn dans ]x− 1/n, x[.) f(rn) = a.rn :
tend vers a.x d’une part ; et tend vers f(x) car f continue ! Par unicité de la limite : f(x) = a.x.
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M+ Exercices: Continuité des fonctions R −→ R PTSI

1. Trouver f continue en aucun point avec | f | continue sur R. (Modifier 1Q.)

2. Continuïté (et dessins !) de :

(a) f(x) = E(x) +
√
x− E(x), E étant la partie entière. (Noter que f(x+ 1) = f(x) + 1.)

(b) g(x) = E(x) + E(2− x) ; (ici voir que : g(x + 1) = g(x) puis étude soigneuse sur [0,1[.)

(c) h(x) = e−1/x2
: domaines (avec parité) ? graphe ? peut-on la prolonger par continuïté en 0 ?

3. Rappeler avec précision le cours :

(a) Le théorème des valeurs intermédiaires. Utilisations ?

(b) Le théorème concernant la continuité sur un segment. Dessin ?

(c) Le théorème usuel assurant la bijectivité de f avec : f et f−1 continues. Exemples ?

4. Soit f définie sur [a, b] telle que ∀x, f(x) > 0. Donc inf(f) > 0.

(a) Peut-on affirmer ici que : inf(f) > 0 ?

(b) Même question si f est continue ?

5. (a) Préciser les fonctions : cos(Arccos(x)) et Arccos(cos(x)).

(b) Idem avec sin(Arcsin(x)) et Arcsin(sin(x)) (moins facile).

(c) Puis tan(Arctan(x)) et Arctan(tan(x)) (facile ici).

6. Simplifier f(x) = Arcsin
2x

1 + x2
à l’aide de la trigonométrie.

7. On cherche f continue de R dans R / f(x+ y) = f(x) + f(y) pour toutes valeurs :

(a) Donner des exemples. Maintenant, on étudie le cas général et on note f(1) = a :

(b) Calculer f(0). Puis f(n), n ∈ N. (*) Puis si n ∈ Z. Puis f(1/q). Enfin f(r) si r ∈ Q.

(c) (*) Conclusion ? Remarque : la continuïté en 0 suffisait pour conclure !

8. Avec des fonctions rationnelles ?

(a) Vérifier que x ∈]− 1, 1[7−→ x/(1− x2) ∈ R est bijective, croissante, rationnelle donc continue.

(b) (*) Mais qu’il est impossible de trouver f bijective croissante rationnelle de R sur ]− 1, 1[.

(c) Vérifier que x 7−→ x/(1+ | x |) est impaire, bijective, croissante, continue de R dans ]− 1, 1[.
[Au ch. Dérivation, on améliorera l’exemple par une application dérivable à tout ordre].

9. (a) f continue [a, b] −→ [a, b] a au moins un point fixe ; id est [=i.e.=c’est-à-dire] l tel que f(l) = l.

(b) (*) Même conclusion à démontrer avec "f croissante" au lieu de "f continue".

10. Soit f : x ∈ Q 7→ x et x ∈ R\Q 7→ 1− x.
(a) Vérifier que fof = Id sur R et donc f bijective ; puis que f est continue en un seul point.

(b) (*) Trouver g bijective de R dans R continue nulle part (plusieurs idées possibles).
[Ainsi : continuïté et bijectivité n’ont rien à voir ! En pratique, on souhaite f bijective

avec de plus f et f−1 continues ; d’où le théorème usuel.]



Chapitre 10

Dérivation des fonct. de R dans R: calculs

10.1 Dérivation en un point

10.1.1 Généralités

1. Définition
f est dite dérivable en x0, si f est définie en x0 ; (=⇒ x0∈ R) et
f(x)− f(x0)

x− x0
a une limite FINIE, quand x −→ x0, notée f ′(x0).

Ou bien, en posant : x = x0 + h,
f(x0 + h)− f(x0)

h
−→
h→0

f ′(x0).

2. Interprétation géométrique.
f(x)− f(x0)

x− x0
est le coefficient directeur de (M0,M). Quand x→ x0,

on a, à la limite, le coefficient directeur de la tangente en M0 : y − f(x0) = f ′(x0).(x− x0).

Si de plus le repère est orthonormé, f ′(x0) = tan(α)=pente de la tangente ; la pente de la normale

est tan(α+ π/2) =
−1

tan(α)
; l’équation de la normale est donc : y − f(x0) =

−1

f ′(x0)
(x− x0).

Remarques

� Si
f(x)− f(x0)

x− x0
a une limite INFINIE, la fonction n’est pas dérivable ; on a une tangente //Oy.

� Une droite passant par M0, non parallèle à Oy a pour équation y − y0 = k.(x− x0) .

3. Pour une courbe de R3, si ÃM = f(t),
f(t)− f(t0)

t− t0
=
M̃0M

t− t0
; donc f ′(t0)=vitesse algébrique au

temps t0. Le vecteur vitesse est alors −→v = v.
−→
T ,
−→
T unitaire orientant la tangente à la courbe.

10.1.2 Propriété

1. On a : Toute application dérivable en x0 est continue en x0. Réciproque fausse.

Démonstration. On a : f dérivable en x0 ⇐⇒
f(x)− f(x0)

x− x0
= f ′(x0) + ǫ(x) avec ǫ(x)−→

x→x0

0.

Bien observer ce changement d’écriture ! c’est un "développement limité" :

f(x) = f(x0) + (x− x0)f
′(x0) + (x− x0).ǫ(x), ǫ(x)−→

x→x0

0. A-t-on : f(x)−→
x→x0

f(x0) ? clair !

2. Réciproque fausse :

f(x) =| x | est continue sur R, mais non dérivable en 0 : dérivées à droite et à gauche distinctes !

f(x) =
√
x ou f(x) =

√
| x | non dérivables en 0, mais continues. Dessins ? (arcs de parabole)

67
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10.2 Opérations

10.2.1 Théorèmes généraux

1.
x 7−→ u(x), x 7−→ v(x) dérivables =⇒ u+ v aussi ; λ.u aussi ; u.v aussi avec

(u.v)′ = u′.v + u.v′ et, là où v(x) ne s’annule pas,
u

v
aussi : (

u

v
)′ =

u′v − uv′
v2

.
En exercice.

2. Conséquences

� A voir : (xn)′ = nxn−1 même si n ∈ Z ! [1/v(x)]′ = −v′(x)/v2(x).

� (tan(x))′ =
1

cos2(x)
= 1 + tan2(x) et (cot(x))′ =

−1

sin2(x)
= −[1 + cot2(x)].

10.2.2 Composition

1.
Notations nouvelles : Si f dérivable en x0 et g en f(x0), alors gof est dérivable en x0 et

(gof)′(x0) = g′[f(x0)].f
′(x0). Ou bien autres notations :

(
ϕ[u(x)]

)′
= ϕ′(u(x)).u′(x).

Démonstration en compléments.

2. Conséquence

• Dérivées de : cos3(x); ecos(x); cos(ex); ln[1+ tan2(x)] ?
(
cos3(x)

)′
= 3.cos2(x).

(
−sin(x)

)

• Aussi [ln | u(x) |]′ =
u′(x)
u(x)

. (En prenant x tel que u(x) > 0 ; puis x tel que u(x) < 0)

3. Remarque (*). Un exemple de fonction dérivable sur R sans que f ′ soit continue (c’est rare !)

Soit f(x) = x2.sin(1/x) si x 6= 0 et f(0) = 0. Alors :

� Pour x 6= 0, f est dérivable par composition et f ′(x) = 2x.sin(1/x) − cos(1/x).

� En 0 :
f(x)− f(0)

x− 0
= x.sin(1/x)−→

x→0
0 ; donc f ′(0) existe et vaut f ′(0) = 0. Ainsi f ′ existe sur R.

Mais f ′ n’est pas continue en 0 car f ′(x) 9 0 quand x→ 0 : f ′ n’a pas de limite en 0.

10.3 Dérivation de la bijection réciproque

10.3.1 Enoncé (preuve en compléments)

1. Théorème
Soit f continue ; strictement monotone ; sur un intervalle I. Si de plus : f ′(x0)

existe et f ′(x0) 6= 0, alors f−1 est dérivable en y0 = f(x0) et (f−1)′(y0) =
1

f ′(x0)
.

Interprétation : Dessin de f : () 7−→ ()2 et de f−1 =
√
... ?

√
... ’(4)=1/4.

2. Nouvelle écriture, nouvel énoncé. Si maintenant x variable de f−1, y = f−1(x) : x et y permutés.

Alors : si f est dérivable (donc continue), sur un intervalle I, avec f ′ > O ou f ′ < O
(donc strict. monotone) on a : f bijective de I sur f(I), f−1 est dérivable sur J ; et

(f−1)′(x) = 1/f ′(y) = 1/f ′[f−1(x)] f ′(y), non pas [f(y)]′ : on ne saurait si on dérive /x ou /y !

10.3.2 Exemples (de réciproque)

1. Ainsi ( n
√
x)′ = (x1/n)′ =

1

n
. x

1
n
−1 (car

1

n.yn−1
...) sur R∗ si n impair ; sur ]0,+∞[ si n pair.

(Rappelons bien le cas (
√
x)′ =

1

2.
√
x
.) Et à partir du cas général (xr)′ = r.xr−1 pour r ∈ Q.

2. Si on sait que ln′(x) = 1/x alors on déduit que : exp′(x) = exp(x). En exercice.

De ceci, on en déduit aussi que : (xa)′ = [ea.ln(x)]′ = ... , a 6∈ Q. Dérivée de 2x ? xx ?
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3. Arcsin est continue sur [−1, 1], dérivable sur ]− 1, 1[ et Arcsin′(x) =
1√

1− x2
.

En effet
Notons y = Arcsin(x) ou x = sin(y), y ∈ [−π/2,+π/2]. sin′ ne s’annule pas sur ]− π/2,+π/2[.
Donc Arcsin dérivable sur ]− 1, 1[ et Arcsin′(x) = 1/sin′(y) = 1/cos(y) ; mais

y = Arcsin(x) ∈]− π/2,+π/2[ ; donc cos(y) > 0. cos(y) = +
√

1− sin2(y) =
√

1− x2. Fini.

4. Arccos est continue sur [−1, 1], dérivable sur ]− 1, 1[ et Arccos′(x) =
−1√
1− x2

.

En exercice.
Conséquence
Si f(x) = Arcsin(x) +Arccos(x) ; f est donc dérivable sur ]− 1, 1[ et f ′ = O. Nous verrons
que ceci entraine f constante sur ]− 1, 1[. Par continuité, f constante sur le segment [−1, 1]

et on retrouve : Arcsin(x) +Arccos(x) =
π

2
sur [−1, 1].

5. Arctan est dérivable sur R et Arctan′(x) =
1

1 + x2
.

En exercice.
Arctan est donc une fonction compliquée à dérivée facile : rationnelle, définie sur R !
En déduire

[Arctan(
1

x
)]′ = 0 sur R∗ ? On retrouve que Arctan(x) +Arctan(

1

x
) = ? cf. ch. précédent.

6. Arccot est dérivable sur R et Arctan′(x) =
−1

1 + x2
.

En exercice.
Conséquence
f(x) = Arctan(x) + Arccot(x) est donc dérivable sur R et f ′ = O. Nous verrons que ceci

entraine f constante (comme dit). On retrouve que : Arctan(x) +Arccot(x) =
π

2
.

Deux démonstrations en compléments (*) Note 1 Note 2

1 Dérivée de gof :

On aurait envie d’écrire :
gof(x) − gof(x0)

x− x0
=
gof(x) − gof(x0)

f(x) − f(x0)
.
f(x) − f(x0)

x− x0
;

mais f peut s’annuler une infinité de fois si x→ x0 comme pour x2sin(1/x) vers 0.

Aussi on écrit les "développements limités"
(1) f(x) − f(x0) = (x− x0)[f

′(x0) + ǫ1(x)], ǫ1(x) −→
x→x0

0

(2) g(y) − g(y0) = (y − y0)[g
′(y0) + ǫ2(y)], ǫ2(y) −→

y→y0

0. On remplace y0 par f(x0), y par f(x).

Il ne se pose plus qu’une question , à cause de ǫ2 : a-t-on f(x) −→
x→x0

f(x0) ?

La réponse est oui, car f dérivable en x0 =⇒ continue en x0.

2 Dérivablité de f−1 :

D’abord, f−1 désigne l’inverse pour la composition (usuellement) et non pas pour la multiplication.
Ainsi : ln−1 = exp (réciproque) mais ce n’est pas : x 7−→ 1/ln(x) !

Ensuite, si on savait f−1 dérivable, il suffirait de dériver f [f−1(x)] = x, ∀x ∈ J si f−1 : J −→ I .
Mais nous devons montrer la dérivabilité de f−1.

Prenons x comme variable de f−1.
f−1(x) − f−1(x0)

x− x0
=

y − y0
f(y) − f(y0)

.

Quand on fait tendre x vers x0, on a besoin de savoir que y tend vers y0 ; donc on a besoin de savoir que f−1 est continue.
Ceci est assuré par les hypothèses : f définie sur un intervalle/ strictement monotone/ continue/ [ceci assure l’existence et
la continuité de f−1] ; de plus f ′(y0) existe et est non nul ; etc.
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M+ Exercices: Dérivation des fonct. R→ R, calculs PTSI

1. (a) Rappeler les dérivées de : Arcsin, Arccos, Arctan, et Arccot.

(b) Prouver 3 relations entre Arcsin(x), Arccos(x), Arctan(x), Arctan(
1

x
) et Arccot(x).

2. Dérivées de : cos(e−2.x), 2x, ax, x
√

2, xx, sin(x)cos(x), Arctan(x2), sin(Arctan(1/x))

Arccos(
√

1− x2), après avoir ici indiqué les domaines (de définition, continuïté, dérivabilité).

3. Soit f dérivable sur R. Montrer que :

(a) f paire =⇒ f ′impaire. f impaire =⇒ f ′ paire.

(b) f périodique =⇒ f ′ périodique. (*) Examiner les réciproques.

4. Par des tableaux de variations, montrer que

(a) x− x3

3!
6 sin(x) si x > 0 [et sin(x) 6 x− x3

3!
+
x5

5!
, idem si x > 0.]

(b) Si n ∈ N, n > 3, p, q ∈ R ; xn + px+ q = 0 possède au plus 3 racines réelles.

(On admet - cf. chapitre suivant -
[f dérivable sur [a, b], f ′ > 0, nulle qu’un nombre fini de fois] ⇒ f croissante strictement.)

5. Idem Montrer que, sur [0,
π

2
], on a :

2

π
.x 6 sin(x) 6 x.

6. Montrer pour x > 0 que : x− x
2

2
6 ln(1 + x) 6 x. En déduire lim

n→+∞
Sn où Sn =

n∑

k=1

ln(1 +
k

n2
).

7. (*) Etudier la dérivabilité de

(a) f(x) = cos(
√
x) et de

(b) g(x) = x2.sin(1/x) si x 6= 0, g(0) = 0.

8. Etudier : f(x) =
ex + e−x

2
, g(x) =

ex − e−x
2

(trouver g′(x) = f(x), f ′(x) = g(x).)

9. Etudier la fonction : f(x) =
1

2
.ln | 1 + x

1− x | (elle est impaire, de dérivée
1

1− x2
.)

10. (*) Montrer que
(
ln | tanx

2
|
)′

=
1

sin(x)
. Idem

(
ln | tan

(x
2

+
π

4

)
|
)′

=
1

cos(x)
.

11. (*) Etudier la fonction f(x) = ln(x+
√

1 + x2) (impaire, de dérivée
1√

x2 + 1
.)

12. (*) Etudier la fonction f(x) = ln | x+
√
x2 − 1 | (impaire, de dérivée

1√
x2 − 1

.)

13. (*) Soit f une fonction dérivable en 0, avec f(0) = 0. [On peut noter : a = f ′(0).]

Soit Sn =
n∑

k=1

f(
k

n2
). Montrer que la suite (Sn) possède une limite finie si n→ +∞.



Chapitre 11

Dérivation des fonct. de R 7→ R: théorèmes

11.1 Théorèmes fondamentaux

11.1.1 Lemme(=propriété auxiliaire) : Dérivée en un extremum local.

On dit que f présente un maximum local en x0 si f est définie sur ]x0 − α, x0 + α[, α > 0,
et f(x) 6 f(x0) sur cet intervalle (idem minimum local) .

Si f présente un extrémum local en x0 et est dérivable en x0 alors : f ′(x0) = 0.

Démonstration Faire un dessin !

Le taux d’accroisement
f(x0 + h)− f(x0)

h
est > 0 si h < 0, dans le cas d’un maximum local.

Comme les inégalités largent se prolongent en passant à la limite (par Théorème) f ′(x0) > 0.

De même
f(x0 + h)− f(x0)

h
est 6 0 si h > 0 ; ainsi f ′(x0) 6 0 en faisant h −→ 0+ (| h |< α).

En résumé, forcément f ′(x0) = 0.

11.1.2 Théorème de Rolle

Soit f continue sur [a, b], dérivable sur ]a, b[, a 6= b ; avec f(a) = f(b). Alors ∃c ∈)a, b[: f ′(c) = 0

Démonstration Faire un dessin !

On sait que f , continue sur un segment a des bornes M = supf[a,b] et m = inff[a,b] atteintes.
Si m = M , f est constante ; résultat acquis.
Si m < M , M ou m est atteint hors des bords a, b car f(a) = f(b) ; par exemple : M = f(c), c ∈]a, b[.

Alors M , qui est le maximum absolu, est aussi local. Le lemme termine.

11.1.3 Théorème des accroissements finis [ou de "la pente moyenne"]

Soit f continue sur [a, b], dérivable sur ]a, b[, a 6= b. Alors, ∃c ∈)a, b[: f(b)− f(a) = (b− a).f ′(c).

1,3

0

y

x Autre énoncé : b = a+ h ; ∃θ ∈]0, 1[ / f(a+ h)− f(a) = h.f ′(a+ θ.h).

Démonstration. Posons g(x) = f(x)− [f(a) + k(b− a)] où k est choisi tel que g(b) = g(a) ; c’est

possible en prenant exactement (à voir) k =
f(b)− f(a)

b− a , a 6= b ! [En fait, on sait que la droite (A,B)

a pour équation y = f(a)+ k.(x− a) où justement k =
f(b)− f(a)

b− a ]. Alors g vérifie les hypothèses

du théorème de Rolle ; ∃c ∈]a, b[ tel que g′(c) = 0 : donc f ′(c) = k ; ce qui termine.
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11.1.4 Inégalités des accroissements finis

� Soit m1 6 f ′ 6 M1 sur [a, b]. Alors a 6 b =⇒ m1.(b− a) 6 f(b)− f(a) 6 M1.(b− a).
� Autre énoncé : Soit | f ′ |6 k sur [a, b]. Alors : | f(b)− f(a) | 6 k. | b− a | .

Evident à partir de l’égalité des accroissements finis.

Pourquoi ne se limite-t-on pas à une égalité des Accroissements finis ? Car pour les fonctions

R→ R2, on a seulement une inégalité des accroissements finis. (Exemple si : t 7→ eit sur [0, π])

11.1.5 Exemples

1. f(x) = α.x2 sur [a, b]. On trouve c =
a+ b

2
: propriété de la parabole si α 6= 0. Dessin ?

2. f(x) = α/x sur [a, b] ⊂ R∗. On trouve que c =
√
ab = Moyenne géométrique de a, b. Dessin ?

3. Soit P ∈ R[x] (polynôme à coefficients réels), de degré n > 1. On dit que P est "scindé" sur R

si P possède n racines réelles. Montrer alors que P ′ est aussi "scindé" sur R.

Corrigé :
– C’est le cas de P (x) = 5.(x + 2).x.(2x − 1).(x− 2).(x − 4).(x− 5).

Indication : Il suffit de bien connaitre et d’appliquer le Théorème de Rolle !

– (*) En fait, le résultat est encore vrai si P a des racines multiples comme pour
P (x) = 5.(x+ 1)4.x.(x− 2)3.(2.x − 7). En effet, si a est racine de P à l’ordre k > 1 ou si on a

P (x) = (x− a)k.Q(x), alors en dérivant, on voit que a est racine de P ′ à l’ordre k − 1. A finir.

11.2 Trois conséquences fondamentales (−du "TAF"−)

11.2.1 Sens de variation des fonctions dérivables

1) Si f ′ > 0 (et existe !) sur un intervalle I, alors f croissante (sens large).
2) f ′ 6 0 sur I =⇒ f décroissante. 3) f ′ = 0 sur I =⇒ f constante. De plus :

Si f ′ > 0 et nulle sur aucun sous-intervalle de longueur non nulle, f est strictement croissante.

1. Démonstration
1) Si x < y dans I, le théorème des accr. finis sur [x, y] (bien voir les hypothèses), donne f(x) 6 f(y).

2) Il suffit de considérer −f . 3) Provient de 1) et 2).

A ce stade : Si une fonction g admet des primitives G1, G2 sur un intervalle : G2 −G1 = cte.

"De plus" : On sait déjà que f est croissante au sens large ; et :

s’il existait x < y tel que f(x) = f(y), f serait constante sur [x, y] ; f ′ nulle sur [x, y] ; exclus.

Exemple f(x) = x3 est donc strictement croissante sur R.

2. Remarque. La réciproque de 1) 2) 3) est vraie (f étant dérivable) : c’est un prolongement des

inégalités (larges) par passage à la limite. Mais le sens essentiel est celui indiqué.

11.2.2 Théorème de la limite de la dérivée

Soit f continue sur [a, b], dérivable sur ]a, b], a 6= b. Si f ′(x) a une limite l quand x −→ a :
Si l finie, alors f ′(a) existe et vaut l; si l =∞, tangente //Oy en x = a.

Attention : si pas de limite, on ne sait pas ! Faire une étude directe du taux d’accroissement !

1. Démonstration

f vérifie les hypothèses du théorème des accr. finis sur [a, x], x 6= a ; donc
f(x)− f(a)

x− a = f ′(cx),

avec cx ∈]a, x[. Quand x −→ a, le taux d’accroissement tend vers l ; fini.
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2. Exercices corrigés

1) Revoir l’exemple f(x) = x2.sin(1/x) si x 6= 0 et f(0) = 0 où f ′(0) existe quand même.

2) Etudier la dérivabilité de g : x 7−→ cos(
√
x).

1ère solution. g est dérivable sur ]0,+∞[ par composition ; en 0+ :
cos(
√
x)− 1

x
∼
x→0

−x
2.x
−→
x→0

−1

2
.

Donc g′(0) existe aussi et vaut g′(0) = −1/2. Ici, nous ne savons pas si g′ continue en 0.

2ème solution. g est continue sur [0,+∞[ (composition) et si x 6= 0, g′(x) =
−sin(

√
x)

2.
√
x
−→
x→0

−1

2
.

Le théorème de la limite de g′ s’applique : g′(0) existe et g′(0) = −1/2. Ici, on a plus travaillé,

mais on sait en plus que g′ est continue en 0 (donc sur [0,+∞[) car on a : g′(x) −→
x→0

g′(0).

3) Pourquoi le théorème de la limite de la dérivée est-il aussi appelé théorème du

prolongement C1 ? Bien revoir le cas de x 7→ cos(
√
x), C1 sur [0,+∞[.

11.2.3 (*) Fonctions lipschitziennes de rapport k

On dit que f est k-lipschitzienne sur un intervalle I si : ∀x, y ∈ I, | f(y)− f(x) |6 k. | y − x |
1) Une telle appplication est continue [si y −→ x, f(y) −→ f(x) ; réciproque fausse]

2) mais pas forcément dérivable [car x 7−→| x | est 1-lipschitzienne cf. ch. R]

3) Par contre, si f dérivable, ( f k-lipschitzienne ) ⇐⇒ | f ′ | bornée par k

Démonstration
1) Réciproque ? x 7−→ x2 continue, mais non lipschitzienne sur R [f ′ non bornée, avec 3).]

2) On a vu que x 7−→| x | est 1-lipschitzienne
∣∣ | x | − | y |

∣∣ 6 | x− y | et non dérivable en 0.

3) =⇒ : Si pour x 6= x0, |
f(x)− f(x0)

x− x0
|6 k, par passage à la limite, on obtient | f ′(x0) |6 k.

⇐= : Avec f dér. sur I, donc continue, le théorème des accroissements finis donne, si x 6= y :

∃c ∈]x, y[ : | f(y)− f(x) |=| y − x | . | f ′(c) | 6 k. | y − x |. Cqfd (ce qu’il fallait démontrer)

1. (Exercices) Vérifier que x 7−→ a.x+ b est lipschtitzienne de rapport | a |.
2. On dit que que f est contractante si f est lipschtitzienne de rapport (0 6) k < 1.

Dans quel cas x 7−→ a.x+ b est-elle "contractante" ? (Bien sûr "ssi" | a |< 1.)

3. x 7−→ x+ e−x est-elle contractante sur R+ ? (Justifier qu’on aurait : sup | f ′ | 6 k < 1.)

4. Que dire de
√
x sur ]0,+∞[ ? (non lipschitz. ) sur [1,+∞[ ? (là, contractante : k = 1/2).

11.3 Dérivées successives

11.3.1 Définitions. Notations : f (0) = f ; f (1) = f ′ ; f (k) dérivée kième

f est dite de classe Ck si f (k) existe et est continue (C0 si f continue). C∞ si f est Cp,∀p ∈ N.

Exemples

1. Les fonctions polynômes, exp, sin, cos sont de classe C∞.

2. La fonction rationnelle f(x) =
1

x+ a
est C∞ sur son domaine et

(
1

x+ a

)(n)

=
(−1)n.n!

(x+ a)n+1

Par récurrence en dérivant [
1

(x+ a)k
]′ = [(x+ a)−k]′ = −k.(x+ a)−k−1 !
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11.3.2 Formule de Leibnitz

u, v de classe Cn =⇒ u.v aussi, et : (u.v)(n) =

n∑

k=0

Ckn.u
(n−k).v(k) =

n∑

k=0

(
n
k

)
.u(n−k).v(k).

Récurrence sur n ; avec (u.v)′ = ...
Exemple

[(2x+ 1)2.cos(x)](7) = (2x+ 1)2.[cos(x)](7) + C1
7 [(2x+ 1)2]′[cos(x)](6) + C2

7 [(2x+ 1)2]”[cos(x)](5)

avec [cos(x)](p) = cos(x+ p.
π

2
) ; [(2x + 1)2]′ = 2.(2x+ 1).2 ; C1

7 = 7 et C2
7 =

(
7
2

)
=

7.6

2.1
= 21.

11.3.3 Composition

On a : (f : I −→ J Cn; g : J −→ R Cn) =⇒ gof Cn.

n = 0 : connu.
n = 1 : on sait (gof)′(x) = g′(f(x)).f ′(x) ; il reste à voir (gof)′ continue : d’après son expression !

n = 2 : ... La formule générale est difficile : formule de Faa Di Bruno.1

11.3.4 Fonction réciproque C1 ?

Dans les hypothèses où f−1 dérivable (à revoir), on sait que : (f−1)′(x) =
1

f ′(f−1(x))
.

Donc : Si de plus f est C1, alors f−1 sera C1 par composition, d’après son expression.

11.4 Fonctions convexes

11.4.1 Parties convexes (PSI)

1. Rappel : une partie C de R2 est dite convexe si elle est vide ou : M,N ∈ C =⇒ [MN ] ⊂ C.
Dessiner une partie convexe et une partie non convexe !

2. Cas d’un segment [a, b], a 6= b, de R : x ∈ [a, b]⇐⇒ x− a
b− a = β ∈ [0, 1]⇐⇒ x = (1− β)a+ β.b.

Avec α = 1− β ∈ [0, 1], on écrit : x = α.a+ (1− α).b. Voir Note 2

11.4.2 Définition. Interprétation (PSI)

f est dite convexe sur I si ∀a, b ∈ I(interv.),∀α ∈ [0, 1] : f(α.a+ (1− α).b) 6 α.f(a) + (1− α).f(b)

Dessin : Pour α =
1

3
; placer A(a, f(a));B(b, f(b)) ; x =

1

3
a+

2

3
b ; et y =

1

3
f(a) +

2

3
f(b) sur Oy ;

A,B,N(x, y) sont alignés ! enfin : f(x) 6 y =
1

3
f(a) +

2

3
f(b) ! Donc (avec les cordes) :

f est convexe sur I ⇐⇒ Tout arc est situé sous toute corde de la courbe.

1Né à Alessandria (Italie) le 9 mars 1825, dernier de 12 enfants et orphelin de mère à 9 ans, Francesco Faà di Bruno entra
en 1840 à l’Académie militaire de Turin et devint officier d’état-major en 1846. L’armée l’envoya à Paris pour poursuivre
des études de physique et de mathématiques avec Cauchy. De retour en Italie, deux ans plus tard, il abandonna la carrière
militaire et continua ses études à Turin, où il se distingua comme professeur et chercheur. Ami de Don Bosco et influencé
par son exemple, il se consacra au bien spirituel des jeunes travailleuses et fonda de nombreuses œuvres pour la protection et
la promotion de la femme, parmi lesquelles la Congrégation des Petites Sœurs de Notre-Dame du Suffrage. Ordonné prêtre
sur le tard en 1876, il mourut à Turin le 27 mars 1888. Seul mathématicien béatifié (le 25.09.1988 par Saint Jean-Paul II).

2Barycentre ou principe de la balance romaine : En a, poids α > 0 ; en b, poids 1−α > 0 ; x point d’égalité des moments

(x− a).α = (b− x).(1 − α). D’où : α = k.(b− x), 1 − α = k(x− a) ainsi que : k =
1

b− a
en ajoutant ! Dessin ?
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Remarques 1) x 7→ | x | est convexe sur R (non dérivable en 0).

2) On a aisément : f convexe ⇔ le "surgraphe" {(x, y), y > f(x)} est une partie convexe de R2.

11.4.3 Résultats énoncés : PSI

1. Caractérisation avec les pentes

On a : f convexe sur I, intervalle ⇔ ∀x0 ∈ I, p(x) =
f(x)− f(x0)

x− x0
est croissante sur I − {x0}

Conséquence. Avec le théorème de la limite monotone : Si f convexe sur (a, b) et x0 ∈]a, b[,

alors f est dérivable à droite et à gauche en x0 ! donc C0 sur ]a, b[ !

2. Pour f dérivable, reconnaitre une fonction convexe

Si de plus f est dérivable sur ]a, b[, alors : f convexe ⇔ f ′ croissante ;
donc si f” existe, on a : f convexe ⇔ f” > O (c’est la pratique !)

3. Pour f dérivable, caractérisation avec les tangentes

Si f est dérivable sur ]a, b[ : f convexe ⇔ Tout arc est au dessus de toute tangente.

11.4.4 Exemples (par étude de fonctions en PT)

1. ∀x ∈ R, ex > 1 + x (convexité de exp). On en déduit en changeant x en −x :

∀x ∈ R, e−x > 1− x ; donc pour x < 1 par division : 1 + x 6 ex 6
1

1− x . Dessin ?

2. x 7−→ ln(1 + x) = f(x) est concave, c’est-à-dire −f est convexe dessin de f ?

Donc ln(1 + x) 6 x pour x > −1 ou bien ln(x) 6 x− 1 pour x > 0.

3. sin est concave sur [0, π/2] (dérivée seconde : −sin 6 O) ; dessin ?

Donc ∀x ∈ [0, π/2]
2.x

π
6 sin(x) 6 x y =

2.x

π
étant la corde O(0, 0) B(

π

2
,1).

tan est convexe sur [0, π/2[ ; dessin ? Donc x 6 tan(x) sur [0, π/2[

11.4.5 Inégalités de convexité en complément (PSI)

Par récurrence, l’inégalité de base ∀a, b ∈ I,∀α ∈ [0, 1], f(α.a + (1− α).b) 6 α.f(a) + (1− α).f(b)

se généralise ainsi : inégalité de Jensen

αk > 0, α1 + ...+ αn = 1, f convexe sur I, ak ∈ I ⇒ f(α1.a1 + ...+ αn.an) 6 α1.f(a1) + ...+ αn.f(an)

Exemples 1) x 7−→ x2 est convexe sur R. Prenons αk =
1

n
, alors : (a1+a2+...+an)

2
6 n.[a2

1+a
2
2+...+a

2
n].

Inégalité vue au ch. Espaces vectoriels euclidiens, cas particulier d’inégalité de "Cauchy-Schwartz".

2) Avec la concavité du ln (⇔ convexité de −ln) on obtient :

Pour a1, ...an ∈]0,+∞[, on a : Moy-géométrique= n
√
a1.a2....an 6

a1 + a2 + ...+ an
n

=Moy-arithmétique

Car ln(
a1 + ...+ an

n
) >

1

n
.[ln(a1)+...+ln(an)] = ln[(a1.a2....an)

1/n]. Et exponentielle de chaque membre.
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M+ Exercices: Dérivation des fonct. R→ R, théorèmes PTSI

1. Rappeler le Théorème de Rolle, le Théorème des accroissements finis et des conséquences.

2. Calculer la dérivée nième de

(a)
1

x2 − 1
en trouvant deux constantes telles que :

1

x2 − 1
=

a

x− 1
+

b

x+ 1
.

(b) cos(x).sin2(x) [linéariser ]. (Et cos(p)(x) = cos(x+ p.π/2).)

3. Avec le théorème des accroissements finis, montrer, pour n > 0 :
1

n+ 1
< ln(n+ 1)− ln(n) <

1

n
.

4. Graphe de f(x) = x.Arctan(x)− ln(1 + x2)

2
. [En +∞, voir que f(x) =

π.x

2
−ln(x)−1+ǫ(x), ǫ(x) −→

x→+∞
0.]

[Note. Avec | f ′(x) |= | Arctan(x) |6 π

2
, f est

π

2
-lipschitzienne ; et avec f” > O, f est convexe.]

5. (*) Soit f deux fois dérivable sur [a− h, a+ h], h > 0. Montrer que :

∃c ∈]a− h, a+ h[ tel que f(a+ h) + f(a− h)− 2.f(a) = h2f”(c).

[Considérer : g(x) = f(a+ x) + f(a− x)− 2.f(a)− k.x2, k choisi tel que g(h) = 0].

6. Un raccord C∞. Soit f telle que f(x) = 0 si x 6 0 et f(x) = e−1/x si x > 0. Dessin ?

(a) Montrer que f est C1 sur R. [f C0 ? f C1 : théorème de la limite de la dérivée.]

(b) (*) Puis voir f (n)(x) =
Pn(x)

x2n
.e−1/x, où Pn est un polynôme à ne pas explisciter et f C∞.]

7. (*) Soit Pn(x) =
(
[x2 − 1]n

)(n)
. Montrer que Pn possède n racines réelles distinctes.

(Il suffit de montrer : P scindé sur R =⇒ P ′ scindé sur R comme vu après le Théorème de Rolle).

8. (*) Soit f C0 sur [a, b], dérivable sur ]a, b[ telle que f(a) = f(b) = 0, avec [a, b] ⊂ R+∗.

Montrer que : ∃c ∈]a, b[ tel que la tangente en (c, f(c)) passe par O(0, 0). [Considérer f(x)/x]

9. A partir de la concavité du ln, montrer que :

(a) (* pour PSI) Pour xi > 0 : n
√
x1.x2....xn 6

x1 + x2 + ...+ xn
n

.

(b) (*) Si 0 6 α 6 1, u > 0, v > 0 : uα.v1−α
6 α.u+ (1− α).v.

En déduire pour x > 0, y > 0, p, q positifs tels que
1

p
+

1

q
= 1 : x.y 6

xp

p
+
yq

q
.

10. (*) Soit f C∞ sur ]0,+∞[. Montrer que ∀n ∈ N∗, [tn−1.f(
1

t
)](n) = (−1)n.t−n−1.f (n)(

1

t
).

Cas de [xn−1.ln(x)](n) ? de [xn−1.ln(1 + x)](n) ? de [xn−1.e1/x](n) (formule

d’Halphen) ? Application : Dérivée d’ordre n de g(x) = e1/x ?



Chapitre 12

Les fonctions élémentaires

12.1 Fonctions log, exp

12.1.1 Fonction ln [John Napier, en France "Neper". Grégoire de Saint Vincent ...]

1. Deux rappels

• Soit f une fonction C0 sur un segment [a, b] ; alors :
∫ b

a

f(x)dx existe (aire).

• Soit f continue sur I, un intervalle et a, x ∈ I. Alors (bien voir les lettres) F (x) =
∫ x

a

f(t)dt

est une primitive de f : F dérivable et F ′ = f ou F ′(x) = f(x).

Ou bien, pour f continue, intégrale ≡ primitive. Cf. chapitre Intégrales.

2. Définition Bien voir les lettres aussi comme modèle

ln(x) =
∫ x

1

dt

t
est définie pour x > 0 ; ln(1) = 0 ; ln′(x) =

1

x
; donc ln strictement croissante.

3. Théorèmes fondamentaux

ln(a.b) = ln(a) + ln(b), si a > 0, b > 0. D’où ln(1/a) = −ln(a) et ln(ar) = r.ln(a) pour r ∈ Q.

Démonstration (On utilise ln′(x) =
1

x
!)

• Soit g(x) = ln(ax)− ln(x) ; alors g est dérivable par composition et g′(x) =
a

ax
− 1

x
= 0.

Donc : g = Cte = g(1) = ln(a) ; ou ln(ax) = ln(a) + ln(x) sur ]0,+∞[.

• Puis, faire b =
1

a
; qui donne ln(a−1) = −ln(a).

• Enfin ici, on va procèder par étapes :
pour r = n ∈ N, celà vient de la formule fondamentale.
pour r = −n ∈ Z−, on a ln(a−n) = ln[(an)−1] = −ln(an) = −n.ln(a).

pour q ∈ N∗, q.ln(a1/q) = ln(a) donc ln(a1/q) =
1

q
.ln(a). Enfin ln(ap/q) = p.ln(a1/q) =

p

q
.ln(a).

4. Prouvons les limites ln(x) −→
x→+∞

+∞. D’où ln(x) −→
x→0+

−∞. Puis :
ln(x)

x
−→
x→+∞

0.

Démonstration :
• Comme ln est croissante (strictement même), elle a forcément une limite finie ou infinie l > 0,

si x→ +∞. Or ln(2x) = ln(2) + ln(x) ; par passage à la limite l = ln(2) + l : donc l = +∞.
• Déduction avec : ln(x) = −ln(1/x).

• Puis (*), avec un peu de calcul intégral (faire un dessin). Sur [1, x > 1] :
√
t 6 t, donc

1

t
6

1√
t
;

donc ln(x) =
∫ x

1

dt

t
6

∫ x

1

dt√
t

= 2.[
√
x− 1]. Ainsi : x > 1 ⇒ 0 6

ln(x)

x
6

2.
√
x

x
...

Note
ln(x)

x
−→
x→+∞

0 se dit : ln admet "une branche parabolique de direction (asymptotique) Ox".
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Dessin et Remarques

� (1 +
1

n
)n −→
n→+∞

e (Très important et à bien savoir).

� ln(e) = 1 où e = 2, 71828 ... La tangente en (e, 1) passe par O.

� Comparaison en +∞ avec xr connue :
ln(x)√
x
−→
x→+∞

0.

� ln(1 + h) ∼
h→0

h ou ln(u) ∼
u→1

(u− 1) (cf. dérivée en x0 = 1)

� Enfin la dérivée (ln | u(x) |)′ =
u′(x)
u(x)

. Primitives de
u′(x)

u(x)
: ln | u(x) | +C.

12.1.2 Fonction exp = ln−1

1. Définition

ln est C0 strict. croissante, surjective ]0,+∞[→] −∞,+∞[. La réciproque exp est donc C0.
De plus, ln est dérivable et ∀x > 0, ln′(x) > 0 ; donc exp est dérivable et on a : exp′ = exp.

Voir chapitres précédents !

2. Propriétés fondamentales

exp(α + β) = exp(α).exp(β) ; exp(−α) = 1/exp(α) ; [exp(α)]r = exp(r.α) ceci pour r ∈ Q.

Il suffit de prendre le ln (tout est donc ramené au ln).

Notation nouvelle (conséquence)

On a donc [exp(1)]r = exp(r) ou bien er = exp(r) mais seulement pour r ∈ Q.

On note ex = exp(x) pour x ∈ R : C’est une définition si x ∈ R\Q.

3. Limites (Prendre le ln)

ex −→
x→+∞

+∞ ; d’où ex −→
x→−∞

0.
ex

x
−→
x→+∞

+∞ : Branche "parabolique" de direction (asympt.) Oy.

Dessin et Remarques

� La tangente en (1, e) à exp passe par O.

� (1 +
λ

n
)n −→

n→+∞
eλ [n >| λ |⇒ (1 +

λ

n
) > 0.]

� On a l’équivalent : eh − 1 ∼
h→0

h.

� Comparaison avec xr connue : ex/x100 −→
x→+∞

+∞.

4. Question. (eα)r = er.α, si r ∈ Q. A-t-on (eα)β = eα.β, β ∈ R ? Rép. aβ pas encore défini !

12.1.3 Autres fonctions exponentielles

1. Définition
Pour généraliser (eα)r = er.α : en posant eα = a, α = ln(a), on définit : aβ = eβ.ln(a)

Ainsi on définit : ax = ex.ln(a), x ∈ R, a > 0 ; ou bien : ln(ax) = x.ln(a).

2. Théorèmes. On peut alors répondre à la question précédente et même (en exercices) :

Pour x, y ∈ R, a > 0 : ax+y = ax.ay; a−x = 1/ax; axy = (ax)y; (ab)x = ax.bx; (
a

b
)x =

ax

bx
.

(ax)′ = ln(a).ax. D’où, si a 6= 1, x 7→ ax bijective de R dans ]0,+∞[, de réciproque dérivable.

3. Dessin et Remarque

Faire les cas : 2x ; (
1

e
)x = e−x ; 1x. On aura 3 formes indéterminées : ∞0; 00; 1∞.
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Les logarithmes et les exponentielles :

y

x

0
50

y

5

4

3

2

1

x

0
210-1-2

12.1.4 Autres fonctions log

1. Définition

loga est la réciproque de expa donc a > 0, a 6= 1 et : loga(x) =
ln(x)

ln(a)

Car : y = loga(x)⇔ ay = x⇔ ey.ln(a) = x⇔ y.ln(a) = ln(x).

2. Rappel et remarque. Soit P = R2 le plan affine.

• L’application de R2 dans R2 fk : M

(
x
y

)
7−→M ′

(
x′

y′

)
telle que : x′ = x, y′ =

b

a
.y = k.y

est appelée dilatation (ou affinité) de base Ox de direction Oy, de rapport k =
b

a
.

[Vue au sujet de l’ellipse]. Elle est bijective (k 6= 0) et de réciproque f1/k.

• Voir que l’on passe de la courbe du ln à celle de loga par une telle dilatation de raport k =
1

ln(a)
.

3. Dessins

Cas a = 10 ? (ci-dessus) Cas a =
1

e
?

Notes (peu importantes) :

loga(a) = 1.

log10(x) =
ln(x)

ln(10)
; et donc : log10(e) =

1

ln(10)
.

On a une certaine relation de Chasles : loga(c) = loga(b).logb(c).
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12.1.5 Fonctions puissances : y = xα, α 6∈ Q

1. Si α 6∈ Q, xα = eα.ln(x) (Si α ∈ Q : connu sans ln)

2. Exemple : y = x
√

2

� Prolongement continu en x = 0 (car f(x) −→
x→0

0). On note encore f

� Dérivée ? si x > 0, trouver (xα)′ = α.xα−1 et fonction prolongée dérivable en 0 car
f(x)− f(0)

x− 0
tend vers 0 si x→ 0 (et même C1([0,+∞[) avec le Théorème de la limite de la dérivée).

� Branche infinie ?
y

x
−→
x→+∞

+∞ : branche "parabolique " de direction (asympt.) Oy.

Graphe :
0

2

2

0

12.1.6 (*) Equations fonctionnelles usuelles (compléments)

1. Les applications C0 de R dans R / f(x+ y) = f(x) + f(y) [équation de Cauchy] sont f(x) = a.x.

Vu en exercice. On en déduit :

2. Les applications C0 de R dans R+ / f(x+ y) = f(x).f(y) sont f(x) = ax, a > 0 ou f = O.

3. Les applications C0 de ]0,+∞[ dans R / f(x.y) = f(x) + f(y) sont f(x) = k.ln(x).

4. Les applications C0 de ]0,+∞[ dans R / f(x.y) = f(x).f(y) sont f(x) = xα ou f = O.

12.2 Fonctions circulaires et circulaires réciproques

12.2.1 Voir chapitres précédents

2 relations vues :
Arcsin(x) +Arccos(x) =

π

2
sur [−1, 1].

et Arctan(x) +Arccot(x) =
π

2
, sur R.

12.2.2 Si a.b = 1, Arctan(a) + Arctan(1/a) = ±π/2 avec +1 si a > 0, −1 si a < 0.

En exercice : Pour ab 6= 1, Arctan(a) +Arctan(b) = Arctan
a+ b

1− ab + k.π, k = −1, 0 ou 1.

Solution :

G étant le membre de gauche, tan(G) =
a+ b

1− ab car tan(Arctan(x)) = x tout le temps sur R.

A ce stade, G = Arctan
a+ b

1− ab + k.π ; mais par encadrement facile :
−3.π

2
< k.π <

3.π

2
. Fini.
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Un cas particulier (laissé en exercice)

Si a > 0, b > 0, alors : Arctan(a)−Arctan(b) = Arctan
a− b
1 + ab

[un cas où k = 0].

12.2.3 Symbole ez

On définit ez = ex+iy par ez = ex.[cos(y) + isin(y)] .

Alors (à voir)

� ez1+z2 = ez1 .ez2 .

� et
d

dt
(ea.t) = a.ea.t, même si a ∈ C, t réel (utilisé avec les primitives).

12.3 Fonctions hyperboliques

12.3.1 Théorème de décomposition

Toute application de R dans R s’écrit d’une et d’une seule façon comme somme :
d’une application paire et d’une application impaire.

On peut réfléchir au cas (facile) où f(x) = 3− x+ x2 − x4 + 3x5.

Démonstration
1) Analyse et unicité :

Si on a une écriture f(x) = p(x) + i(x) (1) [notations claires], forcément f(−x) = p(x)− i(x) (2) ;

donc : p(x) =
f(x) + f(−x)

2
; i(x) =

f(x)− f(−x)
2

.

2) Synthèse et existence :

pour f donnée, choisissons les seuls candidats : p(x) =
f(x) + f(−x)

2
; i(x) =

f(x)− f(−x)
2

;

vérifions qu’ils conviennent : f(x) = p(x) + i(x) [oui] ; p est paire [oui] ; i est impaire [oui]. Fini.

12.3.2 ch, sh cosinus et sinus hyperbolique

1. Définitions ch(x) =
ex + e−x

2
; sh(x) =

ex − e−x
2

. ch(x) étant donc la partie paire de ex ; sh(x)

la partie impaire de ex. Ou : ex = ch(x) + sh(x) ; e−x = ch(x)− sh(x) par équivalence.

Aussi à noter : ex + e−x = 2.ch(x); ex − e−x = 2.sh(x)

2. Etude
� D’abord ex.e−x = 1 donne ch2(x)− sh2(x) = 1. Puis ch′ = +sh ; sh′ = +ch.

� Donc sh est croissante (strictement, sur R, car ch > 0 ; mais on étudie pour x > 0 parité).

� sh(x) ∼
x→0

x (dérivée en 0) et sh(x) ∼
x→+∞

ex

2
. D’où sh ... Puis :

� ch croissante sur R+ car sh > 0 sur R+ ; va de 1 à +∞ ; ch(x) ∼
x→+∞

ex

2
. D’où ch ...

3. Remarques à bien voir

� Non seulement ch(x) ∼
x→+∞

sh(x), mais encore ch(x)− sh(x) −→
x→+∞

0. [ch(x) − sh(x) = e−x]

� En fait : ch(x)− 1 ∼
x→0

x2

2
; en multipliant haut et bas par ch(x) + 1 (...) par exemple.
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4. Dessin de ch, sh et x 7→ ex/2.

sinus et cosinus hyperboliques avec x 7→ ex/2 ; puis tangente et cotangente hyperboliques :

y

0

x

0

y

x

0
0

12.3.3 th, coth

1. Définition

th(x) =
sh(x)

ch(x)
=
ex − e−x
ex + e−x

=
e2x − 1

e2x + 1
impaire, C∞(R); coth(x) =

1

th(x)
impaire, définie et C∞(R∗)

2. Dérivées

th′(x) =
1

ch2(x)
= 1− th2(x) donc | th(x) |< 1;

coth′(x) =
−1

sh2(x)
= −[coth2(x)− 1] donc | coth(x) |> 1.

3. Courbes (ci-dessus)

Remarques th(x) ∼
x→0

x. th(x)− 1 ∼
x→+∞

−2

e2x
.

Ce qui suit est Hors programme. (En exercice)

12.3.4 Trigonométrie hyperbolique

1) En plus des définitions et de ch2(x)− sh2(x) = 1 avec ea+b = ea.eb et e−(a+b) = e−a.e−b, on a :

2) Hors progr. (bis)





sh(a+ b) = sh(a).ch(b) + sh(b)ch(a)
sh(a− b) = sh(a)ch(b) − sh(b)ch(a)
ch(a + b) = ch(a)ch(b) + sh(a)sh(b)
ch(a − b) = ch(a)ch(b) − sh(a)sh(b)

D’où





th(a+ b) =
th(a) + th(b)

1 + th(a)th(b)

th(a− b) =
th(a)− th(b)
1− th(a)th(b)

(Formules d’addition.)
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3) D’où :

{
ch(2a) = 2ch2(a)− 1 = 1 + 2sh2(a) = ch2(a) + sh2(a)

sh(2a) = 2sh(a)ch(a) et donc th(2a)

en particulier ch2(a) =
ch(2a) + 1

2
; sh2(a) =

ch(2a) − 1

2
(Duplication)

4) Et





sh(a+ b) + sh(a− b) = 2sh(a)ch(b)
sh(a+ b)− sh(a− b) = 2ch(a)sh(b)
ch(a+ b) + ch(a− b) = 2ch(a)ch(b)
ch(a + b)− ch(a− b) = +2sh(a)sh(b)

ou





sh(p) + sh(q) = 2.sh(
p + q

2
).ch(

p − q
2

)

sh(p)− sh(q) = 2.ch(
p + q

2
).sh(

p − q
2

)

ch(p) + ch(q) = 2.ch(
p + q

2
).ch(

p − q
2

)

ch(p)− ch(q) = +2.sh(
p+ q

2
).sh(

p − q
2

)

Que l’on peut retenir par l’ordre choisi avec "si co co si co co + si si" (pour Somme ↔Produit).

5) En posant : t = ex , on a sh(x), ch(x), th(x) fraction rationnelle en t :

sh(x) =
t− 1/t

2
=
t2 − 1

2t
; ch(x) =

t+ 1/t

2
=
t2 + 1

2t
; th(x) =

t− 1/t

t+ 1/t
=
t2 − 1

t2 + 1
.

(A cause de celà, les relations à l’aide de th(x/2) moins utiles ; juste en exercice

sh(x) =
2t

1− t2 , ch(x) =
1 + t2

1− t2 , th(x) =
2t

1 + t2
fractions rationnelles en t = th(

x

2
).)

6) Signalons enfin (et à ne pas confondre avec ce qui précède)

sh2(x) =
th2(x)

1− th2(x)
ch2(x) =

1

1− th2(x)
(cf. Dérivée de th...).

Démonstration Les formules d’addition sont vues. Toutes les autres en résultent !

Par exemple : sh2(a) =
sh2(a)

ch2(a)− sh2(a)
et en divisant par ch2(a), on trouve la 1ère de 6).

Attention : sin(x+
π

2
) = cos(x) ne se généralise pas ici ! (et sh2(x) 6= sh(2x) !)

12.3.5 Exercices et remarques

1. On a ou on vérifie que : ch(x) − 1 = +2.sh2(
x

2
) ; on en re-déduit : ch(x) − 1 ∼

x→0

x2

2
.

2. Ensuite : A-t-on l’analogue de la formule de Moivre ?

Oui ! (ex)n = enx ! ou [ch(x) + sh(x)]n = ch(nx) + sh(nx) et parité (rappelée après)

3. Exercice corrigé

� Simplifier C =
n∑

k=0

ch(kx). Analogue à
n∑

k=0

cos(kx) pour revoir la trigonométrie circulaire !

� Solution

Posons F =

n∑

k=0

ekx C sera la partie paire de F (x) ou bien C =
F (x) + F (−x)

2
si besoin.

On a : F =
e(n+1)x − 1

ex − 1
=
e(n+1)x/2

ex/2
.
2.sh[(n + 1)x/2]

2.sh(x/2)
=
sh[(n + 1)x/2]

sh(x/2)
[ch(

nx

2
) + sh(

nx

2
)].

Donc : C =
sh[(n+ 1)x/2]

sh(x/2)
.ch(

nx

2
) Voir quelques vérifications (n = 0, n = 1, x = 0).

4. Resterait les hyperboliques réciproques Argsh,Argch,Argth, ...



84 CHAPITRE 12. LES FONCTIONS ÉLÉMENTAIRES

M+ Exercices: Fonctions élémentaires PTSI

1. Fonction ln et exp : lim
n→∞

(1+
λ

n
)n ? Définition de ax, a > 0 ? loga(x), a > 0, a 6= 1 ?

2. (*) Simplifier, grâce à de la trigonométrie ici, qui évite de dériver :

(a) Arccos(1− 2x2) (b) Arcsin(2x.
√

1− x2)

(c) Arctan(
2x

1− x2
) (d) Représenter : Arctan[

1 + tan(x)

1− tan(x)
]. [Voir : tan(

π

4
+x)]

3. Calculer th′(x) [= 1/ ch2(x) ou 1− th2(x) ; donc | th(x) |< 1.] coth′(x) idem.

4. (a) lim
x→+∞

[
ch(x)

1 + sh(x)
]x (b) Equivalent de ln[ch(x)] en +∞ (c*) lim

x→0+

[ch(x)]1/sh(x) − 1

ln[th(1/x)]
?

5. Inégalités. Prouver x+
x3

3
6 tan(x) 6 x+

14x3

25
sur [0,1]. Et

x

1 + x2
6 Arctan(x) sur [0,+∞[.

6. (*) Dériver et trouver chaque fois
cte

ch(x)
; en déduire des relations entre les 3 fonctions suivantes !

Arctan(ex) Arctan[sh(x)] Arctan
(
th(x/2)

)
Note : th = sh/ch ; ch(2a) = ch2(a) + sh2(a).

[F. de Gunderman : θ = gd(x) =

∫ x

0

dt

ch(t)
= Arctan(sh(x)) = 2.Arctan(th(

x

2
)) = 2Arctan(ex)−π

2
= Arcsin(th(x)) ;

F. inverse : x = arcgd(θ) = gd−1(θ) = Argth(sin(θ)) =
1

2
.ln

1 + sin(θ)

1 − sin(θ)
= ln(tan(

π

4
+
θ

2
)) = Argsh(tan(θ)). Ex 9]

7. (*) Montrer l’égalité : Arctan
x

x+ 1
−Arctanx− 1

x
= Arctan

1

2.x2
, pour x > 0.

8. Interprétation géométrique de t dans ch(t), sh(t). Tracer la courbe d’éq. x2− y2 = 1 en repère o.n.

(*) Soit A(1, 0)M(x = ch(t), y = sh(t)), t > 0. Montrer que t =2.Airealgébrique(OAM)curviligne //Cercle.

9. (*) Soit x = ln[tan(
π

4
+
θ

2
)] , x ∈ R, θ ∈]

−π
2
,
π

2
[ [D’où x =

∫ θ

0

dt

cos(t)
, fonction inverse de Gunderman.]

Montrer que : sin(θ) = th(x) ; dx/dθ = 1/cos(θ) = ch(x) ; tan(θ) = sh(x) ; tan(θ/2) = th(x/2).

[Intervient dans les "loxodromies" de la sphère : si ϕ =longitude, θ = OX,OM =latitude et si, avec
π

2
− V azimut,

V = cte =angle(trajectoire,méridien), loxodromie, tan(V ) =
dθ

cos(θ).dϕ
: (ϕ− ϕ0).tan(V ) = gd−1(θ). Ainsi, dans les

cartes de Mercator : Ox = ϕ, Oy = gd−1(θ), les loxodromies sont des droites ! Longueur =
π.R

2.sin(V )
, 0 6 θ 6

π

2
.]

10. (*) Montrer :
π

4
= 4.Arctan

1

5
−Arctan 1

239
= Arctan

1

2
+Arctan

1

5
+Arctan

1

8
= Arctan

1

2
+Arctan

1

3
...

(La 1ère formule est de John Machin 1680-1752, qui obtint 100 décimales pour π ;

la 2ème 1844 Johan Dase : 205 décimales ; puis William Shanks 1812-1882 : > 500

puis Fergusson avec calculette, en 1947 ; puis les ordinateurs ...)

Note : Arctan(x) est bien connu si | x |< 1, surtout si x proche de 0 (Spé).



Chapitre 13

Equations différentielles (ordre 1 et 2)

13.1 Généralités

13.1.1 Equations du 1er ordre

1. La forme théorique est (1) y′ = f(x, y) où f : I x R→ R.

Elle admet pour solution toute fonction ϕ dérivable sur J ⊂ I telle que ϕ′(x) = f [x, ϕ(x)].

Exemple très simple : y′ =
1

x
, pour x > 0, donne : y = ln(x) + λ.

2. Problème de Cauchy : Existence et unicité de solution "maximale" de (1) vérifiant les conditions
initiales (x0, y0), soit telles que ϕ(x0) = y0.

Ainsi : soit (2) xy′ − 2y = 0. La forme (1) est y′ =
2y

x
; donc ennuis attendus pour x = 0.

D’ailleurs, pas de solution passant par

(
x0 = 0
y0 = 1

)
. [Et une infinité passant par

(
x0 = 0
y0 = 0

)
, cf. II.]

3. Compléments :

� Une solution est un couple (J, ϕ). La courbe : x ∈ J, y = ϕ(x) est dite "courbe intégrale".
� Comparaison de solutions : (J1, ϕ1) ≺ (J2, ϕ2) si J1 ⊂ J2 et ϕ2/J1

= ϕ1.
� Soit ϕ dérivable telle que ϕ′(x) = f [x, ϕ(x)] avec f continue (fonction de deux variables). Alors,

par composition, le membre de droite est continue ; donc ϕ′ sera continue : ϕ C1.
� On ne sait pas résoudre les équations compliquées. Aussi on considère {(x, y)/f(x, y) = k} appelé

isocline Ik : lieu des points où les courbes intégrales ont une pente (inclinaison) k. cf. II.

13.1.2 Equation du 2ème ordre

1. La forme théorique est (1) y” = f(x, y, y′), f : IxR2 → R.

2. Posons Y =

(
y
y′

)
, Y ′ =

(
y′

y”

)
. Voyons qu’en théorie, on peut se ramener au 1er ordre :

On a : (1) ⇔
(
y′

y”

)
=

(
y′

f(x, y, y′)

)
⇔ Y ′ = g(x, Y ) où g est une autre fonction (compliquée) !

Exemple : y” + y′ + y = sin(x)⇐⇒
(
y′

y”

)
=

(
0 1
−1 −1

)
.

(
y
y′

)
+

(
0

sin(x)

)
(avec le produit matri-

ciel :

(
a b
c d

)
.

(
u
v

)
=

(
av + bv
cu+ dv

)
) ou : Y ′ +A.Y = B avec A =

(
0 −1
1 1

)
et B =

(
0

sin(x)

)
.

Pour celà, on dit que cette équation différentielle est linéaire à coefficients constants (vue au III).

3. Retenons : les conditions initiales sont (x0, Y0) ; donc : (x0, y0, y
′
0).

85
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13.2 Résolution d’équations du 1er ordre : 2 types §1 et 2

13.2.1 Equations à variables séparées, du type : f(y).y′ = g(x)

1. Si F est une primitive de f , G de g, alors par équivalence : F (y) = G(x) + λ.

Démonstration. On vérifie que :
d

dx
[F (y)−G(x)] = 0 est vrai car

d

dx
F (y) = F ′(y).y′ = f(y).y′.

Retenir : Ecrire
∫
f(y).y′.dx =

∫
g(x).dx y′ =

dy

dx
, donc :

∫
f(y).dy =

∫
g(x).dx ...

A noter :
∫
cos(x).dx = sin(x) + λ,

∫
cos(t).dt = sin(t) + λ,

∫
cos(y).dy = sin(y) + λ

Exemple : cos(y).y′ =
1√

1− x2
⇔ sin(y) = Arcsin(x) + λ. Ne jamais oublier les constantes !

2. Eq. "incomplètes" en y : (1er cas particulier) y′ = g(x). Tout revient à une primitive de g.

Ainsi : y′ = 1 + tan2(x) a pour solutionS y = tan(x) + λ.

3. Eq. "incomplètes" en x : (2ème cas particulier) f(y).y′ = 1.

Sur un exemple : y′ = y2 + 1. Ici
y′

y2 + 1
= 1 ou Arctan(y) = x+ λ.

Complément : Résoudre y′ = y2 − 1, avec

∫
dt

t2 − 1
=
−1

2
.ln | t+ 1

t− 1
|. La rédaction :

� y = 1 est une solution (y′ = 0) ; � y = −1 en est une autre.

� Autres solutions, c’est-à-dire on se place sur un intervalle où (y − 1)(y + 1) ne s’annulle pas ; c’est
possible car y continue : en effet, elle est même dérivable !

Ici
y′

y2 − 1
= 1 ou

−1

2
.ln | y + 1

y − 1
|= x+ λ ; | y + 1

y − 1
|= eK .e−2x ;

y + 1

y − 1
= k.e−2x, k = ±eK ∈ R∗

ou y =
k.e−2x + 1

k.e−2x − 1
, k ∈ R∗. Résumé : y = +1 et y =

k.e−2x + 1

k.e−2x − 1
, k ∈ R ; k = 0 redonnant y = −1.

Remarque. On signalera, autre complément, les équations du type y′ = h(
y

x
) [se ramenant

aux variables séparées] ; mais les cas fondamentaux sont les équations linéaires vues maintenant.

13.2.2 Equations linéaires : a(x)y′ + b(x)y = c(x), x 7→ a(x), b(x), c(x) continues

1. Définitions. a(x)y′ + b(x)y = c(x) est dite "équation avec second membre" notée EASM

a(x)y′+b(x)y = 0 : "équation sans second membre" notée ESSM ou "équation homogène associée" :
C’est ici homogène en y, y′ c’est-à-dire, si on multiplie y et y′ par λ quelconque, rien de changé.

Exemples
� y′ + 2y = x est une éq. linéaire "à coeff. constants" pour ESSM.
� y′ + 2y = eix idem ; seul le second membre a changé. (On la verra)
� xy′ − 2y = 0 est une éq. linéaire sans second membre, mais coeff. non constants.

� xyy′ + y2 = 3x2 non linéaire ! Mais si Y = y2, linéaire en Y :
x

2
.Y ′ + Y = 3x2.

� y′ = sin(x.y) non linéaire, non à variables séparées ... Infaisable de manière exacte ?

2. Théorème pour ESSM a(x)y′ + b(x)y = 0.

Sur un intervalle où a(x) ne s’annulle pas, ESSM y′ =
−b(x)
a(x)

.y a pour solution y(x) = k.e
−
∫ b(x)

a(x)
.dx

∫
étant une primitive. On dit que les solutions forment une droite vectorielle (−→v = k.−→u ,−→u 6= −→0 ).
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Démonstration On peut faire un calcul (y = O ; puis y′/y = −b(x)/a(x) ...) avec des primitives,
cependant les ln posent un souci puisque, pour y′ + 2y = eix, les solutions vont : R→ C. Voici :

[y(x).e
∫ b(x)

a(x)
.dx

]′ = [y′(x) + y(x).
b(x)

a(x)
].e
∫ b(x)

a(x)
.dx

=
a(x)y′ + b(x)y

a(x)
.e
∫ b(x)

a(x)
.dx

d’où : ESSM ⇔ y(x).e
∫ b(x)

a(x)
.dx

= k, k arbitraire. Fini.

(Note : On a donc multiplié ESSM par
1

a(x)
.e
∫ b(x)

a(x)
.dx

; ceci est appelé "un facteur intégrant".)

3. Exemple : Résoudre xy′ − 2y = 0 une primitive de f(x) = 1/x étant F (x) = ln | x |.

Pour x 6= 0, y = k.e 2
∫

dx
x = k.eln(|x|2) = k.x2 : Précisemment

{
pour x > 0, y = K.x2

pour x < 0, y = L.x2 !

En complément : Problème de Cauchy : Solutions passant par (1,1) ?
Avec la condition initiale, on a une et une seule solution sur ]0,+∞[, y = x2. Sur [0,+∞[, idem.

Mais ici, infinité de solutions sur R, y = x2 pour x > 0, y = l.x2 pour x < 0 : une famille de
courbes Cl ( l = 0 par exemple...). En effet raccord dérivable en 0 et équation satisfaite !

y

x

0
0

Isoclines (pour voir) I0 : y = 0 ; I1 : y = x/2 ; I2 : y = x ; I−1 : y = −x/2 ...

4. Théorème pour EASM a(x)y′ + b(x)y = c(x).

EASM a toujours des solutions : elles sont somme d’une solution particulière de EASM et de
"la sol. générale" de ESSM. On peut utiliser la méthode de ’variation de la constante’ ci-après.

On dit que les solutions forment une droite affine (
−−→
OM =

−→
OA+ k.−→u ,−→u 6= −→0 ou M = A+ k.−→u )

dirigée par la droite vectorielle des solutions de ESSM.

Démonstration. On a vu que : y(x) = k.e
−
∫ b(x)

a(x)
.dx

est la sol. générale de ESSM.

On pose y(x) = k(x).e
−
∫ b(x)

a(x)
.dx

, k(x) fonction inconnue pour EASM (Méthode de Lagrange).

Alors EASM : a(x).[k′(x)− b(x)

a(x)
.k(x)].e... + b(x).k(x).e... = c(x). Qui s’écrit (simplification) :

k′(x) =
c(x)

a(x)
.e

+
∫ b(x)

a(x)
.dx

; k(x) = k0(x) + k (primitive) ; y(x) = k0(x)e
−
∫ b(x)

a(x)
.dx

+ k.e
−
∫ b(x)

a(x)
.dx

du type :
−−→
OM =

−→
OA+ k.−→u , k arbitraire, comme annoncé.

13.2.3 Méthodes pour EASM donc : linéaires (1er ordre)

1. Exemples simples (cf. III.)

(∗) y′ + 2y = x (∗∗) y′ + 2y = eix (∗∗∗) y′ + 2y = e−2x

Chacune a même ESSM de solutions y = k.e−2x (à bien voir).

(∗) Pour EASM, cherchons une solution "à vue" : posons y = ax+ b ; on dérive, on reporte :
y = x/2 − 1/4 convient. D’où les solutions : y(x) = x/2− 1/4 + ke−2x.

(∗∗) Pour EASM idem avec y = a.eix ; possible si a =
2− i

5
. Donc : y(x) =

2− i
5

eix + ke−2x

(∗∗∗) Pour EASM y = a.e−2x ne peut convenir (on a vu que : y′ + 2y = 0, ESSM).
Essayons y(x) = e−2x(ax+ b) : (cf. III : a.y” + by′ + cy = emx.P (x).)
Convient avec a = 1, b quelconque. Donc : y(x) = (x+K)e−2x.
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2. Théorème de superposition des solutions de EASM

Soit l’équation (Eq) y′ + 2y = sin(x). ESSM vue. Pour EASM, on écrit sin(x) =
eix − e−ix

2.i
et

utilisons le

Théorème
Si y1(x) est solution de a(x)y′ + b(x)y = c1(x) ; y2(x) sol. de a(x)y′ + b(x)y = c2(x)

alors : λy1(x) + µ.y2(x) est solution de a(x)y′ + b(x)y = λ.c1(x) + µ.c2(x).

Vérification facile.

Utilisation

(∗∗) y′ + 2y = eix [déjà vue] a pour solution particulière : y1(x) =
2− i

5
eix. Puis

y′ + 2y = e−ix a pour solution (en changeant i en −i) y2(x) =
2 + i

5
e−ix = y1(x). Donc

y′ + 2y =
eix − e−ix

2.i
doit avoir pour solution

y1(x)− y2(x)

2.i
= ℑm(y1(x)) =

−cos(x) + 2sin(x)

5

Vérifié ! D’où les solutions de (Eq) : y(x) =
−cos(x) + 2sin(x)

5
+ ke−2x.

3. Exemple d’utilisation de la "variation de la constante"

y′cos(x) + y.sin(x) = 2.x.cos2(x), sur ]− π

2
,
π

2
[.

ESSM : y = k.cos(x) aisément avec le résultat connu.

EASM : Posons y(x) = k(x).cos(x) ; arriver à k′(x) = 2.x ; k(x) = x2 +λ. D’où : y(x) = ...

4. Remarque complémentaire

� Pour l’équation différentielle non linéaire définie sur R : y′ = y2 + 1, y(0) = 0, à variable séparée,

on a vu : y(x) = tan(x), x ∈]− π

2
,
π

2
[ : de façon imprévisible, apparait une barrière en x =

π

2
!

� Ceci n’a pas lieu pour une équation linéaire : Sur un intervalle I où a(x) ne s’annulle pas (et est
continue), les solutions sont définies sur I entier. Et le problème de Cauchy a une unique solution

(un et un seul k telle que y(x0) = y0) car y(x) = ϕ0(x) + k.e... : bien voir comment intervient la
constante [le schéma M = A+ k.−→u ] ! (EASM et ESSM n’a de sens que pour une éq. linéaire.)

13.2.4 (*) En complément : équation différentielle y′ = h(
y

x
)

On dit que cette équation est "homogère en x, y" car si on multiple x, y par λ, rien de changé.

Exemple : y2 + (x2 − xy).y′ = 0 qui devient y′ =
y2

x(y − x) ou y′ =
( yx)2

y
x − 1

car x = 0 exclus (si droite verticale, y′ n’existe pas) ; y = x non solution .
Méthode :

On pose t =
y

x
nouvelle variable, sans oublier des cas éventuels où t = t0 constant. L’exemple :

� y = t0.x, y
′ = t0 donne t20x

2˚+x2(1− t0)t0 = 0 ; donc si x 6= 0, t0 = 0 et donc une droite solution y = O.

� Sinon y = t.x, y′ =
dy

dx
= t+ x.

dt

dx
(et

dt

dx
=

1
dx
dt

dérivation des fonctions réciproques). Donc :

t2x2 + x2(1− t)(t+ x.
dt

dx
) = 0 ; si x 6= 0, t2 + (1 − t).(t+ x.

dt

dx
) = 0 ou encore t+ (1− t).x. dt

dx
= 0 ou

dx

x
=
t− 1

t
.dt. D’où

∫
dx

x
=

∫
t− 1

t
.dt ; ln | x

k
|= t− ln | t |... x(t) = K.

et

t
; y(t) = K.et (et y = O).

Ainsi on est donc ramené à des variables "séparées" ; on aura x = x(t) ; puis y = t.x(t) soit : les courbes

intégrales (homothétiques) en paramétriques. Ici ne pas oublier, aussi, la droite y = O. Finir.
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13.3 Résolution d’équations du 2ème ordre

13.3.1 Remarques

1. Il y a beaucoup d’équations différentielles du 1er ordre que l’on ne sait pas résoudre.

Donc bien davantage ici !

Quelques cas connus [incomplètes en y ou en x, par exemple y”.y = y′2 : hors programme].

2. Même les équations linéaires : a(x)y” + b(x)y′ + c(x)y = d(x) posent de graves problèmes.

• En théorie, on peut donner quelques résultats : 2 constantes qui intervenant de manière connue.

• En pratique, cas fondamental de Sup : Eq. diff. linéaires à coefficients constants et second membre

du type exponentielle-polynôme : a.y” + b.y′ + c.y = emx.P (x) a, b, c,m ∈ C (donc les sinus ...)

13.3.2 ESSM à coefficients constants a.y” + b.y′ + c.y = 0 ; a, b, c ∈ C, a 6= 0

1. Théorème
Pour ESSM à coefficients constants, on forme : a.r2 + b.r + c = 0 (∗) "l’équation

caractéristique" : si ∆ 6= 0, y(x) = k.er1x + l.er2x; si ∆ = 0, y(x) = er0x(k.x+ l).

Une démonstration : Poser y(x) = er.x.z(x) et reporter ...

Exemple y” + y′ + y = 0.

� On a r = j, j2 ; d’où les solutions y(x) = k.ejx + l.ej
2x.

� A noter : une solution est dérivable 2 fois, par définition. Donc :
Même si on ne savait pas résoudre l’équation, on serait sûr que les solutions seraient C∞.

En effet : y” = −y′ − y dit que, le membre de droite étant dérivable, le membre de gauche aussi !
Et : y(3) = −y”− y′ ; on recommence pour y(4)... sans fin !

2. Cas des coefficients réels (comme dans l’exemple).
� Si ∆ > 0, rien de changé (les ou la racine sont réelles)

� Si ∆ < 0, 2 racines non réelles conjuguées α± iβ. Ici y(x) = eαx.[A.cos(βx) +B.sin(βx)]

A,B ctes (choisies réelles si l’on veut des solutions réelles). Car eiβ.x = cos(β.x) + i.sin(β.x)...

Exemple précédent : j =
−1 + i.

√
3

2
; donc y(x) = e

−x
2

(
A.cos(

√
3

2
x) +B.sin(

√
3

2
x)

)
.

Remarques

1) Rappel : Acos(ωt) +Bsin(ωt) = C.cos(ωt − ϕ), avec C =
√
A2 +B2 : toujours 2 constantes.

2) On montre que pour les équations linéaires sans second membre même à coefficients non constants
[a(x), b(x), c(x) continues sur I et a(x) ne s’annulant pas], on a y(x) = k.y1(x) + l.y2(x)
analogue à −→y = k.−→u + l.−→v avec −→u ,−→v non colinéaires.

On dit que les solutions de ESSM forment un plan vectoriel.

13.3.3 EASM ay” + by′ + cy = d(x)

1. Théorème (Comment interviennent les constantes, ici). On montre que :

Pour l’équation différentielle linéaire a(x)y” + b(x)y′ + c(x)y = d(x), d aussi continue sur I,
EASM a au moins une solution ϕ0. Et la sol. générale de EASM est somme de ϕ0 sol. part.
de EASM et de la sol. générale de ESSM : y(x) = ϕ0(x) + k.y1(x) + l.y2(x), analogue à
M = A+ k−→u + l−→v . "Les sol. forment un plan affine associé au plan vect. des sol. de ESSM".

2. Théorème de superposition pour l’équat. diff. linéaire a(x)y” + b(x)y′ + c(x)y = λ.d(x) + µ.δ(x)

Exactement comme vu pour le 1er ordre. Utilisé largement ensuite.



90 CHAPITRE 13. EQUATIONS DIFFÉRENTIELLES (ORDRE 1 ET 2)

3. Cas particulier a.y” + b.y′ + c.y = emx.P (x), m ∈ C, m = 0 permis !
ESSM connue, ici (coeff. constants).

EASM : On cherche une sol. particulière de la même forme y(x) = emx.Q(x) Q(x) polynôme.

Théorème
C’est possible avec : do(Q) = do(P ) si m non racine de l’équation caractéristique ;
do(Q) = do(P ) + 1 si m racine simple et do(Q) = do(P ) + 2 si m racine double.

Démonstration. Poser : y(x) = emx.z(x) et reporter.

13.3.4 Exemples (EDL à coeff. constants ...)

1. y”− y = 4x2ex.
ESSM. l’éq. car. est r2 − 1 = 0 de racine ±1 (non pas r2 − r !) ; sol. de ESSM y(x) = kex + le−x.
EASM. m = 1, donc racine simple de l’éq. car. Une sol. part. est y(x) = ex(α.x3 + β.x2 + γ.x+ δ).
Dériver 2 fois, reporter : α = 2/3, β = −1, γ = 1, δ arb. D’où les solutions de EASM :
y(x) = ex(2/3.x3 − x2 + x+K) + l.e−x (exactement 2 constantes).

2. y”− 6y′ + 9y = 4ex − 16e3x

ESSM a pour sol. y(x) = e3x(kx+ l) car 3 racine double de l’équation caractéristique (r − 3)2 = 0.
EASM : Soit (1) y”− 6y′ + 9y = 4ex. Cherchons une sol. part. y(x) = ex.α. Aisé, trouver α = 1.
Soit (2) y”− 6y′ + 9y = 16.e3x[= P (x)emx] : m = 3 est racine double de l’éq. caract. d’où sol. part.

y(x) = e3x(αx2+βx+γ) ; y′ = e3x
(

3α.x2 + 3β.x + 3γ
+2α.x+ β

)
, y” =




9α.x
2

+ 9β.x + 9γ
+ 6α.x + 3β
+ 6α.x + 3β

+ 2α


 voir la disposition, d’où :

16.e3x = e3x




9α.x
2

+ 9β.x + 9γ
+12α.x + 6β + 2α

−18α.x
2 − 18β.x − 18γ
−12α.x − 6β

+9αx
2

+ 9βx + 9γ




:

(
α = 8
β, γ arb.

)
. Solutions de EASM y(x) = ex+e3x(−8x2+Kx+L).

3. y” + y = sin(x).
Pour ESSM, l’éq. car. est r2 + 1 = 0 de racine ±i. Donc y(x) = k.eix + l.e−ix = Acos(x) +Bsin(x).
Pour EASM, considérons (1) y” + y = eix :

Elle a donc une sol. part. du type y1(x) = eix(α.x+β). En fait α =
−i
2
, β arbitraire, choisi nul ici.

Puis (2) y” + y = e−ix : a pour sol. part. y1(x) = e−ix.(
i.x

2
) (changeant i en −i). Superposition :

EASM y” + y =
eix − e−ix

2i
a pour sol. part.

y1(x)− y1(x)

2i
= ℑm(y1(x)) =

−x.cos(x)
2

. Ainsi

y” + y = sin(x) a pour solutions y(x) =
−x.cos(x)

2
+Acos(x) +Bsin(x). Vérifié !

4. y”− 2y = sh2(x) [Cas où m = 0 ; superposition]. Sol. : y(x) =
1 + ch(2x)

4
+ k.e

√
2x + l.e−

√
2x.

5. y” + 3y′ + 2y = 6.x.sh(x). Solutions : y(x) =
6x− 5

12
.ex + (

−3x2

2
+ 3x+K)e−x + l.e−2x.

6. y”− 2.y′ = emx [Aussi une équation du 1er ordre en Y = y′ ! ]
ESSM : solution s y(x) = k.e2x + l. EASM : selon les cas m = 0 (possible !) m = 2 et m 6∈ {0, 2}...

13.3.5 Résumé

• Redisons que les éq. diff. les plus importantes sont les linéaires 1er ordre a(x)y′ + b(x)y = c(x)

connues : ESSM y = k.e
−
∫ b(x)

a(x)
dx

; EASM : une solution à vue ou variation de la constante.

• 2ème ordre du type ay” + by′ + cy = em.x.P (x). ESSM avec éq. caractéristique : 2 constantes !

EASM : on cherche une solution de type analogue au membre de droite : voir la valeur de m ...

� (*) Il y a des équations diff. linéaires du deuxième ordre à coefficients non constants : xy”− y = O !

� (*) Enfin, il y a aussi des équation non linéaires : y′ = y2 + x, y” = y2 + x ...
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13.4 (*) Applications des équations différentielles

13.4.1 Le problème y′ = y, y(0) = 1 a pour solution exp sur R

13.4.2 Courbes telles que OP = 2.OT , P = proj⊥(M, Ox), T =Tangente∩ Ox

M

(
x
y

)
, P

(
x
0

)
, T

(
x− y/y′

0

)
: car la tangente : Y − y(x) = y′(x).(X − x) et T : faire Y = 0.

D’où l’éq. diff. xy′ − 2y = 0 déjà vue ! Solutions : Paraboles de sommet O : y = k.x2 ...

13.4.3 (*) Complément : Trajectoires orthogonales aux (Cµ) : x2 + y2 − 2µ.y = 0

1) (Cµ) est la famille de cercles tangents en O à Ox. Equation différentielle dont sont solutions les (Cµ) :

Isoler la constante
x2 + y2

y
= 2µ et on dérive : (

x2 + y2

y
)′= 0 ou 2xy + (y2 − x2).y′ = 0 (∗) : (Cµ).

2) On cherche maintenant s’il existe Γ telle qu’en M ∈ Γ∩Cµ , y′Γ.y
′
Cµ

= −1. Donc y′Γ =
y2 − x2

2xy
ou bien :

2xy.y′ − y2 = −x2 (∗∗) pour Γ. [Règle : remplacer y′ par
−1

y′
dans (∗)]. On sait résoudre cette équation

car linéaire en Y = y2. On trouve Γλ : x2 + y2 − 2λ.x = 0 ; les cercles tangents en O à Oy !

y

10

0

x

50

(Parabole+Chainette)

13.4.4 (*) Complément : Surface d’un liquide en rotation uniforme autour de Oz

On fait une coupe dans le plan xOz (y = 0). L’élément dm de liquide à la surface est en équilibre sous
son poids dm.g, la force centrifuge dm.ω2.x (x > 0) et la réaction R.

On projette sur la tangente (⊥ à la réaction) de pente
dz

dx
. Alors

dz

dx
=
ω2

g
x ; z = z0 +

ω2

2g
x2 parabole.

La surface s’appelle paraboloïde de révolution autour de Oz, d’équation z = z0 +
ω2

2g
(x2 + y2). Note 1

1 Exercice complémentaire (*) On cherche la courbe décrite par un cable :

a) Homogène pesant : dm proportionnel à la petite longueur [à connaitre ici] notée ds. (Cable électrique).

b) Tel que dm est proportionnel, non pas à la petite longueur ds, mais à dx. (Cas d’un pont suspendu
avec suspensions verticales équidistantes ; seul le poids du pont étant considéré).

Solution Soit M (tangente de pente α), M ′ (tangente de pente α+ dα), un arc soumis au poids dm.g et

aux tensions (portées par les tangentes )
−→
T (s),

−→
T (s+ ds). A l’équilibre :

� en projettant sur x′Ox : T (s+ ds)cos(α+ dα) = T (s)cos(α) (1)
� en projettant sur y′Oy : T (s+ ds)sin(α+ dα) = T (s)sin(α) + dm.g (2)

(1) donne T (s)cos(α) = Cte = T0.

D’où (2)/(1) donne tan(α+ dα) − tan(α) =
dm.g

T0
. Avec tan(α) = y′, on a : d(y′) =

dm.g

T0

Cas b) dm = µ.dx. On peut voir un tel pont à Vernaison(69) ou à "Lisboa"(Lisbonne, Portugal)

Dans ce cas, on a :
d(y′)

dx
=
µ.g

T0
ou y” = cte : Parabole.

Cas a) dm = µ.ds. Ici, il faut savoir (cf. Longueur des courbes) ou voir que : ds =
√

1 + y′2.dx

dm = µ.ds donne
y”√

1 + y′2
= K (paramètre fixe). Posons y′ = sh(t) alors y” = ch(t).

dt

dx
.

D’où
dt

dx
=

1

a
; y′ = sh(

x− x0

a
) avec a =

1

K
y − y0 = a.ch(

x− x0

a
) : "Chainette".
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M+ Exercices: Equations différentielles PTSI

Premier ordre. Les primitives n’étant pas vues, on utilise des primitives faciles ...

1. Equation différentielles linéaires. Résoudre

(a) y′ + y = 2x.e−x.

(b) x.y′ + y = x3.

(c) x2.y′ − y = 1− x+ x2.

(d) y′ + 2x.y = 2x.e−x
2
.

(e) x.y′ + (x− 1)y = x2.cos(x).

2. (*) Equations se ramenant aux linéaires. Résoudre

(a) x.y′ = y + 3xy3. [Observer que 0 est solution ; pour les autres, poser z = 1/y2]

(b) y′ + y.sin(x) = y2.sin(x). [Idem : poser z = 1/y. Aussi à variables séparées]

(c) y′ − 2xy + 2xy2 = 0. [Comme la précédente]

(d) (x2 − x).y′ = y2 + y. [Comme la précédente]

(e) (x2 − x).y′ = −y2 + (2x+ 1).y − 2x. [y = x solution ; les autres : poser z = 1/(y − x)].

3. Equations à variables séparées. Résoudre

(a) y′.cos(y) = x. [rép. 2.sin(y) = x2 + λ.]

(b) (*) Refaire, à l’aide de
1

y(y − 1)
=

1

y − 1
− 1

y
: 2b) 2c) 2d).

(c) (*) y′ = (x+ y − 1)2 : poser Y = x+ y − 1. Solutions définies sur R ?

Note 2

Deuxième ordre.

1. Résoudre :
(a) y”− y = x2 − x ; (b) y”− 2y′ = sh2(x); (c) y” + y′ + y = 13.cos(2x) ;

(d) y” + y = x.cos(x) ; (e) y” + 10y′ + 25y = 4.e−5x ; (f) y” + 2y′ + 5y = e−x.cos(2x) ;

(g) y” + y′ + y = (2x+ 1).sin(x) ; y = 2sin(x) + (3− 2x)cos(x) + e
−x
2 [A.cos

√
3.x

2
+B.sin

√
3.x

2
].

(h) (*) Trouver f dérivable sur R telle que : f ′(x) = f(−x).

2. Un cas de coefficients non constants. Soit (x− 1).y” − x.y′ + y = (x− 1)2 linéaire :

Voir que y = ex est solution de l’ "ESSM" ; poser ensuite y = ex.z(x) [Changement de fonction].

2 (**) Compléments. Equations homogènes en x, y : Type y′ = h(
y

x
) (i.e. si x et y sont multipliés par λ,

l’équation est invariante). On pose t =
y

x
, nouvelle variable ; mais il peut y avoir quelques solutions t = cte.

Alors, on a une équation différentielle facile entre x et dx/dt ; d’où x = x(t) puis y = t.x(t)

(a) (*) y2 − 3x2 + xy.y′ = 0.

(b) (*) 2xy.y′ = y2 − x2.

(c) a) et b) sont linéaires en y2 !

(d) (*) y2 + (x2 − xy).y′ = 0.

(e) (*) y + x.(y′)3 = 0. [Trouver y = O et des astroïdes].



Chapitre 14

Suites de réels (et complexes)

14.1 Généralités (cf. aussi ch.15, 28)

14.1.1 Définitions

1. Une suite de réels est une application de N dans R : 0 7→ u0, 1 7→ u1, ..., n 7→ un, ...

On la note (un)n∈N ou (un) ∈ F(N,R).

2. On dit que la suite est majorée par M ∈ R si ∀n ∈ N : un 6 M ; minorée par m ∈ R de même.

Et bornée si majorée et minorée (⇔ | un | majorée : en exercice).

3. Remarques. � Parfois on commence à n = 1 (un)n>1 ou bien à n0 !

� Ne pas confondre la suite avec l’ensemble des valeurs prises par la suite [(−1)n)n>0 6= {−1, 1}]
� Pour une suite à termes complexes, on peut poser : un = an + ibn = ρn.e

i.θn .

14.1.2 Premiers exemples essentiels

1. (un) arithmétique ⇔ ∀n ∈ N : un+1 = un + r [rel. de récurrence] ⇔ un = u0 + n.r [rel. explicite].

La somme Sn = u0 + u1 + ...+ un = (n+ 1)
u0 + un

2
: chaque terme valant

u0 + un

2
en moyenne.

2. (un) géométrique de raison q ⇔ ∀n ∈ N : un+1 = un.q [rel. de réc.] ⇔ un = u0.q
n [rel. explicite].

Et la somme cumulée vaut Sn = u0 + u1 + ...+ un = u0[1 + q + ...+ qn] qui est bien connue ...

3. Les suites monotones ont une place à part, avec le théorème de la limite monotone ; cf. IV.

(*) [un = 1 + 1/2 + ...+ 1/n ∼
n→+∞

ln(n) à voir ; vn =
n∑

k=1

1/k2 −→
n→+∞

π2/6 Euler ; à voir.]

14.1.3 Cas des suites arithmético-géométriques

Théorème
Soit la suite : un+1 = a.un + b ; a, b ∈ C. 2 cas : si a 6= 1, alors ∃ ! l : l = a.l + b
et un+1 − l = a(un − l) : vn = un − l géométrique ; si a = 1, (un) arithmétique.

Démonstration. Si a 6= 1 : l est appelé point fixe de f(x) = ax+ b. (l =
b

1 − a
.) Puis différence :

(
un+1 = a.un + b
l = a.l + b

)
⇒ un+1 − l = a.(un − l) ; vn = un − l géom. un − l = an(u0 − l).

Exemples � un+1 = 3.un − 4, u0 = 7. l = 3l − 4⇒ l = 2.
(
un+1 = 3un − 4
2 = 3.2 − 4

)
⇒ un+1 − 2 = 3.(un − 2)

un − 2 = 3n(u0 − 2). un = 5.3n + 2, ∀ n > 0. (un ∼
n→+∞

5.3n.)

� zn+1 =
1 + i

2
.zn + 1− i, z0 donné. Ici zn − 2 = (

1 + i

2
)n.(z0 − 2) (car l = 2 encore.)

Dessin ? cf. z′ = a.z + b. Limite (valant 2) indépendante de z0 car (1/
√

2)n −→
n→+∞

0.

93



94 CHAPITRE 14. SUITES DE RÉELS (ET COMPLEXES)

14.2 Limites des suites réelles

14.2.1 Définitions

1. Suites convergentes. Même définition que Limite finie ici de f(x), quand x→ +∞ :

(un) est dite convergente si elle a une limite finie l, quand n→ +∞, notée un −→
n→+∞

l

ce qui est : ∀ǫ > 0, ∃Nǫ ∈ N / ∀n : n > Nǫ =⇒ | un − l | < ǫ.

Exemples :

� La suite un =
(−1)n

n
tend vers 0, pour n→ +∞, donc convergente.

� La suite de terme général un = (−1)n n’a pas de limite : divergente.

� La suite un =
√
n tend vers +∞ , pour n→ +∞, donc divergente.

2. Cas l infini un −→
n→+∞

+∞ si : ∀B > 0, ∃NB/ n > NB =⇒ un > B.

Et une suite divergente :

{
soit n’a pas de limite comme (−1)n

soit possède une limite infinie.

3. Deux propriétés

� Une suite possède au plus une limite. (Unicité de la limite). En exercice.

� Si (un) a une limite FINIE en +∞, alors (un) est bornée. Mais (−1)n bornée divergente !

En effet :
Soit ǫ = 1 > 0 : possible. ∃N ∈ N tel que n > N =⇒ un ∈]l−1, l+1[ ; et {un, n 6 N} aussi borné par
m1 et M1 car ensemble FINI. Au total, suite bornée par m = inf(l− 1,m1) et M = sup(l+ 1,M1).

14.2.2 Sous-suite

1. Définition
Une sous-suite de (un)n [ou suite extraite] est une suite (unk

)k : un0, nn1 , ..., unk
, ...

avec n1 < n2 < ... < nk < .... Autre notation (uφ(k))k avec φ strictement croissante.

Exemples. Pour un = (−1)n : sous-suite des indices pairs (u2p) ; et des indices impairs (u2p+1) ;
(u2p) et (u2p+1) sont stationnaires, donc convergentes (vers 1 et −1) ; mais (un) divergente !

2. Propriété Si un −→
n→+∞

l(fini ou non, ici), il en est de même de toute sous-suite. En exercice.

3. Une réciproque Si u2n −→
n→+∞

l et u2n+1 −→
n→+∞

l, alors un −→
n→+∞

l. En exercice.

Exercice corrigé (Alès) : Si (u2n), (u2n+1), (u3n) convergent, il en est de même de (un).

En effet désignons par l, l′, l” les limites (finies ici). La sous-suite (u6n) converge vers l et l” !
(pourquoi ?) donc l = l”. De même (u6n+3) vers l′ et l”. Donc l = l” = l′ : (un) convergente !

14.2.3 Théorèmes généraux : somme, produit

1. On a :

Si un −→
n→+∞

l, vn −→
n→+∞

m, alors : un + vn −→ l +m sauf +∞−∞ (indéterminé)

λ.un −→ λ.l; un.vn −→ l.m sauf 0.∞ (indéterminé) ;
un
vn
−→ l

m
sauf

0

0
.
∞
∞ ,

l

0
.

2. En exercice.
Sur le dernier cas l/0 : On dit que vn −→

n→+∞
0+ si, de plus, pour n assez grand : vn > 0.

1

0+
non indéterminé : "

1

0+
= +∞" [Note :

2 + (−1)n

n
−→
n→+∞

0+ sans être décroissante !]
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14.2.4 Inégalités

1. Théorème : Prolongement des inégalités (larges) par passage à la limite

Si un −→
n→+∞

l, vn −→
n→+∞

m et si un 6 vn pour n assez grand, alors : l 6 m. En exercice.

2. Théorème : d’encadrement ou des gendarmes

Si un −→
n→+∞

l, vn −→
n→+∞

l et si un 6 wn 6 vn au voisinage de +∞, alors : wn a une limite : l.

En exercice. Celui-ci donne l’existence de la limite !

3. Exemples

• Si q > 1, alors qn −→
n→+∞

+∞. De façon élémentaire : qn = (1 + h)n > n.h, h > 0 fixé ...

• Si −1 < q < 1, alors qn −→
n→+∞

0. [Cas q 6= 0 :
1

| q |n −→n→+∞
+∞ ...]

• Mais attention (1 +
1

n
)n −→
n→+∞

e ; et (1− 1

n
)n −→
n→+∞

1

e
. [Connus, à bien revoir.]

• un = n
√
n −→
n→+∞

1. Avec le ln. [C’est possible sans le ln : n = (1 + hn)
n.]

• Sn =

n∑

k=1

1√
n2 + k

[
n√

n2 + n
6 Sn 6

n√
n2 + 1

] ( 6= Tn =

n∑

k=1

1√
n2 + k2

: du ch. Intégrales !)

14.2.5 Un cas essentiel

1. Enoncé
� Soit αn ∈ R+ telle qu’il existe 0 6 k < 1 avec ∀n > n0, αn+1 6 k.αn. Alors αn −→

n→+∞
0

� Si on avait dit : 0 6 αn+1 < αn, la conclusion serait-elle sûre ? NON !

2. Démonstration
2) Signifie seulement que αn > 0 est strictement décroissante : peut partir de 3 et décroitre à 2 !

1) Voir que, par effet de cumul : 0 6 αn 6 kn−n0 .αn0 pour n > n0 ; puis faire n→ +∞.

3. Si on peut, on essaiera d’avoir | un+1 − l |6 k. | un − l |, avec 0 6 k < 1, k fixe pour n > n0.

(Si c’est le cas, il y a contraction dans le rapport au moins k)

14.3 Comparaison des suites

14.3.1 (un) négligeable devant (vn) noté un << vn, (n −→ +∞)

1. Définition

(un) est dite négligeable par rapport à (vn) ou infiniment petite ou (vn) infiniment grande par

rapport à (un) si
un
vn

−→
n→+∞

0 ou | vn
un
| −→
n→+∞

+∞ ; noté un = o(vn) ou un << vn (n→ +∞).

Remarques
1) Si on ne peut pas écrire le rapport, on dit : un = vn.ǫ(n) = vn.ǫn, où ǫ(n) = ǫn −→

n→+∞
0.

2) Si on a seulement
un
vn

bornée, on note un = O(vn) : notations de Landau.

2. Théorème Si n→ +∞ : 1 << lnβ(n) << nα << an << n! << nn, β > 0, α > 0, a > 1.

On dit : "l’exponentielle l’emporte sur la puissance. Et la puissance l’emporte sur le logarithme.
Démonstration

Vu sauf les deux dernières. Pour
an

n!
, soit n0 = E(2a) [partie entière] ; donc n0 + 1 > 2a ; alors

a.a.a...a

1.2.3....n
=

a.a. ...a

1.2. ...n0
.

a. ... a

(n0 + 1)...n
= cte.

a....a

(n0 + 1)...n
6 cte.

1

2n−n0
. Dernière :

n!

nn
6

1

n
.
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14.3.2 (un) équivalente à (vn), quand (n −→ +∞)

1. Définition

(un) est dite équivalente à (vn), noté un ∼
n→+∞

vn, si un − vn << vn ou un − vn = vn.ǫn

ou un = vn.[1 + ǫn], ǫn −→
n→+∞

0, ce qui signifie chaque fois qu’on peut diviser par vn

un ∼
n→+∞

vn ⇐⇒
un
vn
−→
n→+∞

1. Attention : ce n’est pas la différence qui tend vers 0 !

Ainsi
2n3 − 10n2 ∼

n→±∞
2n3. Le but des équivalents étant de simplifier. (Différence de limite infinie ici)

2. Equivalents fondamentaux [Rappel ; et aussi Arcsin(x) ∼
x→0

x ...]

sin(x) ∼
x→0

sh(x) ∼
x→0

tan(x) ∼
x→0

th(x) ∼
x→0

Arctan(x) ∼
x→0

x cos(x)−1 ∼
x→0

−x2

2
ch(x)−1 ∼

x→0

x2

2

ln(1+x) ∼
x→0

x ou ln(u) ∼
u→1

(u−1) ex−1 ∼
x→0

x (1+x)α−1 ∼
x→0

α.x (α fixe ; cas α =
1

2
?)

3. Propriétés [Rappel]
1) La relation un ∼

n→+∞
vn est une relation R.S.T. (relation d’équivalence)

2) Si un ∼
n→+∞

vn , il existe un N tel que : n > N =⇒ un et vn ont même signe.

En particulier, elles sont nulles simultanément. (Penser à un = vn.[1 + ǫn], ǫn −→
n→+∞

0)

3) Si un ∼
n→+∞

vn et si vn −→
n→+∞

l, alors un aussi.

4) Il y a compatibilité des équivalents avec le produit, un ∼
n→+∞

vn, xn ∼
n→+∞

yn =⇒ un.xn ∼
n→+∞

vn.yn

et le quotient, mais pas avec la somme(cf. après). Un résultat : si vn << un, un + vn ∼
n→+∞

un.

5) Si un ∼
n→+∞

vn et si un > 0, alors :
√
un ∼

n→+∞
√
vn.

4. Trois fautes à éviter [Rappel]
1) Il n’y a que la suite (un) identiquement nulle à partir d’un certain rang, qui est équivalente à

(0)n>0. Comme ce n’est jamais le cas en pratique, dire "un ∼
n→+∞

O" est une FAUTE.

De même dire "un ∼
n→+∞

∞ " est un NON SENS.

2) SOMME d’équivalents :
n2 + n ∼

n→+∞
n2, −n2 ∼

n→+∞
− n2 +

√
n (ridicule, mais vrai) ; par contre n ∼

n→+∞

√
n est faux.

3) ln et exp d’équivalents.
On a : n+ 1 ∼

n→+∞
n ; mais en+1 non équivalent à en : le rapport vaut e !

Et : 1 + 1/n ∼
n→+∞

1− 1/n2 ; mais : ln(1 + 1/n) ∼
n→+∞

1/n, ln(1− 1/n2) ∼
n→+infty

− 1/n2 !

[D’ailleurs, on dirait : 1 + 1/n ∼
n→+∞

1 ! ]

5. Remarque de rédaction

Si l 6= 0, ∞, on a : un −→
n→+∞

l ⇐⇒ un ∼
n→+∞

l. Utile en pratique.

14.3.3 Exercices [Revoir le cas des fonctions]

1. ln(n+ 1) ∼
n→+∞

ln(n) ? [Analogue : Si un ∼
n→+∞

vn −→
n→+∞

+∞, on peut prendre les ln.]

2. Etudier lim
n→+∞

[ch(
1

n
)]n

2
. [ln(un) = n2.ln(ch(1/n)) ∼

n→+∞
n2.[ch(1/n) − 1] −→

n→+∞
1/2 ...]

3. lim
n→+∞

√
n+
√
n−√n ? [Bien vue au ch. Limites. Sait-on la refaire ?]
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14.4 Résultats théoriques fondamentaux

14.4.1 Suites monotones

Théorème
Soit (un) croissante (sens large). Alors (un) a toujours une limite l en +∞. 2 cas :
Si majorée par M , alors l 6 M ; si non majorée, l = +∞. Analogue si décroissante.

Exemple : Sn =
n∑

k=1

1

k2
est croissante. Pour la majorer, voici une comparaison avec une intégrale :

Pour k > 2 on a
1

k2
6

∫ k

k−1

dt

t2
(Dessin). Donc 1 +

1

22
+

1

32
+ ...

1

n2
6 1 +

∫ 2

1
+

∫ 3

2
+...+

∫ n

n−1

dt

t2

= 1 +

∫ n

1

dt

t2
= 1 + [

−1

t
]n1 = 2− 1

n
6 2. D’où Sn converge vers l 6 2. [(*) l =

π2

6
Euler].

14.4.2 Suites adjacentes

Définition (un), (vn) sont adjacentes si : (un) croissante, (vn) décroissante et vn − un −→
n→+∞

0.

Ne pas confondre avec le Théorème Deux suites adjacentes sont convergentes vers la même limite.

Démonstration : Forcément (un) a une limite l > −∞, car croissante. Idem (vn) a une limite m < +∞.
Et, par passage à la limite dans la dernière hypothèse, m− l = 0. Il en résulte que l = m FINIE.

On a donc aussi les encadrements : ∀p, q : up 6 l 6 vq.

14.4.3 Exemples

1. Classique : Les suites un =

n∑

k=0

1

k!
et vn = un +

1

n.n!
, n > 1 sont adjacentes. (vn+1 − vn 6 0).

D’où la convergence de (un) et un encadrement de la limite [qui sera vue plus tard e = 2, 718...]

2. Deux suites imbriquées :





an+1 =
an + bn

2
2

bn+1
=

1

an
+

1

bn

avec 0 < b0 6 a0. Bien voir bn+1 =
2an.bn
an + bn

A chaque étape, on a des termes > 0 : les suites sont définies. Puis an+1− bn+1 =
(an − bn)2
2(an + bn)

> 0 :

∀n > 1, bn 6 an [car pour a0 et b0, on peut permutter]. Puis, pour n > 1 : an+1−an =
bn − an

2
6 0;

et bn+1/bn > 1 : (an)n>1 décroissante et (bn)n>1 croissante. Puis : [à voir]

0 6 an+1 − bn+1 6
an − bn

2
conduisant à 0 6 an − bn 6

a1 − b1
2n−1

, n > 1 : Adjacentes.

Variante 1 : (an)n>1 déc., minorée par 0, converge vers l ; et bn = 2an+1 − an −→
n→+∞

l.

Variante 2 : (an)n>1 déc., minorée par 0, converge vers l ; (bn)n>1 croiss., majorée par a1, converge
vers m. Puis passage aux limites dans 2.an+1 = an + bn : 2.l = l +m (finies) donc l = m.

De plus on observe ici que an+1.bn+1 = an.bn = ... = a0.b0. Donc l2 = a0.b0 et l =
√
a0.b0 !

[Remarque : Moy-arithm.
a+ b

2
> Moy-géom.

√
a.b > Moy-harm. h telle que

1

h
=

1

2
(
1

a
+

1

b
).]

3. Méthode de "dichotomie" : division en deux
Soit une racine r dans [a, b] ; on divise le segment en 2 [longueur (b− a)/2] et on garde le nouveau
segment contenant r. On recommence : on obtient des "segments emboités" de longueur (b− a)/2n,
de bords gauches an et droits bn, formant 2 suites adjacentes : elles convergent vers r.

Note finale [analogue aux fonctions] Si un −→
n→+∞

l > 0, en se limitant à l finie, ∃N : n > N =⇒ un >
l

2
.

D’où, non seulement (
1

un
)n>N existe, mais encore est bornée : 0 <

1

un
<

2

l
. [Pour des preuves.]
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M+ Exercices: Suites à termes réels (et complexes) PTSI

1. Indiquer les limites éventuelles des suites :

(a) Sn =

n∑

k=1

1

k.(k + 1)

(
1

x.(x+ 1)
=
a

x
+

b

x+ 1

)
(b) Sn =

n∑

k=1

1

n2 + k2
par encadrement

(c*) Montrer que : xn + x− 3 = 0 a une unique racine un ∈]1, 2[, n > 1. Etude de (un) avec :

n.ln(un) = ln(3− un) ; ou bien (un) monotone en comparant fn(x) = xn + x− 3 à fn+1(x).

(d*) un =
n∑

k=0

1

Ckn
(un = 2 +

2

n
+
n−2∑

k=2

1

Ckn
.) (e*) (un) + (vn), si (un) converge et (vn) diverge ?

2. Suite à termes complexes un = zn et Sn = 1 + z + z2 + ...zn. Ne pas confondre !

(a) Pour la suite (un) : que se passe-t-il si | z |< 1 ? Puis si | z |> 1 ?

(b) Puis quelques cas où | z |= 1 ? [cas z = ei, on admet que π 6∈ Q]. Ainsi zn −→
n→+∞

0⇔ | z |< 1

(c) Montrer que : | z |< 1 =⇒ (Sn) converge et préciser sa limite. (C’est S =
1

1− z .)

(d) Réciproque : Montrer que si (Sn) converge, alors : Sn − Sn−1 = zn −→
n→+∞

0. Conclusion ?

3. Soit un =

n∑

k=0

1

k!
. On a vu qu’elle était adjacente avec vn = un +

1

n.n!
mais non utilisé au (a).

(a) Vérifier, pour k > 1 :
1

k!
6

1

2k−1
. Déduire que un 6 3 puis la convergence de (un) vers l.

(b) (*) Si on supposait : l =
p

q
∈ Q, déduire de : uq < l < vq [à justifier], une contradiction.

(c) (*) Avec : un+1 − un 6 l − un 6 vn − un, puis : vn − vn+1 6 vn − l 6 vn − un+3, déduire

l − un ∼
n→+∞

1

n.n!
et vn − l ∼

n→+∞
1

n3.n!
.

4. On étudie Sn = 1 +
1

2
+

1

3
+ ...+

1

n
, n > 1.

(a) Montrer que Dn = S2n − Sn > 1/2. Déduire que Sn −→
n→+∞

+∞. On cherche un équivalent :

(b) Montrer, avec le théorème des accroissements finis, que :
1

k + 1
< ln(k + 1)− ln(k) <

1

k
. (∗)

Déduire que : Sn > ln(n+ 1) > ln(n) et que Sn 6 ln(n) + 1. Conclure que Sn ∼
n→+∞

ln(n).

(c) On pose un = Sn− ln(n) et vn = Sn− ln(n+ 1). Déduire des inégalités (∗) qu’elles sont adja-
centes, puis convergent vers γ ∈]1− ln(2), 1[ appelée constante d’Euler et valant γ = 0, 577...

On écrit donc Sn = ln(n) + γ + ǫn. En déduire la limite de (Dn). (Dn revue au ch. 28)

5. Soit les suites a0 > 0, b0 > 0 et an+1 =
an + bn

2
, bn+1 =

√
an.bn. Montrer qu’elles sont adjacentes.

[La limite "Moyenne arithmético-géométrique de a0, b0", liée à une intégrale "elliptique" (Gauss**).]

6. Montrer que : Sn = 1 +
1√
2

+ ...+
1√
n

6 1+
∫ n

1

dt√
t

= 1 + 2.(
√
n− 1). Limite de

Sn
n

?

(*) Autre méthode pour
Sn
n

: Théorème de Césaro (un −→
n→+∞

l)⇒ vn =
u1 + u2 + ...+ un

n
−→
n→+∞

l.

[Puis avec un = (−1)n vérifier que la réciproque du théorème de Césaro est fausse].



Chapitre 15

Suites un+1 = f (un) et un+2 = a.un+1 + bun

15.1 Suites un+1 = f(un) : Limites finies éventuelles

15.1.1 Dessins

• Soit la suite arithmético-géométrique :

{
u0 = 0 ;

un+1 = 2.un + 1
Dessiner les deux courbes : y = f(x) = 2.x+ 1, y = x ; puis : u1, u2, u3... 1er dessin.

• Puis ensuite u0 = −2 : 2e dessin. D’où : ne pas confondre fonction croissante et suite croissante !

4

x

10

0

15

0

5

-5

-10

0

x

0

x

4

4

0

2

2

0

• Idem avec :

{
u0 = −1 ;

un+1 =
−un

2
+ 3

Attention : fonction décroissante R→ R ; suite non décroissante

Rappeler, dans cet exemple, comment on obtient : un − l = (
−1

2
)n.(u0 − l), où l est à préciser.

15.1.2 Propriété

Soit la suite u0 ∈ I, un+1 = f(un). On suppose : f(I) ⊂ I ; I intervalle fermé ; f continue sur I.

Alors : si la suite converge (limite finie), c’est forcément vers une valeur l telle que f(l) = l.

Démonstration A plus comprendre que savoir !

• f(I) ⊂ I montre que u1 = f(u0) ∈ f(I) ⊂ I ! etc : la suite existe et chaque un reste dans I.
On dit que I est un "intervalle de stabilité".

• Les intervalles fermés sont : ∅, les segments ; les demi-droites fermées [a,+∞[, ]−∞, b] ; la droite R.
Utilité : si la suite converge, comme tous les un sont dans I, la limite finie l reste dans I.

• Et donc : f sera continue au point l ∈ I pour l’instant inconnu. L’hypothèse un+1 = f(un) donne
que (un) converge vers l et aussi vers f(l) ; l’unicité de la limite impose que l = f(l).

Remarques
� En général, f est non affine, sinon on a une suite arithmético-géométrique connue !

� Ce qui compte, c’est la pratique des exemples suivants.
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15.2 Suites un+1 = f(un) : Exemples

15.2.1 un+1 =
un

3− 2un
, u0 6 1

1. On va dessiner f(x) =
x

3− 2x
qui est connue [hyperbole équilatère] avec les résultats suivants :

Deux asymptotes orthogonales : x =
3

2
; y =

−1

2
. Puis f(x) ∼

x→0

x

3
; d’où f(0) = 0, f ′(0) =

1

3
.

Enfin f(x) = x⇐⇒ x ∈ {0, 1}.

x

0

-0,5

-1

0
-1 -0,5

-0,5

0,5

x

0

0,5

-0,5

0

2. Pour la suite (un) :

Cas u0 = 1. la suite est stationnaire, donc convergente vers 1. Puis :

Cas 0 6 u0 < 1.
(1) f est croissante sur [0, 1] et donc si I = [0, 1], alors f(I) ⊂ [f(0) = 0, f(1) = 1] ⊂ I :

Ainsi tous les un sont dans I
(2) f(x) 6 x, x ∈ [0, 1]. Car g(x) = f(x)− x continue, ne s’annulle pas sur ]0, 1[, donc garde un

signe constant sur [0, 1] par le Théorème des Valeurs Intermédiaires ; et ce signe est − [cf. f ′(0)]

Conclusion : la suite est alors aisément décroissante ! un ∈ I =⇒ un+1 = f(un) 6 un. Et
minorée par 0, donc convergente vers l : 0 6 l 6 u0 < 1. Par continuïté sur I, l = f(l), soit l = 0.

Cas u0 6 0. Soit I =]−∞, 0] fermé.
(1) f(I) ⊂ I car f croissante sur I et f(0) = 0. D’où {un} ∈ I.
(2) f(x) > x, x ∈ I va être aussi utile à la conclusion [bien revoir la preuve ci-dessus].

Conclusion : la suite est alors aisément croissante ! un ∈ I =⇒ un+1 = f(un) > un. Et
majorée par 0, donc convergente vers l 6 0. Par continuïté sur I, l = f(l) soit : l = 0.

3. Remarques

• Autre méthode dans le dernier cas : une fois vu que tous les un restent dans ]−∞, 0], on avait

| un+1 |6
| un |

3
qui termine aussi car | un |6

| u0 |
3n

. Mieux : | un |6
| u1 |
3n−1

6
1

2.3n−1
!

• Attention : Dans le cas u0 ∈]0, 1[, f croissante ; mais (un) est décroissante !

• Complément : (f croissante de I dans I [donc f(I) ⊂ I] ) =⇒ (un) monotone.

En effet :
� Si u0 6 u1, comme on est dans I, f(u0) 6 f(u1) ou u1 6 u2 ; et on continue !

� Si u0 > u1, comme on est dans I, f(u0) > f(u1) ou u1 > u2 ; idem.
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15.2.2 un+1 =
1

1 + un
, u0 > 0.

1. Dessin : idem sauf qu’on se focalise sur le premier quadrant. f continue, décroissante de 1 à 0

(exclus). f(x) = x⇔ x =
−1 +

√
5

2
= l ≃ 0, 618... (nombre d’or moins 1) si x > 0.

Fig 1 :
x

1

3

3

2

0

210

Fig 2 :

x

1

1

0

0,5

0,5

0

2. Ensuite : Si I = [0, 1], f(I) ⊂ I. Pas sûr que u0 soit dans I ! mais pour u1, c’est sûr, car

u1 ∈ f(R+) ⊂]0, 1] ⊂ I ; ⇒ (un)n>1 à valeurs dans [0, 1]. (I = [0,+∞[ permis et bon aussi).

Le dessin montre que (un) est non monotone. Comment "voir" la convergence vers l = 0, 618... ?

Solution 1 C’est la plus simple quand elle est possible.1 Soit l =
−1 +

√
5

2
. Note.2

un+1 − l = f(un)− f(l) =
1

1 + un
− 1

1 + l
=

−(un − l)
(1 + un)(1 + l)

[signe conforme au dessin]. Puis :

| un+1 − l |6 k. | un − l | avec k =
1

1 + l
< 1 et k fixe. Ceci montre que un −→

n→+∞
l =
−1 +

√
5

2
.

Solution 2 On a : f décroissante de I dans I =⇒ fof croissante [facile].

Donc (u2n), (u2n+1) monotones [cf. complément p. précédente]. De plus "de sens inverse" :

En effet : si u0 6 u2 6 u4... appliquer f qui donne f(u0) > f(u2) > f(u4)... ou : u1 > u3 > u5...

Et si u0 > u2 > u4... alors f(u0) 6 f(u2) 6 f(u4)... ou bien : u1 6 u3 6 u5... Terminé.

Ensuite on va essayer de voir que : u2n+1 − u2n −→
n→+∞

0 ; ou que : un+1 − un −→
n→+∞

0 :

On a : un+1 − un =
1

1 + un
− 1

1 + un−1
= − un − un−1

(1 + un)(1 + un−1)
[signe conforme au dessin].

Puis valeurs absolues et

ou bien un−1 > l ; ou bien un−1 6 l : ici un = f(un−1) > f(l) = l ; donc Dénominateur > 1 + l.

D’où : | un+1 − un |6 k. | un − un−1 | avec k =
1

1 + l
< 1 et fixe : c’est gagné !

Conclusion : Par le théorème sur les suites adjacentes (u2n), (u2n+1) convergent donc vers la même
limite L ; d’où (un) converge aussi vers L.

Alors forcément L est point fixe dans [0,1] de f continue. Soit : L = l =
−1 +

√
5

2
.

Solution 3 Même début que Solution 2 donnant (u2n)n>1 monotone bornée (dans [0,1]).

Puis variante : Cette sous-suite converge ; et converge forcément vers λ point fixe de fof car :

fof continue de [0,1] dans [0,1] et u2(n+1) = fof(u2n).

Or : fof(x) = ... =
1 + x

2 + x
et fof(x) = x⇔ x =

−1 +
√

5

2
si x > 0. [Pas d’autre valeur ici ! ]

Conclusion : (u2n)n>1 converge vers cette valeur λ = l =
−1 +

√
5

2
. Puis (u2n+1) = (f(u2n))

converge vers f(l) qui vaut l ! Et donc (un) converge aussi vers l =
−1 +

√
5

2
.

1Pour la suite un = 1/n, un+1 = un/(1 + un) ; un+1 6 k.un, avec k < 1, est impossible car un+1/un tend vers 1.
2Pour le moment, ne pas dire que l ≃ 0, 618... est la limite ; mais dire un candidat pour être la limite !
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15.2.3 Remarques

1. Fig.1 : Cas un+1 =
√

2− u2
n, u0 = 2/10 : Attention : (u2n), (u2n+1) sont ici stationnaires !

0,5

1,5

x

1

0

0,5

1,5

0

1

Et point "répulsif" (voir fof) :

21

x

3

2

3

1

0

0

2. Dans le cas un+1 =
3

1 + 2u2
n

, u0 =
8

10
le point l = 1 est ici "répulsif" ! car | f ′(1) | > 1. Fig.2.

3. � Si on a : u0 ∈ I fermé, f(I) ⊂ I, (u2p) convergente et fof continue, la limite λ est point fixe

de fof forcément (comme pour Fig.2). Car u2p+2 = fof(u2p).

� Et alors, on a très simplement, avec f C0 en λ : u2p+1 = f(u2p) −→
p→+∞

f(λ).

Parfois f(λ) = λ, parfois f(λ) 6= λ (exercices plus difficiles). (*) Pour finir le cas de Fig.2,

difficile, voir que : f(x) = x⇔ P (x) = 0, P (x) = 2x3 + x− 3 admettant x = 1 comme racine

et deux autres complexes conjuguées ; tandis que : fof(x) = x⇔ Q(x) = 0, Q(x) de degré 5,

divisible par P : fof a, ici, davantage de points fixes que f !

4. On cherche I intervalle (fermé si possible) avec : f(I) ⊂ I. Parfois : f non monotone !

15.2.4 Méthode de Newton pour le calcul approché d’une racine

1. Dessin. Soit ϕ dérivable 2 fois sur [a, b] avec ϕ(a).ϕ(b) < 0 ; ϕ′ > O [pour fixer les idées] ϕ” > 0.

On cherche à approcher la racine r, de y = ϕ(x), à l’aide de la tangente

1,51

y

0,2

0

-0,2

x

2

2. Méthode. On prend la tangente en b : y − ϕ(b) = ϕ′(b)[x− b] et y = 0 donne x1 = b− ϕ(b)

ϕ′(b)
.

On recommence avec x1. D’où la suite x0 = b ; xn+1 = xn− ϕ(xn)

ϕ′(xn)
du type xn+1 = f(xn).

Parfois, si on change les signes de ϕ′ ou ϕ”, on part de l’autre bout a. Vérifier que : f ′(r) = 0.

(c’est pour celà que la convergence est très rapide !)

15.3 un+2 = a.un+1 + b.un ; a ∈ C∗, b ∈ C. (Récurrence linéaire d’ordre 2)

15.3.1 Théorème

Soit "l’équation caractéristique" r2 − ar − b = 0, a, b ∈ C : pour un+2 = a.un+1 + b.un notée (R0)

Si ∆ 6= 0, un = α.(r1)
n + β.(r2)

n. Si ∆ = 0, un = α.(r0)
n + β.(n.rn0 ) où r0 = a/2 (racine double).

Démonstration :

Sera vue avec le langage des "espaces vectoriels". On calcule α, β à l’aide des conditions initiales.
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15.3.2 Exemples

1. Suite de Fibonacci : un+2 = un+1 + un; u0 = 0, u1 = 1. C’est la suite (0 ; 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ;...)

On applique le Théorème avec calcul des racines de l’équation caractéristique.

On trouve : un =
1√
5
.[ϕn − ϕn] où ϕ =

1 +
√

5

2
, ϕ =

1−
√

5

2
. Attention : un est entier !

D’où : un ∼
n→+∞

ϕn√
5

; donc :
un+1

un
−→
n→+∞

ϕ [nombre d’or]. Note : un −
ϕn√

5
−→
n→+∞

0 !

2. Suite un+2 = un+1 −
un
4

; u1 = 1, u2 = 2. On trouve ici un =
3n− 2

2n−1
.

3. Suite un+2 = un+1 −
un
4

+ 3; u1 = 1, u2 = 4. Cette fois, on n’a pas la relation R0.

Posons un = vn + p ; on essaie de se ramener à R0 [Indication] ... Trouver : un = 12− 6 + 5n

2n−1
.

Révisions :

� Limite de la suite : (1 +
λ

n
)n, λ fixé ? (c’est eλ.)

� Les suites arithmétiques, géométriques et arithmético-géométriques sont connues.

� Bien revoir le cas des sommes "télescopiques" : Sn =

n∑

k=1

uk avec uk = vk+1 − vk.

� (*) Convergence (seule) de la suite : Sn =
∑

16k6n

1/k2 ? (croissante, majorée par 2)

� (*) Un exemple de suites adjacentes ?

� ln transforme un produit en somme !

� A voir, de plus, au ch. Intégrales :

{
1) Les "Sommes de Riemann" classiques, assez faciles

2) les suites relevant de la formule de Taylor-Lagrange.

� (*) Complément

1. Soit la suite : Sn = 1−1

2
+

1

3
− ...+ (−1)n−1.

1

n
, pour n > 1.

Un dessin sur une droite de S1; S2; S3; S4... suggère que (S2p), (S2p+1) sont adjacentes.

Cette idée marche bien et montre la convergence de (Sn) vers L ∈]
1

2
, 1[.

En fait cette suite sera revue au ch. Intégrales en précisant de plus sa limite L = ln(2).

2. En exercice non corrigé du ch. précédent on avait parlé de la "Moyenne arithmético-géométrique".

Voici quelque chose d’analogue mais plus facile (méthode des isopérimètres de Nicolas de Cuse) :

Soit u0 = a > 0; v0 = b > a. Et : un+1 =
un + vn

2
; vn+1 =

√
un+1.vn.

Alors u0 = v0.cos(ϕ) donne u1 = v0.cos
2(
ϕ

2
); v1 = v0.cos(

ϕ

2
). Donc : u1 = v1.cos(

ϕ

2
).

Puis vn = v0.cos(
ϕ

2
).cos(

ϕ

22
)...(cos(

ϕ

2n
) = v0.

sin(ϕ)

2n.sin ϕ
2n

−→
n→+∞

b
sin(ϕ)

ϕ
et suites adjacentes !

Ceci est lié aux rayons rn =
1

2n.tan(π/2n)
et Rn =

1

2n.sin(π/2n)
des cercles inscrits et circons-

crits d’un polygône à 2n côtés, de périmètre 2, convergeants vers
1

π
: Nicolas de Cuse.
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M+ Exercices: Suites un+1 = f(un) et un+2 = a.un+1 + bun. PTSI

1. Etudier la suite un+1 =
1 + un
2 + un

; u0 ∈ R+. [Guider beaucoup.]

2. Etudier la suite un+1 =
√

1 + un; u0 ∈ R. [(*) Discussion selon u0.]

3. Etudier la suite : un+1 =
√

2− un; u0 ∈ R. [(*) Discussion selon u0.]

4. Que dire de (un), (vn) réelles si u2
n + un.vn + v2

n −→n→+∞
0 ? [Hors série ; intéressant !]

5. Suite de Fibonacci : un+2 = un+1 + un; u0 = 0, u1 = 1. Explisciter un. lim
n→+∞

un+1/un ?

6. Suite telle que un+2 = 3un+1 − 2un + 7.

(a) Poser un = vn + p pour se ramener à R0 [vn+2 = a.vn+1 + b.vn]. Voir que ce n’est pas possible.

(b) Poser alors un = vn + p+ q.n ; et se ramener à R0. Conclure que un = β.2n − 7n+ γ.

(c) Autre méthode pour la suite (un) :
Poser dn = un+1 − un et voir que (dn) est arithmético-géométrique [connue].
Avec un − u0 = d0 + d1 + ...+ dn−1, conclure.

7. (*) Suite un+1 =
un

un − 2
, u0 < 2 .

(a) Représentation graphique de f(x) =
x

x− 2
.

(b) Montrer que ∀n > 0, un < 2. Puis montrer que n > 3 =⇒ un ∈ [−1,
1

3
].

Trouver alors k < 1 (fixe) tel que | un+1 |6 k. | un | et conclure.

(c) Autre méthode : On pose vn =
un

un − 3
.

Montrer que (vn) est géométrique. Exprimer un à l’aide de vn. Conclure.

8. (*) Etudier la suite un+1 =
1

2
(un+

2

un
), u0 =

3

2
. [Indications : voir que un+1−

√
2 =

1

2un
(un−

√
2)2

mais ce n’est pas obligatoire ; on a : 0 6 un −
√

2 6 (u0 +
√

2)(
u0 −

√
2

u0 +
√

2
)2

n
! (algorithme de

Babylone ou mieux de Héron d’Alexandrie). On peut reconnaitre aussi une méthode de Newton

pour ϕ(x) = x2 − 2. Et vn =
2

un
permet l’encadrement de

√
2 avec un ; suites rationnelles !]



Chapitre 16

Géométrie du plan R2

16.1 Plan affine P = R2. Plan vectoriel associé

16.1.1 Points, Vecteurs

1. On considère, R2 étant l’ensemble des couples de réels :

• soit R2 = P comme ensemble de points ; on dit ici : plan affine P. (1, 2) sera un point A.

• soit R2 = Π comme ensemble des vecteurs associés [bien voir la notation choisie] : on dit alors

plan vectoriel Π associé au plan affine P. (2, 1) sera ici un vecteur −→u =
−−→
AB, dans ce contexte.

Opérations linéaires ( sur les vecteurs dans Π ) il y en a deux :

{ −→u +−→v
λ.−→u

La donnée de deux vecteurs non colinéaires est une base (−→ı ,−→ ) de Π.

La donnée d’une origine (un point O) et d’une base de Π est un repère de P : (O,−→ı ,−→ ).

Lien entre P et Π Soit A ∈ P ; alors M ∈ P ⇔ −−→AM ∈ Π (notation de Grassman : M = A+
−−→
AM)

Et on peut changer de point-origine avec la relation de Châsles :
−−→
AM =

−−→
AB +

−−→
BM .

2. La droite (affine) dans P muni du repère (O,−→ı ,−→ ).

La droite D (A(x0, y0) dirigée par −→u 6= −→0 ) est définie par M ∈ D ⇔ ∃λ ∈ R :
−−→
AM = λ.−→u ou

∃λ ∈ R :

{
x− x0 = λ.α
y − y0 = λ.β

en paramétriques ; et par
x− x0

α
=
y − y0

β
en cartésiennes, avec la :

Convention : Quand on a, dans R,
p

α
=
q

β
= ... avec au moins un dénominateur non nul :

si un dén. est nul, le numérateur correspondant aussi ! (en effet, le rapport existe dans R, noté λ)

Théorème

Une équation cartésienne de droite est : ax+ by = c, (a, b) 6= (0, 0).

On obtient des droites parallèles en changeant seulement c. En particulier :

ax+ by = 0 est aussi appelée droite vectorielle ∆ dirigeant D et −→u (−b, a) ∈ ∆.

16.1.2 Exemple :

1. Avec le repère oblique : (A,
−−→
AB,

−→
AC), montrer que les médianes sont concourantes.

2. Solution. On a : A(0, 0), B(1, 0), C(0, 1) puis [calcul] AA′ : x− y = 0 ; BB′ : x+ 2y = 1 car

M ∈ (B,B′)⇔ ∃λ ∈ R :
−−→
BM = λ.

−−→
BB′ ou x− 1 = λ.(0− 1), y − 0 = λ(1/2 − 0) ;

x− 1

−1
=
y − 0

1/2

CC ′ : 2x+ y = 1 : passent toutes trois par G(1/3, 1/3). On dit que le système des 3 équations à 2

inconnues est compatible. Vérifier, de plus, que
−−→
A′G =

1

3
.
−−→
A′A : les médianes se coupent au 1/3

de chacune d’elles à partir de la base. Meilleure démonstration à venir avec les barycentres !
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Remarque : L’intersection de 2 droites est un cas de système 2x2

{
ax+ by = c (a, b) 6= (0, 0)
a′x+ b′y = c′ (a′, b′) 6= (0, 0)

Les droites sont : sécantes ou parallèles (distinctes ou non).

Et : D et D′ parallèles ⇐⇒ ∆ et ∆′ confondues (droites vectorielles directrices) ⇔
(
−b
a

)
,

(
−b′
a′

)

vecteurs colinéaires (ou bien : composantes proportionnelles) ⇔ ab′ − a′b = 0.

16.1.3 Système linéaire carré 2x2

1. Méthode de substitution. Soit

{
x+ 2.y = 5
3x+ 4y = 6

Tirons x de (1), reportons dans (2) : y =
9

2
, x = −4.

On vérifie (réciproque) !

2. Méthode de combinaisons Linéaires de Lignes. Soit

{
x+ 2.y = 5

3.x+ 4.y = 6
3.L1 −L2 : 2.y = 3 � 5− 6 ;

y =
9

2
. 2.L1 − L2 : x = −4. Réciproque à voir !

3. Méthode des "déterminants" 2x2 : Déjà, diverses notations :

{
a.x+ b.y = c
a′.x+ b′.y = c′

On écrit : x.

(
a
a′

)
+ y.

(
b
b′

)
=

(
c
c′

)
ou x.−→u + y.−→v = −→w . (Note : dans l’espace

vectoriel R2, les composantes des vecteurs étant toujours écrites en colonnes. Si −→u = a−→ı + a′−→
alors −→u =

(
a
a′

)

−→ı ,−→
. Si en lignes, c’est pour un gain de place). Par calcul, on trouve :

Si ab′ − a′b 6= 0, il y a une et une seule solution : x =
cb′ − c′b
ab′ − a′b, y =

ac′ − a′c
ab′ − a′b . D’où :

Définition

On note A =

(
a b
a′ b′

)
la "matrice" du système et dét(A) = D =

∣∣∣∣
a b
a′ b′

∣∣∣∣ = ab′ − a′b ∈ R le

"déterminant" associé ; on note aussi Dx =

∣∣∣∣
c b
c′ b′

∣∣∣∣ = cb′ − bc′ obtenu en remplaçant la

colonne des x par le 2ème membre et Dy =

∣∣∣∣
a c
a′ c′

∣∣∣∣ = ac′ − a′c : celle des y par le 2ème membre.

Théorème

Si D 6= 0, le système, dit "de Cramer" a une et une seule solution : x =
Dx

D
, y =

Dy

D
.

Sinon on regarde (soit pas de solution, soit une infinité : à voir.)

4. Exemple avec les déterminants

{
mx+ y = 1

x+my = m2 On a : D = m2 − 1 ; donc

• Si m 6= ±1, un et un seul couple solution x =
m−m2

m2 − 1
=
−m
m+ 1

, y =
m3 − 1

m2 − 1
=
m2 +m+ 1

m+ 1
.

• Si m = 1, il ne reste qu’une équation x+ y = 1 : infinité de couples solutions ;
droite affine x+ y = 1 (plutôt : 2 droites affines confondues)

• Si m = −1, pas de solution : géométriquement, intersection dans R2 espace affine, de 2 droites
strictement parallèles (−x+ y = 1; x− y = 1).

5. Equation de droite affine dans R2 (à nouveau) [2ème ⇔ ci-dessous : à voir]

Si −→u 6= −→0 , équation de D(A,−→u ) : M ∈ D ⇔ −−→
AM,−→u colinéaires ⇔ dét (

−−→
AM,−→u ) = 0

⇔
∣∣∣∣
x− x0 α
y − y0 β

∣∣∣∣ = 0 ⇔ x− x0

α
=
y − y0

β
: qui a été déjà vu pour la droite affine dans R2.

6. Note : on verra [ch.23] que
∣∣∣∣
a b
a′ b′

∣∣∣∣ = det

(
a b
a′ b′

)

−−→
OA

−−→
OB

−→ı
−→ = Aire.parallélogramme.OACBO.
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16.2 Barycentres

16.2.1 Théorème-Définition

Soit

(
A1 A2... An
α1 α2... αn

)
n points "massiques" (ou pondérés), c’est-à-dire αk ∈ R. Alors

Si

n∑

k=1

αk 6= 0, ∃!G tel que au choix (1)

n∑

k=1

αk.
−−→
GAk =

−→
0 ou (2) ∀O,−−→OG =

∑n
k=1 αk.

−−→
OAk∑n

k=1 αk
.

Cet unique point G est appelé barycentre des points pondérés (ou massiques).

Démonstration Soit M 7−→
n∑

k=1

αk.
−−−→
MAk =

−→
V (M), appelée fonction vectorielle de Leibniz.

On a :
−−−→
MAk =

−−→
MO +

−−→
OAk ; d’où

−→
V (M) =

−→
V (O)+[

n∑

k=1

αk].
−−→
MO. Donc :

Si
n∑

k=1

αk = 0,
−→
V (M) est un vecteur constant ; donc soit il est toujours nul, soit jamais nul.

Si
n∑

k=1

αk 6= 0 :
−→
V (G) =

−→
0 (1)⇐⇒ −−→OG =

−→
V (O)∑n
k=1 ak

(2) et ceci a lieu pour un et un seul point G.

Remarque Si λ 6= 0, on peut remplacer les αk par λ.αk. Ainsi, si
n∑

k=1

αk 6= 0, λ =
1∑n

k=1 αk
ramène au cas de coefficients de somme 1.

16.2.2 Cas essentiel n = 2 : 2 points ! Dessins ?

1. Barycentre de

(
A B
2 3

)
? O = A⇒ −→AG =

2.
−→
AA+ 3.

−−→
AB

2 + 3
... de

(
A B
2 1

)
? de

(
A B
2 −1

)
?

2. Cas général : α+ β 6= 0. G baryc. (A,α) et (B,β)⇐⇒ GA

GB
=
−β
α

. Donc

� G entre A et B ⇐⇒ α et β de même signe.
� Et G plus près du point le plus "lourd" en valeurs absolues !

3. Remarques 1) Si on impose α+ β = 1, G entre A et B ⇐⇒ α ∈ [0, 1].

2) Pour A 6= B, l’équation en M sur (A,B) :
MA

MB
= k, k donné, a au plus une solution en M.

(En effet si k 6= 1,
−−→
MA− k.−−→MB =

−→
0 : c’est un barycentre ; si k = 1, pas de solution : M est

à l’infini géométriquement). Cette remarque, très simple, est très utile en géométrie.

16.2.3 Théorème d’associativité

Soit p 6 n et

p∑

k=1

αk 6= 0,

n∑

k=1

αk 6= 0. Pour le calcul de G, on peut remplacer les

p premiers points par leur barycentre partiel, à condition de l’affecter de la masse partielle.

Démonstration Soit G0 le barycentre partiel ; on l’affecte du coefficient : γ =

p∑

k=1

ak ;

soit G′ le barycentre de (G0, γ), (Ap+1, αk+1)...(An, αn) ; alors avec (1) ou (2) :

[

n∑

k=1

αk].
−−→
GG′ = γ.

−−→
GG0 + αk+1.

−−−−→
GAk+1 + ...+ αn

−−→
GAn et avec

−−→
GG0, on a donc

−−→
GG′ =

−→
0 !

Exemple Médianes concourantes en l’isobarycentre : remplacer A et B par C ′ milieu,

... les médianes passent donc toutes par G ; de plus situé au 1/3 à partir du pied des médianes.
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16.3 Le plan vectoriel euclidien (produit scalaire sur les vecteurs)

16.3.1 Angles et normes de vecteurs

1. Définition du produit scalaire.

Etant donné 2 vecteurs, on définit le produit scalaire par : −→u �
−→v = ‖−→u ‖.‖−→v ‖.cos(α).

(Si on veut : −→u �
−→v =

−→
OA �

−−→
OB = OA.OQ = OB.OP où Q est la projection orthogonale de A

sur la droite (O,B) ; P celle de B sur (O,A)). Donc : ‖−→u ‖2 = −→u �
−→u ; ‖−→u ‖ =

√−→u �
−→u .

Remarques

1) On a donc l’inégalité Cauchy-Schwartz | −→u �
−→v |6 ‖−→u ‖.‖−→v ‖. (On peut avoir −→u .−→v < 0 !)

2)−→u et−→v sont orthogonaux⇐⇒−→u �
−→v = 0. Et

−→
0 est le seul vecteur orthogonal à lui-même.

2. Propriétés (Démonstration en exercice)

Un p.s. est une forme bilinéaire symétrique, définie, positive c’est-à-dire :

1) On a −→u �
−→v ∈ R : on dit pour ceci "forme".

2) La linéarité par rapport au 1er vecteur : (a.−→u 1 + b−→u 2) �
−→v = a.(−→u 1 �

−→v ) + b.(−→u 2 �
−→v )

Et aussi par rapport au 2ème vecteur : forme "bilinéaire".
3) −→u �

−→v = −→v �
−→u : forme bilinéaire "symétrique".

4) ∀ −→u ∈ E = R2 : −→u �
−→u > 0 : "positive".

5) Enfin −→u �
−→u = 0 =⇒−→u =

−→
0 : définie".

3. Norme de vecteurs −→u 7−→ ‖−→u ‖ est une "norme", ce qui est ‖−→u ‖ ∈ R+ et 3 autres axiomes

1) ‖−→u ‖ = 0 =⇒ −→u =
−→
0

2) ‖λ.−→u ‖ =| λ | .‖−→u ‖ pour λ réel.

3) Enfin l’inégalité triangulaire, appelée ici de Minkowski : ‖−→u +−→v ‖ 6 ‖−→u ‖+ ‖−→v ‖.

Démonstration
1) est vu. 2) vu aussi car : (λ.−→u ) � (λ.−→u ) = λ2.(−→u �

−→u ) ; etc.

3) Calcul essentiel : ‖−→u +−→v ‖2 = (−→u +−→v ) � (−→u +−→v ) = −→u �
−→u +−→u �

−→v +−→v �
−→u +−→v �

−→v , par
bilinéarité ; d’où par symétrie : ‖−→u +−→v ‖2 = ‖u‖2 + 2−→u �

−→v + ‖−→v ‖2.
Puis : −→u �

−→v 6 | −→u �
−→v |6 ‖−→u ‖.‖−→v ‖ ce qui termine.

Remarque : on peut étudier les cas d’égalité dans Cauchy-Schwartz et Minkowski :

� L’inégalité de (C-S) est une égalité si et seulement si −→u , −→v sont colinéaires.
� L’inégalité de (M) est une égalité ⇐⇒ −→u , −→v colinéaires de même sens (car de plus −→u �

−→v > 0.)

16.3.2 Théorèmes géométriques

1. Théorème de Pythagore généralisé ou d’Al-Khashi : ‖−→u +−→v ‖2 = ‖−→u ‖2 + 2−→u �
−→v + ‖−→v ‖2.

Démonstration vue ci-dessus. Interprétation :

Soit un triangle A,B,C; BC = a, etc ; alors (
−−→
BA+

−→
AC)2 =

−−→
BA2 +

−→
AC2 + 2

−−→
BA �

−→
AC ;

ou la relation des cosinus : a2 = b2 + c2 − 2bc.cos(A) car cos(π −A) = −cos(A).

2. Théorème de la médiane ou du parallélogramme ‖−→u +−→v ‖2 + ‖−→u −−→v ‖2 = 2.[‖−→u ‖2 + ‖−→v ‖2].
Car ‖−→u −−→v ‖2 = ‖−→u ‖2 − 2−→u �

−→v + ‖−→v ‖2. Interprétation vue au chapitre C et Géométrie.

3. Remarques : La norme à l’aide du p.s. : ‖−→u ‖ =
√−→u �

−→u ou ‖−→u ‖2 = −→u �
−→u .

Le p.s. à l’aide de la norme : −→u �
−→v =

1

2
(‖−→u +−→v ‖2 − ‖−→u ‖2 − ‖−→v ‖2).
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16.3.3 Bases orthonormées : Intérêts.

1. 1er intérêt des bases orthonormées (−→ı �
−→ = 0 et ‖−→ı ‖ = ‖−→ ‖ = 1) : le produit scalaire est facile.

Soit : −→u = x.−→ı + y.−→ , −→v = x′.−→ı + y′.−→ ; alors :
−→u �
−→v = xx′(−→ı .−→ı ) + (xy′ + x′y).(−→ı .−→ ) + yy′.(−→ .−→ ) par bilinéarité.

Ainsi : dans une base quelconque, le produit scalaire est compliqué.

Mais −→ı ,−→ orthonormée =⇒ −→u �
−→v = xx′ + yy′ ; et donc ‖−→u ‖ =

√−→u �
−→u =

√
x2 + y2.

2. 2ème intérêt : de même, les composantes sont faciles.

Ecrivons : −→u = x−→ı + y−→ ; alors : −→u �
−→ı = x ; −→u �

−→ = y.

Et donc en base orthonormée, on a l’égalité : −→u = (−→u �
−→ı ).−→ı + (−→u �

−→ ).−→

Remarque importante en pratique :

Si −→a ,−→b est une base seulement orthogonale (donc Si −→a ,−→b non nuls en particulier), on a

−→u =

(−→u �
−→a

‖−→a ‖2
)
.−→a+

(−→u �
−→
b

‖−→b ‖2

)
.
−→
b En effet −→u = λ.−→a + µ.

−→
b ⇒ −→u �

−→a = λ.(−→a �
−→a ) : λ =

−→u �
−→a

‖−→a ‖2 .

3. Démonstration des formules d’addition en trigonométrie circulaire :

Soit −→u (cos(α), sin(α) et −→v (cos(β), sin(β) en base orthonormée.
L’angle (−→v ,−→u ) vaut α− β, donc −→u �

−→v = 1.1.cos(α − β) = cos(α).cos(β) + sin(α).sin(β).

D’où cos(α− β) = cos(α).cos(β) + sin(α).sin(β). Puis cos(α+β) ; sin(α+β) = cos[(
π

2
−α)−β].

16.4 Le plan affine euclidien

16.4.1 Distance, Angle, Repère orthonormé

1. Définition
Soit le plan affine P : les points du plan ; on munit le plan vectoriel associé Π (les

vecteurs) d’un produit scalaire qui donne angles et distances : δ(A,B) = ‖−−→AB‖.

Note : Il y a 3 cas d’égalité des triangles ABC, A′B′C ′ (égalité au sens isométrique) :

− 1 côté égal et les 2 angles adjacents (par exemple AB = A′B′ et Â = Â′, B̂ = B̂′.
− 2 côtés égaux ainsi que l’angle entre ces côtés (par exemple Â = Â′ , AC = A′C ′ et AB = A′B′)
− enfin les 3 côtés homologues égaux deux à deux.

2. La droite en repère orthonormé.
• On sait que, dans (O,−→ı ,−→ ), la droite D a pour équation : M ∈ D ⇐⇒ ax+by = c, (a, b) 6= (0, 0) ;

et que −→u (−b, a) 6= −→0 en est un vecteur directeur ;

ou encore que ∆, ax+ by = 0, est la droite vectorielle associée (ou directrice) : −→u ∈ ∆.

• En repère orthonormé, de plus

−→n (a, b) est orthogonal à ∆ ou D : ax+ by = c et :

pour un point M1(x1, y1) ∈ P, δ(M1,D) =
| ax1 + by1 − c |√

a2 + b2
.

Démonstration. Déjà −→n �
−→u = 0.

1) Puis, pour M1 quelconque, notons H1 sa projection orthogonale sur D ; on a :

(1)
−−−−→
H1M1 = λ.−→n d’où :

−−−→
AM1 �

−→n =
−−−−→
H1M1 �

−→n = λ.‖−→n ‖2 (car
−−→
AH1 ⊥ −→n ). Et :

2) Si f(M) = ax+ by− c, en repère orthonormé ∀A ∈ D, ∀M :
−−→
AM �

−→n = ax+ by − c = f(M)

En effet, avec notations évidentes
−−→
AM �

−→n = (
x− x0

y − y0
) � (

a
b

) = a(x−x0)+ b(y−y0) = ax+ by− c

car ax0 + by0 = c. [Qui ré-entraine, si on voulait, que −→n ⊥ D car M ∈ D ⇐⇒ −−→AM ⊥ −→n .]

D’où λ avec (2)
−−−−→
H1M1 �

−→n = λ.‖−→n ‖2 = a.x1 + b.y1 − c et δ = ‖−−−−→H1M1‖ =| λ | .‖−→n ‖ :
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δ(M1,D) = ‖−−−−→H1M1‖ =| λ | .‖−→n ‖ =
| ax1 + by1 − c |

‖−→n ‖ . (Même :
−−−−→
H1M1 =

ax1 + by1 − c√
a2 + b2

.
−→n
‖−→n ‖)

Remarque. Si on choisit : −→n (cos(α), sin(α)) unitaire, l’équation est dite "normale" ou encore

"équation d’Euler" de la droite D : x.cos(α) + y.sin(α) = d et
−−→
OH0 = d.−→n , ‖−→n ‖ = 1 ici.

3. Le cercle en repère orthonormé. Bien voir que ‖−−→CM‖2 = (x− a)2 + (y − b)2 !

Equation :
M ∈ Cercle (C(a, b), Rayon R) ⇐⇒ CM2 = R2 ⇐⇒ (x− a)2 + (y − b)2 = R2

⇐⇒ x2 + y2 − 2ax− 2by + c = 0 avec c = a2 + b2 −R2, donc a2 + b2 − c > 0.

Remarque : Le cercle passe par O si et seulement si c = 0.

16.4.2 Cercle : Théorème de l’angle inscrit

1. Version élémentaire

Soit C un cercle ; A 6= B ∈ C. ∀M ∈ C situé du même côté de (A,B)

l’angle ÂMB est constant et vaut 1/2.(ÂOB−opposé à M). Donc :

si N est sur le cercle de l’autre côté de (A,B) : M̂ + N̂= 1 angle plat.

Démonstration en exercice. [Commencer par le cas M,O,B alignés]

Version "angles orientés"
∀M ∈ C : (

−−→
MA,

−−→
MB) = 1/2.(

−→
OA,

−−→
OB) = θ(π) ("Arc capable"). Et

A,B,M,N sont (cocycliques ou alignés) ⇔ −−→MA,
−−→
MB =

−−→
NA,

−−→
NB(π)

A compléter

(Version "angles orientés", en complément : L’angle de 2 droites, en M , est défini modulo π ;
l’angle de 2 vecteurs, en O, modulo 2.π ; tout est donc correct avec le coefficient 1/2.)

2. Une utilisation : Relation des sinus dans un triangle.

a

sin(A)
=

b

sin(B)
=

c

sin(C)
=
abc

2S
= 2R S=aire du triangle ; R=rayon du cercle circonscrit.

En effet, que l’angle en A soit aigu ou obtus (faire des figures), on a toujours que l’aire vaut :
S = 1/2.ac.sin(B) ; donc aussi : S = 1/2.ac.sin(B) = 1/2.ab.sin(C) = 1/2.bc.sin(A).

Pour le moment, le théorème précédent est non utilisé ; puis avec le cercle circonscrit de centre O :

Soit B′ :
−−→
OB′ = −−→OA ; alors B̂′ = B̂ ou π − B̂ ; donc sin(B̂) = sin(B̂′) =

b

2R
. Fini.

(Complément : Les 4 cercles ABC, ABH, ACH, BCH ont même rayon.)

16.4.3 Complément sur le cercle : Théorème de la puissance d’un point

1. Enoncé

Soit C(C,R) un cercle et D(A,−→u ) une droite ; on supose ‖−→u ‖ = 1. Quand −→u varie en

direction et que D ∩ C contient 2 points M, M ′ : le produit AM.AM ′ est constant et

vaut puiss(A/C) = CA2 −R2 = d2 −R2 : "puissance du point A par rapport à C".
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Démonstration (par calcul vectoriel, sans repère !)

Pour D :
−−→
AM = λ.−→u . Pour C :

−−→
CM2 = R2. Donc (

−→
CA+

−−→
AM )2 = R2 qui donne avec

la ligne ci-dessus : λ2 + 2.λ.(−→u �
−→
CA) +

−→
CA2 −R2 = 0 car on choisit ‖−→u ‖ = 1.

Le produit des racines vaut λ.λ′ = (λ.−→u ) � (λ′−→u ) =
−−→
AM �

−−→
AM ′ =

−→
CA2 −R2. Fini ! 3 cas :

1) A sur le cercle ⇔ puiss(A/C) = 0. 2) A intérieur ⇔ puiss(A/C) < 0. Dessins ?

-1 0 1

3) A extérieur au cercle ⇔ puiss(A/C) > 0. Dessin à compléter ?

Avec ici une tangente AT au cercle, on retrouve aisément AT 2 = d2 −R2 (Pythagore).

2. Utilisation : Ensemble des points du plan M :
MA

MB
= k, A 6= B, k > 0 ; courbe notée Ck

On obtient si k = 1 la médiatrice de [A,B] et si k 6= 1 un cercle centré sur la droite (A,B).
(*) Et ces cercles (d’Apollonius) sont orthogonaux à tout cercle Γ passant par A et B

Démonstration (k 6= 1 sinon clair ; A et B points communs du dessin)

1) On écrit, par équivalence :
−−→
MA2 − k2.

−−→
MB2 = 0 ou (

−−→
MA+ k.

−−→
MB) � (

−−→
MA− k.−−→MB) = 0.

Soit I le baryc. de (A, 1)(B,+k) et J de (A, 1)(B,−k) ; k > 0). Alors (1+k).
−−→
MI =

−−→
MA+k.

−−→
MB,

(1− k).−−→MJ =
−−→
MA− k.−−→MB. D’où

−−→
MI �

−−→
MJ = 0,

−−→
MI ⊥ −−→MJ : M décrit le cercle de diamètre [IJ ].

2) (*) Complément . Pour l’orthogonalité, on va aussi utiliser la division harmonique D.H. :

� On avait
IA

IB
=
JA

JB
=
MA

MB
= k [ce qui, au passage, montrait que I et J étaient les pieds des

bissectrices de AMB] :
IA

IB
= −JA

JB
(1) : on dit que A,B, I, J sont en division harmonique.

� Ce qui entraine la relation de Newton : Si Ω est milieu de [I, J ], ΩI2 = ΩJ2 = ΩA.ΩB (2).

En effet, écrire IA = IΩ + ΩA, etc, pour passer de (1) à (2).

� Soit maintenant un cercle Γ passant par A et B : On sait que ΩA.ΩB est la puissance de Ω par
rapport à Γ ; ici, Ω est donc extérieur (puiss > 0) et si T est un point d’une tangente à Γ passant
par Ω, puiss(Ω/Γ) = ΩT 2 et c’est aussi ΩI2 avec (2). Ceci indique que Ck et Γ sont orthogonaux !
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M+ Exercices: Plan affine/affine euclidien. PTSI

1. (a) Médianes d’un triangle concourantes : à revoir avec les barycentres.

(b) Barycentres : Tracer l’isobarycentre de 4 points en les associant 2 et 2 ; puis 3 et 1.

Lire la figure dans l’espace avec un tétraèdre A,B,C,D et trouver 7 droites concourantes !

2. La droite en repère orthonormé. Equation de la droite D ⊥ −→n (3, 2), passant par A(−1, 2) ?

Distance de O(0, 0) à cette droite ? Equation de sa perpendiculaire passant par B(3, 4) ?

3. Coniques : (a) Equation du cercle passant par O, I(1, 0), J(0, 1) ? Puis reconnaitre les courbes

(b) y2 = x (c) y =
2x2 + 3x

x+ 1
(d) y =

2x2 + 3x+ 2

x+ 1
[divisions en (c), (d)].

4. Le cours : Le plan affine P (les points) ou bien le plan vectoriel associée Π (les vecteurs) est dit

"euclidien" si on a un produit scalaire (−→u �
−→v ) : forme bi-linéaire symétrique, définie, positive.

(a) Développer ‖−→u +−→v ‖2 (nom du résultat) ? Théorème de la médiane ? Utilité de bases o.n. ?

(b) Triangles : Rappeler la relation des cosinus dans le triangle. Puis celle des sinus.

(c) Rappeler l’inégalité de Cauchy-Schwartz ; et l’inégalité de Minkowski (inég. triangulaire).

Que donne l’inég. de (C-S) pour −→u
(

1
1

)
,
−→v
(
a
b

)
? Prouver cette inégalité autrement.

5. (a) Choix d’un repère o.n : Quel est
{
M :

−−→
MA �

−−→
MB = k

}
[avec A

(
a
0

)
;B

(
−a
0

)
] ?

(b) Même exercice sans repère, avec
−−→
MA =

−−→
MO +

−→
OA,

−−→
MB idem, O milieu de [A,B]

6. Repère o.n ... : pour E1 = {M : MA = 2.MB} ; E2, E3 = {M : MA2 ±MB2 = k}.

7. Angles : Pour une étoile croisée quelconque ABCDEA que vaut la somme des 5 angles au sommet ?

8. Cercles : (a) Vérifier que : C1(A1, R1) ∩ C2(A2, R2) 6= ∅ ⇔ | R1 −R2 | ≤ A1A2 ≤ R1 +R2.

(b) Montrer, avec le théorème de l’angle inscrit, que le symétrique de l’orthocentre H par
rapport aux côtés d’un triangle, est situé sur le cercle circonscrit.

(c) (*) Soit A,B,C : AB = 3;AC = 4;BC = 5. Avec G = Bar((A,−5), (B, 4), (C, 3)), quel est
l’ensemble C = {M : −5MA2 + 4MB2 + 3MC2 = 12} ? [Vérifier que (B,C) : tangente à C.]

9. (*) Barycentres. Soit M un point quelconque du plan P : A,B,C. [Avec
−−→
AM = λ.

−−→
AB + µ.

−→
AC.]

(a) Montrer que M est forcément barycentre de A,B,C avec des coefficienst α, β, γ judicieux.

(b) Montrer qu’on peut choisir α = Aire(MBC) etc. [Se limiter à M intérieur au triangle
(α, β, γ > 0) ici et pour la suite et voir que : α/AireMBC = β/AireMAC.]

(c) I étant le centre du cercle inscrit à PQR, déduire que I = Bar

(
P Q R
QR PR PQ

)
[PQ longueur]

(d) En déduire le centre de gravité d’un fil triangulaire homogène ABC pesant.

(e) Cas de la plaque triangulaire homogène ? [La découper en lamelles parallèles à (B,C)].



Chapitre 17

Transformations du plan

17.1 Homothéties affines et translations (sans repère ici)

17.1.1 Composition

1. Définition
f : M 7−→M ′ est une translation si

−−−→
MM ′ =

−−→
AA′ = cte ; et

une homothétie de centre I de rapport k 6= 0, si
−−→
IM ′ = k.

−−→
IM.

2. Théorème

Soient f, g des homothéties affines (rapport k1, k2) ou translations (rapport 1).
Alors gof est si k1.k2 6= 1 une homothétie affine de centre l’unique point fixe ;

si k1.k2 = 1 une translation. Et la composée est non commutative en général.

Une démonstration est possible avec les complexes : z 7→ k1.z + b, z 7→ k2.z + d, k1, k2 ∈ R∗.

Ex. z′ = −2.z + 3 + 6i : homothétie de rapport −2 (simil. aff. directe, rapport 2, angle π, centre : point fixe).

17.1.2 Théorème de Thalès

1. Enoncé
Soient 2 droites D1,D2 distinctes et 3 droites D,D′,D” ; avec D 6= D′ parallèles

coupant les 2 précédentes en A,B ; A′, B′. Alors : D”//D′ ⇐⇒ AA”

AA′ =
BB”

BB′ .

La démonstration peut utiliser une translation si D1,D2 parallèles, ou une homothétie si sécantes

en I. Dans ce dernier cas :
IA”

IA′ =
IB”

IB′ =
A”B”

A′B′ . [On peut aussi utiliser une projection affine].

2. Attention Dans R3, 2 droites affines sont en général non coplanaires : ni parallèles ni sécantes !

17.1.3 En complément

Médianes concourantes avec les homothéties affines. 1

1 Notes :

1. On a A 6= B et A′ 6= B′ donnés : [∃f hom. aff. ou transl. A 7→ A′, B 7→ B′] ⇐⇒ A′B′//AB.

Démonstration (=⇒) : est connu.
(⇐=) : Le plus simple est de voir qu’il y a une et une seule similitude directe z′ = α.z+β telle que A 7→ A′, B 7→ B′ :

faire le calcul avec ce système de 2 équations à 2 inconnues suivantes

{
αa+ β = a′

αb+ β = b′
et trouver : α =

b′ − a′

b− a
6= 0.

Cette similitude est : une translation ou une homothétie (ensemble noté H-T ) ⇔ α ∈ R∗ (facile).

Et c’est justement notre hypothèse !

2. Exercice : Médianes concourantes avec les homothéties.

Soit A′, B′, C′ milieux de BC, CA, AB ; G intersectionde AA′ et BB′. Par le théorème de Thalès, on sait que−−−→
A′B′ = −1/2.

−→
AB ; soit donc hG,−1/2 l’homothétie : h(A) = A′, h(B) = B′.

Montrons que h(C) = C′ ; on ne le sait pas ici !

Notons h(C) = C∗ ; alors
−−−→
A′C∗ = −1/2.

−→
AC ; ceci entraine aisément C′ = C∗ et termine.

113
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17.2 Ecriture vectorielle et matricielle de systèmes linéaires

17.2.1 Systèmes 2x2

Le système suivant s’écrit sous forme vectorielle :

{
a.x+ b.y = c
a′.x+ b′.y = c′

ou x.

(
a
a′

)
+ y.

(
b
b′

)
=

(
c
c′

)

x.−→u + y.−→v = −→w dans le plan vectoriel Π = R2.

Et sous forme matricielle, ce produit s’effectuant Lignes par Colonnes

(
a b
a′ b′

)
.

(
x
y

)
=

(
a.x+ b.y
a′.x+ b′.y

)
:

(
a b
a′ b′

)
.

(
x
y

)
=

(
c
c′

)
ou A.X = B.

17.2.2 Cas d’un système de Cramer (rappel)

(Sol. unique) ⇔ det(A) =
∣∣∣∣
a b
a′ b′

∣∣∣∣ 6= 0 ;

∣∣∣∣
a b
a′ b′

∣∣∣∣ = det

(
a b
a′ b′

)

−−→
OA

−−→
OB

−→ı
−→ = Aire.parallélogramme.OACBO.

17.3 Ecriture vectorielle et matricielle de transformations usuelles

17.3.1 Des exemples

1. Translation de vecteur −→u : M 7−→M ′ avec
−−−→
MM ′ = −→u ou

−−−→
OM ′ =

−−→
OM +−→u ; dans le plan

affine P(O,−→ı ,−→ ) :

(
x′

y′

)
=

(
x
y

)
+

(
α
β

)
ou : Translation

(
x′

y′

)
=

(
1 0
0 1

)
.

(
x
y

)
+

(
α
β

)

2. Homothétie affine de centre I

(
x0

y0

)
de rapport k ∈ R∗ :

−−→
IM ′ = k.

−−→
IM . Avec la relation de Châsles

ceci implique : (non équivalence !)
−−−→
OM ′ = k.

−−→
OM +

−→
cte avec

−→
cte =

−−→
OO′ ! (faire M = O).

Propriété Inversement M 7→M ′ :
−−−→
OM ′ = k

−−→
OM +

−→
cte, k 6= 0 est une homothétie ou une translation.

– Démonstration. En effet : Si k = 1 une translation (évident et ci-dessus).

– Si k 6= 1 : On cherche un point fixe I :
−→
OI = k.

−→
OI +

−−→
OO′ ; on en a un (et un seul ici) !

(
−→
OI =

1

1− k .
−−→
OO′) Par différence, on retrouve :

−−−→
OM ′−−→OI = k(

−−→
OM−−→OI) ou

−−→
IM ′ = k.

−−→
IM .

D’où :

(
x′

y′

)
= k.

(
x
y

)
+

(
α
β

)
. Homothétie affine ou Translation

(
x′

y′

)
=

(
k 0
0 k

)
.

(
x
y

)
+

(
α
β

)

Remarque : on a ici le cas particulier des symétries points : k = −1.

3. Autre démonstration du Théorème pour composée d’homothéties-translations valable même dans E = R3 :

� Une caractérisation (pourquoi les met-on ensemble) ? On a :

(f homothétie affine ou translation) ⇔ ∃k 6= 0 :
−−−→
M ′N ′ = k.

−−→
MN, ∀M,N ⇔ ∃k 6= 0 :

−−−→
A′M ′ = k.

−−→
AM, ∀M ;A fixé.

Démonstration.
(1) ⇒ (2) ⇒ (3) faciles, k = 1 si translation, k = rapport d’homothétie sinon.

Voyons (3) ⇒ (1) : Si k = 1, arriver à
−−−→
MM ′ =

−−→
AA′ =

−→
cte (Châsles).

Si k 6= 1, on cherche un éventuel point fixe I (I ′ = I), on a l’équation équivalente suivante
−→
A′I = k.

−→
AI

ou
−−→
A′A+

−→
AI = k.

−→
AI ; ou (1 − k).

−→
AI =

−→
AA′ qui a une et une seule solution (k 6= 1) en

−→
AI.

Et puis : différence de
−−−→
A′M ′ = k.

−−→
AM et

−→
A′I = k.

−→
AI , d’où :

−−→
IM ′ = k.

−−→
IM : fini !

� Démonstration du théorème facile avec la première équivalence : utiliser tantôt ⇒, tantôt ⇐.
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3. Cas des similitudes affines directes : z′ = p.z + q, q = α+ i.β, p = r.ei.ϕ ∈ C∗.

(les lettres a, b, c, d ∈ R étant prises, z = x+ i.y = ρ.ei.θ.)

• Rappelons que ces similitudes affines planes directes sont :

– si p = r.ei.ϕ 6= 1, des similitudes à centre : s’écrivant aussi z′ − z0 = r.ei.ϕ.(z − z0) ;

– et si p = 1, des translations. Le cas général est donc, pour Similitude affine directe :

z′ = r.ei.ϕ.z + q ou

(
x′

y′

)
= r.

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
.

(
x
y

)
+

(
α
β

)
; r.

(
a b
c d

)
=

(
ra rb
rc rd

)

• Cas r = 1 : déplacements. Rotations affines si ei.ϕ 6= 1 ou bien Translations.

z′ = ei.ϕ.z + q ou Translation ou rotation affine

(
x′

y′

)
=

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
.

(
x
y

)
+

(
α
β

)

4. Et la symétrie orthogonale (connue) par rapport à la droite : ∆
(
O,−→u (cos(ϕ), sin(ϕ)

)
?

z′ = e2.i.ϕ.z x′ + i.y′ = (cos(2ϕ)+ i.sin(2ϕ)).(x− i.y) :

(
x′

y′

)
=

(
cos(2.ϕ) sin(2.ϕ)
sin(2.ϕ) −cos(2.ϕ)

)
.

(
x
y

)

17.3.2 Résumé (préparation aux applications linéaires, ch.20)

1. Ainsi : Une application f de la forme : M

(
x
y

)
7→M ′ :

(
x′

y′

)
=

(
a b
c d

)
.

(
x
y

)
+

(
α
β

)
est

dite "affine" ; matriciellement : Y = A.X +B. Voir que B =
−−→
OO′.

2. Et : L’application −→u
(
x
y

)
7→ −→f (−→u )

(
x′

y′

)
=

(
a b
c d

)
.

(
x
y

)
est "l’application linéaire associée"

qui, elle, s’applique à un vecteur ; matriciellement : Y = A.X Exemple :

−→u =
−−→
OM(z) 7→ −→f (−→u ), z′ = (1 + i).z, similitude vectorielle d’angle

π

4
de rapport

√
2.

Dessin de −→u =
−−→
OM quelconque et de

−→
f (−→u ) :

Propriétés des Applications Linéaires
−→
f (−→x 1 +−→x 2) =

−→
f (−→x 1) +

−→
f (−→x 2) ;

−→
f (λ.−→x ) = λ.

−→
f (−→x )

Car avec les matrices : A.(X1 +X2) = A.X1 +A.X2 ; A.(λ.X) = λ.(A.X).

3. Lien Application affine f , Application Linéaire
−→
f :

Avec l’écriture Y = A.X+B, on a pour les points
−−−→
OM ′ =

−→
f (
−−→
OM) +

−−→
OO′ ou

−−−→
O′M ′ =

−→
f (
−−→
OM ).

Deux exemples : (
−→
f = Id,

−→
f = 2.Id serait mieux ?)

� L’Application Linéaire associée à une Translation est l’Identité Id : −→x 7→ −→x . de matrice

I2 =

(
1 0
0 1

)
. Déjà vu avec

−−−→
OM ′ =

−−→
OM +

−−→
OO′. Car

−→
f (
−−→
OM) =

−−→
OM ⇒ −→

f (−→x ) = −→x .

� L’Appl. Lin. associée à une Homothétie affine est une Hom. vectorielle k.Id : −→x 7→ k.−→x

(k 6= 0, 1) de matrice k.I2 = k.

(
1 0
0 1

)
=

(
k 0
0 k

)
. Vu avec

−−−→
OM ′ = k.

−−→
OM +

−−→
OO′.
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17.4 Des exercices corrigés.

17.4.1 Transformations et barycentres

Enoncé :

Dans le plan affine P, soient les points "pondérés" :

(
A B M
1 β k

)
et M ′ leur barycentre. Ici k 6= 0.

1. On impose : 1 + β + k 6= 0. Justifier que M ′ existe ; et que
−−→
AM ′ = K.

−−→
AM +

−→
cte.

2. Si β = −1, justifier que M 7→M ′ est une translation à préciser. Soit ensuite β = 1, k = −1 :

3. Avec
−−→
AM ′ = −−−→AM +

−−→
AB (∗) à voir, justifier que l’équation en I :

−→
AI = −−→AI +

−−→
AB a une et une

seule solution ; et que
−−→
IM ′ = −−−→IM . Image d’une droite passant par A ?

Corrigé :

1. M ′ existe car 1 + β + k 6= 0 et (origine en A) :
−−→
AM ′ =

1.
−→
AA+ β.

−−→
AB + k.

−−→
AM

1 + β + k
= K.

−−→
AM +

−→
cte.

2. Puis si β = −1,
−−→
AM ′ =

−−→
AM+

1

k
.
−−→
BA ou

−−−→
MM ′ =

−→
cte : M 7→M ′ Translation de vecteur

1

k
.
−−→
BA.

(Bien comprendre la relation de Chasles :
−−→
AM ′ −−−→AM =

−−−→
MM ′.)

3. Enfin, si K 6= 1, 0, on a déjà vu que
−−→
AM ′ = K.

−−→
AM +

−→
cte est une Homothétie affine ; on le refait :

Ici,
−−→
AM ′ = −−−→AM +

−−→
AB ; cherchons I tel que I ′ = I ou

−→
AI = −−→AI +

−−→
AB :

−→
AI =

1

2
.
−−→
AB solution

unique. Puis par différence des relations :
−−→
AM ′ = −−−→AM +

−−→
AB et

−→
AI = −−→AI+

−−→
AB, on obtient

−−→
IM ′ = −−−→IM . C’est donc, l’homothétie de centre I, de rapport −1, ou bien : une symétrie-point.

Enfin, comme A′ = B, l’image d’une droite passant par A est la droite parallèle passant par B.

17.4.2 Expression matricielle de la symétrie/y = 1 ?

1. On a : x′ = x,
y + y′

2
= 1 : Donc

(
x′

y′

)
=

(
1 0
0 −1

)
.

(
x
y

)
+

(
0
2

)

2. Remarque

(
x′

y′

)
=

(
1 0
0 −1

)
.

(
x
y

)
+

(
1
0

)
non symétrie car sans point fixe ! (x′ = x+ 1.)

17.4.3 Expression matricielle de la rotation affine d’angle π/3 de centre I(0, 1) ?

Le plus simple est de dire : z′ − i = ei.π/3.(z − i) ou z′ = ei.π/3.z + i− i.ei.π/3.

On trouve (...) :

(
x′

y′

)
=

(
1/2 −

√
3/2√

3/2 1/2

)
.

(
x
y

)
+

(√
3/2

1/2

)
.

17.4.4 Expression matricielle de la proj⊥ affine sur la droite affine y = x + 1 ?

1. Solution facile. Faire un dessin ! D : −x+ y = 1 ⊥ −→n (−1, 1) donc
−−−→
MM ′ = λ.−→n s’écrit

x′ − x = −λ, y′ − y = λ (1) ; de plus M ′ est sur D : y′ = x′ + 1 (2). Un petit calcul donne :

y + λ = x− λ+ 1 d’où λ =
x− y + 1

2
; puis x′, y′ :

(
x′

y′

)
=

1

2

(
1 1
1 1

)
.

(
x
y

)
+

(
−1/2
1/2

)
.
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2. (*) Facultatif, vérifions. O

(
0
0

)
7→ O′

(
−1/2
1/2

)
: O′ ∈ D,

−−→
OO′ ⊥ D. Et l’égalité matricielle

s’écrit :
−−−→
OM ′ =

−→
f (
−−→
OM ) +

−−→
OO′ ou bien

−−−→
OM ′ −

−−→
OO′ =

−−−→
O′M ′ =

−→
f (
−−→
OM).

Ici, si
−→
U vecteur unitaire de D, on doit avoir

−−−→
O′M ′ = (

−−→
OM �

−→
U ).
−→
U [s’en assurer, dessin.]

D’où, si −→u = −→ı +−→ non unitaire,
−→
U =

−→u
‖−→u ‖ ; on doit donc avoir

−→
f (
−−→
OM) = (

−−→
OM �

−→u
‖−→u ‖2 ).−→u .

Comparons (

−−→
OM �

−→u
‖−→u ‖2 ).−→u =

(
x
y

)
�

(
1
1

)

12 + 12
.

(
1
1

)
=



x+ y

2
x+ y

2


 et

1

2

(
1 1
1 1

)
.

(
x
y

)
: idem !

3. (Laissé) : Faire la symétrie orthogonale/D ... Trouver :

(
x′

y′

)
=

(
0 1
1 0

)
.

(
x
y

)
+

(
−1
1

)
.

17.4.5 Quelques calculs avec les matrices (2,2)

On définit le produit matriciel par

(
a b
c d

)
.

(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

1. Si A =

(
a b
c d

)
, I2 =

(
1 0
0 1

)
, vérifier que : A.I2 = I2.A = A. Puis :

2. Si B =

(
1 a
0 −1

)
, C =

(
0 1
0 0

)
, que : B2 = I2, C2 = O et B.C 6= C.B.

3. Si D =

(
λ 0
0 µ

)
(diagonale), calculer D2, D3, Dn, n > 1 [associativité admise].

4. Si E =

(
0 −1
1 −1

)
, calculer E2, E3 ; puis E2021 [E3 = I2 donc E2021 = E2].

17.4.6 (*) Lecture (complément)

1. Le calcul matriciel semble-t-il utile ? Réponse : Le calcul vectoriel est plus concis ;

mais non suffisant parfois. Par contre pour le plan, n’oublions pas les complexes !

2. L’application est parfois non bijective. Comme dans l’exercice 4.4.

1ère raison : on ne peut inverser ; 2ème : ou bien ni surjective ; ni injective :

Un point hors de D : y = x+ 1 n’a pas d’antécédant ; un point de D en a une infinité !

3. Pour finir : le programme fera surtout étudier les Applications linéaires (ch 20 s.)

– On préfèrera les Applications Linéaires de E dans E d’écriture matricielle Y = An,n.X

(mais des matrices rectangles ne sont pas exclues ...)

– Par contre, on considèrera toutes les projections vectorielles E → E, même obliques !

De même, avec les symétries vectorielles, même obliques.

4. Note :

(
x
y

)
7−→

(
x′

y′

)
=

(
x/(x2 + y2)
y/(x2 + y2)

)
est non linéaire ou affine (mais plus compliquée) !

Déjà à cause de x2 ; de plus : application non définie si x = y = 0 (Inversion géométrique, cf. C).
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M+ Exercices: Transformations du Plan (affine euclidien). PTSI

1. Composition d’ homothéties-translations du plan (On sait que la loi o y est interne).

(a) Soit h l’homothétie de centre I, de rapport 2, h′ de centre J , de rapport 1/2. Comparer h′oh
et hoh′ (On sait que chacune est une translation).

(b) Soit h l’homothétie de centre I, de rapport 2, h′ de centre J , de rapport −1/2. Comparer h′oh
et hoh′. (On sait qu’il s’agit d’une symétrie-point dans chaque cas).

(c) Si h l’homothétie de centre I, de rapport 2 ; t une translation, a-t-on : t−→u oh= hot−→u ?

2. Barycentres. Préciser f : M 7→M ′ =Bar

(
A B M
2 1 −1

)
. Et g : M 7→M ′ =Bar

(
A B M
1 −1 2

)
.

3. Calcul. Avec z′ − i = ei.π/3(z − i), expression matricielle de la rotation de centre I
(

0
1

)
d’angle

π

3
?

Puis expression matricielle de la transformation inverse (réciproque) ?

4. Ecriture matricielle et interprétation géométrique de la transformation M(z) 7→M ′(z′ = e2.i.ϕ.z) ?

5. Avec l’image de 2 points faciles, trouver le centre C, de h = rB,π
2
o rA,π

3
: on sait que h = rC,π

2
+ π

3
.

6. Construction : (Les homothéties supposées de rapport 6= 1)

(a) Si hJohI = t−→u , vérifier que −→u et
−→
IJ sont colinéaires. Si hJohI = hK que I, J,K sont alignés.

(b) (*) Sur la droite (A,B), A 6= B, on se donne A′ et B′ avec A′ 6= B′. Construire le centre de
l’homothétie transformant A en A′ et B en B′. (Indication : prendre M hors de la droite !)

7. Hauteurs concourantes : droite d’Euler (H,G,O) ; (*) et cercle d’Euler ou cercle des 9 points.

(a) Soit h l’homothétie de centre G (intersection connue des médianes) de rapport −1/2. Image

d’une hauteur ? Déduire que les hauteurs sont concourantes et
−−→
GH = −2

−−→
GO [

−−→
OH = 3.

−−→
OG.]

(b) (*) Soit E tel que
−−→
GO = −2

−−→
GE. Figure O,G,E,H ? Avec h et h′H,1/2 (homothétie), déduire

que les 3 milieux de [A,B] ... de [H,A] ... et les 3 pieds des hauteurs sont cocycliques.
[Prendre h(C) et h′(C) où C cercle circonscrit ; et ... le sym. orthogonal de H/ côtés est sur C.]

8. (*) Soit I le centre d’une similitude directe plane A 7→ A′;B 6= A 7→ B′ donnés. Donc θ =
−−→
AB,

−−→
A′B′.

Que dire de l’angle
−→
IA,
−→
IA′ ? Puis de

−→
IB,
−→
IB′ ? Déduire que I est intersection de 2 cercles connus et

qu’enfin I est le point autre que (A,B) ∩ (A′B′). [Sinon, cercles tangents et résultat encore vrai.]

9. (*) Cercle, angle inscrit et similitude : Soit C ∩ C′ = {A,B} ; s la similitude directe (centre A,

C 7→ C′). Si s(M) = M ′, montrer que M,B,M ′ sont alignés. [Soit P = MB ∩ C′ ; −→OA,−−→OM =

2(
−−→
BA,

−−→
BM ) = 2(

−−→
BA,

−−→
BP ) =

−−→
O′A,

−−→
O′P (2.π). D’où

−−→
AM,

−→
AO = α =

−→
AP ,
−→
AO′ ; donc P = M ′.]

10. (*) Théorème de Ménélaüs. Avec une projection sur (B,C) pour =⇒ et Cours pour ⇐= ,

montrer que : (M ∈ (B,C), N ∈ (C,A), P ∈ (A,B) sont alignés) ⇐⇒ MB

MC
.
NC

NA
.
PA

PB
= 1.

11. (*) Théorème de Céva. Avec K baryc. de A,B,C pour =⇒ montrer, si M ∈ (B,C), N ∈ (C,A)

P ∈ (A,B) : (AM,BN,CP concourantes [en K] ou parallèles) ⇐⇒ MB

MC
.
NC

NA
.
PA

PB
= −1.



Chapitre 18

Systèmes linéaires. Espaces vectoriels

18.1 Systèmes linéaires

18.1.1 Système n x p

1. En plus de système 2x2, on doit résoudre des systèmes 3x3 ou n x p. Exemple :

Chercher s’il existe α, β, γ ∈ R





α+ 4β + 7γ = p
2α + 5β + 8γ = q
3α+ 6β + 9γ = r

. (Réponse parfois oui : p = q = r = 0 ;

parfois non : p = 1, q = r = 0 et L1 + L3 − 2.L2)

2. Un système linéaire de n lignes, p colonnes (S) s’écrit :





a11x1 + a12x2 + ...+ a1pxp = b1
a21x1 + a22x2 + ...+ a2pxp = b2

...
an1x1 + an2x2 + ...+ anpxp = bn

(aij étant le terme ligne i, colonne j)

18.1.2 Résolution par la méthode du "pivot de Gauss"

1. Opérations élémentaires sur un système linéaire.

Il y a 3 opérations élémentaires sur les lignes ; après, on obtient un système équivalent ; voici :

1) Permuter Ligne i et Ligne j ; noté Li ↔ Lj ;
2) Remplacer Ligne i par k. Ligne i, k 6= 0 ; noté Li ← k.Li ;
3) Enfin remplacer Li par Li + λ.Lj, j 6= i ; noté Li ← Li + λ.Lj.

(Voir que 3) aussi est une équivalence : le retour étant Li ← Li − λ.Lj.)
Note :
Les opérations élémentaires sur les colonnes sont aussi permises ; celà modifie juste les inconnues.

2. L’exemple : ∃ ? α, β, γ ∈ R :





α+ 4β + 7γ = p
2α+ 5β + 8γ = q
3α+ 6β + 9γ = r

⇔ ∃ ? α, β, γ ∈ R :





α+ 4β + 7γ = p,
−3β − 6γ = q − 2p
−6β − 12γ = r − 3p

⇐⇒ ∃ ? α, β, γ ∈ R :





α+ 4β + 7γ = p

β + 2γ =
2p− q

3
et enfin 0 = r − 3p− 2q + 4p

La question devient : A quelles

conditions (C.N.S.) α, β, γ existent-ils dans le système équivalent échelonné final ?

Réponse : si et seulement si la dernière ligne est vérifiée (évident) : p− 2q + r = 0. Donc :

– si par exemple p = 1, q = 0, r = 0, le système n’a pas de solution.

– si p = r = 1, q = 2, le système a une solution ; même une infinité, une lettre arbitraire ; ex : c.
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3. Autre exemple :





x+ y − 3z = −13
x+ y − 2z = −8
2x+ y + z = 3
x+ 2y − 3z = 5

⇔





x+ y − 3z = −13
z = 5

−y + 7z = 29
y = 18

avec L2 − L1, L3 − 2L1, L4 − L1

⇔





x+ y − 3z = −13
−y + 7z = 29

z = 5
y = 18

avec L2 ↔ L3 (et si on veut L4 ← L4 + L2, ... pour avoir un système

totalement échelonné ; mais on voit déjà qu’il est impossible)

4. Ecritures vectorielles et matricielles des systèmes linéaires

Dans E = Rn, notons −→v 1 =




a11

a21

...
an1


 ,−→v 2 =




a12

a22

...
an2


 , ...,−→v p =




a1p

a2p

...
anp


 ; et

−→
b =




b1
b2
...
bn


 ∈ R

n.

� Alors le système général (S) s’écrit vectoriellement : x1.
−→v 1 + x2.

−→v 2 + ...+ xp.
−→v p =

−→
b .

On considèrera (S0) x1.
−→v 1 + x2.

−→v 2 + ...+ xp.
−→v p =

−→
0 Rn . (aussi appelé système ou équation

(vectorielle) sans second membre "ESSM" associée (parfois "système homogène associé").

� On a aussi une écriture matricielle A.X = B (ci-dessous) et la "matrice augmentée" :



a11... a1j ... a1p

...

...
an1... anj ... anp







x1

x2

...
xp


 =




b1
y2
...
bn


. Ex :




1 1 −3
1 1 −2
2 1 1
1 2 −3






x
y
z


 =




−13
−8
3
5


 ou




1 1 −3 | − 13
1 1 −2 | − 8
2 1 1 | 3
1 2 −3 | 5


.

18.2 Espaces vectoriels

18.2.1 Définition

E est un espace vectoriel sur K = R ou C (K-e.v.) si E est muni de deux lois : + et �

+ interne : −→u ,−→v ∈ E =⇒ −→u +−→v ∈ E et � externe : λ ∈ K,−→u ∈ E =⇒ λ.−→u ∈ E
telles que : 1) (E,+) soit un groupe abélien [5 axiomes avec loi interne : ci-après.]

avec également : 2) λ � (−→u +−→v ) = λ �
−→u + λ �

−→v ; (λ+ µ) �
−→u = λ �

−→u + λ �
−→v ;

(λ.µ) �
−→u = λ � [µ �

−→u ] et 1 �
−→u = −→u . [donc 5 autres avec loi externe.]

Remarques 1) Les éléments de E sont appelés "vecteurs" ; et ceux de K = R ou C appelés scalaires.

2) Groupe abélien ou groupe commutatif signifie + est interne et 3 axiomes ; et comm. :

Associative ; avec Neutre (forcément unique
−→
0 +
−→
0 ′ =

−→
0 ′ =

−→
0 car

−→
0 et

−→
0 ′ neutres) ; tout élément

−→u a un Symétrique (forcément unique −→u ′ +−→u +−→u ” = −→u ” = −→u ′) noté −−→u ; enfin Commutative.

Montrer qu’on peut simplifier : −→u +−→x = −→u +−→y ⇒ −→x = −→y (en ajoutant −−→u à gauche, etc.)

3) Dans (λ.µ) �
−→u le 1er . est la multiplication dans K ; le 2ème � est l’opération externe.

18.2.2 Propriétés

On a : λ.−→u =
−→
0 ⇐⇒ (λ = 0 ou −→u =

−→
0 ) et (−λ).−→u = λ.(−−→u ) = −(λ.−→u ).

Démonstration 1) 0.−→u =
−→
0 car (0 + λ).−→u = λ.−→u ou 0.−→u + λ.−→u =

−→
0 + λ.−→u et on peut simplifier.

λ.
−→
0 =

−→
0 car λ.(

−→
0 +−→u ) = λ.−→u = λ.−→u +

−→
0 ; etc. de même.

Inversement Si λ.−→u =
−→
0 avec λ 6= 0, λ est inversible (R ou C),

1

λ
.(λ.−→u ) =

1

λ
.
−→
0 ou (

1

λ
.λ).−→u =

−→
0

ou 1.−→u =
−→
0 ou enfin −→u =

−→
0 . [Divers axiomes utilisés.]

2) [−λ+ λ].−→u = 0.−→u =
−→
0 , donc ... (−λ).−→u = −(λ.−→u ) ; et l’autre analogue.
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18.2.3 Exemples

1. E = R2 est un espace vectoriel sur K = R. Les deux opérations :

−→u
(
x1

y1

)
+−→v

(
x2

y2

)
= −→u +−→v

(
x1 + x2

y1 + y2

)
et λ.−→u : λ.

(
x1

y1

)
=

(
λ.x1

λ.y1

)

De même E = R3 e.v. sur R E = Rn est un R espace vectoriel, n > 1, surtout n = 2, n = 3.
Remarque :
Pour n = 1, E = R est un e.v. sur K = R. (On ne met pas de flèche sur les éléments de E : λ.x)

2. E = {−→0 } est un e.v. sur R. C’est le plus petit car tout e.v. contient
−→
0 , neutre pour +.

3. E = C est un e.v. sur K = R. Opérations :

{
z1 + z2 (interne)

λ.z, λ ∈ R (externe)

4. E = C est un e.v. sur K = C. Opérations :

{
z1 + z2 (interne)

λ.z, λ ∈ C (externe)

Nous verrons que E = C est un R-e.v. de dimension 2 ; par contre un C-e.v. de dimension 1.

5. F(I,R) où I = [0, 1] par exemple, est un R e.v. Bien retenir les exemples 1 et 5.

−→u +−→v correspond à f + g (sin+ exp par exemple) λ.−→u correspond à λ.f

Dans ce style
R[x] est un R e.v. (addition P +Q ; loi externe λ.P ) : e.v. des polynômes à coeff. réels
C[x] est un espace vectoriel sur R ; et aussi un e.v. sur C.
De même R(x) est un R e.v. : e.v. des fractions rationnelles à coeff. réels

6. F(N,C) ensemble des suites à termes complexes est un C e.v.

Loi interne −→u +−→v : addition de suites (un) + (vn) (
−→
0 est ici la suite nulle ! )

Loi externe λ.−→u : λ.(un) (utile au ch. suivant avec λ ∈ C).

18.2.4 Combinaisons linéaires

1. Définition
Soit (−→u i)i∈I une famille de vecteurs où I est ici un ensemble d’indices.

Une combinaison linéaire des (−→u i) est un vecteur (ou bien un élément de l’espace
vectoriel) s’écrivant λ1

−→u 1 + ...+ λp
−→u p pour un nombre fini de coefficients non nuls.

2. Exemples
• Dans E = C espace vectoriel sur R, (R-e.v.), tout complexe est combinaison linéaire de 1 et i :

∀z ∈ C, ∃x, y ∈ R tels que z = x.1 + y.i.

• Dans E = R[x] espace vectoriel sur R, une combinaison linéaire de (xn)n∈N est un polynôme ;
[Tandis que 1+x+x2+ ... sans s’arrêter n’est pas un polynôme : on dit une série.]

Comme la famille (xn)n∈N permet d’obtenir tout R[x], par combinaisons linéaires, on dit qu’elle est
"génératrice" ; on s’intéressera aux familles génératrices les plus petites possibles.

3. Résumé : les "combinaisons linéaires " combinent les 2 opérations de l’e.v. ; elles sont essentielles.

18.3 Sous espaces vectoriels

18.3.1 Définition

Soit E un e.v. sur K (R ou C) et E1 ⊂ E. E1 est un sous e.v. de E si :

1) + est interne dans E1 2) ∀λ ∈ K,−→u ∈ E1 : λ.−→u ∈ E1 3) E1 lui-même espace vectoriel sur K.
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. Remarquons que {−→0 } et E sont deux sous espaces de E.

. Un sous e.v. est jamais vide : contient au moins le neutre
−→
0 de E ! (car 0.−→u =

−→
0 )

18.3.2 Caractérisations pour E1 ⊂ E

E1 sous e.v. de E ⇔





E1 6= ∅ [contient
−→
0 .]

−→u ,−→v ∈ E1 =⇒ −→u +−→v ∈ E1

∀λ ∈ K,−→u ∈ E1 : λ.−→u ∈ E1

⇔
{
E1 6= ∅ [en pratique contient

−→
0 .]

∀λ ∈ K, −→u ,−→v ∈ E1 : λ.−→u +−→v ∈ E1.

Démonstration de la première équivalence. =⇒ est clair.

⇐= : Déjà (E1,+) sous-groupe abélien : par ex. l’associativité est vraie dans E1 car vraie dans E ! etc.
Puis, par exemple, l’égalité : λ.(−→u +−→v ) = λ.−→u + λ.−→v est vraie dans E1 car vraie dans E ! ...

Utilisations 1) Montrons que C∞([0, 1],R) est un espace vectoriel sur R.

On va montrer que c’est un sous espace d’un espace connu ; ici de E = F([0, 1],R), avec la première :
La fonction nulle est C∞ ; puis si f , g sont C∞, f + g aussi ; enfin ∀λ ∈ R, λ.f est aussi C∞ de I dans R.

2) Soit E1 et E2 deux sous espaces de E ; montrons que E1 ∩ E2 est un sous espace.

Avec la deuxième cette fois :
−→
0 ∈ E1 ∩E2 (dans chacun car sous espaces) ; donc E1 ∩E2 non vide ;

puis si λ ∈ K;−→u ,−→v ∈ E1 ∩ E2, λ.
−→u +−→v ∈ E1 ; ∈ E2 ; (car sous espaces encore ; donc :) ∈ E1 ∩ E2.

Remarque Plus généralement si (Ei)i∈I est une famille de sous espaces, ∩Ei est un sous espace.

18.3.3 Exemples de sous espaces vectoriels

1. Dans Rn e.v. sur R si −→u 6= −→0 , {λ.−→u , λ ∈ R} est un sous e.v. appelé droite vectorielle.

� Preuve avec une caractérisation.
� En fait cet exemple a lieu dans tout espace E (sur R) où on peut trouver −→u 6= −→0 .

� Dessin : Un point O symbolise le vecteur
−→
0 ; alors R.−→u est représenté par une droite de vecteurs.

2. Dans R3 e.v. sur R Π =




−→u



x
y
z


 : 2.x− 3.y + z = 0



 est un sous e.v. dit : plan vectoriel.

Remarques
� Par caractérisation : si −→u ,−→v vérifient l’équation, λ.−→u +−→v aussi.

� Un sous e.v. contient toujours {−→0 } donc (...) : 2x− 3y + z = 4 NON sous e.v. de E = R3 ;

mais un plan affine de E = R3, espace affine !

3. Théorème :

Dans E e.v. sur R, soit (−→u i)i∈I une famille (non vide) de vecteurs ; alors
L’ensemble des combinaisons linéaires des (−→u i) est un sous e.v. de E ;

c’est le plus petit sous espace (pour ⊂) contenant les (−→u i).
On l’appelle : sous e.v. engendré par les (−→u i) ; on le note : Vect(−→u i)i∈I .

Démonstration [en 1ère lecture, supposer que la famille a 3 vecteurs.]

1) On a
−→
0 = 0.−→u 1 ; donc

−→
0 est combinaison linéaire des −→u i (donc ensemble non vide) !

Puis si −→x ,−→y sont comb.lin. des −→u i, λ.−→x +−→y aussi (idem) ! Ainsi, l’ensemble des combinaisons
linéaires, noté ici V , est un sous espace de E par une caractérisation ; et il contient les −→u i.

2) Inversement, tout sous e.v. contenant les −→u i, doit contenir (cf. déf.) chaque combinaison linéaire
des ui ; donc doit contenir V . Donc c’est facile mais très important !

Exemple : droite vectorielle avec −→u 6= −→0 . On la notera maintenant : V ect(−→u ) = {λ.−→u , λ ∈ R}.
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18.4 Exemples traités

18.4.1 1er exemple : dans R3

1. Enoncé
Dans R3 e.v. sur R, montrer que le sous e.v. engendré par −→u




1
2
3


 ,−→v




4
5
6


−→w




7
8
9




V ect(−→u ,−→v ,−→w ) = V est un plan vectoriel dont on donnera une équation cartésienne.

V est l’ensemble des combinaisons linéaires ou des vecteurs s’écrivant α−→u +β−→v +γ−→w , α, β, γ ∈ R.

On a mis α, β, γ (au lieu de λ, µ, ν moins simple) ; mais x, y, z n’était pas ici une bonne notation :

2. Résolution Notons :



x
y
z


 [−→x si l’on veut] un vecteur général de V . On a −→x



x
y
z


 ∈ V ⇐⇒ ...

... ∃ α, β, γ ∈ R :



x
y
z


 = α.




1
2
3


+β.




4
5
6


+ γ.




7
8
9


⇐⇒ ∃ α, β, γ ∈ R :





α+ 4β + 7γ = x
2α + 5β + 8γ = y
3α+ 6β + 9γ = z

.

Attention

Ici, ce sont α, β, γ les inconnues, dont on ne veut que l’existence ! Aussi :
on met α, β, γ à gauche. x, y, z jouent le rôle de paramètres décrivant le sous e.v. V , en entier.

Donc : −→x ∈ V ⇐⇒ ∃ α, β, γ ∈ R : α.−→u + β.−→v + γ.−→w = −→x ⇐⇒ ...

∃α, β, γ ∈ R :





α+ 4β + 7γ = x,
−3β − 6γ = y − 2x
−6β − 12γ = z − 3x

⇔ ∃α, β, γ ∈ R :





α+ 4β + 7γ = x,

et β + 2γ =
2x− y

3
et pour finir 0 = z − 3x− 2y + 4x

La question est alors : A quelles conditions (C.N.S.) α, β, γ existent-ils pour que le système

équivalent final soit satisfait ? Si et seulement si la dernière ligne est vérifiée (évident). Donc

V =




−→x



x
y
z


 : x− 2y + z = 0



 : x− 2y + z = 0 est une équation cartésienne cherchée.

3. Remarques � On peut vérifier que −→u ,−→v ,−→w satisfont à l’équation de V !

� Enfin, en sens inverse, ayant une équation de V , comment en trouver un système générateur ?

Voici à partir de : x− 2y + z = 0 :

On a



x
y
z


 ∈ V ⇐⇒




x = x
y = y

z = −x+ 2y


 ["3 lettres, 1 équation ; donc 2 degrés de liberté"] D’où :



x
y
z


 ∈ V ⇔



x
y
z


 = x




1
0
−1


+y




0
1
2


 = x−→a +y

−→
b . V = V ect(−→a ,−→b ) : autre système générateur.

18.4.2 2ème exemple : dans R[x] e.v. sur R

Déjà, on voit que : R[x] = V ect(1, x, x2, ..., xk, ...) les ... signifiant k ∈ N (on ne s’arrête pas)

et on note : V ect(1, x, x2, ..., xn) = Rn[x] le sous e.v. des polynômes de degré au plus n.

Attention � d0(O) = −∞. Et les polynômes de degré 0 sont les constantes non nulles !

� L’ensemble des polynômes de degré exactement 2 : non sous e.v. : ne contient pas O ; etc.

� De même, le complémentaire d’un sous e.v. est jamais un sous e.v. : ne contient pas
−→
0 .
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18.5 Somme de sous espaces vectoriels

1. Rappel à bien revoir : L’intersection de 2 sous e.v. est un sous e.v. (donc jamais vide).

2. Mais la réunion de 2 sous e.v. n’est pas (en général) un sous e.v. : Dans R2 si −→ı
(

1
0

)
et

−→
(

0
1

)
; alors : R.−→ı ∪R.−→ (ou V ect(−→ı )∪V ect(−→ )) non sous e.v. car −→ı +−→ 6∈ V ect(−→ı ) ;

−→ı +−→ 6∈ V ect(−→ ) ; d’où −→ı +−→ 6∈ V ect(−→ı )∪ V ect(−→ ). Dessin ? On va remédier à ce défaut.

18.5.1 Somme de 2 sous e.v.

1. Définition
On appelle somme de 2 sous e.v. E1, E2, de E : E1 + E2 = {−→x 1 +−→x 2,

−→x i ∈ Ei}
Alors : E1 + E2 est un sous e.v. de E ; c’est le plus petit contenant E1 et E2.

[On aurait donc pu le noter V ect(E1 ∪ E2)]

Démonstration
E1 +E2 sous e.v. facile avec une caractérisation ; contient E1 (choisir −→x 2 =

−→
0 ) et E2. Inversement

Tout sous e.v. contenant E1 et E2 doit contenir E1 + E2 (clair si on a assimilé les définitions).

2. Exemple dans E = R3

Soit E1 = V ect(−→u ) = R.−→u , −→u 6= −→0 et E2 = V ect(−→v ) = R.−→v , −→v non colinéaire à −→u .

Ici E1 +E2 = V ect(−→u ) + V ect(−→v ) = V ect(−→u ,−→v ) = {λ.−→u + µ.−→v } = Π 6= R3. Dessin ?

3. En général, il y a 2 cas :

{
soit E1 + E2  E (comme dans l’exemple)
soit E1 + E2 = E (ce que l’on souhaite)

Définition

L’égalité E = E1 + E2 signifie exactement E ⊂ E1 + E2 (car réciproque évidente), donc que
Tout vecteur −→x de E a au moins une écriture ou décomposition du type −→x 1 +−→x 2 ,

−→x i ∈ Ei
∀−→x ∈ E, ∃−→x 1 ∈ E1,

−→x 2 ∈ E2 tels que −→x = −→x 1 +−→x 2. On dit que E est somme de E1 et E2.

18.5.2 Somme directe

Maintenant on s’intéresse au cas où tout vecteur de E a au plus une écriture sur E1, E2.

1. Propriété

Notons
−→
0 le vecteur nul de E. Les deux affirmations suivantes sont équivalentes

1) Tout vecteur de E a au plus une écriture sur E1 + E2

2)
−→
0 a une unique écriture sur E1 + E2, à savoir

−→
0 (∈ E) =

−→
0 (∈ E1) +

−→
0 (∈ E2)

Dans ce cas on dit que la somme est directe et on note E1 ⊕ E2 au lieu de E1 + E2.

Démonstration
1) =⇒ 2) clair. [Au passage, (2) est l’implication : −→x 1 +−→x 2 =

−→
0 =⇒−→x 1 = −→x 2 =

−→
0 .]

2) =⇒ 1) Supposons que : −→x = −→x 1 +−→x 2 = −→y 1 +−→y 2,
−→x i,−→y i ∈ Ei.

Avec l’hypothèse 2), on doit montrer que −→x i = −→y i.
On a par différence :

−→
0 = (−→x 1 −−→y 1) + (−→x 2 −−→y 2) ; donc : −→x i = −→y i.

2. Remarque importante. On a l’équivalence : E1 et E2 en somme directe ⇐⇒ E1 ∩E2 = {−→0 }.
Démonstration
=⇒ Soit −→u ∈ E1 ∩ E2 ; on a

−→
0 = −→u + (−−→u ),−→u ∈ E1,−−→u ∈ E2 ; l’hypothèse fournit : −→u =

−→
0 .

⇐= Soit
−→
0 = −→u 1 +−→u 2,

−→u 1 ∈ E1,
−→u 2 ∈ E2. Avec l’hypothèse E1 ∩ E2 = {−→0 }, nous devons voir

que −→u 1 = −→u 2 =
−→
0 . Or −→u 1 = −−→u 2, noté

−→
t si l’on veut, est à la fois dans E1 et E2 donc

−→
0 !

Exemples � Si −→u ⊂ E1 ∩ E2, avec −→u 6= −→0 , E1 et E2 ne sont pas en somme directe !

� Deux droites vectorielles sont : soit confondues, soit en somme directe !
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3. Question piège Peut-on trouver 2 sous espaces E1, E2 avec : E1 + E2 6= E1 ⊕ E2 ?

Réponse :
� Si E1 et E2 ne sont pas en somme directe, la notation E1 ⊕ E2 est interdite : question insensée ;
� Et si E1 et E2 sont en somme directe, la notation E1 ⊕ E2 désigne le même sous espace que

E1 +E2 : elle est simplement plus précise. Il y a donc toujours égalité ici.

18.5.3 Sous e.v. supplémentaires

Etant donnés 2 sous e.v. E1 et E2, on souhaite que :

Tout vecteur −→x de E ait

{
(1) au moins
(2) et au plus

une écriture (ou décomposition) du type −→x 1 +−→x 2,
−→x i ∈ Ei

(1) est noté : E = E1 + E2 (2) est noté : E1 + E2 = E1 ⊕ E2.

1. Définition

Quand E = E1 + E2 et E1 +E2 = E1 ⊕ E2 sont vérifiés, on note : E = E1 ⊕ E2.

On dit que : les sous e.v. sont supplémentaires,
ou que : E est somme directe de E1 et E2,
ou que : E2 est un supplémentaire de E1.

2. Remarques
Ne pas confondre "supplémentaire" avec complémentaire.

Le complémentaire d’un sous e.v. est jamais un sous e.v. Pourquoi ? [car ne contient pas
−→
0 ].

3. Exemples de sous e.v. supplémentaires

• Aisément E = E ⊕ {−→0 } = {−→0 } ⊕ E à voir.

• Dans E = R3, si Π = V ect(−→ı ,−→ ); où −→ı =




1
0
0


−→ =




0
1
0


 et ∆ = R.k où

−→
k =




0
0
1


,

alors R3 = Π⊕∆. C’est l’unique l’écriture :



x
y
z


 =



x
y
0


+




0
0
z


.

• Généralisation du précédent, dans R3 encore, en prenant 2 vecteurs non colinéaires −→u ,−→v et
E2 = ∆ = R.−→w , −→w non située dans le plan vectoriel E1 = Π = V ect(−→u ,−→v ).

Dessin E = R3 = E1 ⊕ E2 Autre supplémentaire E′
2 ?

• Soit E = F(R,R) l’espace vectoriel sur K = R connu.

Posons E1 = P(R,R); E2 = I(R,R), sous ensembles des applications paires et impaires.

Alors E1 et E2 sont des sous e.v. (facile) ; et on a vu que F(R,R) = P(R,R)⊕ I(R,R).

C’est ainsi que : ex =
ex + e−x

2
+
ex − e−x

2
= ch(x) + sh(x).

• [Aussi : Si E = F(R,C) espace vectoriel sur K = R ; alors E = F(R,R)⊕F(R, i.R) !

Ex. : eix = cos(x) + i.sin(x).]
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M+ Exercices: Systèmes linéaires. Espaces vectoriels PTSI

1. Résoudre avec le pivot de Gauss :





x+ y − 3z = −13
x+ y − 2z = −8
2x+ y + z = 3
x+ 2y − 3z = 5

; puis





3x+ 2y + 6z + t = 1
x+ y + 2z + 0.t = −1
2x+ 2y + 5z + t = 1

2. Définition de E e.v. ? de E1 sous e.v. ? et rappel des 2 caractérisations de sous e.v.

Re-prouver que : C∞([0, 1],R) est un e.v. et que : E1, E2 sous e.v. de E ⇒ E1 ∩ E2 aussi.

3. Dans R3, les vecteurs −→a , puis
−→
b , sont-ils combinaisons linéaires de −→u ,−→v ,−→w où :

−→u =



−2
1
5


 ,−→v =




3
2
0


 , −→w =




5
1
−5


 ;−→a =




1
2
0


 ,
−→
b =




7
0
−10


 ? Conclusion sur V ect(−→u ,−→v ,−→w ) ?

4. (a) Dans R3 donner une équation cartésienne de Π = V ect(




1
1
1


 ,




1
2
3


). Puis un supplémentaire.

(b) En sens inverse, partant d’une équation de Π [x− 2y + z = 0] choisissant les lettres x, z arbi-
traires, donner une autre famille génératrice naturelle à 2 vecteurs. Donner une 3ème famille
génératrice à 3 vecteurs ; une 4ème avec une infinité de vecteurs. Laquelle est intéressante ?

5. (a) Montrer que C0(I,R) est un espace vectoriel sur R, I = [0, 1] [ou plus généralement un intervalle
de longueur 6= 0 de R] comme sous e.v. d’un espace connu.

(b) Citer un sous e.v. strictement inclus dans C0(I,R) et contenant strictement le sous-e.v. des
applications polynômiales identifié à R[x]. Que dire de V ect(1, x, x2) ?

6. (a) Indiquer un espace vectoriel contenant les fonctions cos(px), sin(qx), p ∈ N, q ∈ N∗.
Montrer que sin3(x) s’écrit en combinaison linéaire de sin(qx), q = 1, 2, 3. Vérifier
(plus tard, ch.30) avec les développements limités en x = 0 effectués à l’ordre 3.

(b) (Hors progr.) Idem avec ch2(x) en combinaison linéaire de ch(px), p = 0, 1, 2. Vérifier
avec des équivalents en +∞ et, plus tard, avec les développements limités en 0 à l’ordre 2.

7. Soient Ei des sous e.v. d’un e.v. E. Montrer que :

(a) (E1∩E2)+(E1∩E3) ⊂ E1∩(E2 +E3). Cas d’inclusion stricte ? Si E2 ⊂ E1 montrer l’égalité.

(b) E1 + (E2 ∩ E3) ⊂ (E1 + E2) ∩ (E1 + E3). Idem et égalité si E1 ⊂ E2.

(c) (E2 ⊂ E3 ; E1 ∩ E2 = E1 ∩ E3 ; E1 + E2 = E1 + E3) =⇒ E2 = E3.

(d) (E1 ⊂ E3; E2 ⊂ E4; E3 ∩ E4 = {−→0 }; E1 + E2 = E3 + E4) =⇒ (E1 = E3, E2 = E4).

(e) Enfin : (E1 ∩ E2) + (E1 ∩ E3) = E1 ∩ [E2 + (E1 ∩ E3)].

8. (a) Montrer sur un exemple que la réunion de 2 sous e.v. n’est pas, en général, un sous e.v.
(ceci est traité dans le cours).

(b) Si E1 et E2 sont des sous e.v. de E, montrer : (E1 ∪ E2 sous e.v.) ⇔ l’un inclus dans l’autre.



Chapitre 19

Espaces vectoriels de dimension finie

19.1 Bases

19.1.1 Famille génératrice

Définition
La famille de vecteurs (−→u i)i∈I est dite génératrice [sous entendu de tout l’espace]

si elle engendre donc tout l’espace, ou bien si : V ect(−→u i) = E ou encore si :
Tout vecteur de E a au moins une écriture en combinaison linéaire des −→u i.

Exemples

1) On convient que ∅ engendre E = {−→0 }.

2) Un vecteur non nul suffit [on en prend le moins possible] pour engendrer une droite vectorielle.

3) Dans E = C, e.v. sur R, la famille (1, i) est génératrice.

4) Dans R3, e.v. sur R, la famille −→ı ,−→ ,−→k est génératrice.

5) Dans R[x], e.v. des polynômes, la famille infinie (1,x,x2, ...) est génératrice.

(Attention : il n’y a qu’un nombre fini de coefficients non nuls dans une combinaison linéaire).

6) Dans R2[x]=Vect(1,x,x2) sous e.v. des polynômes de degré au plus 2, 1,x,x2 est une partie (famille

est plus général car permet les répétitions) génératrice. [Exercice : (1,x−1,(x−1)2) en est une autre]

19.1.2 Famille libre

Définition

La famille de vecteurs (−→u i)i∈I est dite libre si on a l’implication :

λ1.
−→u 1 + ...+ λp.

−→u p =
−→
0 =⇒ λ1 = ... = λp = 0. Ce qui est : dès que

−→
0 a une écriture

en combinaison linéaire des −→u i, c’est l’écriture banale :
−→
0 = 0.−→u 1 + 0.−→u 2 + ...+ 0.−→u p.

Propriété

On a équivalence entre :

1)
−→
0 admet seulement l’écriture banale précédente sur les −→u i c’est-à-dire : famille libre
2) et Tout vecteur de E a au plus une écriture en combinaison linéaire des −→u i.

Démonstration

2) =⇒1) est un cas particulier car
−→
0 admet toujours l’écriture banale signalée.

1) =⇒2) : Tout est là ! Soit donc −→x = λ1.
−→u 1 + ...+ λp.

−→u p = µ1.
−→u 1 + ...+ µq.

−→u q.
Quitte à rajouter des termes nuls, on a : −→x = λ1.

−→u 1 + ...+ λr.
−→u r = µ1.

−→u 1 + ...+ µr.
−→u r.

Par différence :
−→
0 = (λ1 − µ1).

−→u 1 + ...+ (λr − µr).−→u r ; et aussi
−→
0 = 0.−→u 1 + 0.−→u 2 + ...+ 0.−→u r.

L’hypothèse donne donc que λk − µk = 0, ∀k; ce que l’on voulait.

127
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Résumé
– On montre qu’une famille est "libre" grâce au critère technique 1) qui est la définition.

– Mais 2) donne le sens de "famille libre".

– Le contraire de famille génératrice est "famille non génératrice" ! de famille libre est "famille liée".

[Le vocabulaire va être maintenant éclairé : "libre" = sans relation en combinaison linéaire].

Exemples
1) On convient que ∅ est libre.

2) Pour un vecteur : (−→u ) libre ⇐⇒ −→u 6= −→0 . [à bien voir].

3) Pour deux vecteurs : −→u ,−→v libres ⇐⇒ non colinéaires. [cas particulier de l’exemple suivant]

4) Pour p > 2 vecteurs :
−→u 1,
−→u 2, ...

−→u p non libres (ou liés) ⇐⇒ l’un (au moins) est comb. linéaire des autres (au moins un lien.)

Démonstration
⇐= Clair : si −→u 1 = a2.

−→u 2 + ...+ ap.
−→u p alors 1.−→u 1 − a2.

−→u 2 − ...− ap.−→u p =
−→
0 . Terminé.

=⇒ Si on a (b1, ...bp) 6= (0, 0, ..., 0) avec b1.
−→u 1 + ... + bp.

−→u p =
−→
0 , supposons par exemple b1 6= 0 ; alors

−→u 1 =
−1

b1
(b2
−→u 2 + ...+ bp.

−→u p). Terminé.

5) Pour une famille infinie :
La définition dit que (−→u i)i∈I est libre si toute sous-famille finie est libre.

Ainsi un cas essentiel est : Dans R[x] la famille (xk), k ∈ N est libre.

19.1.3 Bases

1. Définition

Une famille (−→u i) de vecteurs de E est une base si elle est libre et génératrice. Ce qui veut dire:
Tout vecteur −→x de E a une et une seule écriture en combinaison linéaire des (−→u i).

2. Exemples

1) E = {−→0 } admet pour base la partie vide : ∅.

2) Une droite vectorielle ∆ admet pour base n’importe quel vecteur non nul de ∆.

3) Dans E = R3, e.v. sur R : −→ı




1
0
0


 ,−→




0
1
0


 ,
−→
k




0
0
1


 s’appelle "base canonique". Si −→x



x
y
z


,

on a −→x = x.−→ı + y.−→ + z.
−→
k . Idem avec Rn e.v. sur R.

4) Dans E = C, e.v. sur K = R : (1, i) est une base. (i, 1) en est une autre. (1, j) en est une
3ème : exercice. [Mais dans E = C, e.v. sur K = C, 1 et i sont liés ! i = i.1 à lire : −→v = λ.−→u ]

5) Dans R[x] e.v. sur R, la famille infinie (1,x,x2, ...) est une base. Ecriture du polynôme P sur la

famille : P (x) =
∑

06k6n

P (k)(0)

k!
xk, n > d0(P ) : formule de Mac-Laurin pour les polynômes, ch26.

. Car P (x) = a0 + a1.x+ ...+ an.x
n ; P (k)(x) = k!.ak + x(polynome). P (k)(0) = k!.ak : fini.

. On généralise avec les ((x-a)k; k ∈ N) autre base : formule de Taylor pour les polynômes ch26.

3. Note � Dans R3, on a une base à 3 vecteurs � Dans R[x], une base avec une infinité de vecteurs

� Et C∞([a, b],R) ( C0([a, b],R) ( F([a, b],R) sont de très gros e.v. sur R dont on ne connait pas
de base et contiennent en particulier les fonctions polynômiales R[x] et la famille libre (x 7→ xn)n∈N



19.2. THÉORÈMES FONDAMENTAUX EN DIMENSION FINIE 129

19.2 Théorèmes fondamentaux en dimension finie

19.2.1 Théorème de la dimension

Définition Un espace vectoriel E est dit de "dimension finie" s’il possède une famille génératrice finie

Théorème

Soit G une famille génératrice finie et L une famille libre ; alors L est finie et | L | 6 | G |. D’où :
Si on a une base à n éléments, toute autre base a n éléments ; ce nombre commun est appelé dimKE

Démonstration
1) ⇒ 2) La déduction : Soit B une base à n éléments et B’ une autre base.

Alors B′ (libre) est finie, de cardinal | B′ | 6 | B | ; puis on permutte les rôles !

1) En complément (∗) • Par récurrence sur p, on montre le :

Lemme (de l’échange) : Si une famille à p vecteurs génère une famille F à p+ 1 vecteurs, alors F est liée.

� Le cas p = 0 : cas où ∅ engendre le vecteur de F ; qui est donc
−→
0 . Toute famille contenant

−→
0 est liée.

� Passage du cas p− 1 au cas p (les notations étant plus commodes) :
Soit (−→g1 ,−→g2 , ...,−→gp) qui génère −→u 1, ...

−→u p+1 une famille F de cardinal p+ 1 ; montrons que F est liée.
Dans une écriture des −→u k en combinaison linéaire des −→gj , supposons un coefficient sur −→g1 non nul.
(Si tous les coefficients sont nuls, (−→g2 ,−→g3 , ...,−→gp) génère tous les −→u k ; l’hypothèse de récurrence donne
−→u 1, ...

−→u p liée ; donc −→u 1, ...
−→u p+1 liée car une sur-famille d’une famille liée est liée : exercice).

Supposons donc −→u p+1 = β1.
−→g1 + β2.

−→g2 + ...+ βp.
−→gp , β1 6= 0 ; alors, par opérations élémentaites, on arrive

à : −→u 1 − λ1
−→u p+1, ...,

−→u p − λp−→u p+1 générés par (−→g2 ,−→g3 , ...,−→gp) ; donc liés par hypothèse de récurrence.

∃ µ1, ..., µp non tous nuls : µ1.(
−→u 1 − λ1

−→u p+1) + ...+ µp.(
−→u p − λp−→u p+1) =

−→
0 .

Si µ1 6= 0 (par exemple), −→u 1 est combinaison linéaire de −→u 2, ...
−→u p+1 ; ce qui termine le lemme.

• Puis de toute famille de cardinal > | G | +1, on choisit une sous famille à | G | +1 vecteurs, liée grâce
au lemme. On finit avec la propriété facile : toute sur-famille d’une famille liée est liée.

Exemples [Bien savoir les encadrés]

1) {−→0 } est de dimension 0.

2) Définitions : une droite vectorielle est un e.v. de dimension 1 ; un plan vectoriel de dimension 2.

3) E = Rn est un e.v. sur R de dimension n. Par exemple E = R3.

4) E = R[x] est un R-e.v. de dimension infinie, de base (1, x, x2, ...).

5) E = V ect(1, x, ...xn) noté Rn[x] est un e.v. de dimension finie : n+ 1.

19.2.2 Théorème de la base incomplète (⇒ existence d’une base "en dim.finie")

On a

1) Si G est génératrice finie et L libre (donc | L | 6 | G |), alors on peut compléter L par
certains vecteurs de G de façon à obtenir une base de E.

2) En particulier, avec L = ∅ : De toute famille génératrice finie, on peut extraire une base.

Démonstration
1) =⇒2) est clair (cas particulier).
1) En complément (∗).
Soit (

−→
l1 , ...,

−→
lp ) libre et (−→g1 ,−→g2 , ...,−→gq ) génératrice. Si −→g1 combinaison linéaire de (

−→
l1 , ...,

−→
lp ), on passe à

−→g2 ; sinon, on remplace (
−→
l1 , ...,

−→
lp ) par (

−→
l1 , ...,

−→
lp ,
−→g1) libre aussi, aisément. On continue ceci jusqu’à −→gq .

On obtient une famille libre qui génère chaque −→gk ; donc génératrice de tout l’espace : c’est une base.

Exemple : E = C est un R e.v. de base (1, i) ; donc dimRC=2. (1, j) est une autre base...

Par contre E = C est un e.v. sur K = C de dimension 1 : dimCC = 1.
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19.3 Conséquences fondamentales

19.3.1 Sur les bases (E de dim. finie, i.e. ayant une famille génératrice finie)

On a : 1) E admet au moins une base et toutes les bases ont même cardinal : dimKE = n.
2) Toute famille libre a au plus n vecteurs et toute famille libre de n vecteurs est une base.
3) Toute famille gén. a au moins n vecteurs et toute famille gén. de n vecteurs est une base.

Démonstration

– 2) b) Soit L libre de cardinal n = dimKE. Pour avoir une base, on peut la compléter (Théorème 2)
forcément par 0 vecteur vu que toutes les bases ont n vecteurs (Théorème 1).

– 3) b) Soit G génératrice de n = dimKE vecteurs ; on peut en extraire une base (Théorème 2) forcément
en prenant tous les vecteurs vu que toutes les bases ont n vecteurs (Théorème 1).

19.3.2 Sur les supplémentaires

Soit E de dimension n. Alors : 1) Tout sous e.v. E1 est de dimension finie p avec : 0 6 p 6 n.
2) E1 admet au moins un supplémentaire et tout supplémentaire est de dimension : n− p.

Démonstration

– 1) Les familles libres de E1 sont libres de E ; donc ont au plus n vecteurs. Soit p leur nombre maximun

de vecteurs et (
−→
l1 , ...,

−→
lp ) une famille libre de E1 ; voyons qu’elle est génératrice de E1 : Si −→x ∈ E1

on a : (−→x ,−→l1 , ...,
−→
lp ) est liée (par déf. de p). ∃λ0, λ1, ...λp non tous nuls : λ0.

−→x + ...+ λp.
−→
lp =

−→
0 .

λ0 6= 0 sinon tous les λk nuls ! Alors −→x = − 1

λ0
.(λ1.
−→
l1 + ...+ λp.

−→
lp ). Fini.

– 2) Complétons la famille libre des
−→
lk par certains vecteurs d’une base (−→e1 , ...−→en) de E, de façon à avoir

une nouvelle base de E : (
−→
l1 , ...

−→
lp ,
−→e p+1, ...

−→en) par exemple.

Voyons que E2 = V ect(−→e p+1, ...
−→en) est un sous e.v. (évident) supplémentaire de E1 :

� E = E1 + E2 : comme (
−→
l1 , ...

−→
lp ,
−→e p+1, ...

−→en) est génératrice de E, tout vecteur −→x de E a au moins

une écriture en comb. lin. de (
−→
l1 , ...

−→
lp ,
−→e p+1, ...

−→en) d’où au moins une écriture −→x = −→x1 +−→x2,
−→xk ∈ Ek.

� Somme directe : Soit −→x ∈ E1 ∩E2. Alors −→x = λ1.
−→
l1 + ...+ λp.

−→
lp = µp+1.

−→e p+1 + ...+ µn.
−→en ; donc :

−→
0 = λ1.

−→
l1 + ...+ λp.

−→
lp − µp+1.

−→e p+1 − ...− µn.−→en. (
−→
l1 , ...

−→
lp ,
−→e p+1, ...

−→en) libre ⇒ λk = 0 : −→x =
−→
0 .

Mais à ce stade, il reste une question : on a trouvé un supplémentaire E2 de dimension n− p.
Un autre supplémentaire E′

2 aurait-il la même dimension ? Oui : ceci résulte de la propriété :

Avec dim(E1) dim(E2) finies (pas forcément E) on a : dim(E1 + E2) 6 dim(E1)+ dim (E2).
Et : Si E1 et E2 sont de plus en somme directe, alors : dim(E1 ⊕ E2)=dim(E1)+dim(E2).

Car avec elle : ayant E1 ⊕ E2 = E1 ⊕ E′
2 (= E ici) et dimensions finies ; on a : dim(E2)=dim(E′

2).

Maintenant montrons la propriété :
• En juxtaposant une base (−→u 1, ...

−→u p) de E1 et (−→v 1, ...
−→v q) de E2, on a une famille génératrice de

E1 + E2. Donc dim(E1 +E2) 6 p+ q. (Attention : on n’a pas dit ici que E1 + E2 était égal à E.)
• Dans le cas particulier de la somme directe en juxtaposant une base (−→u 1, ...

−→u p) de E1 et (−→v 1, ...
−→v q)

de E2, on a une base de E1 ⊕ E2. "Libres" : si λ1.
−→u 1 + ...λp.

−→u p + µ1.
−→v 1 + ...+ µq.

−→v q =
−→
0 , alors

λ1.
−→u 1 + ...λp.

−→u p =
−→
t = −[µ1.

−→v 1 + ...+ µq.
−→v q] ∈ E1 ∩ E2. "En somme directe" donne

−→
t =

−→
0 ;

puis (−→u i) libres (−→v j) libres donne : tous les coefficients nuls ; les p+ q vecteurs forment une base.

Note 2 sous e.v. en somme directe non supplémentaires ? 2 droites vectorielles distinctes de R3 !

19.3.3 Des remarques

1) Si E1 est un sous e.v. de E et dim(E1)=dim(E) finie, alors E = E1.

Non vrai, en dimension infinie : E1 = V ect(1,x2,x4,x6, ...) ( E = R[x] en est un contre-exemple.
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Preuve en dim. finie : Une base B1 de E1 est une partie libre de E de cardinal dim(E1)=dim(E)

finie, donc une base de E, d’après une "conséquence fondamentale". Donc E ⊂ V ect(B1) = E1.

2) Les sous e.v. de E = R3 sont selon la dimension {−→0 }, les droites vectorielles, les plans vectoriels

et R3 en entier. (Et bien sûr : R3 = R3 ⊕ {−→0 } = {−→0 } ⊕ R3). [Clair avec 1).]

3) La dernière propriété vue se généralise [on ne le démontre pas. cf Exercices (*)] :

Dans un e.v. E de dimension quelconque si E1, E2 sont des sous e.v. de dim. finie,
E1 + E2 aussi et dim(E1 +E2) = dim(E1) + dim(E2) − dim(E1 ∩E2) : Formule de Grassman.

Qui contient : dim(E1 + E2) 6 dim(E1)+ dim (E2) et dim(E1 ⊕E2) = dim(E1)+dim(E2).

4) En dim. infinie mais avec une base : R[x] = V ect(xn, n ∈ N) = V ect(x2p, p ∈ N)⊕ V ect(x2p+1, p ∈ N).

19.4 Utilisation

19.4.1 Exemple dans R4 muni de la base canonique

Soit U = {




x
y
z
t


 : x− 2y + z = 0} ; V = {




x
y
z
t


 :

(
x− 2y + z = 0
x− y + z − t = 0

)
} ; W = V ect(

−→
k




0
0
1
0


 ,
−→
l




0
0
0
1


).

Questions : U sous e.v. ? dim(U) ? et V ? V et W supplémentaires ? Solution :

1) Au lieu de : "U sous e.v. par caractérisation" écrivons :




x
y
z
t


 ∈ U ⇔




x = 2y − z
y arb
z arb
t arb


 = y.−→α + z.

−→
β + t.

−→
l

(notations claires) donc U = V ect(−→α ,−→β ,−→l ) sous e.v. et on a (aussi) une famille gén. à 3 vecteurs !

Puis y.−→α + z.
−→
β + t.

−→
l =
−→
0 ⇒ 2y − z = 0, y = 0, z = 0, t = 0 : libre ; donc base de U ; dim(U) = 3.

2) De manière analogue, avec les éq. L1, L2 − L1 (pivot de Gauss), trouver :

... V = V ect(
−→
β , −→α +

−→
l ) sous e.v. et ces 2 vecteurs (

−→
β , −→α +

−→
l ) non colinéaires : donc dim(V ) = 2.

3) Enfin, si −→u = a.
−→
β +b.(−→α +

−→
l ) = c.

−→
k +d.

−→
l ∈ V ∩W , on résout a.

−→
β +b.(−→α +

−→
l )−c.−→k −d.−→l =

−→
0

... et on trouve : −→u =
−→
0 . Donc on a V ⊕W ; ce sous espace est de dim. 2+2. Forcément V ⊕W = R4.

19.4.2 Démonstration du Th. sur les suites : un+2 = a.un+1 + b.un, a ∈ C, b ∈ C∗ (R0)

En complément, avec le langage des espaces vectoriels. En 4 étapes :

1) On sait (ou on voit) que E = F(N,C), ensemble des suites à termes complexes, est un C e.v. On
vérifie aisément que E1 ensemble des suites à termes complexes vérifiant (R0) est un sous e. v. de E.

2) De dimension 2 (en exhibant une base) : Soit (αn) vérifiant R0 de conditions initiales α0 = 1, α1 = 0 ;
(βn) de conditions initiales β0 = 0, β1 = 1. Alors, si (un) vérifiant R0, on a d’une et d’une seule façon :
(un) = u0.(αn) + u1.(βn). (Unicité facile. Existence : bien comprendre l’indice 2 avec R0 ...)

3) On cherche une autre base plus commode avec les suites faciles du type (rn) vérifiant R0, r 6= 0 : on

tombe exactement sur : r2 = a.r+b ; d’où si a2+4.b 6= 0, on a deux suites rn1 ; rn2 non proportionnelles
vérifiant R0 : une (autre) base de E1. Une suite (un) vérifiant R0 s’écrit donc (un) = λ.(rn1 )+µ.(rn2 ).

4) Dans le cas où a2 + 4.b = 0 en terme d’espace vectoriel, on a un "vecteur" (commode) non nul de E1,
c’est-à-dire la suite géométrique (xn) = (rn0 ), mais notre espace est de dimension 2. Heureusement,
on constate que la suite (yn) = (n.rn0 ) vérifie R0 et n’est pas proportionnelle avec (xn) [à bien voir :
y0 = 0; y1 = 1.r0; y2 = 2.r20, ...] donc autre base et (un) = λ.(rn0 ) + µ.(n.rn0 ) dans ce cas-là. Fini.

Exemples Suites : un+2 = 2un+1 − un ? Puis : un+2 = 2.un+1 − un + 4 ? [dn = un+1 − un.]
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M+ Exercices: Espaces vectoriels de dimension finie PTSI

1. Soit : J, I deux ensembles d’indices. [On peut les supposer finis en 1ère lecture.]
(−→u i)i∈J est dite sous-famille de (−→u i)i∈I si J ⊂ I ; celle-ci étant une sur-famille de (−→u i)i∈J .

(a) Que dire d’une sur-famille d’une famille génératrice ? Puis montrer :

(b) Qu’une sous-famille d’une famille libre est libre [ou une sur-famille d’une famille liée est liée].

2. Dans E = R3 [dim3] : soit −→a


a
0
0


,
−→
b



β
b
0


, −→c



γ
γ′

c


 ,
−→
d




1
2
3


 ,−→e




4
5
6


 ,
−→
f




7
8
m


 .

(a) Les vecteurs −→a ,−→b ,−→c ,−→d sont-ils libres ? Et −→e ,−→f ? Et
−→
d ,−→e ,−→f ? (selon m).

(b) Les vecteurs −→e ,−→f sont-ils générateurs (de R3) ? Et
−→
d ,−→e ,−→f ? (cas m = 9, m 6= 9).

(c) Vérifier que : −→a ,−→b ,−→c libres ⇔ a.b.c 6= 0. [Commencer par ⇐ ; puis ⇒ (*).]

3. Dans l’espace vectoriel E = R[x] [dim+∞] (des polynômes identifiés aux fonctions polynômes)

(a) L’ensemble des polynômes de degré exactement 2 est-il un sous e.v. ? [non ! pourquoi ?]

(b) Comment sait-on de suite que Rn[x], ensemble des polynômes de degré au plus n ∈ N, est un

sous e.v. ? [En écrivant : Rn[x] = V ect(1, x, x2, ..., xn) ! ] Base et dimension ?
Si a ∈ R, justifier que ((x− a)k, 0 6 k 6 n) est une autre base. [Libre de cardinal : n+ 1].

(c) Dans R[x], montrer que des polynômes P0, P1, ...Pn non nuls de degrés distincts sont libres.

(d) Dans R[x], soit les polynômes : Q0(x) = 1, Q1(x) = x, ..., Qn(x) = x(x− 1)...(x − n+ 1), ...
[Rappel : un produit vide vaut 1]. Montrer qu’ils constituent une base infinie de R[x].
Vérifier que Qn(x+ 1)−Qn(x) = n.Qn−1(x). ["∆(Qn)(x) = n.Qn−1(x) dérivation discrète"]

4. Soit E = C∞(R,R) l’e.v. connu (sur R).

(a) Vérifier que la famille (1, sin, cos, sin2, cos2) n’est pas libre [une relation de liaison].

(b) Montrer que la famille : (1, sin, cos, x 7→ sin(2x), x 7→ cos(2x)) est libre. On écrira :
a.1 + b.cos(x) + c.sin(x) + d.cos(2x) + e.sin(2x) = O ; prendre x = 0, π/2, π, −π/2 ;
puis dériver et idem ... jusqu’à trouver tous les coefficients nuls.

(c) (* Hors "sup" mais facile.) Montrer que la famille (infinie) x 7→ eλ.x, λ ∈ R, est libre.
[Limite en ∞ ; ou bien dériver et récurrence ; ou changer x en x+ 1 et récurrence].

5. Si E1, E2 sous e.v. en somme directe, montrer que : dim(E1 ⊕ E2) = dim(E1) + dim(E2) puis :

Si E e.v. de dimension finie : E = E1 ⊕ E2 ⇐⇒ E1 ∩ E2 = {−→0 } et dim(E) = dim(E1) + dim(E2)

6. Formule de Grassman dim(E1 + E2) < +∞, dim(E1 + E2) = dim(E1) + dim(E2)− dim(E1 ∩ E2)

(a) Utilisation. dim(E) < +∞ : E = E1 ⊕E2 ⇐⇒ E1 + E2 = E et dim(E) = dim(E1) + dim(E2)

(b) Démonstration : (*) Vérifier que dim(E1 ∩E2) = r 6 min(p, q), p = dim(E1), q = dim(E2).
Soit −→e1 , ...−→er une base de E1 ∩E2, complétée par −→a r+1, ...,

−→ap pour avoir une base de E1 et par

par
−→
b r+1, ...,

−→
bq pour avoir une base de E2 ; ce qui fait r + p− r + q − r = p+ q − r vecteurs

clairement générateurs de E1+E2. Montrer qu’ils sont libres. [si
−→
0 = Σi,j,kγi

−→ei +αj.−→aj +βk.
−→
bk ,

alors : Σi,jγi
−→ei + αj .

−→aj = −→x = −Σkβk.
−→
bk ∈ E1 ∩ E2 ; donc : −→x = Σiδi.

−→ei . etc.]



Chapitre 20

Les applications linéaires : généralités

20.1 Notions fondamentales

20.1.1 Définitions

Soit E et F deux e.v. sur K. f : E → F est linéaire si

{
∀−→u ,−→v ∈ E : f(−→u +−→v ) = f(−→u ) + f(−→v )
∀λ ∈ K, ∀−→u ∈ E : f(λ.−→u ) = λ.f(−→u ).

Aux ch.20-23, on ne parle que d’application linéaire ; on note donc f [et non
−→
f comme au ch. 17].

Remarques 1) On peut condenser ainsi : ∀λ ∈ K, ∀−→u ,−→v ∈ E, f(λ.−→u +−→v ) = λ.f(−→u ) + f(−→v ).

2) Une application linéaire pourrait être appelée :

– un "homomorphisme" d’espaces vectoriels : terme non employé. Mais on dit
– "endomorphisme" (sous entendu d’e.v.) si f linéaire de E dans E ;
– "isomorphisme" si application linéaire bijective de E dans F ;
– et "automorphisme" si f endomorphisme bijectif.

20.1.2 Propriétés

On a : 1) f(
−→
0E) =

−→
0F et f(−−→x ) = −f(−→x )

2) De plus ici : f(E) [ou Im(f)] est un sous e.v. de F et f surjective ⇔ f(E) = F

3) Ker(f) = {−→x ∈ E : f(−→x ) =
−→
0F } est un sous e.v. de E et f injective ⇔ Ker(f) = {−→0E}.

– 1) Démonstration facile.
– 2) L’équivalence est évidente. Pour f(E) sous e.v. de F : avec une caractérisation (des sous-e.v.)

Déjà
−→
0F = f(

−→
0E) ∈ f(E). Puis : si −→y 1 ∈ f(E), −→y 2 ∈ f(E) alors ∃ −→x1,

−→x2 ∈ E : −→y 1 = f(−→x 1),−→y 2 = f(−→x 2). D’où : (avec la linéarité) : −→y 1 +−→y 2 = f(−→x 1) + f(−→x 2) = f(−→x 1 +−→x 2) ∈ f(E).
Loi externe : si −→y ∈ f(E), ∃−→x ∈ E tel que −→y = f(−→x ) ; d’où λ.−→y = λ.f(−→x ) = f(λ.−→x ) ∈ f(E).

– 3) Ker(f)1 sous-e.v. avec une caractérisation. Déjà
−→
0E ∈ Ker(f). Puis si f(−→x1) =

−→
0F , f(−→x2) =

−→
0F

alors f(−→x1 +−→x2) =
−→
0F . Enfin, la loi externe : ayant f(−→x ) =

−→
0F , on a : f(λ.−→x ) = λ.f(−→x ) = λ.

−→
0F =

−→
0F .

L’équivalence : Si f est injective, forcément Ker(f) sous e.v. des antécédants de
−→
0F est réduit à

−→
0E .

Inversement si f(−→x1) = f(−→x2), f(−→x1 −−→x2) =
−→
0F (avec la lin.) et Ker(f) = {−→0E} donne : −→x1 = −→x2. Fini.

20.1.3 Exemples

1. Soir E = R e.v. sur K = R. Les applications linéaires de R dans R sont y = f(x) = a.x.

En effet f(x) = a.x convient. Inversement si f linéaire : f(x) = f(x.1) = x.f(1) = x.a forcément.

2. Les applications de E = Rp dans F = Rn (en dim. finie) s’écrivant Y = A.X , A étant une matrice
sont linéaires car : A.(X1 +X2) = A.X1 +A.X2 et A.(λ.X) = λ.A.X (vérification laissée).

1 En allemand, "Kern" veut dire "noyau" (coeur ?) Voir aussi en breton : "Keranna" (Ker Anna) ...
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Inversement on montrera qu’il n’y en a pas d’autres (en dim finie, aux ch. suivants). Donc :

Les applications linéaires de E = Rp dans F = Rn sont celles s’écrivant Y = A.X, A matrice.

3. Soit E un e.v. de dimension quelconque ; hk : −→x ∈ E 7−→ k.−→x ∈ E est linéaire (endomorphisme).

Pour k 6= 0, elle est bijective (automorphisme), appelée homothétie vectorielle de rapport k (on ne

parle pas de point ici ; ni de "centre" ; mais f(
−→
0 ) =

−→
0 ). Bien sûr : h−1

k = h1/k.

A noter que : hk = k.Id et ∀f endomorphisme : fohk = hkof . [car f(k−→x ) = k.f(−→x )].

4. Soit E = R[x] e.v. de dim infinie sur R ; D : ϕ ∈ E 7−→ ϕ′ ∈ E [Dérivation]. D est linéaire ; c’est un

endomorphisme surjectif ; non injectif, KerD = R0[x] sous e.v. de dim. 1 des applic. constantes.

surjectif car si ψ ∈ E, on lui trouve un antécédant dans E : une primitive polynômiale aisément.

Remarques facultatives

1) Si on prend la dérivation de E = C1(R+,R) dans F = C0(R+,R) : ce n’est qu’une Appl. Lin.,
non endom. ; surjective car toute fonction C0 admet des primitives, forcément C1 ; non injective.

2) Un exemple d’endomorphisme injectif non surjectif ? P (x) ∈ R[x] 7→ x.P (x) ∈ R[x] : à voir.

5. Soit l’intégration I : ϕ ∈ E = C0([a, b],R) 7→
∫ b

a
ϕ(x).dx ∈ R. I est linéaire.

Définition Une application linéaire de E dans K est appelée "forme" linéaire (sur E).

Autre exemple facultatif : ϕ ∈ R[x] 7→ ϕ(2)(x0) ∈ R, x0 ∈ R, fixé.

6. Soit E = C ; et la conjugaison f : z ∈ C 7→ z ∈ C. f est-elle linéaire ?
On sait que : z + z′ = z + z′. Et λ.z = λ.z : vrai si λ ∈ R.

Donc

{
pour E e.v. sur R, f est linéaire ; mais par contre :
pour E e.v. sur C, f est "semi-linéaire" (non linéaire).

20.1.4 Opérations sur les applications linéaires

1. Somme et Multiplication par une constante.
• Si f , g linéaires de E dans F , f + g aussi ; λ.f aussi ; O application nulle E → F aussi. (Facile)
• Conséquence :
Pour A 6= ∅ et F étant un e.v., il est facile de voir que F(A,F ) est un e.v. sur K. Ce qui précède
montre que L(E,F ), ensemble des applications linéaires de E dans F , est un sous e.v. de F(E,F ).

Résumé E est un 1er e.v. ; F est un 2ème e.v. ; L(E,F ) en est un (3ème) e.v.

(mieux compris aux ch. suivants, quand E et F seront de dim. finies p et n).

2. Composition.
• De même f : E → F ; g : F → G linéaires ⇒ gof linéaire (facile).
• Conséquence : L(E) étant l’ensemble des endomorphismes de E dans E,

on obtient : (L(E),+, o) est un anneau ; celui-ci est non commutatif si dim(E) > 2.

En effet : "Anneau" signifie 2 opérations internes (ici + et o) reliées telles que
1) Pour +, avoir un groupe abélien ; c’est le cas car L(E,F ) est un e.v.
2) Puis la composition o est interne, associative ; et neutre Id : −→x 7→ −→x .
3) Lien entre les lois : (f + g)oh = (foh) + (goh) est toujours vrai.
Il reste enfin : fo(g + h) = (fog) + foh) ? Celà vient du fait que f est linéaire :

fo(g + h)(−→x ) = f [g(−→x ) + h(−→x )] = f(−→u +−→v ) = f(−→u ) + f(−→v ) = fog(−→x ) + foh(−→x ).

Non commutatif dans E = R2 Soit f :

(
x
y

)
7−→

(
x
−y

)
[la symétrie/ V ect(−→ı )//V ect(−→ )] et

g :

(
x
y

)
7−→

(
y
x

)
[symétrie /V ect

(
1
1

)
//V ect

(
1
−1

)
]. f et g sont linéaires (matrices) (même bij. :

automorphismes) mais gof 6= fog calcul ! [En base o.normée gof, fog :
1

4
tours vectoriels !]
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20.2 Du vocabulaire sur groupes et anneaux :

20.2.1 Groupes (généraux)

Soit G 6= ∅ muni d’une opération interne notée ∗, c’est-à-dire x ∈ G, y ∈ G =⇒ x ∗ y ∈ G :
(on dit "loi de composition interne " : l.c.i. car au départ, c’était la composition), est un groupe si

1) ∗ est associative (x ∗ y) ∗ z = x ∗ (y ∗ z),
2) possède un neutre e : e ∗ x = x ∗ e = x,

3) et si chaque élément a un symétrique : x ∗ x′ = x′ ∗ x = e.
Enfin, si de plus ∗ est commutative, on dit groupe commutatif ou abélien.

Propriétés

1) Pour une loi interne, s’il y a un neutre, il est unique.
2) Si la loi est associative et si x a un symétrique (ou inverse), il est unique.

3) Le symétrique de x ∗ y est (x ∗ y)−1 = y−1 ∗ x−1. Enfin dans un groupe :
4) tout élément est simplifiable ["régulier"] à gauche a ∗ x = a ∗ y ⇒ x = y ; et à droite

Démonstration
1) e ∗ e′ = e ou e′. ( et e indépendant de x)
2) x′ ∗ x ∗ x” = x′ ou x” en associant. Dorénavant noté x−1

3) Si u = x ∗ y, résoudre u ∗ z = e, trouver z = y−1 ∗ x−1 et vérifier que z ∗ u = e.
4) "Composer" à gauche par a−1. C’est surtout cette simplification qui est importante.

Des exemples

1. (Z,+) est un groupe abélien (infini).

2. (U, �) [ensemble des complexes de module 1] est un groupe abélien (infini).

(Un, �) est un groupe cyclique à n éléments. Un = {1, ω, ω2...ωn−1} = {z ∈ C : zn = 1}.
3. (Q,+) (R,+) (C,+) (R∗,.) (R+∗,.) (C∗,.) ... sont des groupes abéliens.

4. L’ensemble des homothéties-translations du plan affine muni de la composition, noté (HT , o), est
un groupe infini, non abélien. [o interne (vu) associative (connu) Neutre : IdP et inverses connues]

5.
L’ensemble des bijections de E 6= ∅ dans E est un groupe pour o, appélé groupe symétrique,

noté SE. Ses éléments sont appelés permutations. Et on sait : | E |= n =⇒| SE |= n!

Note
Quand E = {1, 2, ..., n}, on note SE = Sn. Par exemple les 6 éléments de S3 sont : Id ; (1 2) qui

est la transposition





1 7→ 2
2 7→ 1
3 7→ 3

, (1 3), (2 3) de même ; (1 2 3) qui est le cycle





1 7→ 2
2 7→ 3
3 7→ 1

, et le cycle

inverse (1 3 2)=(1 2 3)−1. On peut voir géométriquement ce groupe comme le groupe des isométries
planes conservant un triangle équilatéral de sommet 1,2,3. (transposition=sym⊥/ droite)

Un groupe fini non abélien ? Justement (S3, o) car (1 2)o(1 3)=(1 3 2) 6= (1 3)o(1 2)=(1 2 3).

6. Quand E est un e.v., on a déjà : (E,+) groupe abélien. (neutre noté
−→
0 )

Homomorphismes de groupes . f : (G, ∗) 7→ (G′, �) où ∗ et � sont deux opération de groupes,

est un homomorphisme de groupes si f(x ∗ y) = f(x) � f(y). Im(f) est un sous-groupe de G′.

Ker(f) = {x ∈ G : f(x) = e′} est un sous-gr. de G et : f inj. ⇐⇒ Ker(f) = {e}.

Exemples. 1) x 7→ ex est un isomorphisme de groupes de (R,+) dans (R+∗, �) d’inverse ln.

2) n ∈ (Z,+) 7→ 2n ∈ (Q+∗, �) est un homomorphisme inj., non surjectif : 3 sans antécédant.

3) θ 7→ ei.θ est un homomorphisme surjectif de (R,+) dans (U, �) ; non injectif, de noyau 2πZ.
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20.2.2 Anneaux (généraux) : 2 lois internes reliées entre elles

1. Définition2
(A,+, �) est un anneau si : 1) (A,+) est un groupe abélien : neutre noté 0 ;

2) � [interne] est associative et possède un neutre noté 1 ; et enfin
3) � distributive/+ à droite et à gauche a � (b+ c) = ab+ ac ; (a+ b) � c = ac+ bc

2. Exemples

1) (Z,+, �) est un anneau commutatif (pour �) 2) R[x], C[x], Q[x] anneaux de polynômes

3) Un anneau non commutatif ? (L(E),+, o), qui sera revu et mieux compris avec les matrices. 3

3. Propriétés

Dans tout anneau, on a : 0 � x = x � 0 = 0 où 0 est le neutre de +
(−x) � y = x � (−y) = −(x � y), où −x désigne le symétrique de x pour +

(−x) � (−y) = x � y ; et deux relations essentielles, si a et b commutent :

(a+ b)n =
n∑

k=0

Ckna
n−kbk; an − bn = (a− b)(

n−1∑

k=0

an−1−kbk) = (
n−1∑

k=0

an−1−kbk).(a− b)

Démonstration
1) (0 + a).x = a.x d’où 0.x+ a.x = 0 + a.x donc en simplifiant pour + : 0.x = 0 ; idem x.0 = 0.
2) [x+ (−x)].y = 0 d’où x.y+ (−x).y = x.y+ [−(x.y)] simplifier pour + ; idem x.(−y) = −(x.y)
3) x.y et (−x).(−y) tous deux symétriques pour + de (−x).y : donc égaux. Puis attention !
4) Egalités. Si a.b 6= ba, (a+b)2 = (a+b).(a+b) = a2+a.b+b.a+b2 ; (a+b).(a−b) = a2−a.b+b.a−b2 !

Si a.b = b.a, on a les relations usuelles. Dont ce rappel : (a3 − b3) = (a− b).(a2 + a.b+ b2).

Exemples importants b = 1, neutre pour la deuxième loi, commute avec tout élément. D’où :

(1 + a)n =

n∑

k=0

(
n
k

)
ak ; 1− an = (1− a)(

n−1∑

k=0

ak) = (

n−1∑

k=0

ak).(1 − a).
{

Et, dans ce contexte,

a0 = 1, même si a = 0.

20.2.3 Remarques qui seront revues

1. On a donc un anneau non commutatif (L(E),+, o).

En dimension finies, cela signifie qu’on peut trouver 2 matrices carrées A, B avec : A.B 6= B.A.

2. On verra qu’il est aussi "non intègre" :

En dimension finies, on pourra trouver 2 matrices carrées : A 6= O, B 6= O avec : A.B = O.

(Dans ce cas, on dit que A et B sont des "diviseurs de O").

Attention : SiA.U = A.V ou A(U−V ) = O même si A 6= O, on ne peut donc pas dire que U = V

Par contre (Z,+, �) est intègre. Idem R[x], C[x], Q[x] intègres. [Tous avec division euclidienne !]

3. On trouvera même des matrices carrées "nilpotentes" : A 6= O et Ap = O, pour un certain p > 1.

4. Un corps est un anneau tel que tout élément autre que 0 (neutre de +) est inversible : R,C,Q...

5. L(E) est à la fois un anneau (pour +, o) et un e.v. (pour +, .) avec λ.(gof) = (λ.g)of = go(λ.f) :

on dit "algèbre" (R[x], C[x] aussi). ["Al Djabr", mot de Al Kharezmi, d’où provient "algorithme".]

2 C.A.N.S.A.D. et N. (C.A.N.S. pour +) A. et N. (pour �) D.(lien �/+). En espagnol, descansarse =
se reposer ; ici c’est le contraire et c’est un impératif ! (l’ ancienne définition était seulement : CANSAD !)

3 Remarque facultative : (F(R,R),+, o) ? non anneau car : fo(g + h) = fog + goh est faux parfois !

Ainsi : sin(x2 + x3) 6= sin(x2) + sin(x3).



20.3. PROJECTIONS ET SYMÉTRIES VECTORIELLES EN DIMENSION QUELCONQUE 137

20.3 Projections et symétries vectorielles en dimension quelconque

Ce sont des exemples essentiels d’endomorphismes. Au départ sont donnés 2 sous e.v. supplémentaires.

20.3.1 Projections vectorielles

1. Définition

Soit donnés 2 sous e.v. supplémentaires E = E1 ⊕E2. L’application

p : −→x = −→x1 +−→x2 ∈ E = E1 ⊕ E2 7−→ −→x1 ∈ E est linéaire (endomorphisme), appelée
projection vectorielle sur E1 parallèlement à E2 ; on a E1 = Im(p), E2 = Ker(p).

De même q : −→x 7−→ −→x2 est appelée proj. sur E2 parallèmement à E1 et p+ q = Id.

Démonstration
La linéarité de p est facile à vérifier. Et ∀−→x ∈ E,−→x = p(−→x ) + q(−→x ) ou Id = p+ q ; q = Id− p.

Cas particulier :

Si on prend E = E ⊕ {−→0 } : p = Id; q = O (endomorphisme nul) qui sont donc des projecteurs.

2. Remarque essentielle : Sous e.v. des vecteurs invariants pour f endomorphisme.

1) Soit f ∈ L(E) (endomorphisme, i.e. linéaire de E dans E) ;

on peut considérer {−→x : f(−→x ) = −→x } qui est l’ensemble des vecteurs invariants ; c’est aussi

{−→x : f(−→x )−−→x =
−→
0 } ou {−→x : (f−Id)(−→x ) =

−→
0 } ou Ker(f − Id) sous e.v. des vecteurs invariants.

De plus (aisé) ce sous e.v. est inclus dans Im(f). [Inclusion stricte possible f = 2.Id sur R2.]

2) Pour un projecteur : Im(p) = Ker(p− Id). [Réciproque vraie : alors pop = p et Théorème.]

3) Exercice : Plus généralement, pour f ∈ L(E) on peut considérer {−→x : f(−→x ) = λ.−→x }.
Voir que c’est Ker(f − λ.Id), donc sous e.v. Et si λ 6= 0 il est aussi inclus dans Im(f).

3. Le théorème fondamental.

Rappel : Soit p la projection vectorielle sur E1 parallèlement à E2, donc E = E1 ⊕ E2

Alors : E1 = Im(p) = Ker(p− Id) ; E2 = Ker(p) ; de plus : pop = p.

Réciproque : ll est surtout remarquable qu’on ait le Théorème fondamental (réciproque) :

(f ∈ L(E) et fof = f) =⇒ f projecteur sur Ker(f − Id) // Ker(f).

Démonstration
de pop = p ou de pop(−→x ) = p(−→x ), si p projection : p(−→x ) dans l’image donc, ici, invariant.

Démonstration du Théorème réciproque (*) [par analyse-synthèse]

1) Ker(f − Id) et Ker(f) sont des sous e.v. Il faut voir ici qu’ils sont supplémentaires.

C’est-à-dire, pour −→x ∈ E, trouver une et une seule écriture sur Ker(f − Id) +Ker(f).

� Analyse et unicité :

Si on a une écriture −→x = −→x1 +−→x2 (1), forcément f(−→x ) = −→x1 +
−→
0 (2) car on veut

{
f(−→x1) = −→x1

f(−→x2) =
−→
0

.

Donc si on a une écriture , ce ne peut être que celle-ci : −→x1 = f(−→x ); −→x2 = −→x − f(−→x ).

A ce stade, l’unicité est prouvée ou encore : Ker(f − Id) +Ker(f) = Ker(f − Id)⊕Ker(f).
On ne sait pas si ce sous espace vaut E en entier, mais on a donc une idée précise !
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� Synthèse et existence :

Pour −→x ∈ E, posons donc : −→x1 = f(−→x ); −→x2 = −→x − f(−→x ). Vérifions que





−→x = −→x1 +−→x2−→x1 ∈ Ker(f − Id)−→x2 ∈ Ker(f).
Première ligne : clair. Les autres : utiliser l’hypothèse en plus : fof = f !

2) Ayant prouvé : E = Ker(f − Id) ⊕ Ker(f), si −→x = −→x1 + −→x2, aisément f(−→x ) = −→x1. Fini.

4. Autres remarques :

1) On montre que L(E) non intègre si dim(E) > 2 : Dans E = R2, si E1 = V ect(−→ı ) 6= {−→0 }
et E2 = V ect(−→ ) 6= {−→0 } soit p la projection sur E1 parallèlement à E2 ;

alors : p 6= O ; q = Id− p 6= O, poq = O. (Ici poq = qop = O commutent !)

[Noter au passage, pour f Appl. Lin. quelconque : Ker(f) = Ker(−f), Im(−f) = Im(f)].

2) Soit f ∈ L(E,F ) : Ker(f) et Im(f) supplémentaires ?

– Si f : E → F , avec F 6= E , question insensée ! Car Ker(f) ⊂ E, Im(f) ⊂ F .

– Si F = E, f endomorphisme, c’est parfois vrai, parfois faux ! cf. Exercices.

– Pour p projecteur, c’est vrai. Et aussi si f bij. : Ker(f) = {−→0 }, Im(f) = E. (f = 2.Id sur R2).

3) Pour un projecteur, en posant p2 = pop, on a p2 − p = O ; ou p(p− Id) = O = (p− Id)p.
x2−x=x(x−1)=(x−1)x est dit polynôme annulateur de p. [Spé]

20.3.2 Symétries vectorielles

1. Définition

Soit donnés 2 sous e.v. supplémentaires E = E1 ⊕ E2 . L’application

s : −→x = −→x1 +−→x2 ∈ E 7−→ −→x1 −−→x2 ∈ E est linéaire bijective (automorphisme) appelée
sym. vect. par rapport à E1 parall. à E2. Et : E1 = Ker(s− Id), E2 = Ker(s+ Id).

De même s′ : −→x = −→x1 +−→x2 7−→ −→x2 −−→x1 appelée sym. par rapport à E2 parall. à E1.

Démonstration s = p− q : linéaire ! sos = Id : bijective donc Ker(s) = {−→0 }, Im(s) = E.

Puis −→x ∈ Ker(s− Id) ⇔ s(−→x ) = −→x ⇔ −→x = −→x1 ∈ E1. Idem pour E2.

Avec p, on a tout q = Id− p ; s+Id = 2p ou s(−→u ) +−→u = 2p(−→u ) ; s′ = −s ; −→u − s(−→u ) = 2q(−→u ).

Cas particulier :

Si on prend E = E ⊕ {−→0 }. Ici : s = Id ; s′ = −Id qui sont donc des symétries vectorielles.

2. Le théorème réciproque. (f ∈ L(E) et fof = Id) =⇒ f sym. / Ker(f − Id) // Ker(f + Id).

Démonstration (*)
Soit on fait l’analogue de la précédente. Soit on s’y ramène avec : s+ Id = 2p.

Considérer alors : p = 1/2(f + Id) et vérifier : pop = p ... En exercice.

3. Remarque : Plus généralement, toujours si E = E1 ⊕ E2

fk : −→x = −→x1 +−→x2 ∈ E 7→ −→x1 + k.−→x2 ∈ E est linéaire, bijective si k 6= 0 (automorphisme f−1
k = f 1

k
)

appelée dilatation vectorielle de base E1, de direction E2, de rapport k. Dessin ?
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20.4 Le groupe linéaire

20.4.1 Définitions

Rappelons qu’on a 3 opérations dans L(E) : +,o, � (externe) ; et o est non commutative si dimE > 2.

f ∈ L(E) (linéaire de E → E) est dite inversible si

{
(1) : f bijective

(2) : f−1linéaire
Mais : (1)⇒ (2) (aisé).

Donc :
L’ensemble des end. bijectifs (automorphismes) de E constitue un groupe pour o, appelé
groupe linéaire (non abélien si dim(E) > 2), noté GL(E) ; si E = Kn on le note GLn(K).

20.4.2 Exemples

1. hk : −→x 7−→ k.−→x pour k 6= 0, homothétie vectorielle, est dans GL(E) (bijective).
D’ailleurs le neutre de GL(E) est : Id = h1 !

2. Soit s la symétrie /E1 // E2, ce qui suppose E = E1 ⊕ E2. Alors s ∈ GL(E) et s−1 = s.

3. Par contre si E2 6= {
−→
0 }, p projection sur E1 // à E2 est non inversible [Ker(p) = E2 6= {

−→
0 }].

20.4.3 Trois exercices corrigés

1. Soit f : R2 → R2 tel que −→u
(
x
y

)
7→ f(−→u ) =

(
x′ = x+ y

y′ = −x−m.y

)
. f endomorphisme ? f bijectif ?

Admettons ici (ch. suivant) :

Si f Appl. lin. E → F avec dim(E) = dim(F ) finie : f injective ⇔ f surjective ⇔ f bijective.

Corrigé

f endomorphisme. f va de R2 dans R2 ; linéaire par écriture matricielle

(
x′

y′

)
=

(
1 1
−1 −m

)
.

(
x
y

)

f injective ? Pour trouver Ker(f), on résout :

{
x′ = 0
y′ = 0

ou

{
x+ y = 0
−x−m.y = 0

. Par exemple

avec les déterminants 2x2 :
• Si m 6= 1 on a Ker(f) = {−→0 } donc f injective ; d’où bijective par Théorème, car dim(R2) finie.

• Si m = 1 Ker(f) = {−→u
(
x
y

)
: x+ y = 0} : droite vectorielle V ect

(
1
−1

)
= V ect(−→ı −−→ ) de R2.

Pour A =

(
1 1
−1 −1

)
, et −→ı =

(
1
0

)
, −→ =

(
0
1

)
, par calcul si l’on veut : f(−→ı ) = −→ı −−→ = f(−→ ) :

Donc Im(f) = {f(−→x ), −→x ∈ E} = {x.f(−→ı )+y.f(−→ ), x, y ∈ R} = V ect
(
f(−→ı ), f(−→ )

)
= Ker(f) !

Ici Im(f) ⊂ Ker(f) : ∀−→x , f [f(−→x )] =
−→
0 , fof = O et f 6= O : C’est un cas où f est nil-potent.

C’est aussi un cas où Ker(f) et Im(f) ne sont pas en somme directe donc non supplémentaires.

2. Soit : f ∈ L(E), dim(E) quelconque, tel que f2 + f − 3.Id = 0 (par exemple).

Montrer que f est inversible et préciser son inverse (des deux côtés). [Ecrire : f2 + f = 3.Id ...]

Réponse On a fo
1

3
(f+Id) =

1

3
(f+Id)of = Id ; donc f est inversible d’inverse f−1 =

1

3
(f+Id) !

En dim. quelconque, avoir l’inverse des 2 côtés. En dim. finie, 1 côté suffit cf. ch. suivant.

3. Soit : f ∈ L(E), fn = O, dim(E) quelconque (f 6= O en général : nilpotent).

Montrer que : Id− f est inversible (des deux côtés) et préciser son inverse.

cf. Anneaux : (Id− f)o(Id+ f + ...+ fn−1) = (Id+ f + ...+ fn−1)o(Id− f) = Id− fn = Id.

d’où : (Id− f)−1 existe et vaut (Id+ f + ...+ fn−1). Rem : (Id+ f)−1 existe aussi !
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M+ Exercices: Applications linéaires PTSI

1. Dans L(E), vérifier que Ker(f − Id) et Ker(f) sont toujours en somme directe. [6= cours : on ne

dit pas, ici, "supplémentaires" !] (Si −→x ∈ Ker(f) ∩Ker(f − Id), f(−→x ) = −→x et f(−→x ) =
−→
0 ...)

2. (Avec f = 2.Id dans R2) montrer que : E = Im(f)⊕Ker(f) 6=⇒ f projecteur.

3. En dimension quelconque, si f ∈ L(E,F ), g ∈ L(F,G) vérifier : gof = O ⇔ Im(f) ⊂ Ker(g).

4. Dans E = R2[x] (a) Vérifier que f : P (x) 7→ P (x+1) est un endomorphisme ; donc aussi ∆ = f−Id.

(Ecrire P (x) = a+ b.x+ c.x2 ou



a
b
c


 dans la base (1, x, x2) ; chercher l’image



a′

b′

c′


 dans cette

base et trouver une écriture matricielle. ∆ : P (x) 7→ P (x+ 1)−P (x) "dérivation discrète")

(b) Montrer que : Ker(∆) = R0[x] (on peut montrer, avec un degré quelconque, que :

P (x+ 1) = P (x)⇔ P (x) = cte.) Et : Im(∆) = R1[x] (commencer par une inclusion).

(c) Vérifier que ∆3 = O. Puis (Id+ ∆)(Id−∆ + ∆2) = (Id−∆ + ∆2)(Id+ ∆) = Id. Conclure.

(d) On avait : f = Id+ ∆ ; trouver f−1 d’une autre façon et préciser sa matrice.

5. Dans L(E), [dim(E) quelconque] si gof = fog, vérifier que Ker(f) et Im(f) sont stables par g.

6. Avec le cours bien connu sur les projecteurs. (*) [fof = f ; f(−→x )−−→x ∈ Ker(f)].

(a) Soit f, g ∈ L(E). Montrer : (fog = f et gof = g) ⇐⇒ f, g projecteurs de même noyau.

(b) Pour f, g ∈ L(E). Montrer : (fog = g et gof = f) ⇐⇒ f, g projecteurs de même image.

(c) Si p, q proj. : p+ q proj. ⇐⇒ poq = qop = O, p− q proj. ⇐⇒ poq = qop = q. Si qop = O,

r = p+ q − poq proj., Ker(r) = Kerp ∩Kerq, Im(r) = Imp⊕ Imq. Si poq = qop, poq proj. ...

7. Soit s symétrie, alors s2 = Id ou s2 − Id = O [ou bien : x2 − 1 polynôme annulateur de s].

(*) Montrer la réciproque à savoir : (f ∈ L(E); fof = Id) =⇒ f symétrie vectorielle à préciser.

8. (*) Soit f ∈ L(E,F ), g ∈ L(F,G); montrer que :

Ker(f) = Ker(gof)⇐⇒ Im(f)∩Ker(g) = {−→0F }. Im(g) = Im(gof)⇐⇒ F = Im(f)+Ker(g).

9. (*) Dans R[x] soit f : P (x) 7→ Q(x) =

∫ x

0
P (t)dt et soit D la dérivation. Vérifier que ce sont

des endomorphismes tels que Dof = Id mais foD 6= Id [donc aucun inversible] !

En général si gof = Id, montrer que Im(fog) = Im(f), Ker(fog) = Ker(g), E = Ker(g)⊕Im(f).

10. (*) Soit f ∈ L(E) / ∀−→x , f(−→x ) = k−→x .
−→x (i.e. −→x , f(−→x ) liés !) Montrer ∃k (fixe) : f(−→x ) = k.−→x .

(*) En déduire les automorphismes commutant avec tous les autres (centre du groupe linéaire).



Chapitre 21

Applications linéaires en dimension finie

21.1 Représentation avec des bases

21.1.1 Matrice d’une applications linéaire (en dim. finie)

1. Théorème

Soit E de dim. p, de base (−→e1 , ...−→ep) ; et −→v 1, ...
−→v p, p vecteurs quelconques de F :

∃!f linéaire telle que f(−→ej ) = −→v j . On dit qu’une A.L. est déterminée de manière
unique par l’image d’une base. De plus : f inj. ⇔ −→v j libre (néc. dimF > dimE);

f surj. ⇔ −→v j gén (néc. dimF 6 dimE) ; f bij. ⇔ −→v j base (néc. dimF = dimE).

Démonstration

– 1) Unicité et existence : Pour −→x = x1.
−→e1 + ...+ xp.

−→ep , on a la seule possibilité :
f(−→x ) = x1.f(−→e1) + ...+ xp.f(−→ep) = x1.

−→v 1 + ...xp.
−→v p ; et on vérifie alors qu’elle convient.

– 2) f inj. =⇒ (−→v j) libre : Soit x1.
−→v 1 + ...+ xp.

−→v p =
−→
0F ; alors f(

p∑

j=1

xj .
−→ej ) =

−→
0F donc

p∑

j=1

xj.
−→ej ∈ Ker(f) ; mais f inj. donne

p∑

j=1

xj.
−→ej =

−→
0E puis (−→ej ) libre d’où xj = 0. Fini.

f inj. ⇐= (−→v j) libre : Soit −→x ∈ Ker(f), −→x =

p∑

j=1

xj.
−→ej car (−→ej ) génératrice.

Alors :
−→
0F = f(−→x ) =

p∑

j=1

xj.
−→v j ; mais (−→v j) libres, donc xj = 0 et −→x =

−→
0E . Fini.

f surj. =⇒ (−→v j) gén : Soit −→y ∈ F ; f surj. donne : ∃−→x ∈ E tel que −→y = f(−→x ).

Ecrivons alors −→x =

p∑

j=1

xj.
−→ej car (−→ej ) génératrice : −→y = f(−→x ) =

p∑

j=1

xj .
−→v j. Fini.

f surj. ⇐= (−→v j) gén : Soit −→y ∈ F ; (−→v j) génératrice donne ∃xj : −→y =

p∑

j=1

xj.
−→v j .

Posons −→x =

p∑

j=1

xj .
−→ej ; alors aisément f(−→x ) = −→y . Fini.

2. Conséquence : définition. Si de plus F de dimension finie n, de base
−→
f1 , ...

−→
fn, voici la matrice

de f dans les bases (−→ej ) de E et (
−→
fi ) de F ; on va de Ep dans Fn ; on a une matrice (n, p) :

• Anp =



a11 ... a1j ... a1p

...
an1 ... anj... anp


 où la jème colonne est le vecteur f(−→ej ) :




a1j

a2j

...
anj


 dans :

−→
f1−→
f2

...−→
fn

;

c’est donc le remplissage en colonnes avec les vecteurs : f(−→ej ) = −→v j = a1j
−→
f1 + ...+ anj.

−→
fn.

141
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• Maintenant la lecture ou le remplissage en lignes avec les composantes :

Pour −→x = x1.
−→e1 + ...+ xp.

−→ep , −→y = y1.
−→
f1 + ...+ yn.

−→
fn, vecteurs toujours notés en colonnes :

X =




x1

x2

...
xp


, Y =




y1

y2

...
yn


 on a −→y = f(−→x )⇔ Y = A.X ou




y1

y2

...
yn


 =



a11 ... a1j ... a1p

...
an1 ... anj ... anp


 .




x1

x2

...
xp




avec les tailles : Yn1 = Anp.Xp1 ; le produit s’effectuant lignes par colonnes.

Démonstration

La ligne 1 de −→y = f(−→x ) = x1.f(−→e1) + ...+ xp.f(−→ep) est y1 = x1.a11 + x2.a12 + ...+ xp.a1p. Etc.

3. Ainsi : quand f va de Ep dans Fn, celà donne une matrice Anp : ordre inversé. Et surtout :

Les vecteurs colonnes de A : f(−→e 1), ..., f(−→e p) forment une famille génératrice de Im(f).

Par exemple avec f endomorphisme de matrice A =

(
1 2
2 4

)
en base (−→ı ,−→ ) :

– Si on cherche Ker(f), on résoud f(−→x ) =
−→
0 ou A.X = O avec X =

(
x
y

)
, O =

(
0
0

)

– Et Im(f) = V ect(f(−→ı ), f(−→ )) = V ect(

(
1
2

)(
2
4

)
)= V ect(−→ı + 2.−→ ) de dimension 1.

Mnp(K) désignera ensuite l’ensemble des matrices n lignes, p colonnes à coefficients dans K.

21.1.2 Exemples

1. f = O de E = R2 (base −→ı ,−→ ) −→ F = R3 (base
−→
I ,
−→
J ,
−→
K) a pour matrice : O32 =




0 0
0 0
0 0




3,2

2. Soit f l’unique A.L. : R3 −→ R2 telle que : f(
−→
I ) = −→ı , f(

−→
J ) = −→ı −−→ , f(

−→
K) = −→ı + 2.−→ .

Par définition, sa matrice avec les bases indiquées, est A =

(
1 1 1
0 −1 2

)
.

3. Id, comme endomorphisme de Kn, dans toute base a pour matrice In =




1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1




.

4. Remarque : Qu’est-ce qu’une matrice ligne (1 ligne, p colonnes) ?

On doit aller de Ep dans K (e.v. de dim 1 sur K), soit une application linéaire de E dans K donc :

Une matrice ligne est une matrice d’une forme linéaire.

5. Montrer que f : P (x) ∈ R2[x] 7→ P ′(x+1) ∈ R1[x] est linéaire. Matrice en bases (1, x, x2) et (1, x) ?

Solution
On voit qu’on va de R2[x] (dim. 3) dans R1[x] (dim 2) ; puis f linéaire ?

1ère façon, par calcul :
Posons P (x) = a+ b.x+ c.x2 ; alors P ′(x) = b+ 2c.x ; l’image est Q(x) = b+ 2c(x+ 1) = α+ β.x.

On a

(
α
β

)
=

(
0 1 2
0 0 2

)
.



a
b
c


, remplissage en lignes, ce qui prouve f linéaire et donne sa matrice.

2ème façon, même dans R[x] : Voir que : f(P1 + P2) = f(P1) + f(P2) et f(λ.P ) = λ.f(P ).

Enfin le remplissage en colonnes : la 3ième est f(x2) soit 2(x+ 1) = 2 + 2.x ou

(
2
2

)

(1,x)

!
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21.2 Rang d’une application linéaire

21.2.1 Théorème du rang

Soit f ∈ L(E,F ) ; alors dim(E) = dim[Ker(f)] + rg(f), où par définition : rg(f) = dim[f(E)].

Deux exemples

1. Le dernier exemple précédent : Pour trouver rg(f) :

• Soit on cherche une base de Im(f) : l’image d’une base est génératrice seulement de l’image

Car : f(−→x ) = x1.f(−→e1) + ...+ xp.f(−→ep) décrit Im(f). Dans l’exemple :

Im(f) = V ect[f(1), f(x), f(x2)] = V ect[f(x), f(x2)] ici et ces 2 vecteurs sont libres : rg(f) = 2.

• Soit on cherche le noyau : P ′(x+ 1) = O ⇐⇒ P ′ = O ⇐⇒ P = cte.

Ker(f) = R0[x] de dimension 1 ; et donc rg(f) = 3− 1 = 2.

2. Une forme linéaire f : −→u



x
y
z


 ∈ R3 7→ 2x+ 3y − z =

(
2 3 −1

)
.



x
y
z


 ∈ R, de matrice (2 3 − 1)

non nulle ; donc de rang 1. dim[Ker(f)] = 2 : plan vectoriel de R3 d’équation : 2x+ 3y − z = 0.

Démonstration du Théorème

Soit E2 un supplémentaire de Ker(f) dans E (dim. finie) : E = Ker(f)⊕ E2. Alors :

f/E2
: E2 → Im(f) est bijective (ci-après) d’où dim[Im(f)] = dim(E2) = dim(E) − dim[Ker(f)].

Injective : si −→x ∈ E2 ∩Ker(f) forcément −→x =
−→
0 E car somme directe. Surjective : Si −→y ∈ f(E),

∃−→x ∈ E/−→y = f(−→x ) ; écrivons −→x = −→x1 +−→x2 selon E = Ker(f) + E2 : −→y =
−→
0 F + f(−→x2) = f(−→x2).

21.2.2 Conséquence : Propriété

1. On sait déjà pour f linéaire E → F que





f inj. ⇒ dimF > dimE (l’image d’une base étant libre)
f surj. ⇒ dimF 6 dimE (l’image d’une base étant gén.)

enfin : f bijective =⇒ dimE = dimF

2. Inversement, si dimE = dimF finie, on a : f injective ⇐⇒ f surjective ⇐⇒ f bijective.

Démonstration dimE = dimF finie et Im(f) ⊂ F :

Avec le th. du rang : f inj. ⇐⇒ dim(E) = rg(f)⇐⇒ dim(F ) = rg(f)⇐⇒ Im(f) = F .

21.2.3 Rang d’une famille finie de vecteurs ; et d’une matrice

Définitions
Soit −→v 1, ...

−→v p ∈ F. Leur rang de ces p vecteurs est dim[V ect(−→v j)].
Et le rang d’une matrice A est le rang des vecteurs colonnes.

Propriété

Le rang d’une A.L. est le rang des vecteurs colonnes d’une matrice quelconque
représentant f c’est-à-dire, quand on changera de bases dans E et dans F , on aura une
autre matrice A′ (nouveaux vecteurs colonnes, cf. ch. Matrices), mais de même rang !

Démonstration

Voir que Im(f) = f(E) = V ect[f(−→e1), f(−→e2), ..., f(−→ep )] : les vecteurs colonnes d’une matrice (image

d’une base) forment une famille génératrice de Im(f). D’où : rg(f) = dim[f(E)] = dim V ect[f(−→ej )]
= rg[f(−→ej )16j6p] = rg(A) ; et donc, si f est représenté aussi par A′, rg(A) = rg(A′) = rg(f) !

Exemple : rg

(
1 2 4
2 4 8

)
= 1. Donc si on résoud A.X3,1 = O2,1 on aura 3− 1 = 2 lettres arbitraires !
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21.3 Opérations avec les matrices correspondant aux A.L.

21.3.1 Opérations linéaires. Espace vectoriel Mnp(K), n > 1, p > 1

1. On définit l’égalité de 2 matrices : A = B si même taille (n, p) et ∀i, j : aij = bij

ce qui signifie : mêmes A.L. associées, de Kp dans Kn avec les bases canoniques, notées (−→ej ) (
−→
fi ).

Puis : A+B=Matrice (f + g) ce qui donne Anp +Bnp = (A+B)np de terme général (aij + bij)

Et : λ.A=Matrice (λ.f) ce qui donne (λ.A)np de terme général (λ.aij).

Exemple Soit A =

(
1 2
3 4

)
; alors A− λ.I2 =

(
1 2
3 4

)
− λ.

(
1 0
0 1

)
=

(
1− λ 2

3 4− λ

)
.

2. Théorème

Soit E = Kp, F = Kn. Avec les 2 opérations indiquées, Mnp(K) est un e.v. identique à L(E,F ).
Et on voit maintenant que chacun est de dimension n.p : dimL(Ep, Fn) = dimMnp(K) = n.p.

Démonstration
1) On peut vérifier la définition d’e.v.

2) Le cas M2,3(K). Recherche d’une base :

(
a b c
a′ b′ c′

)
= a.

(
1 0 0
0 0 0

)
+ b.

(
0 1 0
0 0 0

)
+ ... +

c′.

(
0 0 0
0 0 1

)
, ce qui donne une famille génératrice à 6 éléments. Notons E11 =

(
1 0 0
0 0 0

)
etc.

ils sont libres : faire a.E11 + b.E12 + ...+ c′.E23 = O23 qui donne les 6 coefficients nuls. Donc base.

Ainsi M2,3(R) ensemble de toutes les matrices 2,3 est un e.v. sur R de dimension finie 2.3=6.

21.3.2 Produit de matrices, correspondant à la composition

1. Définition
Si Anp = Matr(f ∈ L(E,F )), Bmn = Matr(g ∈ L(F,G)), (B.A)mp sera la matrice de

gof : E = Kp base (−→e1 ...−→ep) −→ F = Kn base (
−→
f1 ...
−→
fn) −→ G = Kmbase (−→g1 ...−→gm)

Théorème Le résultat est : Cmp = (B.A)mp = Bmn.Anp, le produit s’effectuant lignes par colonnes

Car la kième colonne de B.A, matrice de gof , est g[f(−→ek)] :



b11 b12 ... b1n

...
bm1 bm2 ... bmn


 .




a1k

a2k

...
ank


. Fini.

Ainsi on a :

(
b11 b12 b13
b21 b22 b23

)
.



a11 a12

a21 a22

a31 a32


 =

(
c11 c12
c21 c22

)
où, par exemple,

c21 = b21a11 + b22.a21 + b23.a31. On devine que : cik =
n∑

j=1

bij .ajk, pour 1 6 i 6 m, 1 6 k 6 p.

2. Conséquences

Les propriétés des A.L. se traduisent donc avec les matrices [bonnes tailles à choisir] :
ho(gof) = (hog)of =⇒ C.(B.A) = (C.B).A;

(h+ g)of = (hof) + (gof) =⇒ (C +B).A = (C.A) + (B.A);
ho(g + f) = (hog) + (hof) =⇒ C.(B +A) = (C.B) + (C.A);

(λ.g)of = go(λ.f) = λ.(gof) =⇒ (λ.B).A = B.(λ.A) = λ.(B.A).
Donc pour les matrices carrées Mn(K) est un anneau (et une algèbre) exactement comme L(Kn)

3. Deux remarques.

– • Même si les produits Bmn.Anp et Anp.Bmn sont possibles (⇐⇒ p = m) et ont de plus même
taille (p = m = n), on sait qu’il n’y a pas commutativité en général. Notre exemple était :

f :

(
x
y

)
7−→

(
x
−y

)
; g :

(
x
y

)
7−→

(
y
x

)
: deux symétries non commutatives. Il se traduit par :
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A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
; B.A 6= A.B. Remplissage en lignes et en colonnes à voir

– • De même, au ch. précédent, on avait vu que L(R2) ou M2(R) était non intègre et on avait un
exemple de matrice nilpotente. Re-construisons un exemple (dim(E) = dim(Ker(f)) + rg(f)) :

fof = O ⇐⇒ ∀−→x ∈ E : f [f(−→x )] =
−→
0 vrai ⇐⇒ Im(f) ⊂ Ker(f). Essai dans R2 :

Si Im(f) = Ker(f) = V ect(−→ı ) : f(−→ı ) =
−→
0 [première colonne] ; f(−→ ) = k.−→ı ∈ Im(f), k 6= 0

[k = 0 =⇒ Ker(f) = R2, f = O]. k = 1 donne A =

(
0 1
0 0

)
6= O et A2 = A.A = O !

21.3.3 Matrice inverse

1. Notations :
Soit f ∈ L(E,F ). On dit que : f est inversible à gauche s’il existe g ∈ L(F,E) tel
que gof = IdE et f inversible à droite s’il existe h ∈ L(F,E) tel que foh = IdF .

En dim infinie, on peut avoit f inversible d’un côté seulement : cf. Exemples du ch. précédent.

En dimension finie, voir après. Quand f inversible, on note A−1 = Matr(f−1,
−→
fi ,
−→ej ).

2. Attention :
• On sait que A (ou f et dim. finies) inversible =⇒ dimE = dimF soit A forcément carrée.

• Mais réciproque fausse : O22 =

(
0 0
0 0

)
est carrée non inversible ! Idem A =

(
0 1
0 0

)
qui vérifie

A2 = A.A = O avec A 6= O est non inversible. (Sinon A.A = O =⇒ A−1.A2 = A−1.O, ce qui est
A = O et n’est pas le cas). On peut aussi dire : les vecteurs colonnes de A sont liés.

3. Théorème
Si dimE = dimF finie, on a : f inversible ⇐⇒ f inv. à gauche ⇐⇒ f inv. à droite.

Traduction matricielle : Pour A carrée (sinon non inversible),
Ann inversible ⇐⇒ inv. à gauche ⇐⇒ inv. à droite. Calcul : cf. après.

Démonstration
• f inversible à gauche =⇒ f inversible :
Ayant gof = IdE , on a gof injective ; d’où f inj. [connu] donc, avec dimE = dimF finie, bijective.
• f inversible à droite =⇒ f inversible :
Ayant foh = IdF , on a foh surjective ; d’où f surjective [idem] ; donc, [idem] bijective.

21.3.4 Transposée d’une matrice

1. Matrice n, p : Soit A =




1 2
3 4
7 −6




3,2

, alors tA =

(
1 3 7
2 4 −6

)

2,3

.

Propriétés
Avec de bonnes tailles : t(tA) = A ; t(A+B) = tA+t B ; t(λ.A) = λ.tA ; [faciles]

Et [plus dur] (*) t(Bmn.Anp) = (tC)pm = (tA)pn.(
tB)nm.

Démonstration en compléments (*) : (B.A) = (cik)mp.

Posons tC = (γki)pm, alors : γki = cik =
n∑

j=1

bij.ajk =
n∑

j=1

βji.αkj =
n∑

j=1

αkj .βji. Fini.

2. Cas des matrices carrées

Soit A carrée n, n ; on dit que A est symétrique si tA = A ; et antisymétrique si tA = −A.

Matrices symétriques et antisymétriques 2x2 ? Montrer que l’on a deux sous e.v. supplémentaires.

Voir que : S = V ect(

(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
); A = V ect(

(
0 1
−1 0

)
); S ∩ A = {

(
0 0
0 0

)
}. Donc

S +A = S ⊕A, qui est de dimension : 3+1=4 : c’est M2,2 car inclusion et même dimension finie.

Attention : O2,2 matrice symétrique, mais non matrice de symétrie et :(
1 1
0 −1

)
matrice de symétrie (A2 = I2), mais non symétrique : ne pas confondre !
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M+ Exercices: Applications linéaires en dimension finie PTSI

1. Matrices inverses.
Inversion en ligne : On a Y = A.X ⇐⇒ A−1.Y = X, si A inversible.

Inverser une matrice c’est inverser un système par le pivot de Gauss par ex.

Inverser les matrices

(
1 2
3 4

)
,




1 −1 0
0 3 5
0 0 −2


,




2 4 3
0 1 1
2 2 −1


,




1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


,




1 1... 1
0 1... 1
...
0 0... 1


 = Tn

2. Soit f ∈ L(E) en dim. finie, montrer : Ker(f) et Im(f) supplém. ⇔ Ker(f) ∩ Im(f) = {−→0 }.

3. (a) En dimension quelconque, si f ∈ L(E), vérifier que : fof = O ⇐⇒ Im(f) ⊂ Ker(f).

(b) Soit E de dim. finie n sur K. Montrer : Ker(f) = Im(f)⇐⇒ [f2 = O et n = 2.rg(f)].

4. Rang de

(
3 3
3 3

)
,

(
1 2
3 4

)
,

(
1 2
2 4

)
? D = (di,j)2,3 et E =

(
ei,j

)
3,3

−→v 1,
−→v 2,

−→v 1+−→v 2

sont-elles inversibles ?

5. (a) Dans R[x]. Vérifier que f : P (x) 7→ P (x+ 1) est un endomorphisme ; donc aussi ∆ = f − Id.
(b) Dans E = R3[x] : Noyau, image et rang de ∆ ? Vérifier que ∆4 = O. Inverse de Id−∆ ?

(c) Puis (avec E = R3[x]) inverse de f = Id+ ∆ ? Explisciter les matrices 4x4 de f et de f−1.

6. Si f, g (et gof) automorphismes, montrer que : (gof)−1 = f−1og−1. (BA)−1 = A−1.B−1




si
matr.
(n, n)




7. Dans M2(R), vérifier que f : M 7−→tM est une symétrie vectorielle ; en déduire deux sous e.v.

supplémentaires et préciser les dimensions. [On pourra voir : f ∈ L(M2(R)), fof = Id. etc].

Complément : Ecrire enfin la matrice 4x4 de f dans la base usuelle E11, E12, E21, E22.

8. Rang. Soit f ∈ L(E,F ), E, F de dimensions finies ; et g ... (selon les cas)

(a) Montrer que rg(f) 6 dim(E) ; rg(f) 6 dim(F ) ; (*) rg(gof) 6 min[rg(f), rg(g)]

(b) Montrer que rg(f + g) 6 rg(f) + rg(g) ; puis | rg(f)− rg(g) |6 rg(f + g) 6 rg(f) + rg(g).

(c) Soit f ∈ L(E) tel que rg(f) = 1. Montrer : ∃k ∈ K tel que f2 = k.f (si k 6= 0,
1

k
f projecteur).

9. (a) (*) Soit f ∈ L(E,F ), g ∈ L(F,G) ; montrer que :

Ker(f) = Ker(gof)⇔ Im(f)∩Ker(g) = {−→0F }. Im(g) = Im(gof)⇔ F = Im(f)+Ker(g).

(b) Si f ∈ L(E), dim(E) finie : Ker(f) = Ker(f2)⇔ Im(f) = Im(f2)⇔ E = Ker(f)⊕Im(f).

10. (*) Soit E de dim. finie f, g endomorphismes tels que E = Im(f) + Im(g) = Ker(f) +Ker(g).

Montrer que ces sommes sont directes et f + g inversible.



Chapitre 22

Calcul matriciel

22.1 Diverses matrices pour une application linéaire

22.1.1 Composantes de l’image par une A.L. (rappel)

1. Théorème Pour f linéaire : E base (−→e1 , ...−→ep)→ F base (
−→
f1 , ...

−→
fn) on a −→y = f(−→x )⇔ Y = A.X

Déjà vu au ch. précédent et utilisé : c’est le remplissage en ligne. A = Matr(f,−→ej ,
−→
fi )

2. Conséquence
Inversion en ligne : On a Y = A.X ⇐⇒ A−1.Y = X, si A inversible.

Inverser une matrice c’est inverser un système ; par le pivot de Gauss par ex.

Exemple A =




2 4 3
0 1 1
2 2 −1


. Y = A.X ⇔



x′

y′

z′


 =




2 4 3
0 1 1
2 2 −1


 .



x
y
z


⇔





2x+ 4y + 3z = x′

0.x+ y + z = y′

2x+ 2y − z = z′

⇐⇒
pivot

...



x
y
z


 =

1

4
.




3 −10 −1
−2 8 2
2 −4 −2


 .



x′

y′

z′


. DoncA inversible et A−1 =

1

4
.




3 −10 −1
−2 8 2
2 −4 −2




Voir les calculs non rédigés

3. Remarque A inversible (nécessairement carrée) =⇒ tA inversible et (tA)−1 = t(A−1).

Démonstration On a donc A carrée et A.A−1 = In = A−1.A. En transposant : t(A−1).tA = In

donc tA inversible d’inverse t(A−1). (Rappelons que pour une matrice carrée :

inversible d’un côté =⇒ inversible). Fini. Question. Pourquoi est-ce une équivallence ci-dessus ?

22.1.2 Changement de bases pour un vecteur (donné)

1. Définitions
Soit B(−→e1 , ...−→ep) et B′(−→e1 ′, ...−→ep ′) deux bases ; supposons que −→e1 ′ = p11.

−→e1 + p21.
−→e2 + ...+ pp1.

−→ep ...

Par définition : Ppp = PB→B′ =




p11 ... ...
p21 ... ...
...
pp1 ...


 est appelée matrice de passage de B à B′.

On met les nouveaux vecteurs colonnes à l’aide des anciens.

Exemple Dans R2, soit
−→
I =

−→
i −−→j ,−→J =

−→
i +
−→
j ; nouvelle base (pourquoi ?). Ici P =

(
1 1
−1 1

)

−→
I

−→
J

−→ı.−→

Question : peut-on lire à l’envers :
−→
i =

−→
I +
−→
J ? NON ! (pas ici).

147
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2. Théorème Soit un même vecteur −→x de matrice X dans B et X ′ dans B′ ; alors X = P.X ′

Résultat nouveau très important.

Démonstration facultative (*)

Soit f l’endomorphisme de matrice P dans (−→ej ) ; on a f(−→ej ) = −→ej ′ et f bijectif.

Soit −→x =

p∑

j=1

xj.
−→ej =

p∑

j=1

x′j.
−→ej ′ ; alors f(−→x ) =

p∑

j=1

xj .
−→ej ′.

Mais comme la matrice P de f est connue dans la base B, on ne peut rien faire !

Essayons donc l’automorphisme f−1 de matrice P−1 dans B.

Alors f−1(−→x ) =

p∑

j=1

x′j .
−→ej . −→x et f−1(−→x ) sont connus dans B ! Donc : X ′ = P−1.X.

3. Conséquence.

On a même : PB→B” = PB→B′ .PB′→B”. D’où (B = B”) : P inversible et PB′→B = (PB→B′)−1

Démonstration

On écrit X = P1X
′; X ′ = P2X”. Donc X = P1.P2X” = PB→B”.X” et on termine aisément.

Bien retenir cette formule de changement de bases pour les vecteurs : X = P.X ′

Remarque : (si on veut)

On peut inverser A =




2 4 3
0 1 1
2 2 −1


 en colonnes... Ici :





−→
I = 2.

−→
i + 0.

−→
j + 2.

−→
k

...

...
Analogue à ci-dessus (exercice).

22.1.3 Effet d’un changement de bases sur une A.L.

1. Notations
Soit f : −→x ∈ E −→ f(−→x ) ∈ F linéaire.

Avec les bases (−→e1 , ...−→ep) et (
−→
f1 , ...,

−→
fn), on a la matrice A ;

Avec les bases (−→e1 ′, ...−→ep ′) et (
−→
f1

′, ...,
−→
fn

′), on a la matrice A′.

On note Ppp et Qnn les matrices inversibles de changement de bases dans E et dans F .

Soit −→x de matrice X dans B et X ′ dans B′ ; idem pour −→y = f(−→x ) avec Y et Y ′.

On sait que : Y = A.X ; Y ′ = A′.X ′ (§1) et X = P.X ′ ; Y = Q.Y ′ (§2). Donc :

Y ′ = Q−1.Y = Q−1AX = Q−1.A.P.X ′ = A′.X ′.

L’ unicité donne : A′ = Q−1AP et rg(A) = rg(A′) = rg(f) (vu).

2. Théorème
Anp, A

′
np représentant la même A.L. mais dans des bases différentes ⇒ A′ = Q−1AP

Deux matrices vérifiant une telle relation sont dites équivalentes ; elles ont même rang

Exemple

Soit f : P (x) ∈ R2[x] 7−→ P ′(x + 1) ∈ R1[x] ; dans les bases (1, x, x2) et (1, x), la matrice

est A =

(
0 1 2
0 0 2

)
. Prenons les bases [1, (x + 1), (x + 1)2] et [1, x − 1] alors P =




1 1 1
0 1 2
0 0 1


,

Q =

(
1 −1
0 1

)
; Q−1 =

(
1 1
0 1

)
; Alors A′ =

(
0 1 6
0 0 2

)
par Q−1.A.P ; ou directement : le

3ème vecteur colonne par ex : f((1 +x)2) = 2(x+ 2) exprimé en base (1, x− 1) : 6.1 + 2.(x− 1)
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22.1.4 Conséquences sur le rang

1. Propriétés

D’abord : r = rg(Anp) 6 min(n, p) ; et A inversible ⇐⇒ r = n = p. Ensuite :
Par une opération élémentaire sur les lignes (ou colonnes) d’une matrice, le rang est inchangé.

Démonstration

1) On a r = dim[Im(f)] 6 dim(F ) = n ; r = dim[Im(f)] = dim(E)−dim[Ker(f)] 6 dim(E) = p.

Et : A inversible =⇒ n = p [vu] et aussi r = dim[Im(f)] = dim(F ) = n car surjective.

Inversement r = n = p =⇒ f surjective de E dans F de même dim. finie : f inversible.

2) En compléments : Faisons quelques calculs : sur A3,2

• Prenons I3 ; remplaçons Ligne 3 par Ligne 3+λ.(ligne 1) (L3 ←− L3 + λ.L1) on obtient :



1 0 0
0 1 0
λ 0 1


 ; calculons




1 0 0
0 1 0
λ 0 1


 .



a1 a2

b1 b2
c1 c2


 =




a1 a2

b1 b2
c1 + λ.a1 c2 + λ.a2


 : le même effet sur A.

Et comme on sait (ch.21) que : rg(A′) = rg(Q−1.A.I2) = rg(A), le rang n’a donc pas changé !

Remarque : La matrice à gauche est ici appelée "matrice de transvection".

• Il y a deux autres opérations élémentaires sur les lignes à voir : c’est la même chose [à faire].



0 1 0
1 0 0
0 0 1


 .



a1 a2

b1 b2
c1 c2


 = ...




1 0 0
0 k 0
0 0 1


 .



a1 a2

b1 b2
c1 c2


 = ...

Remarque : La 1ère matrice à gauche est dite "de transposition" ; la 2ème de "dilatation"

• Et sur les colonnes ? C’est la multiplication "à droite" : Echangeons les colonnes 1 et 2 de I2,

noté C1 ↔ C2 on a :



a1 a2

b1 b2
c1 c2


 .

(
0 1
1 0

)
=



a2 a1

b2 b1
c2 c1


 ou A.P = A′ : on a même effet sur A.

Comme : rg(A′) = rg(I3.A.P ) = rg(A) [P inversible] le rang n’a toujours pas changé !

2. Remarque (rang de la transposée)

Pour Anp : Im(A) ⊂ Kn; Im(tA) ⊂ Kp. Mais : rg(A) = dim[Im(A)] = dim[Im(tA)] = rg(tA) !

Démonstration (*) En effet, prenant une base judicieuse de E = E2⊕Ker(f) :−→u 1, ...
−→u r,−→v r+1...,

−→v p
[cf. théorème du rang] et de F = Im(f)⊕ F2 : f(−→u 1), ..., f(−→u r),

−→
b r+1, ...,

−→
b n, on trouve P, Q

inversibles telles que : Q−1AnpP = (Jr)np =




1 0 ... 0 ... 0
0 1 ... 0 ... 0
...
0 0 ... 1 ... 0
...
0 0 ... 0 ... 0




où les r premières lignes et

colonnes sont Ir (des 0 partout ailleurs) et r = rg(f) = rg(A) = rg(Jr)np.

Alors : tP.tA.t(Q−1) =t (Jr)np = (Jr)pn qui est aussi de rang r ; donc : rg(tA) = r.
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22.2 Diverses matrices pour un endomorphisme

22.2.1 Théorème (Effet d’un changement de Base)

Ici, A est carrée (n, n) et mêmes bases à gauche et à droite ; par suite Q = P .

Donc

Ann, A
′
nn représentant le même endomorphisme, mais dans des bases différentes, on a ici

A′ = P−1.A.P . Deux matrices A et A′ vérifiant une telle relation sont dites semblables.
Elles ont alors même rang ; même trace (voir après) et même déterminant (ch. suivant).

Noter enfin : A = P.A′.P−1 et An = P.(A′)n.P−1, n ∈ N∗. [facile mais à bien voir].

22.2.2 Exemple

1. Soit f ∈ L(R3) définie par





x′ = (5x− 2y − z)/6
y′ = (−x− z)/2

z′ = (x+ 2y + 7z/6
; prouver que fof = f ; conclusion ?

2. Solution

1) On a



x′

y′

z′


 =

1

6




5 −2 −1
−3 0 −3
1 2 7


 .



x
y
z


. Puis A2 = A : par calcul. On sait alors que

(f ∈ L(R3) et fof = f) =⇒ f proj. sur Ker(f − Id)//Ker(f). Ici

•Ker(f − Id) : f(−→x )−−→x =
−→
0 ou f(−→x ) = −→x ouAX = X ouAX−X = O : ...




−x− 2y − z = 0
−3x− 6y − 3z = 0
x+ 2y + z = 0

C’est le plan vect. Π : x+2y+z = 0. Ou bien c’est ici Im(f), engendré par : 6.f(−→ı ), 6f(−→ ), 6.f(
−→
k )

Retrouver Π (de dim. 2 !) ainsi : Π = V ect[6.f(−→ı ), 6f(−→ ), 6.f(
−→
k )] cf. sous.e.v. engendré.

• Ker(f) : f(−→x ) =
−→
0 ou AX = O ⇐⇒ ...





5x− 2y − z = 0
x+ 0.y + z = 0
x+ 2y + 7z = 0

⇐⇒





2y + x+ 7z = 0
x+ z = 0

6x+ 6z = 0
... C’est

la droite vect. : ∆ = V ect(−→c ) = R.−→c = R.



−1
−3
1


. Soit −→a =




1
0
−1


 ,
−→
b =



−1
1
−1


, base de Π.

Conclusion : f est une projection de rang 2 sur Π // ∆.

2) Changement de base ici :

Forcément R3 = Π⊕∆ (ce qu’on peut voir car ∆ 6⊂ Π). Alors (−→a ,−→b ,−→c ) est une nouvelle base.

La matrice de passage est P =




1 −1 −1
0 1 −3
−1 −1 1


. On calcule P−1 et P−1.A.P = D =




1 0 0
0 1 0
0 0 0




(le faire). Ceci sans calcul aussi car : f(−→a ) = −→a , f(
−→
b ) =

−→
b , f(−→c ) =

−→
0 !

22.2.3 Trace d’une matrice carrée et d’un endomorphisme

1. Par définition : Pour Ann carrée, la trace de A(ai,j) est Tr(A) =

n∑

i=1

aii = Tr(tA).

2. Propriétés :
Tr : Mn(K) −→ K est une forme linéaire, soit : Tr(A+B) = Tr(A) + Tr(B) et
Tr(λ.A) = λ.Tr(A); vérifiant de plus : Tr(Bpn.Anp) = Tr(Anp.Bpn) ! (*)
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Démonstration (*) : Attention, pour Tr(A+B), chaque matrice est (n, n).

Pour : Tr(Bpn.Anp) = Tr(Anp.Bpn), notons : B.A = C = (cik).

On a : Tr(BA) =

p∑

i=1

cii =

p∑

i=1

n∑

j=1

bijaji ; et sous cette dernière forme, on reconnait : Tr(AB) !

3. Conséquence : Trace d’un endomorphisme en dimension finie.

Soit f un endomorphisme représenté par A dans la base B et par P−1.A.P dans B′.
On a Tr(P−1.A.P ) = Tr(A.P.P−1) = Tr(A), qui est donc indépendante de la base choisie !

On appelle Tr(f), f endom. en dim. finie, la trace de n’importe qu’elle matrice représentant f .

Question : Que représente Tr(f) ? Dans le cas général, ce n’est pas clair.

Exercice : Dans le cas particulier des projecteurs, en dimension finie, Tr(p) = rg(p). cf. Ex.5.(a).

Vérifions déjà sur l’exemple vu, f projecteur : rg(A) = Tr(A) = 2 = Tr(D).

22.3 Matrices carrées d’ordre n : Mn(K) [Anneau, même algèbre]

22.3.1 Les 3 opérations (révision)

+ des matrices ; � des matrices [loi interne dans Mn(K)] ; . par une constante de K [loi externe].

On sait queMn(K) est un e.v. sur K de dimension n2 (ayant E = Kn, dimE = n) ; et que, si

dimE > 2, c’est un anneau non commutatif, non intègre. Attention (A �B = A � C,A 6= O) 6⇒ B = C.

22.3.2 Matrices carrées particulières

1. hk : −→x 7−→ k.−→x , homothétie vect. de rapport k, si k 6= 0 a pour matrice dans toute base : k.In.

2. La proj. vect. sur V ect(−→ı ,−→ ) // V ect(
−→
k ) dans (−→ı ,−→ ,−→k ) a pour matrice :




1 0 0
0 1 0
0 0 0


.

Tandis que




1 0 0
0 1 0
0 0 −1


 est la matrice de la sym. vect. / V ect(−→ı ,−→ ) // V ect(

−→
k ) dans (−→ı ,−→ ,−→k ).

3. SoitD =




λ1 0 ... 0
0 λ2 ... 0
...
0 0 ... λn


, T =




λ1 ∗ ... ∗
0 λ2 ... ∗
...
0 0 ... λn


 :

{
D est appelée matrice diagonale (carrée)

T appelée triangulaire supérieure (carrée)

Calculs à bien voir : Pour les matrices diagonales D.D′ = D′.D et Dk, k ∈ N∗ facile.

Pour les triangulaires : T, T ′ triang. sup. ⇒ T.T ′ aussi mais T.T ′ 6= T ′.T en général. Surtout

T inversible ⇔
n∏

k=1

λk 6= 0 (et T−1 triang.) : vaut donc aussi pour les matrices diagonales.

Analogue pour les matrices triangulaires inférieures (tT triangulaire inférieure).

Démonstration. Bien connaitre le cas des matrices diagonales pour commencer. Ensuite, vérifier que(
λ a
0 µ

)
.

(
λ′ a′

0 µ′

)
=

(
λλ′ ...
0 µµ′

)
6=
(
λ′ a′

0 µ′

)
.

(
λ a
0 µ

)
=

(
λλ′ ∗
0 µµ′

)
en général. Equivalences :

(⇐) Si

n∏

k=1

λk 6= 0 : résolvant T �X = O, on a X = O ; d’où T(n,n) est injective ; donc bijective.

(⇒) Inversement, si λk = 0, −→v 1, ...
−→v k sont dans V ect(−→e1 , ...,−→e k−1) : (pourquoi ?) donc liés !

L’endomorphisme associé n’est pas bijectif (l’image d’une base non base) ; T non inversible.
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M+ Exercices: Calcul matriciel PTSI

1. Calcul de Mn Soit A =

(
b b− a

−a− b −b

)
; T =

(
a c
0 b

)
; C =




1 2 3
0 1 2
0 0 1


 ; J =




0 1 1
1 0 1
1 1 0


.

(a) Calculer A2 puis An, n ∈ N∗. (A1917 ? )

(b) Calculer T 2; T 3; puis T n, n ∈ N∗. [Rappeler l’identité an+1 − bn+1 = ? ]

(c) En écrivant C = I3 +N [Binôme de Newton, N nilpotente commutant avec I], calculer C13.

(d) Calculer J2 en fonction de I = I3 et J ; en déduire que J est inversible et préciser J−1.

Préciser le reste de la division de xn par x2−x−2. Puis : Jn. (par "polynôme annulateur".)

2. Utilité du calcul de Mn, M matrice. Soit (un), (vn) :

{
un+1 = 3un + 2vn
vn+1 = un + 2vn

et Xn =

(
un
vn

)
.

(a) Trouver A telle que Xn+1 = A.Xn ; en déduire que Xn = An.X0.

(b) On va chercher An par un changement de base ici.

Notons A = Matr[f, (−→ı ,−→ )], f endomorphisme. Calculer f(−→ı −−→ ) puis f(2−→ı +−→ ).

Déduire ∃P inversible : P−1.AP = D, où D = diag(1, 4) (car ci-dessus f(−→u ) = −→u ,
f(−→v ) = 4−→v .) Conclure que : A = P.D.P−1 ; An = P.Dn.P−1 et achever les calculs.

3. Soit A, B carrées telles que A+B+AB = O ; montrer que AB = BA. [Ind. Calculer (I+A)(I+B).]

4. Pour A =

(
4 7
−2 −5

)
préciser C(A) = {M : A�M = M �A}. Montrer que M2 = A =⇒M ∈ C(A).

5. Avec la trace (a) Prouver que pour un projecteur, en dimension finie, Tr(p) = rg(p).

(
Base

judicieuse

)
.

(b) Montrer qu’on ne peut pas trouver deux matrices (carrées) A,B telles que AB −BA = In.

6. Vérifier que I2 et A =

(
1 1
0 1

)
ont même rang, trace, déterminant ; mais ne sont pas semblables.

7. Discussion de l’équation f(−→x ) =
−→
b (∗), f ∈ L(E,F ) Que dire si

−→
b 6∈ Im(f) = f(E) ?

On suppose maintenant
−→
b ∈ Im(f) et soit −→x1 une solution. Vérifier alors (∗)⇔ −→x −−→x1 ∈ Ker(f).

Donc −→x = −→x1 +
−→
t ,
−→
t dans Ker(f), noté "−→x = −→x1 +Ker(f)", énoncé comment ?

1er exemple : Anp.Xp1 = Bn1. Nombre de solutions selon le rang r = rg(A) (quand il y en a).

2ème exemple : y 7−→
f

a(x)y′ + b(x)y. Ici (∗) est : f(y) = c(x). Préciser le cadre convenable.

8. Soit A l’ensemble des matrices du type

(
a+ b a− b
a− b a+ b

)
, a, b ∈ R ; U =

(
1 1
1 1

)
, V =

(
1 −1
−1 1

)
.

Montrer que A est un sous e.v. deM2(R). Calculer U2, V 2, UV, V U ; structure de (A,+, �) ?

9. Soit A = {a.A + b.I2, a, b ∈ R}, A =

(
4 7
−2 −5

)
. Montrer que A est un sous e.v. de M2(R). De

A2 +A− 6I = O, déduire que A est stable par �. Résoudre x2 =x dans A ; vérifier que les solutions

autres que O et I forment une base ; déduire que A est un sous-anneau commutatif ( !), non intègre.



Chapitre 23

Déterminants 2x2, 3x3, etc.

23.1 Déterminants 2x2

23.1.1 Notations

Soit le système 2x2 (S) :

{
ax+ by = c
a′x+ b′y = c′

(S)⇔ x−→v 1 + y−→v 2 =
−→
b ⇔ A.X = B ⇔ f(−→x ) =

−→
b .

où : −→v 1 =

(
a
a′

)
, −→v 2 =

(
b
b′

)
;
−→
b =

(
c
c′

)
; A =

(
a b
a′ b′

)
; B =

(
c
c′

)
, X =

(
x
y

)

et : f endomorphisme de matrice A, tout cela dans la base canonique de K2 par exemple.

Remarques On est en dim. 2 et A est carrée.

• D’où : (−→v 1,
−→v 2) libres ⇔ générateurs ⇔ base ⇔ A inversible ⇔ f bij. ⇔ f injective ⇔ f surjective !

• Dans le cas de matrice inversible :

le système a une solution unique ; celà ∀−→b (quel que soit le second membre), à savoir : X = A−1.B.

23.1.2 Résolution

Posons D =

∣∣∣∣
a b
a′ b′

∣∣∣∣ = a.b′ − b.a′ ; Dx =

∣∣∣∣
c b
c′ b′

∣∣∣∣ = c.b′ − b.c′, Dy =

∣∣∣∣
a c
a′ c′

∣∣∣∣ = a.c′ − c.a′ de même :

Théorème
On a A inversible ⇔ D 6= 0, D étant appelé déterminant principal ; dans ce cas on dit

système de Cramer, l’unique couple solution est x =
Dx

D
, y =

Dy

D
. Si D = 0, on regarde.

Démonstration
1) Voir que D = 0⇔ −→v 1,

−→v 2 liés (exercice). De même formules de Cramer laissées ; et cf. III.

2) Si D = 0





Remarquons pour f(−→x ) =
−→
b : • Soit

−→
b 6∈ Im(f) : ce qui équivaut à pas de solution.

• Soit
−→
b ∈ Im(f) : au moins une solution −→x1 et alors (linéarité) ”−→x = −→x1 +Ker(f)”

dans ce cas, il y a : dimKer(f) =(nombre d’inconnues − rang) lettres arbitraires.

Exemple Résoudre

{
m.x+ y = m− 1

x+my = m2 + 1

On a D = m2 − 1. Donc pour m 6= ±1, une solution unique (finir les calculs).

Si m = 1, le système devient

{
x+ y = 0
x+ y = 2

Impossible.

Si m = −1, on a

{
−x+ y = −2
x− y = 2

⇐⇒ x− y = 2 Infinité de solutions (une droite affine).
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23.2 Déterminants 3x3

23.2.1 Notations et résultats énoncés

Soit A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ; on va considérer dét(A) =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
. Si −→v 1



a11

a21

a31


 ,−→v 2,

−→v 3 analogues,

exprimés en base B(−→e1 ,−→e2 ,−→e3) de E, on dira aussi que c’est : détB(−→v 1,
−→v 2,
−→v 3).

1. dét(A) est un nombre [on dit "forme"] et dét(A) 6= 0⇔ A inversible ⇔ −→v 1,
−→v 2,
−→v 3 nouvelle base.

2. Linéarité /1ère colonne.
• détB(−→u 1 +−→v 1,

−→v 2,
−→v 3) = détB(−→u 1,

−→v 2,
−→v 3) + détB(−→v 1,

−→v 2,
−→v 3) et

• détB(λ−→v 1,
−→v 2,
−→v 3) = λ.détB(−→v 1,

−→v 2,
−→v 3) Idem / chaque colonne : "forme trilinéaire".

D’où 1) détB(−→v 1 + λ−→v 2,
−→v 2,
−→v 3) = détB(−→v 1,

−→v 2,
−→v 3) + 0 [développer le terme à gauche]

2) dét(λ.A) = λ3.dét(A) ; alors que pour les dét 2x2 :

∣∣∣∣
λ.a λ.b
λ.c λ.d

∣∣∣∣ = λ2.

∣∣∣∣
a b
c d

∣∣∣∣ !

3. Si on transpose 2 colonnes, on change le signe : forme trilinéaire "alternée" (ou "antisymétrique").

D’où détB(−→v 2,
−→v 3,
−→v 1) = détB(−→v 1,

−→v 2,
−→v 3) (2 changements de signes.)

4. Développement suivant une colonne de A = (ai,j).
• Supprimons ligne i, colonne j : il reste un déterminant 2x2, noté Dij appelé mineur relatif à aij .

• Posons ensuite ∆ij = (−1)i+j .Dij ∆ij est appelé cofacteur de aij

Exemple : le cofacteur de a32 est (−1)3+2.

∣∣∣∣
a11 a13

a21 a23

∣∣∣∣. Les signes :




+ − +
− + −
+ − +


.

• Développement/Colonne 2 : dét(A) = a12.∆12 + a22.∆22 + a32.∆32. Idem / autres colonnes.

D’où 1)

∣∣∣∣∣∣

λ1 0 0
∗ λ2 0
∗ ∗ λ3

∣∣∣∣∣∣
= λ1.λ2.λ3. [Colonne 3] On retrouve A (triang.) inversible ⇔

3∏

k=1

λk 6= 0.

2)

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11.a22.a33 + a21.a32.a13 + a31.a12.a23 − a31.a22.a13 − a21.a12.a33 − a11.a32.a23.

C’est la règle de Sarrus : Mais si A contient des lettres, on vise une expression factorisée.

23.2.2 Des exemples

� D =

∣∣∣∣∣∣

1 4 13
2 5 17
3 6 19

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 13
2 −3 17
3 −6 19

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0
2 −3 −9
3 −6 −20

∣∣∣∣∣∣
= (−3).(−1).

∣∣∣∣∣∣

1 0 0
2 1 9
3 2 20

∣∣∣∣∣∣
= 3.

∣∣∣∣∣∣

1 0 0
2 1 0
3 2 2

∣∣∣∣∣∣
= 3.2 = 6

(En faisant C2 ← C2 − 4C1 ; puis C3 ← C3 − 13C1 ; mise en facteurs C2, C3 ; C3 ← C3 − 9C2 ;...)

� D =

∣∣∣∣∣∣

1 cos(x) cos(2x)
cos(x) cos(2x) cos(3x)
cos(2x) cos(3x) cos(4x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 cos(x) 2.cos(x).cos(x)
cos(x) cos(2x) 2.cos(2x).cos(x)
cos(2x) cos(3x) 2.cos(3x).cos(x)

∣∣∣∣∣∣
(avec C3 ← C3 + C1)

Et donc : D = 0 (pour tout x ∈ R) car les vecteurs colonnes sont liées.

� D =

∣∣∣∣∣∣

1 a 2a
a 1 a
2a 2a 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 a− 1 2a− 1
a 1− a 0
2a 0 1− 2a

∣∣∣∣∣∣
= (a− 1)(2a − 1)

∣∣∣∣∣∣

1 1 1
a −1 0
2a 0 −1

∣∣∣∣∣∣
= (a− 1)(2a − 1)(3a + 1)

(fin par Sarrus ; on aurait pu faire C2 − C1 ... L’important est qu’on sache quand D est non nul).
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23.2.3 Autres résultats

1. dét(tA)=dét(A) Donc

• Le caractère linéaire a lieu sur chaque ligne.
• Egalement le caractère alterné.
• Enfin, on peut développer par rapport à une ligne.

Dans l’exemple vu, pour D =

∣∣∣∣∣∣

1 a 2a
a 1 a
2a 2a 1

∣∣∣∣∣∣
: si on remplace L1 par L1 + L2 + L3 sans

changer le résultat, on voit que 3a+ 1 se met de suite en facteur.

2. dét(B.A)=dét(B).dét(A). (matrices carrées). Donc

• Souvent B.A 6= A.B ; cependant même déterminant (et même trace).

• Si A inversible, A.A−1 = In = A−1.A donne dét(A−1).dét(A)=1 ; donc dét(A−1) =1/dét(A).

• Déterminant d’un endomorphisme en dim finie (2 ou 3) :
On a donc f représenté par A ou par P−1AP selon les bases ; or dét(P−1AP )=dét(A). D’où

Définition
Pour f endomorphisme en dim. 2 ou 3, on appelle dét(f) le déterminant de

n’importe quelle matrice représentant f.

3. Remarques
• Pour A carrée, dét(tA.A) =dét(A)2.
• Tr(B.A) inconnue ; dét(A+B) inconnu.

• Si A33 antisymétrique : tA = −A⇒ dét(tA) =

{
dét(A) et :

(−1)3.dét(A)
donc dét(A)=0.

Mais faux pour les matrices antisymétriques 2x2 :

∣∣∣∣
0 −c
c 0

∣∣∣∣ = c2.

23.2.4 Déterminant de Van Der Monde

Il s’agit de D =

∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣
= V (a, b, c). On a D = (b− a)(c− a)(c− b) ; donc D 6= 0⇔ a, b, c distincts.

Démonstration1

D =

∣∣∣∣∣∣

1 a a2

0 b− a (b− a)(b+ a)
0 c− a (c− a)(c+ a)

∣∣∣∣∣∣
= (b− a)(c − a)

∣∣∣∣∣∣

1 a a2

0 1 b+ a
0 1 c+ a

∣∣∣∣∣∣
= (b− a)(c − a).

∣∣∣∣
1 b+ a
1 c+ a

∣∣∣∣ = ...

23.2.5 Généralisation

� Tout se généralise au cas n = dim(E) > 3, sauf la règle de Sarrus (un dét. 4x4 : 4 ! = 24 termes).

� Par exemple : pour f endomorphisme (f bijectif) ⇔ dét(f) 6= 0 et dét(gof)=dét(g).dét(f).

Ou aussi, dét(λ.A) = λn.dét(A). Exercices (*) : dét(| i− j |)n,n = (−1)n−1.(n − 1).2n−2 ;

∣∣∣∣
A B
0 C

∣∣∣∣ =

∣∣∣∣
I 0
0 C

∣∣∣∣ .
∣∣∣∣
A B
0 I

∣∣∣∣ = det(A).det(C) ;

∣∣∣∣∣∣∣∣∣∣

1 2 3 ... n
n 1 2 ... n− 1

n− 1 n 1 ... n− 2
...
2 3 ... n 1

∣∣∣∣∣∣∣∣∣∣

= (−1)n−1.
nn−1.(n+ 1)

2
.

1 Autre preuve :

Soit D(x) =

∣∣∣∣∣∣

1 a a2

1 b b2

1 x x2

∣∣∣∣∣∣
: D(x) est un polynôme en x de degré au plus 2, de terme dominant

∣∣∣∣
1 a
1 b

∣∣∣∣ .x
2 ;

Si b = a, déterminant nul : 2 lignes égales.
Si b 6= a, c’est un polynôme de degré 2, nul en a, b distinctes ; donc D(x) = (b− a)(x− a)(x− b).
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23.3 Utilisations

23.3.1 Système carré 3x3

Soit (S)





ax+ by + cz = d
a′x+ b′y + c′z = d′

a”x+ b”y + c”z = d”
. Comme pour les systèmes 2x2, on définit : D [déterminant principal]

et Dx [remplaçant Colonne des x par Celle du 2è membre], Dy, Dz : idem.

Alors D 6= 0⇔ A inversible ; solution unique x =
Dx

D
, y =

Dy

D
, z =

Dz

D
. Si D = 0, on regarde.

Démonstration des "formules de Cramer": où l’on voit l’importance de la linéarité.

Déjà (S)⇐⇒ x−→v 1 + y−→v 2 + z−→v 3 =
−→
b . Pour x [et analogue pour les autres]

on a : dét(
−→
b ,−→v 2,

−→v 3) =dét(x−→v 1 + y−→v 2 + z−→v 3,
−→v 2,
−→v 3) = x.dét(−→v 1,

−→v 2,
−→v 3). Donc : Dx = x.D.

Exemples (S1)





2x + λy − z = 5
(λ− 5)x+ 3y + 7z = 7
x + 3y + 2z = 4

(S2)





x + y + (1−m)z = m+ 2
(1 +m)x − y + 2z = 0
2x −my + 3z = m+ 2

Pour (S1) D 6= 0⇐⇒ λ 6∈ {1, 6} ; si D = 0, pivot de Gauss. Pour (S2), D = m(m− 2)(m + 2).

23.3.2 Matrice inverse d’une matrice carrée

On a A inversible ⇔ det(A) 6= 0 ; dans ce cas A−1 =
1

det(A)
.




Matrice
transposée

des cofacteurs


 et dét(A−1) =

1

det(A)
.

Démonstration

Car : A.



x1

x2

x2


 =



y1
y2
y3


 ⇒ x1 =

1

det(A)
.

∣∣∣∣∣∣

y1 a12 a13

y2 a22 a23

y3 a32 a33

∣∣∣∣∣∣
=

1

D
[y1.∆11 + y2.∆21 + y3.∆31]; x2; x3 idem.

Remarques
• Pour une matrice 3x3, ça fait 10 déterminants ! (et transposer) ! C’est donc une formule théorique.

• Si matrice 2x2 :

(
a b
c d

)−1

=
1

ad− bc.
(
d −b
−c a

)
. Et det(A−1) =

1

(ad− bc)2 .(ad− bc) !

23.3.3 Equation d’un plan vectoriel de R3 (sur un exemple déjà vu avec le Pivot)

� 1ère solution : −→x


x
y
z


∈ Π = V ect[




1
1
1


 ,




1
2
3


] ⇔ ∃α, β : α.




1
1
1


 +β.




1
2
3


 =



x
y
z


 ... cf. ch. E.v.

� 2ème solution chercher (a, b, c) 6= (0, 0, 0) : Π ait une équation du type ax+ by + cz = 0 (−→u ,−→v ∈ Π).

� 3ème solution −→x =



x
y
z


 ∈ Π ⇔

∣∣∣∣∣∣

1 1 x
1 2 y
1 3 z

∣∣∣∣∣∣
= 0. Car (⇒) 3 vecteurs d’un plan sont liés ⇔ dét. nul.

(⇐) Inversement : ces 3 vecteurs sont donc liés ; ∃α, β, γ non tous nuls : α.−→u + β.−→v + γ.−→x =
−→
0 . Alors

γ 6= 0 sinon −→u ,−→v seraient liés : or on a un vrai plan ! Celà termine : −→x = −1/γ.(α.−→u + β.−→v ).

Remarques finales

• Orientation d’un e.v. réel de dim 3 : Soit B et B′ deux bases de R3. On a détB(B′) 6= 0. Donc, sur R,
détBB′ > 0 ou détBB′ < 0. On dit que B′ a la même orientation que B ; ou bien l’orientation inverse.

• Si B et B′ sont orthonormées on verra [R3 e.v. euclidien] que dét(PB→B′)= détBB′ = ±1. Donc avec

PB→B” = PB→B′ .PB′→B”, si B et B′ o.n. directes, on déduit detB(−→u ,−→v ,−→w ) = detB′(−→u ,−→v ,−→w ). C’est le

"produit mixte", noté Dét(−→u ,−→v ,−→w ) ou [−→u ,−→v ,−→w ] : dét. dans n’importe quelle base o.n.d. ! (ch.24) Et

Dét(−→u ,−→v ,−→w ) = [−→u ,−→v ,−→w ] = (−→u ∧ −→v ) �
−→w . D’où : −→x ∈ Π⇐⇒ (−→u ∧ −→v ) �

−→x = 0. Solution 3bis) !

Retenir : V ect(−→u ,−→v ) ⊥ −→u ∧−→v , (−→u ,−→v ) libres.



23.4. (*) EXERCICES EN COMPLÉMENTS 157

23.4 (*) Exercices en compléments

23.4.1 Matrices à diagonale dominante (Théorème d’Hadamard)

Soit A = (aij) une matrice telle que ∀i, | aii | >
n∑

j 6=i; j=1

| aij | ; montrer que A est inversible. Corrigé :

� L’énoncé dit que sur la ligne i (i quelconque) | aii |> Somme des valeurs absolues (ou modules) des
autres termes (sur C peut-être).

� Pour les matrices 2x2

(
a b
c d

)
, celà donne | a |>| b |; | d |>| c | ; et il est clair que dét(A) 6= 0.

Mais on ne va pas continuer avec les déterminants, même pour n = 3 :

� Contraposée : si A non inversible, ∃λk non tous nuls tels que

n∑

k=1

λk.
−→v k =

−→
0 .

Soit i tel que | λi |= max | λk |> 0. Alors pour cette ligne i : −λi.aii =
∑

k 6=i; 16k6n

λk.aik.

On divise par λi ; on prend les modules ; l’inégalité triangulaire conclut.

23.4.2 Polynômes d’interpolation de Lagrange

Soit a0, ..., an n+ 1 valeurs distictes de R ou de C noté K.

On considère, pour k ∈ [[0, n]], les polynômes Lk(x) =
(x− a0)...(x − ak−1)(x− ak+1)...(x − an)

(ak − a0)...(ak − ak−1)(ak − ak+1)...(ak − an)
où le terme manquant en haut est (x− ak) et en bas (ak − ak), pour k variant de 0 à n.

1. Préciser les valeurs de Li(aj) à l’aide du symbole de Kronecker δij = 0 si i 6= j et 1 si i = j.

2. Montrer que l’on a une base de Kn[x]. Composantes du polynôme P (x) ? Que dire de

n∑

i=0

Li(x) ?

3. Pour n = 2, K = R, a0 < a1 < a2 dessiner L0, L1, L2 (3 paraboles et q.1).

23.4.3 Autres énoncés

1. Noyau et image d’endomorphisme. a)

{
x′ = (1 +m)x+ 3y
y′ = −x+ (1−m)y

b)





x′ = x+ a.z
y′ = (a− 1)x+ (b− 1)y

z′ = y + b.z

[Pour a) 2 valeurs particulières de m à voir. Pour b) cas où, au choix, f bij., dét(f) 6= 0, rg(f) = 3,

Ker(f) = {−→0 }, Im(f) = E, A inversible. Puis : si autres cas (lieu de (a, b) ?) voir rg(f) = 2.]

2. Rang de : A =




1 2 3 −1
2 1 7 −7
3 0 2 5
1 4 0 7


 B =




1 1 1 1
1 2 a b
1 3 2a− 1 c


 [Op. élémentaires avec ou sans noyau.]

3. Soit f un endomorphisme tel que fn−1 6= O, fn = O; n > 1. n est dit indice de nilpotence.

Montrer l’existence de −→u tel que −→u , f(−→u ), ..., fn−1(−→u ) soit libre. Et donc : n 6 dim(E).

On prend n = 3 = dimE. Matrice de f dans la base (f2(−→u ), f(−→u ),−→u ) ? Existence d’une telle ap-

plication ? Déduire que ϕof = foϕ⇔ ϕ = a.Id+bf+cf2 ; puis que l’équation ϕ2 = f est impossible.

4. Soit f, g endomorphismes tels que fog − gof = Id. Prouver fogn − gnof = n.gn−1, n ∈ N∗.

Rappeler pourquoi est-ce impossible en dimension finie (avec la Trace).

Cas de R[x] g : P (x) 7→ x.P (x) et f : P (x) 7→ P ′(x) ?
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M+ Exercices: Déterminants PTSI

1. Calculs (a) Factoriser

∣∣∣∣∣∣

1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣
(b) Vérifier

∣∣∣∣∣∣

a b c
c a b
b c a

∣∣∣∣∣∣
= (a+b+c)(a+bj+cj2)(a+bj2+cj)

2. (a) Factoriser

∣∣∣∣∣∣

1 cos(a) sin(a)
1 cos(b) sin(b)
1 cos(c) sin(c)

∣∣∣∣∣∣
(b) Soit D =

∣∣∣∣∣∣

sin(a1 + b1) sin(a1 + b2) sin(a1 + b3)
sin(a2 + b1) sin(a2 + b2) sin(a2 + b3)
sin(a3 + b1) sin(a3 + b2) sin(a3 + b3)

∣∣∣∣∣∣
:

Montrer que la colonne j de D s’écrit sin(bj).
−→c +cos(bj).

−→s ; −→c ,−→s fixes : D = 0 !

3. Soit le système





x+ y − 3z = −13
2x+ y − 2z = −8
x+ y + z = 3

{
Calculer le déterminant principal. Conclusion ?

Que penser d’une résolution par les déterminants ?

4. Equation cartésienne de V ect




1
2
3


 ,



−1
2
5


 dans R3 ? [C’est une question de cours.]

5. Divers et autres systèmes : (a) Montrer que : A nilpotente ⇒ dét(A) = 0.

(b) Résoudre





λx+ y + z = 1
x+ λy + z = λ
x+ y + λz = λ2

. (c) Soit





x+ ay + a2z + a3 = 0
x+ by + b2z + b3 = 0
x+ cy + c2z + c3 = 0

avec a, b, c distincts :

ce dernier : montrer qu’on a une solution unique ;

(*) puis sans calculs que : x = −abc, y = ab+ ac+ bc, z = −(a+ b+ c) !

6. Révisions. Dans E espace vectoriel de dim. 2, muni d’une base (−→ı ,−→ ), trouver la matrice A
de la symétrie vectorielle s par rapport à la droite vectorielle y = −x de direction y = 2x ?

Indications Justifier que s(−→ı −−→ ) = −→ı −−→ ; calculer de même s(−→ı + 2−→ ) ; en déduire la
matrice A′ de s en base ( ?) (−→u = −→ı −−→ , −→v = −→ı + 2−→ ). Justifier que dans (−→ı ,−→ ) la matrice
est A = P.A′.P−1, P à préciser et finir les calculs. (Et si B proj. sur y = −x //y = 2x ?)

Vérifier avec la trace ; le déterminant ; puis avec A2. Pourquoi a-t-on ici A−1 = A ? [Usuellement,
on part d’une matrice et on en donne une description géométrique. Ici, c’est l’exercice inverse.]

7. Calculer Mn pour A =

(
1 1
−1 0

)
; B =




1 1 1
1 1 1
1 1 1


 ; C =




1 a b
0 1 c
0 0 1


 [C = I +N ici].

8. Inverser : A =

(
a b
c d

)
dét(A−1) ?




2 3 2
4 −2 3
1 1 1


 ;




1 0 1
0 1 1
−1 1 1


 ;




2 4 3
0 1 1
2 2 −1


 [celle-ci déjà vue].

Les déterminants sont facultatifs et souvent médiocres ici.

9. Curiosité : Soit B32 et A23 ; dét(BA) et dét(AB) existent ; on se demande s’ils sont égaux !

Vérifier que dét(AB) 6= 0 dans le cas A =

(
1 0 α
0 1 β

)
; B =




1 0
0 1
0 0


. Calculer dét(BA).

(*) En général : rappeler pourquoi rg(BA) 6 min[rg(A), rg(B)] 6 2 ; conséquence sur dét(BA) ?



Chapitre 24

Géométrie de l’espace R3

24.1 Espace affine E = R3 ; espace vectoriel associé.

24.1.1 Points, Vecteurs [On revient aux points ici !]

R3 étant l’ensemble des triplets de réels. On considère :

• soit R3 = E comme ensemble de points ; on dit ici : espace affine E . (1, 2,−5) sera un point A.

• soit R3 = E comme ensemble des vecteurs associés : on dit alors l’espace vectoriel E associé à
l’espace affine E . (π,−1, 4) sera ici un vecteur −→u , dans ce contexte !

La donnée de trois vecteurs non coplanaires (−→ı ,−→ ,−→k ) est une base de E = R3.

La donnée d’une origine (un point O) et d’une base de E est un repère de E = R3 affine : (O,−→ı ,−→ ,−→k ).

Lien entre E et E : Si A ∈ E ; alors M ∈ E ⇔ −−→
AM ∈ E (Notation de Grassman : M = A+

−−→
AM)

et on peut changer de point-origine avec la relation de Châsles :
−−→
AM =

−−→
AB +

−−→
BM .

24.1.2 Le plan affine dans E muni d’un repère

Le plan affine P(A(x0, y0, z0), dirigée par le plan vectoriel Π(−→u ,−→v vecteurs non colinéaires) est tel que

M ∈ P ⇔ −−→
AM ∈ V ect(−→u ,−→v ) ⇔ ∃λ, µ ∈ R :

−−→
AM = λ.−→u + µ.−→v λ, µ "paramètres" décrivant R.

Un système d’équations paramétriques d’un plan affine contient 2 paramètres : peu commode !

On préfère pour le plan une équation cartésienne.

Deux exemples

1. Equation cartésienne du plan P[A(1, 0, 1); −→u (1, 1, 1),−→v (1, 2, 3) non colinéaires.]

Raisonner par équivalence. M ∈ P ⇔ ∃λ, µ ∈ R





λ+ µ = x− 1 (1)
λ+ 2.µ = y − 0 (2)
λ+ 3.µ = z − 1 (3)

(1) et (2) donnent :

µ = y − x+ 1; λ = 2x− y − 2. En reportant dans (3) trouver : x− 2y + z = 2 ou toute

autre équation proportionnelle. Faire aussi avec det(−→u ,−→v ,−−→AM ) = 0 (idem).

2. Bien voir que 2x− y = 1 désigne un PLAN affine // 0z (non pas une droite !)

Théorème
En cartésiennes, une équation du plan P est du type ax+ by + cz = d, (a, b, c) 6= 0.
On obtient les plans parallèles en ne faisant que varier que le coefficient d. Ainsi :
ax+ by + cz = 0 est aussi appelé plan vectoriel Π, directeur du plan affine P.

Démonstration générale avec les déterminants (*) : Le plan vectoriel associé [vu] : det(−→u ,−→v ,−→x ) = 0.

Le plan affine a pour équation : det(−→u ,−→v ,−−→AM ) = 0. Car
−−→
AM = λ−→u + µ−→v ⇒ vecteurs liés. Et si

vecteurs liés : a−→u + b−→v + c
−−→
AM =

−→
0 , (a, b, c) 6= (0, 0, 0) ; −→u ,−→v libres ⇒ c 6= 0 :

−−→
AM = α.−→u + β.−→v !

159
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24.1.3 La droite (affine) dans E muni d’un repère

La droite définie par A(x0, y0, z0), dirigée par −→u 6= −→0 est telle que M ∈ D ⇔ ∃λ ∈ R :
−−→
AM = λ.−→u .

ou ∃λ ∈ R :





x− x0 = λ.α
y − y0 = λ.β
z − z0 = λ.γ

en paramétriques. En cartésiennes,
x− x0

α
=
y − y0

β
=
z − z0
γ

avec

la convention : Quand on a, dans R,
p

α
=
q

β
= ... avec au moins un dénominateur non nul :

si un dén. est nul, le numérateur correspondant aussi ! (en effet, le rapport existe dans R, noté λ).

Comme ax+ by = c, (a, b) 6= (0, 0) est un PLAN affine dans R3 (d’ailleurs//Oz aisément !) on a :

Dans R3 affine, une droite affine en cartésiennes apparaît comme intersection de 2 plans affines

non parallèles ; il y a donc 2 équations cartésiennes pour une droite affine de R3.

En paramétriques : 1 paramètre ; en cartésiennes : 2 équations. Droite préférée en paramétriques.

Ainsi D(A(1, 2, 3),−→u (1,−1, 1))
−−→
AM = λ−→u en cart.

x− 1

1
=
y − 2

−1
=
z − 3

1
x+ y = 3 ∩ y + z = 5.

Résumé
� Dans R3, un plan affine est plus commode en cartésiennes : 1 seule équation.

� Mais une droite affine est plus commode en paramétriques : 1 seul paramètre.

24.2 Espace vectoriel euclidien E = R3 : vecteurs et produit scalaire

24.2.1 Angles et normes de vecteurs [on ajoute l’orthogonalité]

1. Définition du produit scalaire.

Soit 2 vecteurs −→u =
−→
OA,−→v =

−−→
OB, on définit le produit scalaire par :

−→u �
−→v = ‖−→u ‖.‖−→v ‖.cos(α) où α = angle(−→u ,−→v ). Donc ‖−→u ‖2 = −→u �

−→u ; ‖−→u ‖ =
√−→u �

−→u .

A noter

1) L’inégalité Cauchy-Schwartz : | −→u �
−→v |6 ‖−→u ‖.‖−→v ‖. (−→u .−→v < 0 possible !)

2) −→u et −→v sont orthogonaux⇔ −→u �
−→v = 0. Et :

−→
0 est le seul vecteur orthogonal à lui-même.

2. Propriétés Un p.s. est une forme bilinéaire symétrique, définie, positive :

1) On a −→u �
−→v ∈ R : on dit ici "forme".

2) Linéarité par rapport au 1er vecteur (a.−→u 1 + b.−→u 2) �
−→v = a.(−→u 1 �

−→v ) + b.(−→u 2 �
−→v )

Et aussi par rapport au 2ème vecteur : forme "bilinéaire".
3) −→u �

−→v = −→v �
−→u : forme bilinéaire "symétrique".

4) ∀ −→u ∈ E = R2 : −→u �
−→u > 0 : "positive".

5) Enfin −→u �
−→u = 0⇒ −→u =

−→
0 : définie". [Preuves en exercice (*)]

3. Norme de vecteurs −→u 7→ ‖−→u ‖ est une "norme", c’est dire ‖−→u ‖ ∈ R+ et 3 autres axiomes :

1) ‖−→u ‖ = 0⇒ −→u =
−→
0 2) ‖λ.−→u ‖ =| λ | .‖−→u ‖ si λ réel.

3) Enfin l’inégalité triangulaire, appelée ici de Minkowski : ‖−→u +−→v ‖ 6 ‖−→u ‖+ ‖−→v ‖.
Démonstration 1) vu. 2) vu aussi car (λ.−→u ) � (λ.−→u ) = λ2.(−→u �

−→u ) ; etc.

3) Calcul essentiel : ‖−→u +−→v ‖2 = (−→u + −→v ) � (−→u + −→v ) = −→u �
−→u + −→u �

−→v + −→v �
−→u + −→v �

−→v , par
bilinéarité ; symétrie : ‖−→u +−→v ‖2 = ‖u‖2 + 2−→u �

−→v + ‖−→v ‖2. Puis −→u �
−→v 6 | −→u �

−→v |6 ‖−→u ‖.‖−→v ‖.

Exercices � L’inégalité de (C-S) est une égalité si et seulement si −→u , −→v sont colinéaires.

� L’inégalité de (M) est une égalité ⇔ −→u , −→v colinéaires de même sens (car de plus : −→u �
−→v > 0.)
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24.2.2 Théorèmes géométriques

1. Théorème de Pythagore généralisé ou d’Al-Khashi : ‖−→u +−→v ‖2 = ‖−→u ‖2 + 2−→u �
−→v + ‖−→v ‖2.

Démonstration vue.
Interprétation

Soit un triangle A,B,C; BC = a, etc ; alors (
−−→
BA+

−→
AC)2 =

−−→
BA2 +

−→
AC2 + 2

−−→
BA �

−→
AC ;

ou la relation des cosinus : a2 = b2 + c2 − 2bc.cos(A) car cos(π −A) = −cos(A).

Remarque. Le p.s. à l’aide de la norme : −→u �
−→v =

1

2
(‖−→u +−→v ‖2 − ‖−→u ‖2 − ‖−→v ‖2).

2. Théorème de la médiane ou du parallélogramme ‖−→u +−→v ‖2 + ‖−→u −−→v ‖2 = 2.[‖−→u ‖2 + ‖−→v ‖2].
Car ‖−→u −−→v ‖2 = ‖−→u ‖2 − 2−→u �

−→v + ‖−→v ‖2. Interprétation vue au chapitre C et Géométrie.

24.2.3 Bases orthonormées à 3 vecteurs, ici

Bien sûr −→ı ,−→ ,−→k est une base orthonormée si vecteurs orthogonaux et ‖−→ı ‖ = ‖−→ ‖ = ‖−→k ‖ = 1.

1. 1er intérêt : le produit scalaire est facile.

Soit −→u = x.−→ı + y.−→ + z.
−→
k , −→v = x′.−→ı + y′.−→ + z′.

−→
k ;

Dans une base quelconque, le produit scalaire est compliqué (faire le calcul comme dans R2).

Mais −→ı ,−→ ,−→k orthonormée ⇒ −→u �
−→v = xx′ + yy′ + zz′ ; ‖−→u ‖2 = −→u �

−→u = x2 + y2 + z2.

Ainsi ‖−→u ‖ =
√
x2 + y2 + z2, connu !

2. 2è intérêt : de même, les composantes sont faciles.

Ecrivons −→u = x−→ı + y−→ + z
−→
k ; alors : −→u �

−→ı = x, −→u �
−→ = y, −→u �

−→
k = z.

Et donc en base orthonormée, on a l’égalité −→u = (−→u �
−→ı ).−→ı + (−→u �

−→ ).−→ + (−→u �
−→
k ).
−→
k .

Remarque importante en pratique :

Si −→e1 , −→e2 , −→e3 est une base seulement orthogonale (donc −→e1 , −→e2 , −→e3 non nuls en particulier)

on a ici −→u =

(−→u �
−→e1

‖−→e1‖2
)
.−→e1 +

(−→u �
−→e2

‖−→e2‖2
)
.−→e2 +

(−→u �
−→e3

‖−→e3‖2
)
.−→e3 .

En effet : −→u = λ.−→e1 + µ.−→e2 + ν.−→e3 donc −→u �
−→e1 = λ.(−→e1 �

−→e1) = λ.‖−→e1‖2. D’où λ.

24.3 Produit vectoriel, produit mixte dans l’e.v. R3

24.3.1 Produit vectoriel dans R3 espace vectoriel euclidien orienté

"E.v.e. orienté " signifie : −→ı ,−→ ,−→k , orthonormée, donne l’orientation ("règle du tire-bouchon" usuelle).

On définit −→u ∧ −→v comme le vecteur de norme ‖−→u ‖.‖−→v ‖. | sin(−→u ,−→v ) | [nul si −→u ,−→v colinéaires]
de direction orthogonale au plan vectoriel (−→u ,−→v ), de sens tel que (−→u ,−→v ,−→u ∧ −→v ) soit directe.

Propriétés

−→u ∧ −→v =
−→
0 ⇔ −→u ,−→v colinéaires (équivalence)

(−→u 1 +−→u 2) ∧ −→v = −→u 1 ∧ −→v +−→u 2 ∧ −→v ; (λ.−→u ) ∧−→v = λ.(−→u ∧ −→v )
−→v ∧ −→u = −−→u ∧ −→v ; et donc linéarité aussi par rapport au 2ème vecteur

‖−→u ∧ −→v ‖ = ‖−→OA ∧ −−→OB‖ = Aire (géom. ici) du parallélogramme construit sur −→u ,−→v .

Démonstration en compléments (*). Bien voir par contre : −→v ∧ −→u = −−→u ∧ −→v .

Voyons (−→u 1 +−→u 2) ∧ −→v = −→u 1 ∧ −→v +−→u 2 ∧−→v , le reste étant facile. Cas −→v 6= −→0 sinon évident.

Supposons même que −→v =
−→
K unitaire, car si on prend −→v = µ.

−→
K , c’est aisé.



162 CHAPITRE 24. GÉOMÉTRIE DE L’ESPACE R3

Notons
−→
I ,
−→
J ,
−→
K une autre base orthonormée directe. Posons −→u = X.

−→
I +Y.

−→
J +Z.

−→
K et −→p = X.

−→
I +Y.

−→
J .

Assez aisément : −→u ∧−→K = −→p ∧−→K (même dir., même sens, module) ; comme (X.
−→
I +Y.

−→
J )∧−→K est colinéaire

à Y.
−→
I −X.−→J (avec le produit scalaire) et de même norme (

√
X2 + Y 2), on déduit facilement que :

(X.
−→
I + Y.

−→
J ) ∧ −→K = Y.

−→
I −X.−→J . Donc ici : −→u ∧ −→v = (X.

−→
I + Y.

−→
J + Z.

−→
K ) ∧ −→K = Y.

−→
I −X.−→J

et la linéarité par rapport au 1er vecteur (le caractère additif surtout) est alors bien visible !

24.3.2 Conséquence

Avec −→u = x−→ı + y−→ + z
−→
k ,−→v = x′−→ı + y′−→ + z′

−→
k dans une base orthonormée directe quelconque, on a

donc : −→u ∧−→v = x−→ı ∧ (x′−→ı + y′−→ + z′
−→
k ) + y−→ ∧ (x′−→ı + y′−→ + z′

−→
k ) + z

−→
k ∧ (x′−→ı + y′−→ + z′

−→
k ) =...

(linéarité par rapport à chaque vecteur) ou bien :

−→u ∧ −→v = ... = (yz′ − zy′)−→ı + (zx′ − xz′)−→ + (xy′ − yx′)−→k .

Que l’on retiendra ainsi :



x
y
z


 ∧



x′

y′

z′


 =




∣∣∣∣
y y′

z z′

∣∣∣∣ ou yz′ − zy′

zx′ − xz′ ou

∣∣∣∣
z z′

x x′

∣∣∣∣∣∣∣∣
x x′

y y′

∣∣∣∣ ou xy′ − yx′




!

Remarques (seule la 1ère est importante)

• Attention : Si −→u ,−→v non colinéaires, −→u ,−→v ,−→u ∧ −→v est une base, mais pas forcément orthogonale !

Par contre si −→u ,−→v unitaires et orthogonaux, c’est une nouvelle base o.n. ; et même directe.

• On a encore l’identité de Lagrange : (−→u �
−→v )2 + (−→u ∧ −→v )2 = ‖−→u ‖2.‖−→v ‖2.

• Formule du double produit vectoriel −→a ∧ (
−→
b ∧ −→c ) = (−→a �

−→c ).
−→
b − (−→a �

−→
b ).−→c . En exercice.

24.3.3 Produit mixte dans R3 espace vectoriel euclidien orienté

On définit le produit mixte par (−→u ∧ −→v ) �
−→w . Donc, en base o.n.d., si −→w = x”−→ı + y”−→ + z”

−→
k

alors : pm, aussi appelé déterminant des 3 vect. en base o.n.d., noté au choix Dét(−→u ,−→v ,−→w ) ou

[−→u ,−→v ,−→w ] vaut :

∣∣∣∣∣∣

x x′ x”
y y′ y”
z z′ z”

∣∣∣∣∣∣
= xy′z” + yz′x” + zx′y”− zy′x”− yx′z”− xz′y” (règle de Sarrus).

Remarques et interprétation
• Nous n’avons ici les déterminants qu’en base orthonormée directe (notés Dét au lieu de dét) ;

ils sont indépendants de la base o.n.d. choisie ! [on ne met plus −→ı ,−→ ,−→k dans ce qui suit] car

Dét(−→u ,−→v ,−→w )−→ı ,−→ ,−→k = (−→u ∧ −→v ).−→w = [−→u ,−→v ,−→w ] (notation). Cf. fin ch.23.

• Avec cette relation, on a aisément :
| produit mixte | =Volume (géométrique ici) du parallélépipède construit sur −→u ,−→v ,−→w .

Car ‖−→u ∧ −→v ‖=Aire (vu) et Surf-base.hauteur = Volume du parallélépipède ...

24.3.4 Propriétés

Les propriétés de Dét(−→u ,−→v ,−→w ) [dét. en base o.n.d.] sont celles des déterminants.

Exemple Dét(−→u ,−→v ,−→w ) = −Dét(−→v ,−→u ,−→w ) = +Dét(−→v ,−→w ,−→u ) ; d’où (−→u ∧ −→v ) �
−→w = (−→v ∧ −→w ) �

−→u !

Etc.
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Remarque : déterminants 2x2 en base orthonormée. Soit −→u =
−→
OA = x−→ı + y−→ ; on plonge R2

dans R3 en écrivant −→u = x−→ı + y−→ + 0.
−→
k ; idem avec −→v =

−−→
OB = x′−→ı + y′−→ + 0.

−→
k . Alors :

∣∣∣∣
x x′

y y′

∣∣∣∣ =

∣∣∣∣∣∣

x x′ 0
y y′ 0
0 0 1

∣∣∣∣∣∣
= (−→u ∧ −→v ) �

−→
k =

(
‖−→u ‖.‖−→v ‖.sin(−→u ,−→v ).

−→
k
)

�
−→
k = ‖−→u .‖−→v ‖.sin(−→u ,−→v ) = Aire.

Un déterminant 2x2 en base orthonormée directe, qu’on peut écrire Dét(−→u ,−→v ) vaut donc

Dét(−→u ,−→v ) = ‖−→u ‖.‖−→v ‖.sin(−→u ,−→v ) et représente l’Aire (alg.) du parallélogramme construit

à partir des vecteurs −→u ,−→v ; (c’est un produit mixte dans R2 si on veut ; mais terme à éviter ici).

24.4 Espace affine (les points ici), euclidien (vu) : E = R3

24.4.1 Plan affine et sphère en repère orthonormé

1. Distance, Angle, Repère orthonormé.

Soit l’espace affine E = R3 : ensemble des points ; on munit l’espace vectoriel E (les vecteurs
associés) d’un produit scalaire −→u �

−→v = ‖−→u ‖.|−→v ‖.cos(α) = xx′ + yy′ + zz′ en base

orthonormée, qui donne angles et distances : δ(A,B) = ‖−−→AB‖ =

√
−−→
AB2 =

√
(
−−→
AB �

−−→
AB).

2. Le plan affine dans E = R3 affine euclidien avec repère orthonormé.

• Aspect vecteurs : Soit −→n 6= −→0 ; les vecteurs orthogonaux à −→n forment un "plan vectoriel"

noté −→n ⊥ d’équation : −→u (x, y, z) ∈ −→n ⊥ ⇔ −→u �
−→n = 0⇔ ax+ by + cz = 0.

• Aspect points : le plan affine P[A(x0, y0, z0), orthogonal à −→n ] a pour équation :

M ∈ P ⇔ −−→AM ⊥ −→n ⇔ −−→AM �
−→n = 0 qui donne a(x− x0) + b(y − y0) + c(z − z0) = 0.

Théorème

Posant d = ax0 + by0 + cz0, on a P : ax+ by + cz = d, −→n (a, b, c) 6= −→0 étant orthogonal

au plan. De plus ∀M1 ∈ E , on a δ(M1,P : ax+ by + cz = d) =
| ax1 + by1 + cz1 − d |√

a2 + b2 + c2
.

Le 1er point est ci-dessus : plus facile avec un vecteur orthogonal.

Le 2ème (*) : exactement comme dans le cas Géométrie de R2, à relire ici.

� Dans R3, plan affine en cartésiennes : 1 équation −→n �
−−→
AM = 0 ou −→n �

−−→
OM = cte

� Mais la droite affine est plus aisée en paramétriques : 1 paramètre
−−→
AM = λ.−→u .

Remarque. On a vu que le plan affine avait pour équation dét(−→u ,−→v ,−−→AM ) = 0 ; d’où en base

orthonormée directe Dét(−→u ,−→v ,−−→AM ) = 0 ou (−→u ∧ −→v ) �
−−→
AM = 0. Correct : −→u ∧−→v ⊥ P.

Exemple Plan orthogonal à −→n (1, 1, 2), passant par A(1, 2, 3) ; distance de l’origine au plan ?

Trouver x+ y + 2z = 9 et δ = 9/
√

6. Fig.

3. La sphère en repère orthonormé. Au choix :

(x− a)2 + (y − b)2 + (z − c)2 = R2 ; x2 + y2 + z2 − 2ax− 2by − 2cz + d = 0, a2 + b2 + c2 − d > 0.
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24.4.2 Problèmes d’intersection dans E = R3 affine euclidien

1. Intersection plan affine-plan affine (surtout l’exemple).
{

ax+ by + cz = d
a′x+ b′y + c′z = d′

avec −→n



a
b
c


 6= −→0 ici et −→n ⊥ P et

−→
n′



a′

b′

c′


 6= −→0 idem.

Théorème
Si les plans ne sont pas parallèles [⇔ −→n ,

−→
n′ non colinéaires], l’intersection des

2 plans affines est une droite affine de E = R3. Droite affine dirigée par −→n ∧
−→
n′ .

Exemple.

{
x+ y + z = 1
2.x− 3.y = 0

avec −→n




1
1
1


 6= −→0 −→n ⊥ P −→

n′




2
−3
0


 6= −→0 et non colinéaire à −→n .

3 lettres, 2 équations ; en général 1 lettre arbitraire ; par ex. x ici : x = x, y =
2

3
x, z = 1− 5

3
x

qu’on écrit [M = A+ λ.−→u ]



x
y
z


 =




0
0
1


+ x.




1
2/3
−5/3


 ou



x
y
z


 =




0
0
1


+ λ.




3
2
−5


.

On dit que

{
x+ y + z = 1
2.x− 3.y = 0

est un système d’équations cartésiennes peu commode de D et

D(A




0
0
1


 ,−→u




3
2
−5


) une représentation paramétrique

−−→
AM = λ.−→u −→u = −→n ∧ −→n ′

2. Intersection plan affine-droite affine (surtout l’exemple).

P : ax+ by + vz = d, −→n



a
b
c


 6= −→0 en cartésiennes. D :





x = x0 + λ.α
y = y0 + λ.β
z = z0 + λ.γ

λ décrit R, paramétre.

Théorème Si D non parallèle à P ou si −→u �
−→n = a.α+ b.β + c.γ 6= 0, alors D ∩ P = 1 point.

Exemple. Soit P : x+ y + z = 1 et D(A




1
2
3


 , −→u




2
2
1


). D :



x = 1 + 2.t
y = 2 + 2.t
z = 3 + t


.

Déjà D non parallèle à P car −→n



1
1
1


�
−→u



2
2
1


= 5 6= 0. Puis en reportant :

1 + 2.t+ 2 + 2.t+ 3 + t = 1 ou 5.t = −5, t = −1 : un unique point d’intersection I



−1
0
2


.

[Complément : on peut éviter le choix d’un repère avec D :
−−→
AM = λ.−→u ; P : −→n �

−−→
BM = 0 ...]

3. Droite affine-droite affine. 2 droites affines sont en général non coplanaires. cf. fin.

4. Complément : Intersections droite ou plan avec la sphère.

• Droite affine-sphère : exactement comme dans le cas de R2, à relire.
� Donc le théorème de la puissance d’un point se généralise à la sphère.
� Mais pas le théorème de l’angle inscrit. (Que dit-il ?)

• Plan affine-sphère. Voyons juste un calcul : Soit la sphère CM2 = R2 ; H la projection

orthogonale de C sur P, d’où le plan :
−−→
HM �

−→n = 0. A l’intersection (
−−→
CH +

−−→
HM)2 = R2

donc
−−→
CH2 + 2.

−−→
CH �

−−→
HM +

−−→
HM2 = R2 ; ou encore :

−−→
HM2 = R2 −−−→CH2 et M ∈ P.

Ainsi : on obtient un cercle de centre H si et seulement si δist(C,P) 6 R ; et ∅ sinon.
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24.4.3 Utilisation du produit vectoriel et du produit mixte (dét 3x3)

1. Equation cartésienne du plan affine P(A,−→u ,−→v ) : revoir

Le plan affine avec (−→u ,−→v ) non colinéaires, a pour équation : M ∈ P ⇔ Dét(−→u ,−→v ,−−→AM) = 0.
∣∣∣∣∣∣

α α′ x− x0

β β′ y − y0
γ γ′ z − z0

∣∣∣∣∣∣
= 0, type a.x+ b.y + c.z = d, ou (−→u ∧ −→v ) �

−−→
AM = 0, on trouve −→u ∧ −→v ⊥ P.

2. Distance d’un point à une droite dans R3 Exercice δ[M1,D(A,−→u )] =
‖−−−→AM1 ∧ −→u ‖
‖−→u ‖ .

En effet, observons que la droite est en paramétriques ici :

Soit H1 la projection orthogonale de M1 sur la droite ; M1H1 est le minimum de distance et

‖−−−→AM1 ∧ −→u ‖ = ‖(−−→AH1 +
−−−−→
H1M1) ∧ −→u ‖ = ‖−−−−→H1M1 ∧−→u ‖ = ‖−−−−→H1M1‖.‖−→u ‖ ; d’où δ = H1M1.

3. Exercice : Condition nécessaire et suffisante (C.N.S.)pour D,D′ coplanaires

Dans R3 : Les deux droites D(A,−→u ) et D′(B,−→v ) sont coplanaires ⇔ Dét(
−−→
AB,−→u ,−→v ) = 0.

Pour ⇒ on a 3 vecteurs dans le plan vectoriel associé (a.x+ b.y + c.z = 0) : déterminant nul.

Pour ⇐ 2 cas : si −→u ,−→v colinéaires, alors droites parallèles, donc coplanaires.

si −→u ,−→v non colinéaires :
−−→
AB = cte−→u + cte−→v ; chaque droite est inclue dans le plan affine (A,−→u ,−→v )

car B appartient à ce plan ! (son équation est du type a.x+ b.y + c.z = d bien sûr).

(*) Complément qui complète la C.N.S. Distance de 2 droites en paramétriques dans R3

Théorème

Si 2 droites D(A,−→u ),D′(B,−→v ) sont non coplanaires, ∃ ! ∆ droite perpendi-
culaire commune à ces 2 droites, les coupant en H et K. Le minimum de la

distance PQ ; P,Q décrivant chacune des droites est : HK = δ =
| [−−→AB,−→u ,−→v ] |
‖−→u ∧ −→v ‖ .

En effet : (*)
−→u ,−→v sont non colinéaires ici, d’où −→u ,−→v ,−→u ∧−→v base de R3. ([

−−→
AB,−→u ,−→v ] =Dét (

−−→
AB,−→u ,−→v ).)

1) Donc P(A,−→u ,−→u ∧ −→v ) est un PLAN affine ; de même P ′(B,−→v ,−→u ∧ −→v ). Et une droite est
perpendiculaire commune (en particulier dirigée par −→u ∧ −→v ) si et seulement si elle est dans P
et P ′ ; or ces plans sont non parallèles (pourquoi ?) donc sécants selon une droite unique.

2) Puis PQ2 = [(
−−→
PH+

−−→
KQ)+

−−→
HK]2 = HK2+(

−−→
PH+

−−→
KQ)2+0 > HK2 ; et égalité⇔ −−→PH+

−−→
KQ =

−→
0

qui s’écrit a.−→u + b.−→v =
−→
0 et exige a = b = 0 (P = H, Q = K) car −→u ,−→v non colinéaires !

3) Enfin : [
−−→
AB,−→u ,−→v ] = [

−−→
AH +

−−→
KB +

−−→
HK,−→u ,−→v ] = [

−−→
HK,−→u ,−→v ] = [−→u ,−→v ,−−→HK] =

= (−→u ∧ −→v ) �
−−→
HK = ±‖−→u ∧ −→v ‖.δ. Et valeurs absolues.

24.4.4 Divers systèmes de coordonnées.

1. Cartésiennes : Pour M(x, y, z) dans le repère (O,−→ı ,−→ ,−→k ). Figure ?

2. Cylindriques : Dans (O,−→ı ,−→ ), on prend les coordonnées polaires pour m : (ρ, θ) et ensuite
−−→
OM =

−−→
Om+ z.

−→
k . Donc M(ρ, θ, z) dans la base : −→u [cos(θ), sin(θ), 0], −→u 1[−sin(θ), cos(θ), 0],

−→
k .

Le petit déplacement étant
−−→
dM (dρ, ρ.dθ, dz) dans cette base "locale". Fig. ?

3. Sphériques : Attention ici, on prend r = OM 6= ρ = Om où m était la projection orthogonale de

M sur Oxy. On prend en général θ = (Oz,OM), angle variant entre 0 et π : co-latitude ;

et : ϕ = (Ox,Om) angle variant de 0 à 2.π : longitude.

Dans la base "locale" orthonormée (−→er ,−→eθ ,−→eϕ), (soit r seul croît, soit ...) le petit déplacement est−−→
dM(dr, r.dθ, r.sin(θ).dϕ) et le petit volume dr. r.dθ. r.sin(θ).dϕ. Fig. ? [⇒ volume de la sphère !

∫ ∫ ∫
r2.sin(θ)dr.dθ.dϕ =

∫ R

0
r2.dr[

∫ π

0
sin(θ).dθ(

∫ 2π

0
dϕ)] = 4.π.R3/3.]
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M+ Exercices: R3 affine/ affine euclidien. PTSI

1. Equation de plan affine :
(a) Equation du plan affine P passant par A(1, 2, 3) dirigé par le plan vectoriel Π : 2x+ 3y − z = 0.
(b) Inversement partant de l’équation cartésienne de P : 2x+ 3y − z = 5, trouver une représenta-

tion paramétrique du type
−−→
AM = λ.−→u + µ.−→v , en prenant les lettres x, y arbitraires.

2. Autres méthodes dans R3, affine euclidien :

(a) Equation du plan affine passant par A(3, 2, 1), dirigé par Π : −→u (1, 2,−1),−→v (1,−2, 1) [libres]

en écrivant ∃λ, µ :
−−→
AM = λ−→u +µ−→v et en éliminant les paramètres λ, µ avec les 3 équations.

(b) Trouver une équation du même plan, en prenant cette fois −→u ∧−→v comme vecteur normal.

(c) Puis aussi en écrivant Dét(−→u ,−→v ,−−→AM ) = 0. [Pareil, finalement : (−→u ∧ −→v ) �
−−→
AM = 0.]

3. (a) Dans R3, affine euclidien. Quel est
{
M : −→n �

−−→
OM = k

}
, k étant donné, (−→n 6= −→0 ) ?

(b) (*) Analogue avec le produit vectoriel. Quel est
{
M : −→a ∧−−→OM =

−→
b
}

, (−→a 6= −→0 ) ?

4. Montrer que D1(x = 1 + t, y = 1 + 2t, z = 1− 2t) et D2(x = 2t, y = −1 + 4t, z = 3− 4t) sont
confondues. Et situées dans le plan affine : P(x = 2 + 2v, y = 3 + u+ 3v, z = −1− 3u− v).

5. Distances. Point-point : δ
(
M1(x1, y1, z1),M(x, y, z)

)
? Et, cours (*) : point-plan, point-droite.

6. Calcul de distances. Soit D=P ∩ P ′ où P : x+ y + z = 1, P ′ : 2x− 3y = 0. Calculer δ(O,D) :

(a) En donnant une équation paramétrique de D(A,−→u ) en posant y = 2.t et avec la formule vue.

(b) (*) En calculant le minimum de dist2(O,Mt) = f(t) quand Mt décrit la droite D.

(c) (*) Enfin en vérifiant que D ⊂ Pλ” : 2x− 3y + λ.(x+ y + z − 1) = 0 ; puis en
trouvant λ tel que P ′⊥ Pλ” ; et alors en calculant dist(O,Pλ”) !

7. Dans un tétraèdre régulier A,B,C,D de centre O, calculer cos(
−→
OA,
−−→
OB) ; cos(

−→
IA,
−→
IB), I milieu[CD].

8. (a) (*) Cours. C.N.S. pour que les droites (A,−→u ) (B,−→v ) soient coplanaires avec Dét(
−−→
AB,−→u ,−→v ).

(b) (∗) Cas où D est définie par les points A(0, 1, 1) et P (1, 0, 1) ; et D′ :

{
x+ 2y + z = −1
x+ y − z = 0

?

9. (**) Perpendiculaire commune et distance entre 2 droites non coplanaires dans R3 :

Cas où D est définie par les points A(0, 1, 1) et P (1, 0, 1) ; et D′
{
x+ 2y + z = −1
x+ y − z = −2

?

[Réponse : A′(−3, 1, 0) et −→u ′(3,−2, 1) par exemple ; D”

{
x+ y + 2z = 3
x+ 4y + 5z = 1

et δ = 2/
√

3].

10. (**) Des quadrilatères aux théorèmes de Ptolémée. Soit A,B,C,D un quadrilatère convexe :

(a) Montrer que AB2 +BC2 +CD2 +DA2 = AC2 +BD2 + 4IJ2, I milieu de [AC] et J de [BD].

(b) En déduire : A,B,C,D parallélogramme ⇔ AB2 +BC2 + CD2 +DA2 = AC2 +BD2.

(c) Montrer : A,B,C,D cocycliques ⇒ cosB =
a2 + b2 − c2 − d2

2(ab+ cd)
: AB = a,BC = b, CD = c,DA = d.

Déduire : AC2 = x2 =
(ac+ bd)(bc+ ad)

ab+ cd
, y = BD analogue ; donc xy = ac+ bd;

x

y
=
ad+ bc

ab+ cd
.



Chapitre 25

Transformations de l’espace R3

25.1 Projections et symétries vectorielles orthogonales

25.1.1 Résultat fondamental. Tout est en vectoriel aux I, II

1. Théorème de la projection orthogonale dans E = R3 vectoriel

• La projection vectorielle orthogonale sur V ect(−→u ) est telle que −→x1 = p(−→x ) =
(−→x �

−→u )

‖−→u ‖2
.−→u .

• La projection orthogonale sur V ect(−→u ,−→v ) −→u ⊥ −→v , (6= −→0 ) est p(−→x ) =
(−→x �

−→u )

‖−→u ‖2
.−→u +

(−→x �
−→v )

‖−→v ‖2
.−→v .

Dém. Au cas 2) : p(−→x ) = α.−→u +β.−→v ; et −→x �
−→u =

(
p(−→x ) + q(−→x )

)
�
−→u = p(−→x ) �

−→u = α.‖−→u ‖2 ...

2. Remarques Dans l’un ou l’autre cas, soit −→x1 cette proj. : −→x = −→x1 +−→x2 avec −→x1 ∈ E1,
−→x2 ∈ E⊥

1 .

Comme −→x2 ⊥ −→x1, on a : ‖−→x ‖2 = ‖−→x1‖2 + ‖−→x2‖2. Pourquoi ? Dessin ? Donc, pour

s(−→x ) = −→x1 −−→x2 symétrie orthogonale par rapport à E1, on a ‖s(−→x )‖ = ‖−→x ‖ : conserve la norme.

Tandis que pour p = proj.⊥ (orthogonale) : ‖p(−→x )‖ 6 ‖−→x ‖. [Bien sûr Id+ s/E1
= 2p/E1

.]

25.1.2 Dans R3 eve., matrice M de s, sym⊥/plan Π d’équation 2x− 3y + z = 0

Solution : Avec une base de Π⊥, de dim. 1 D’abord, si −→ı ,−→ ,−→k orthonormée, alors

−→n =



a
b
c


⊥ Π : ax+ by + z = 0. −→n =




2
−3
1


 base de Π⊥. Si q est la proj.⊥ sur V ect(−→n ) = Π⊥, par

lignes, −→x : X =



x
y
z


 7→ q(−→x ) =

(−→x �
−→n )

‖−→n ‖2 .−→n =
1

14
.(2x− 3y + z).




2
−3
1


 =

1

14




4 −6 2
−6 9 −3
2 −3 1


 .



x
y
z


 = A.X.

Ou bien A par colonnes par q(−→ı ) ... Puis −→x − s(−→x ) = 2.q(−→x ) ; d’où M = I3 − 2A =
1

7




3 6 −2
6 −2 3
−2 3 6


.

Solution bis : Au lieu de prendre q, on prend p = proj.⊥ sur Π [bien sûr p+ q = Id].

Trouvons une base orthogonale de Π de dim. 2 : −→a =




1
1
1


 et

−→
b = −→n ∧ −→a =



−4
−1
5


 convient.

[Puis p(−→x ) =
(−→x �

−→a )

‖−→a ‖2
.−→a +

(−→x �
−→
b )

‖−→b ‖2
.
−→
b . D’où B matrice de p ; et I3 +M = 2B donne M : laissé].

167
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Vérifions Tr(A) = rg(A) = 1 (proj.) ! M.M = I3 ! (*) Tr(M) = +1, dét(M) = −1 (cf. M ′ en base
−→a ,−→b ,−→n ). Enfin on voit au II que tM.M = I3 était attendu, donc tM = M−1. Comme M−1 = M

ici, celà explique que tM = M ou que M soit symétrique ; donc A aussi car A =
1

2
(I3 −M).

(Rappel : une symétrie orthogonale conserve la norme de tout vecteur, pas une projection.)

25.2 Isométries vectorielles. Changements de bases o.n.

25.2.1 Définitions. Matrice en base orthonormée

1. Définition

Soit u ∈ L(E) (un endomorphisme). On dit que 1) u conserve la norme si ∀−→x , ‖u(−→x )‖ = ‖−→x ‖
2) Et que u conserve le produit scalaire si ∀−→x ,−→y : u(−→x ) � u(−→y ) = −→x �

−→y . Clair que 2)⇒ 1).

En fait

Pour u endomorphisme, 1)⇔ 2) et dans ces conditions u est injectif. Donc si on est en
dim. finie, u est bijectif : on dit automorphisme orthogonal ou isométrie vectorielle.

On appelle e.v. "euclidien" : tout e.v. réel, muni d’un produit scalaire, et de dim. finie

En effet
Voyons 1)⇒ 2) : Rappelons une expression du p.s. à l’aide de la norme
−→a �
−→
b =

1

2
[‖−→a +

−→
b ‖2 − ‖−→a ‖2 − ‖−→b ‖2]. Donc :

u(−→x ) �u(−→y ) =
1

2
[‖u(−→x )+u(−→y )‖2−‖u(−→x )‖2−‖u(−→y )‖2] =

1

2
[‖u(−→x +−→y )‖2−‖u(−→x )‖2−‖u(−→y )‖2]

= (avec l’hypothèse) =
1

2
[‖−→x +−→y ‖2 − ‖−→x ‖2 − ‖−→y ‖2] = −→x �

−→y .
Bien voir u injectif :

Si −→x ∈ Ker(u), u(−→x ) =
−→
0 . La norme : ‖u(−→x )‖ = ‖−→x ‖ = ‖−→0 ‖ ⇒ −→x =

−→
0 !

2. Théorème
Pour u endomorphisme : u isométrie vectorielle ⇔ u transforme une base o.n. en une base o.n.
Démonstration
⇒ évident car u conserve à la fois la norme et le produit scalaire.
⇐ Soit (−→e1 , ...,−→en) une base o.n. et (−→e1 ′, ...,−→en′) son image o.n. par u. Montrons alors que u conserve

la norme de tout vecteur de E. Pour −→x =

n∑

i=1

xi.
−→ei , on a u(−→x ) =

n∑

i=1

xi.
−→ei ′ car −→ei ′ = u(−→ei ).

D’autre part ‖−→x ‖2 =
n∑

i=1

x2
i car (−→ei )o.n. ‖u(−→x )‖2 =

n∑

i=1

x2
i car (−→ei ′)o.n. Egaux !

3. Traduction Soit A la matrice de u en base o.n.(−→e1 , ...,−→en) :

u isométrie vect. ⇔ les vecteurs colonnes de A u(−→e1), ..., u(−→en) sont o.n. Ou bien, avec tA.A =


a11 a21 ... an1

a11 a22 ... an2

...
a1n a2n ... ann


 .




a11 a12 ... a1n

a21 a22 ... a2n

...
an1 an2 ... ann


 =




u(−→e1) � u(−→e1) u(−→e1) � u(−→e2) ... u(−→e1) � u(−→en)
u(−→e2) � u(−→e1) u(−→e2) � u(−→e2) ... u(−→e2) � u(−→en)

...
u(−→en) � u(−→e1) u(−→en) � u(−→e2) ... u(−→en) � u(−→en)




on a l’écriture équivalente : u isométrie vect. ⇔ tA.A = In : on dit que A est orthogonale.

4. Résumé. Soit A la matrice de u en base o.n.(−→e1 , ...,−→en). Alors : (on note A ∈ O)

u isométrie vectorielle (ou automorphisme orthogonal) : les vecteurs col. sont o.n. ⇔ tA.A = In
⇔ tA = A−1 ⇔ A.tA = In (ce qui est tA orthogonale ) ⇔ les vecteurs lignes de A sont o.n.

On peut aussi considérer que A est une matrice de changement de bases orthonormées.

Et : A ∈ O⇒ dét(A) = ±1 [det(tA) = det(A)]. Réciproque fausse : A =

(
2 a
0 1/2

)
, f(−→ı ) = 2.−→ı !
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25.2.2 Isométries vectorielles en dim. 2

1. Théorème

En dim. 2 en base o.n. on a exactement 2 types de matrices orthogonales. Dessins ?

A =

(
cos(α) −sin(α)
sin(α) cos(α)

)
dét(A)=+1 : rotation vectorielle d’angle α ; et O+

2 abélien

A =

(
cos(α) sin(α)
sin(α) −cos(α)

)
dét(A) = −1 : sym. orth./y = x.tan(

α

2
) angle polaire

α

2
.

Démonstration A =

(
a b
c d

)
orthogonale ⇔





a2 + c2 = 1
b2 + d2 = 1
ab+ cd = 0

par Théorème (ou tA.A = I2).

Posons a = cos(α), c = sin(α); b = cos(β), d = sin(β) ; il reste cos(α− β) = 0.

� Si α− β =
−π
2

+ k.2π, cas 1) et vu les colonnes, on reconnait la rotation vectorielle d’angle α.

� Si α− β =
+π

2
+ k.2π, cas 2). Alors : tA = A−1 [connu] et tA = A [observé] ; donc A.A = I2 ou A

matrice d’une symétrie / Ker(A− I2), //Ker(A+ I2) [Théorème]. Puis calculs ou remarques :

Ker(A− I2) = V ect
−→
I

(
cos(α/2)
sin(α/2)

)
:

{
x.cos(α) + y.sin(α) = x
x.sin(α)− y.cos(α) = y

... et





1 + cos(α) = 2.cos2(α/2)

1 − cos(α) = 2.sin2(α/2)
sin(α) = 2sin(α/2)cos(α/2)

Et une symétrie conservant la norme est orthogonale : ‖−→x1 −−→x2‖2 = ‖−→x1 +−→x2‖2 ⇒ −→x1 �
−→x2 = 0.

2. Remarques. Avec C, le calcul précédent est inutile car connu !

• Avec C, cas 1) :

(
x′

y′

)
=

(
cos(α) −sin(α)
sin(α) cos(α)

)(
x
y

)
⇔ z′ = ei.α.z cas 2) : z′ = ei.α.z.

• Au 2), en base o.n. directe (
−→
I

(
cos(α/2)
sin(α/2)

)
,
−→
J ), la matrice est D =

(
1 0
0 −1

)
, d’où vérification

de la Trace. Et si P la matrice de passage de (−→ı ,−→ ) à (
−→
I ,
−→
J ) : P−1 =tP et P−1AP = D.

• Attention. −Id : en dim. 2, diag(−1,−1) isométrie positive ; en dim 3 : diag(−1,−1,−1)
isométrie négative ! Idem sur les symétries orthogonales/une droite vectorielle :
en dim 2, c’est une isométrie négative (∈ O−

2 ), avec le déterminant ; mais, par contre :

en dim 3, en base judicieuse, la matrice est D = diag(−1,−1, 1) : isométrie positive (∈ O+
3 ).

25.2.3 Isométries vectorielles en dim. 3

1. Théorème
Les isométries vectorielles positives de R3 sont toutes des rotations vectorielles

axiales. Les négatives sont plus compliquées ; simplement : u ∈ O−
3 ⇔ −u ∈ O+

3 .

Démonstration : ADMIS, mais expliqué.

• Déjà, sauf si u = Id, (de matrice I3 dans toute base), il y a un

axe unique : {−→x /u(−→x ) = −→x } qui est une droite vectorielle V ect(
−→
K) ; c’est aussi Ker(u− Id).

• Ensuite, en base o.n. judicieuse (
−→
I ,
−→
J ,
−→
K), la matrice serait P−1AP = A′ =



cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1




Angle : forcément Tr(A)=2cos(α) + 1. Pour sin(α) l’axe étant orienté

{
A vue (cf. Ex.) ou cf.

25.2.4 : sign[−→x , r(−→x ),
−→
K ].

2. Exemple Dans R3 e.v. euclidien usuel, décrire l’endomorphisme u de matrice A =




0 1 0
0 0 1
1 0 0


 .

Solution [On utilisera que u(−→ı ) =
−→
k , à la fin : 1ère colonne de A.]

� Soit −→v 1,
−→v 2,
−→v 3 les vecteurs colonnes ; il est clair que ‖−→v 1‖ = ‖−→v 2‖ = ‖−→v 3‖ = 1 et que

−→v 1.
−→v 2 = 0 = −→v 1.

−→v 3 = −→v 2.
−→v 3 (ou tA.A = I3). Donc u : isométrie vectorielle par Théorème.
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� dét(A) = +1 : isométrie positive.1 Donc rotation axiale par un autre Théorème .

Axe : AX = X conduit à ... V ect
−→
Ω ,
−→
Ω = −→ı +−→ +

−→
k . Angle : 2.cos(α) + 1 = 0, α = ±2.π

3
.

Orientons l’axe par
−→
Ω ; u(−→ı ) =

−→
k : à vue α =

−2π

3
ou 10 lignes plus bas : sin(α) du signe de

Det(−→ı , u(−→ı ),
−→
Ω) = [−→ı , u(−→ı ),

−→
Ω] = [−→ı ,−→k ,−→Ω] < 0 : idem. (Ici A3 = I3 : A−1 = A2 = tA.)

25.2.4 Utilisation du produit mixte et du produit vectoriel dans R3

1. Rappel. Soit une base o.n. B de référence et une autre base B′ o.n. directe donc détB(B′) = +1.

D’où pour 3 vecteurs −→u ,−→v ,−→w , détB(−→u ,−→v ,−→w ) =détB′(−→u ,−→v ,−→w ) ; ce déterminant, indépendant

de la base o.n.d. choisie, est appelé produit mixte et noté Dét(−→u ,−→v ,−→w ) ou [−→u ,−→v ,−→w ].

Et on a avec le produit vectoriel : Dét(−→u ,−→v ,−→w ) = (−→u ∧ −→v ).−→w ... cf. ch. Géométrie de R3.

2. Utilisations
• Dans A33 orthogonale, si −→v 1,

−→v 2 sont les 2 premiers vecteurs o.n. le 3ème est −→v 3 = ±−→v 1 ∧ −→v 2 !

• Soit r la rotation d’angle α autour de V ect(−→ω ), ‖−→ω ‖ = 1, −→ω =
−→
Ω/‖−→Ω‖. Si −→a ⊥ −→ω , dans −→ω ⊥ :

r(−→a ) = cos(α).−→a + sin(α).−→ω ∧ −→a (‖r(−→a )‖ = ‖−→a ‖ = ‖−→ω ∧−→a ‖). Si−→x quelconque :−→x = −→a + λ.−→ω
r(−→x ) = r(−→a ) + λ.−→ω ; −→ω ∧−→x = −→ω ∧−→a et [−→x , r(−→x ),−→ω ] = ‖−→ω ∧ −→x ‖2.sin(α) du signe de sin(α)

car [−→x , r(−→x ),−→ω ] = [−→a , r(−→a ),−→ω ] = [−→ω ,−→a , r(−→a )] = (−→ω ∧−→a )�r(−→a ) = ‖−→ω ∧−→a ‖2.sin(α). λ = −→x �
−→ω

d’où r(−→x ) = cos(α).[−→x − (−→x �
−→ω ).−→ω ] + sin(α).−→ω ∧ −→x + (−→x �

−→ω ).−→ω (formule d’Olinde Rodrigues).

3. Etude de f(−→x ) =
−→
Ω ∧ −→x ,

−→
Ω =



p
q
r


 en base o.n.directe. f est un end. de matrice




0 −r q
r 0 −p
−q p 0


.

Si
−→
Ω 6= −→0 , Ker(f) = V ect(

−→
Ω), Im(f) =

−→
Ω⊥.

Inversement, ayant une matrice antisymétrique en base o.n.d., on sait donc l’interpréter 2 !

25.3 Sur les applications affines de E = R3 affine

25.3.1 Définition et expression d’une application affine

Soit E ,F deux e.a. associés aux e.v. E.F. f : M ∈ E →M ′ ∈ F est dite affine, s’il existe une A.L.,

forcément unique notée
−→
f (changement de notation pour les AL) telle que ∀O,M :

−−−→
O′M ′ =

−→
f (
−−→
OM).

Remarque
Au lieu de dire "∀ O,M...", il est équivalent de dire "∀M”, O fixé. En effet :

Si
−−−→
O′M ′ =

−→
f (
−−→
OM) pour O ∈ E fixé, alors

−−→
O′I ′ =

−→
f (
−→
OI) ; par différence

−−→
I ′M ′ =

−→
f (
−−→
IM ), ∀I,M .

Théorème Donc M ′ = O′ +
−→
f (
−−→
OM). Si E est d’origine O, F d’origine Ω,

−−→
ΩM ′ =

−→
f (
−−→
OM ) +

−→
ΩO′.

D’où en dimensions finies p pour E , n pour F , l’écriture matricielle Y = A.X +B.

Démonstration

En dimensions finies :
−−→
ΩM ′ = y1

−→
f1 + ...+ yn

−→
fn, de composantes Y (ou encore M ′ de coordonnées Y ) ; et−−→

OM = x1
−→e1 + ...+ xp

−→ep de composantes X (ou M de coordonnées X) ;
−→
f (
−−→
OM) connu : Anp.X ;

et
−→
ΩO′ = Bn1 dans F est aussi connu [c’est-à-dire : composantes du vecteur dans la base (

−→
f1 , ...,

−→
fn)

ou bien ce sont les coordonnées du point O′ dans le repère (Ω;
−→
f1 , ...yn

−→
fn).]

1 Remarque en complément (*) On a A−1 =
1

det(A)
.
(
∆ji

)
; et de plus ici : A−1 =

(
aji

)
[on a transposé]

Donc ∆ij = ±aij : ce signe est dét(A). Ci-dessus : a12 = 1 ; ∆12 = −(−1) : dét(A) = +1.
2 Exemple (*) Si r rotation, (r − r−1)/2, en base o.n.d. est l’endomorphisme −→x 7→ −→ω .sin(θ) ∧ −→x .

D’où −→ω .sin(θ) obtenu avec la partie antisymétrique (A−tA)/2 de la matrice A si on veut !
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25.3.2 Homothéties affines et Translations, donc F = E
1. Lien affine-vectoriel. Appl. Linéaire : | Appl. affine : (Preuve et exemples après)

L’appl. Lin. (end.)
−→
f = IdE de matrice In| ⇔ f translation (Une translation n’est pas linéaire !)

Et si k 6∈ {0, 1}, −→f = k.IdE (hom. vect.) | ⇔ f hom. affine de rapport k, de centre LE point fixe.

Ainsi
−→
f = −Id (hom. vect. de rapport −1) | ⇔ f symétrie-point.

2. Démonstration

�
−→
f = IdE ⇔

−−−→
O′M ′ =

−−→
OM ⇔

−−−→
MM ′ =

−−→
OO′ ⇔ f Translation. Ex :

(
x′

y′

)
=

(
1 0
0 1

)
.

(
x
y

)
+

(
3
4

)
.

� Cas
−→
f = k.Id. Soit l’égalité (1)

−−−→
O′M ′ = k.

−−→
OM , F = E . Ex :

(
x′

y′

)
=

(
2 0
0 2

)
.

(
x
y

)
+

(
2
−1

)
.

On a : I fixe ⇔ I ′ = I ⇔ (2)
−−→
O′I = k.

−→
OI ⇔

−−→
O′O +

−→
OI = k.

−→
OI ⇔ (1− k)−→OI =

−−→
OO′ : une

et une seule solution si k 6= 1 [
−→
OI =

1

1− k
−−→
OO′]. Différence (1) − (2) :

−−→
IM ′ = k.

−−→
IM . Fini.

25.3.3 Rappel : Déplacements en dimension 2 : Is+
2

1. Théorème. (Isom. affines positives : déjà vu aux ch.C)

• En base o.n.,
−→
f ∈ O+

2 pour matrice

(
cos(α) −sin(α)
sin(α) cos(α)

)
ou z 7→ z′ = ei.αz. On en déduit Is+2 :

• Déplacements : α = 0(2π) translation, α 6= 0(2π) rotation affine d’angle α de centre le point fixe.

2. Démonstration Utilisons les complexes, par exemple : z′ = ei.αz + Cte. Déjà vue :

Cherchons un point fixe éventuel à z 7→ z′ = ei.αz+ b, (b = b1 + ib2 ∈ C). z′ = z ⇔ z(1−ei.α) = b.
Si α = 0(2.π), z′ = z + b translation.

Si α 6= 0(2.π), solution unique z0 = ei.αz0 + b : z′ − z0 = ei.α(z − z0). Puis module, argument.

25.3.4 Exercice : Déplacements en dimension 3 : Is+
3

1. Définition

On appelle vissage d’axe orienté D (I,
−→
K ), d’angle α, de vecteur de translation γ.

−→
K

la composée ici commutative : rot = tor, r étant la rotation autour de D d’angle α

t la translation de vecteur γ.
−→
K . On a M ∈ D ⇒ −−−→MM ′ = γ.

−→
K Dessin ?

2. Théorème Toute isométrie affine positive de E = R3 est un vissage. cf. Exemple pour α,D, γ.−→K .

Car ∃−→I ,−→J ,−→K b.o.n. judicieuse f : M



X
Y
Z


 7−→M ′



X ′

Y ′

Z ′


 =



cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


 .



X
Y
Z


+



α
β
γ




vu le rappel sur
−→
f .

−→
K est ici un vecteur unitaire de l’axe (orienté) de

−→
f . D’où :

Si α = 0 (⇔ −→f = Id ; on s’en aperçoit de suite !), f est une translation, éventuellement Id(E).
Si α 6= 0 on a vu en dim.2 : ∃X0, Y0/

(
X ′ −X0

Y ′ − Y0

)
=

(
cos(α) −sin(α)
sin(α) cos(α)

)
.

(
X −X0

Y − Y0

)
et on rajoute

Z ′ = Z + γ. C’est clair avec un dessin D : [I(X0, Y0, 0),
−→
K ] ; translation : γ

−→
K .

3. Exemple Décrire, dans E = R3 e.a.e. f : M



x
y
z


 7→



x′ = y + 1
y′ = z + 2
z′ = x+ 3


 =




0 1 0
0 0 1
1 0 0


 .



x
y
z


+




1
2
3


.

�
−→
f vu au II.3 est la rot. vect. d’axe ∆ dirigée par

−→
K =

1√
3
(−→ı +−→ +

−→
k ), d’angle α =

−2π

3
.

� Donc f vissage. M ∈ D ⇒ −−−→MM ′ = γ.
−→
K ... [calculs] ... Transl. de vecteur 2(−→ı +−→ +

−→
k ) et

D
{
−x+ y = 1
−y + z = 0

Vérif. Direction de D :

{
−x+ y = 0
−y + z = 0

ou



−1
1
0


 ∧




0
−1
1


 Retrouver

−→
K !
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25.4 Compléments sur les Applications affines

25.4.1 Résumé dans E = R2 ou R3 affine euclidien

1. Isométries affines
f affine, est une isométrie affine de E (f ∈ Is(E), groupe) ; si l’appl.

linéaire associée est une isométrie vectorielle de E :
−→
f ∈ O(E) (groupe).

–
−→
f ∈ {IdE} ⇔ f ∈ {Translations de E} essentiel et connu−→
f ∈ {±IdE} ⇔ f ∈ {Translations ou symétries-point de E} connu aussi

–
−→
f = O+

2 [rot. vect. de R2] ⇔ f ∈ Is+2 (groupe des) déplacements du plan P : vu

–
−→
f = O+

3 [rot. vect. axiales de R3] ⇔ f ∈ Is+3 (groupe des) déplacements de E3 : vu

2. Non isométrie, mais signalé

–
−→
f ∈ {k.IdE , k 6= 0} (gr. abélien des Hom. vect.) ⇔ f ∈ {Homothéties-Translations de E}

(non abélien pour hom.-affines et translations)

–
−→
f = k.(

−−−−−−−−−−→
isométrie vect.) [on dit similitude vectorielle] ⇔ f : similitude affine de E .

Similitudes en dimension 2

• En vect. Matr. de
−→
f en base o.n. : r.

(
cos(α) −sin(α)
sin(α) cos(α)

)
=

(
u −v
v u

)
ou r.

(
cos(α) sin(α)
sin(α) −cos(α)

)

On peut aussi utiliser les complexes z 7→ z′ = r.ei.α.z ou z 7→ z′ = r.ei.α.z.

• En affine z 7→ z′ = r.eiα.z + Cte (similit. directes) ou z 7→ z′ = r.ei.α.z + Cte (indirectes).
Avec C : z′ = a.z + b, a 6= 0, pour les directes.

25.4.2 Projection affine orthogonale sur P : x + 2y − z = −1 ; vérifications

1. On cherche 12 coefficients : Q = M ′ :



x′

y′

z′


 =



. . .
. . .
. . .


 .



x
y
z


+



.
.
.


. Notons −→n =




1
2
−1


 ⊥ P.

2. Posant
−−→
QM = λ.−→n (1), on passe de 12 à 1 inconnue : λM . On exprime (2) M ′ = Q ∈ P.

Première solution. On a : I(0, 0, 1) ∈ P et
−→
IP =

−−→
QM = λ.−→n avec λ.(−→n �

−→n ) = x+ 2y − z + 1

cf. Distance d’un point à un plan affine. On trouve le type Y = A3,3.X +B. (I inutile !)

−−→
QM :



x− x′
y − y′
z − z′


 =

x+ 2y − z + 1

6
.




1
2
−1


 ; et



x′

y′

z′


 =

1

6




5 −2 1
−2 2 2
1 2 5


 .



x
y
z


− 1

6
.




1
2
−1




Deuxième solution, légère variante. Avec
−−→
QM =

−−−→
M ′M = λ.−→n , on exprime de plus que M ′ ∈ P (2)

pour trouver λ : x′ + 2y′ − z′ = −1.

Vérifications de A on se doute que c’est la proj. vectorielle sur le plan vectoriel : x+2y−z = 0 :

Avoir Tr(
−→
f ) = rg(

−→
f ) = 2 : vu. Et on a expliqué que sa matrice était sym. car proj. orth.

Vérifications de B3,1 on sait (ou on voit) que B, c’est O′ ou
−−→
OO′ ; donc colinéaire à −→n !

25.4.3 Propriétés des applications affines

1. Composition La composée de 2 applications affines gof est affine associée à −→g o−→f .

Démonstration. On a
−−−→
O”M” = −→g (

−−−→
O′M ′) = −→g o−→f (

−−→
OM) et −→g o−→f linéaire. Terminé.

Utilisation

• Soit sI , sJ deux symétries points ; qu’est-ce h = sJosI ? Rép. : l’endomorphisme associé
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est
−→
h = (−Id)o(−Id) = Id ; d’où h translation ... de vecteur 2.

−→
IJ . (sIosJ 6= sJosI).

• t−−→u ohI,2ot−→u = f ?
−→
f = Id o(2.Id)oId = 2.Id ; f hom. aff. rapport 2, centre I + (−−→u ).

• hJ,2ohI,1/2 ? Idem : translation. Dessins ? cf. ch Géométrie de R2.

2. Image d’une droite
Soit D une droite. Alors f(D) est une droite ou un point.

f Et conserve le parallélisme au sens : D1//D2 =⇒ f(D1)//f(D2).

Démonstration

D : (I,−→u ) ou
−−→
IM = λ−→u . Donc

−−→
I ′M ′ =

−→
f (
−−→
IM ) = λ

−→
f (−→u )

{
si
−→
f (−→u ) 6= −→0 F : il dirige f(D);

si
−→
f (−→u ) =

−→
0 F image=un point.

Attention On n’a pas dit f(D)//D ! Mais ceci vrai si translation ou homothétie affine.

3. Conservation du barycentre Si G = Bar

(
M N
α β

)
, donc α+ β 6= 0, alors G′ = Bar

(
M ′ N ′

α β

)
.

Démonstration α.
−−→
GM + β

−−→
GN =

−→
0 E ⇒

−→
f (α.

−−→
GM + β

−−→
GN ) =

−→
0 F : α.

−−−→
G′M ′ + β

−−→
G′N ′ =

−→
0 F . Fini.

Utilisation

• L’image du milieu de [MN ] est le milieu de [M ′N ′].
• Si une application affine R2 → R2 permutte 3 points M,N,P (par exemple les sommets d’un

triangle), leur isobarycentre est invariant.
• Si M = Bar[(A,α); (B,β); (C, γ)] et (AM) ∩ (BC) = A′ alors A′ = Bar[(B,β); (C, γ)] (Proj.)

4. (*) Lien : points fixes de f–Vecteurs invariants de
−→
f .

(a) D’abord sur le rang. Soit l’ équation en M :
−→
f (
−−→
OM) =

−→
b , r = rg(

−→
f ). (∗)

Vérifier que : soit (∗) n’a pas de solution [si
−→
b 6∈Im(

−→
f )], soit possède comme solutions un sous-

espace affine de direction Ker (
−→
f ) ; donc de dimension p− r, p étant le nombre d’inconnues.

(b) Cas où f : E → E (donc
−→
f : E → E). Notons E1 l’ensemble des points fixes.

Vérifier que : M ′ = M ⇔
−−−→
O′M =

−→
f (
−−→
OM ) ⇔ (

−→
f − Id)(−−→OM ) = −−−→OO′. (∗∗)

Donc : soit E1 = ∅ ; soit sous espace affine de direction Ker(
−→
f − Id). Exemples ?

25.4.4 Remarques

1. En fait, un e.v. est lui même un e.a., attaché à lui-même ! La bijection de E dans E : M 7→ −−→AM
est ici de "E muni de l’origine −→a " dans E : −→x ∈ E−→a 7→ −→x −−→a ∈ E ; on dit
qu’il possède "une structure affine canonique". C’est pour celà qu’on parle de :

• Translation dans un e.v. : −→x 7−→ −→x +−→u pour M 7−→M ′ = M +−→u ; et, en e.v.euclidien, de

• Distance entre 2 vecteurs : δ(−→u ,−→v ) = ‖−→v −−→u ‖ pour δ(M,M ′) = ‖−−−→MM ′‖ = ‖−−→OM ′ −−−→OM‖.
Attention ! une translation n’est pas linéaire (si −→u 6= −→0 ). 3

2. Résumé. On avait : Ici :
Espaces vectoriels Espaces affines.
Sous-espaces vectoriels Sous espaces affines.
Combinaisons linéaires Barycentres.
Bases Repères.
Applications linéaires Applications affines.
E.v.euclidien E.a.euclidien.
Isométries vectorielles O(E) Isométries affines Is(E).

3
� On a encore f bijective ⇔ −→

f bijective et f−1 est affine associée à
−→
f −1.

� D’où, pour E = F : quand
−→
f décrit le groupe linéaire GL(E), f décrit le groupe affine GA(E).

� (*) Rappelons "l’inversion géométrique", application non affine de E = R2, mais intéressante géométriquement !
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M+ Exercices: Transformation de R3 e.v. puis e.a. PTSI

1. Dans E = R2 espace vectoriel euclidien décrire les endomorphismes de matrice :

A =

(
0 1
−1 0

)
, B =

(
0 1
1 0

)
, C =

(
1/2 −

√
3/2√

3/2 1/2

)
, D =

(
1/2

√
3/2√

3/2 −1/2

)
, et E =

(
3 −4
4 3

)
.

[E correspond à r.ei.α avec r2 = 32 + 42. Similitude vectorielle directe de rapport 5, d’angle α.]

2. Dans R2 e.v. e. (a) Que signifie en termes d’endomorphismes/matrices z′ = eiα.z et z′ = eiα.z ?

(b) Soit σ la sym. orthog./ y = x.tan(β) et σ′ / y = x.tan(β + ϕ). Que dire de σ′o σ ?
[Justifier par exemple, que σ′o σ est une isométrie vectorielle / positive / donc rotation / etc.]

3. Dans R3 e.v. e. (a) Soit A =
1

3



−1 2 2
2 −1 2
2 2 −1


 ; B =




0 0 −1
−1 0 0
0 1 0


 et C =

1

4




−2
√

6 −
√

6

−
√

6 1 3√
6 3 1


.

Décrire pour A,B,C les endomorphismes associés (en base o.n.) Matrices inverses ?

(b) Préciser la droite, symétrique orthogonale de V ect(
−→
k ) / au plan 2x− 3y + z = 0.

4. Dans R2 ou R3 e.v.e. Matrices symétriques (6= Symétrie en général !) et de plus orthogonales ?

5. Dans R3 e.v. e. Soit r ∈ O+
3 d’angle α autour de V ect(−→ω ) ; −→x = −→a + λ.−→ω , −→a ⊥ −→ω . Si ‖−→ω ‖ = 1 :

(a) r(−→a ) = cos(α).−→a + sin(α).−→ω ∧ −→a , r(−→x ) = r(−→a ) + λ.−→ω , [−→x , r(−→x ),−→ω ] = ‖−→ω ∧ −→x ‖2.sin(α).

(b) r(−→x ) = c−→x + s−→ω ∧−→x + (1− c)(−→ω �
−→x )−→ω = −→x + s−→ω ∧−→x + (1− c)−→ω ∧ (−→ω ∧−→x ), c = cos(α)...

———————— On se limite (programme) à la première partie : en linéaire ————————–

6. (a) Dans R3 affine euclidien expression de la proj. orthog. sur P : x+ 2y − z = −1. Vérifications ?

(b) (*) Lieu des projetés orthogonaux de O sur les plans x+λy+µ.z = 1 ? [Sphère : x2+y2+z2 = x].

7. (a) Vissages dans R3 e.a.e. Décrire f M 7−→ M ′ : x′ = z − 2, y′ = x, z′ = y. [Complément : f
composée de 2 demi-tours axials=retournements et de 4 réflexions=symétries⊥/plans affines.]

(b) Idem avec x′ = (−x+ 2y + 2z − 4)/3, y′ = (2x− y + 2z + 2)/3, z′ = (2x+ 2y − z + 2)/3.

8. (a) (*) Dans R3 affine projection oblique q sur P : 2x+y−z = 2, de direction V ect(−→u (1, 1, 1)).

[2x′ = −y + z + 2, 2y′ = −2x+ y + z + 2, 2z′ = −2x− y + 3z + 2 ; Tr(−→q ) ?
−−→
OO′ = k.−→u .]

(b) (*) Inversement décrire f :





x′ = 3x+ 4y + 2z − 4
y′ = −2x− 3y − 2z + 4
z′ = 4x+ 8y + 5z − 8

[Points fixes ? Tr(
−→
f ) ? ... Dilatation.]

9. (*) Applications affines telles que f(D)//D, ∀D. [f(D) étant une droite ou un point.]

(a) Soit
−→
f un endomorphisme tel que

−→
f (−→x ) colinéaire à −→x , ou ∀−→x :

−→
f (−→x ) = k−→x .

−→x .
Montrer que f = k.Id, k fixe. [Prendre −→x ,−→y colinéaires ; puis libres et utiliser −→x +−→y .]

(b) Déduire que les solutions sont, si f 6= Cte, les translations ou les homothéties affines.

10. (a) (*) Lien affine-vectoriel : Peut-on trouver −→v tel que T−→v of = foT−→u , f affine, T translation ?

(b) (*) Dans R3 affine euclidien, décrire soros, s symétrie orthogonale/plan, r rotation.

(c) (**) En e.a.e. f conservant les distances est affine ! [‖−−→MN +
−−→
NP‖ = ‖

−−−→
M ′N ′ +

−−→
N ′P ′‖ ⇒

−−→
MN �

−−→
NP = ... d’où, si

−→
f (
−−−→
M0M) =

−−−→
M ′

0M
′,
−→
f conserve le produit scalaire ; donc linéaire !]



Chapitre 26

Les polynômes, K[x]

26.1 Généralités

26.1.1 Définitions. Opérations

1. Polynôme (formel)

Pour ak ∈ R ou C, on appelle polynôme (formel) d’indéterminée x, toute expression du type :
P (x)=a0 + a1x+...+anx

n. L’égalité P (x)=Q(x)= b0 + ...+ bmxm est définie par : ak = bk,∀k.

Exemples. 1) Le polynôme nul P = O ou P (x)=−3.x2+2.x4+x5.

2) Mais : 1+x+x2+... non polynôme car il faut un nombre fini de coefficients non nuls.

2. Trois opérations. Addition P +Q, Multiplication par une constante λ.P , Multiplication P.Q :

si P (x)=a0 +a1x+...+a5.x
5, Q(x)= b0 + b1x+...+b4x

4 : P.Q(x)=
∑

06k69

ckx
k, avec ck =

∑

06i69

ak−i.bi.

Degré Si P (x)=a0 + a1x+...+an.x
n, an 6= 0, on dit doP = n. Si P = O, on pose do(O) = −∞.

do(P.Q) = do(P ) + do(Q) do(P +Q) 6max[do(P ), do(Q)] do(P ) = 0⇔ P = Cte 6= O.

Exemple. Si P (x)=−3.x2 + 2.x4+x5 : do(P ) = 5 (et P normalisé, à cause du coeff. 1 de x5)
et val(P ) = 2 [valuation : degré du monôme de plus bas degré ; si P = O, val(O) = +∞].

Et : Si x ∈ R, P (x) ∼
x→±∞

1.x5, P (x) ∼
x→0
− 3.x2, P (x) ∼

x→1
7.(x− 1) [x2(x− 1)(x2 + 3x+ 3)] !

3. On vient de considérer la fonction polynôme. C’est : x ∈ R 7→ P (x) = a0 + a1x+ ...+ anx
n.

Ainsi, si Q(x)=P (x)+x(x−1)(x−3), les fonctions polynômes ont même valeur sur A = {0, 1, 3}.

26.1.2 Théorème

1. Si pour une infinité de x, P (x) = Q(x) : alors les polynômes sont égaux coefficient à coefficient.

(On dit égaux formellement ; on peut donc identifier polynômes et fonctions polynômes).
Démonstration
Si D = P −Q de degré d = do(D) > 0, D s’annulerait au plus d fois. Faux : D = O, do(D) = −∞.

Idem : Si un polynôme de degré au plus n > 0, s’annule en n+ 1 points distincts, c’est : P = O.

2. Utilisation : polynômes de Tchebytchev ∃ ! Pn polynôme, tel que Pn(cos(θ)) = cos(n.θ).

1) Unicité : Si Pn(cos(θ)) = Qn(cos(θ)), alors Pn(x) = Qn(x) sur tout le segment [−1,1], donc égaux
coefficients par coefficients. [Et ainsi, en particulier, Pn(z) = Qn(z) ∀z ∈ C !]

2) Existence : Ou par la formule de Moivre [cos(θ) + i.sin(θ)]n = cos(n.θ) + i.sin(n.θ)) ; etc.
ou par récurrence avec cos[(n+ 1)θ] + cos[(n− 1)θ] = 2.cos(n.θ).cos(θ) et les indices n = 0 et 1.

3) Questions : préciser P0, P1, P2, P3. Que se passe-t-il si on change θ en π/2− θ ?
(Idem sin((n+ 1).θ)/sin(θ) polynôme en cos(θ) : polynôme de Tchebychev de 2ème espèce.)

175



176 CHAPITRE 26. LES POLYNÔMES, K[X]

26.2 Divisibilité des polynômes

R[x] désigne l’ensemble des polynômes à coefficients réels. C[x] l’ensemble des polyn. à coeff. dans C.

K[x] l’ensemble des polynômes à coefficients dans K, K = R ou C souvent. (Aussi : Q[x], Z[x].)

26.2.1 La division euclidienne

1. Théorème

A,B dans K[x], B 6= O ; alors ∃!(Q,R) (quotient, reste) : A = B.Q+R avec do(R) < do(B).

Démonstration
Unicité. A = BQ1 +R1 = BQ2 +R2 ⇒ B(Q1 −Q2) = R2 −R1 ; si Q1 −Q2 6= O, impossible

avec les degrés.
Existence. Algorithme d’Euclide, par exemple [Le mot "algorithme" vient de Al Kharezmi].

Exemple A=2x3−7x2+x−1, B=x2+x+1 à traiter comme la division de a = 22 par b = 7.

2. Définition On dit que B divise A, noté B/A, s’il existe Q tel que A = B.Q. (Ainsi O divise O).

26.2.2 Division par (x−a)

1. Théorème On a : P (x)=(x−a)Q(x)+P (a), notée (∗). Donc (x-a) divise P ⇔ P (a)=0.

En effet, le reste est une constante cte ; et x = a : cte = P (a). Equivalence facile.

2. Pour la programmation, hors programme, algorithme de Hörner :

Notons

{
P (x) = anx

n + ...+ a0

Q(x) = bn−1x
n−1 + ...+ b0

[Attention : on notera souvent P (x)=a0x
n+...+an]

� Alors, pour k > 1, le coeff. de xk dans (∗) est ak d’une part ; et −a.bk + bk−1 d’autre part

(convention bn = 0). Donc bk−1 = ak + a.bk.

� Si k = 0, qu’est-ce b−1 = a0 + a.b0 ? (∗) montre qu’il s’agit du reste P (a) !

Donc

L’algorithme précédent permet de trouver non seulement le quotient, mais aussi

le reste de la division par (x−a) avec seulement n additions et n multiplications.
Ceci donne pour x = a, P (x) = a0 + x.(a1 + x.(.... + x.(an−1 + x.an)...)).

Exemple Faire ainsi la division de x5−x4 − 3x3 + 3x2 − 1 par x+2. [Un calcul direct de P (−2)
est plus long !] (Poser 3 lignes : celle des ak ; celle des a.bk ; celle des bk, avec b5 = 0).

26.2.3 Polynômes irréductibles

1. Remarque Dans Z, la divisibilité est définie au signe près (ainsi les diviseurs de 2, premier, sont
±1,±2) car les éléments inversibles de Z pour la multiplication sont ±1.

De même, les polynômes inversibles étant les constantes non nulles, la divisibilité dans K[x] est
définie à une constante non nulle près.

2. Définition
Un polynôme P 6= O et 6= cte non nulle, est dit irréductible si ses diviseurs sont

les constantes non nulles : k ∈ K∗ et les polynômes "associés" : k.P , k ∈ K∗.

Exemple P (x)=2x+4 irréductible sur R et sur C.

26.2.4 Irréductibles dans R[x] ou C[x]

1. Théorème
Les polynômes de C[x], irréductibles sur C, sont exactement ceux de degré 1.

Ceux de R[x] irréductibles sur R, sont ceux de degré 1 et ceux de degré 2 avec ∆ < 0.
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2. Exemples

1) x4+x2+1 est réductible sur R. Au ch. C, il a été factorisé sur R par plusieurs méthodes.

2) Idem : x4−x2+1 sur R. Astuce : x4−x2+1= x4+2x2+1−3x2 =(x2+1)2 − (
√

3x)2 = ...
Ou ses racines (*) ij, ij = i.j = −i.j2, −ij(parité), +i.j2 et faire (x−z1)(x−z1) ...

3) x4+1 à factoriser sur R, même astuce par exemple.

Démonstration
– Un polynôme irréductible sur C (donc non constant) ne peut être que de degré 1, d’après le

théorème de D’Alembert-Gauss : P (x)=a0x
n+...+an=a0(x−z1)(x−z2)...(x−zn) (∗).

Inversement, un polynôme de degré 1 est irréductible.

– Pour P ∈ R[x], irréductible sur R (donc non constant), soit α une racine sur C.
Si α ∈ R, forcément P est de degré 1. Si α 6∈ R, comme P est à coefficients réels, α 6= α est
racine ; donc P (x)=(x−α)(x−α)Q(x) ; forcément Q ∈ R∗ et P de degré 2 avec ∆ < 0.
En sens inverse, ces polynômes sont irréductibles sur R.

26.2.5 Relations entre coefficients et racines, somme et produit surtout

Définition Un polynôme est dit scindé s’il s’écrit P(x)=a0x
n+...+an=a0(x−z1)(x−z2)...(x−zn) (∗)

x2+4 non scindé sur R. Sur C, tout polynôme est scindé et rappel :

Formules de Viète Notons





σ1 = z1 + z2 + ...+ zn

σ2 = z1.z2 + ...+ zn−1zn

σ3 = z1z2z3 + ...
...

σn = z1.z2....zn

"fonctions symétriques élémentaires"

liées aux coefficients : σ1 = −a1/a0; σ2 = +a2/a0; ... σk = (−1)k.ak/a0 ... développer (∗)

(*) Exercice en complément :

Résoudre (z + 1)n = e2ina, a ∈ R et simplifier Pn = sin(a).sin(a+
π

n
)....sin[a +

(n − 1)π

n
].

Solution : On a Eq.⇔ [
z + 1

e2ia
]n = 1⇔ z + 1 = e2ia.eik2π/n, k ∈ [[0, n− 1]] ;

z = ei(a+
kπ
n

)(ei(a+
kπ
n

) − e−i(a+ kπ
n

)). D’où les racines zk = ei(a+
kπ
n

).2i.sin(a+
kπ

n
), k ∈ [[0, n − 1]].

Leur produit vaut

� d’une part : (−1)n.[1− e2i.na]/1 (Viète) ou (−1)n+1.ei.na.2i.sin(na) ;

� d’autre part : 2n.in.Pn.e
i.na.e

i.π
n
.
(n−1)n

2 ou 2n.i.(−1)n−1.Pn.e
i.na. D’où Pn =

sin(na)

2n−1
.

(Question en plus : En déduire sin(
π

n
).sin(

2.π

n
)...sin

(n− 1)π

n
=

n

2n−1
.)

26.2.6 (*) Compléments sur la divisibilité

1. Montrer que PoP (x)−P (x) est divisible par P (x)−x. [⇒ PoP (x)−x divisible par P (x)−x !]

Solution. Cet énoncé épouvante ! Posons P (x)=
∑

06k6n

an−kxk. On connait Ak −Bk = (A−B)(...)

En écrivant P (P (x))−P (x), il suffit de voir que chaque : an−k.[P
k(x)−xk] est divisible par

P (x)−x : la clé à bien comprendre. Mais que [...] soit divisible par P (x)−x est alors clair !

2. Division suivant "les puissances croissantes" :

� En plus de la division euclidienne, on a la division suivante ; par exemple :
Si A=1+x+x3 ; B=1−x+x2 [val(B) = 0] ; alors 1+x+x3=(1−x+x2).(1+2x+x2)+ x3.R(x)

qui est appelée division suivant les puissances croissantes à l’ordre 2.

� Utilisée pour la décomposition de fractions rationnelles et pour les développements limités.
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26.3 Dérivation des polynômes

26.3.1 Formule de Mac-Laurin

1. Enoncé. Si n > doP , alors : P (x)= P (0) +
P ′(0)

1!
.x+...+

P (n)(0)

n!
.xn.

2. Démonstration : On note tantôt P (x)=a0.x
n+a1.x

n−1 + ...+ an (1)

tantôt P (x)=a0 + a1x+...+ an.x
n (2) (comme dans l’algorithme de Hörner).

Ici, on utilise (2) ; on dérive k fois et on trouve : P (k)(0) = k!.ak ; d’où ak cherché.

26.3.2 Formule de Taylor pour les polynômes

1. Enoncé.
Si n > doP , alors : P (x)= P (a) +

P ′(a)
1!

.(x−a) + ...+
P (n)(a)

n!
.(x−a)n

ou bien, avec x = a+h : P (a+h) = P (a) +
P ′(a)

1!
.h+...+

P (n)(a)

n!
.hn.

2. Démonstration. Si Q(h)=P (a+h), la formule de Mac-Laurin appliquée à Q avec Q′(h)=P ′(a+h)

... Q(k)(h)=P (k)(a+h),... fournit alors naturellement cette généralisation [Q′(0)=P ′(a)...].

26.3.3 Application aux racines multiples

Définition
a est dit racine d’ordre k (au moins) de P si (x−a)k divise P ;

racine d’ordre k exactement si de plus (x−a)k+1 ne divise pas P.

Théorème
Soit k > 1. a racine d’ordre au moins k ⇔ P (a) = P ′(a) = ... = P (k−1)(a) = 0 (k égalités)

a racine d’ordre k exactement ⇔ P (a) = P ′(a) = ... = P (k−1)(a) = 0 et P (k)(a) 6= 0.

Démonstration. Il suffit de voir ligne 1 :

⇒ Si P (x)=(x−a)k.Q(x), trouver ce qui est dit par (*) la formule de Leibnitz.

⇐ Avec l’hypothèse, la formule de Taylor en a donne de suite la réponse.

Remarques

1) Un polynôme de degré n sur C a n racines en comptant les ordres de multiplicité (P (x)=xn).

2) Si a 6= b et si P divisible par (x−a)α et par (x−b)β, alors P est divisible par leur produit.

3) (*) a racine de P à l’ordre k exactement ⇔ a racine de P à l’ordre k exactement, où P est le
polynôme dont les coefficients sont conjugués. Donc

Si P est à coefficients réels, ses racines non réelles sont conjuguées avec même ordre de multiplicité.

(*) Pour 3) en effet : si P (z) = a0.z
n + ...+ an, par définition : P (z) = a0.z

n + ...+ an.

Donc P (a) = 0⇔ P (a) = 0. Et de même pour les polynômes dérivés successifs.

Un exercice corrigé Soit P ∈ R[x] ; montrer que si P est scindé sur R, P ′ aussi.

Sol. Entre 2 racines réelles distinctes de P , (au moins) une de P ′, grâce au Théorème de Rolle :

Si f est C0 sur [a, b], dérivable sur ]a, b[, a 6= b, et f(a) = f(b), alors f ′ s’annule sur ]a, b[.

� Donc si P a n racines réelles distinctes, c’est clair.

� Cas général : Soit x1 racine de P à l’ordre k1 > 1, ... xp à l’ordre kp > 1 ; on a k1 + ...+ kp = n.

Alors x1 est racine de P ′ à l’ordre k1 − 1 ! et comme on a une racine de P ′ dans ]x1, x2[..., cela fait

(k1 − 1) + ...+ (kp − 1) + (p− 1) racines réelles pour P ′ (au moins). Ou n− 1 : le compte est bon !
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26.4 (*) Compléments

26.4.1 Des exercices corrigés

1. Soit z : a0z
n + a1z

n−1 + ...+ an = 0, a0 6= 0. Montrer que | z |6 1 +m, m = max | ak
a0
|, k > 0.

Solution. Si | z |> 1 on a : | z |n=
| a1z

n−1 + ...+ an |
| a0 |

6
| a1 || z |n−1 +...+ | an |

| a0 |
6 m.

| zn | −1

| z | −1
;

| z |n 6
m. | zn |
| z | −1

d’où | z |6 1 +m ; et si | z |6 1 évident. [Borne élémentaire].

2. Equation du 3ème degré : Soit ax3 + bx2 + cx+d=0 ; on pose x=x+ α et avec α =
−b
3a

, on

est ramené à x3 + px+ q = 0 (∗) (c’est-à-dire pas de terme en x2 et on a divisé par a 6= 0).

Méthode de Cardan-Tartaglia : Posant x = u+ v, (∗) devient u3 + v3 + q + (3uv + p)(u+ v) = 0.

Donc, si on impose (1) 3uv + p = 0, on a (2) u3 + v3 + q = 0. Résolution de

{
u.v = −p/3
u3 + v3 = −q :

Divers points de vue : ou on cherche une racine réelle (si coeff. réels), ou on est sur C ; si u3, v3

solutions de T 2+qT− p
3

27
= 0 (R) dite équation résolvante, avec u.v =

−p
3

; si (u0, v0) couple solution,

les autres : (j.u0, j
2.v0) ; (j2.u0, j.v0). Alors : x1 = u0 + v0; x2 = j.u0 + j2.v0; x3 = j2.u0 + j.v0.

Remarques. ∆ = 0 ou 4p3 + 27q2 = 0 ⇔ Une racine au moins double. Plusieurs façons :

� ∆ = 0⇐⇒ u3 = v3 = −q/2, u.v = −p/3. Soit α une racine (sur C) de −p/3 ; alors :

α6 = −p3/27 = q2/4 ; donc α3 ou (−α)3 vaut −q/2. Supposons α3 = −q/2 ; alors u0 = v0 = α
convient ; solutions : 2α,−α,−α. Inversement : x2 = x3 ⇒ u0 = v0 ; donc ∆ = 0.

� Une racine de P ′, soit ±α, est racine de P si et seulement si ... 4p3 + 27q2 = 0 ... A voir.

Cas des coefficients réels Discussion des racines réelles à faire (*) !

3. Equation du 4ème degré : Ferrari 16ème siècle. On se ramène d’abord à x4 + px2 + qx+ r = 0.

Puis chercher y tel que x4 + (p + y)x2 + (
p+ y

2
)2 = −qx − r + yx2 + (

p+ y

2
)2 ait un second

membre avec ∆ = 0 [⇔ (x2 +
p+ y

2
)2 = y.(x− α)2] d’où une équation de degré 3 en y !

4. (*) Soit f(z) = zn + a1z
n−1 + ...+ an, g(x) = xn− | a1 | xn−1− ...− | an |, an 6= 0. Montrer que g

a une unique racine dans R+ et qu’elle majore les | zk |, f(zk) = 0 (récurrence) [Borne de Cauchy].

26.4.2 (*) D’autres analogies avec Z :

On dit que deux polynômes sont premiers entre eux (noté A∧B=1) si leurs seuls diviseurs communs sont
les constantes non nulles (les unités). [Dans Z les diviseurs communs à 9 et 16 sont ±1]. On a le :

Théorème de (Bachet-)Bezout : A ∧B = 1 ⇔ ∃ U, V : U.A+ V.B = 1.

(⇐) évident (A ∧B = 1 signifiant pgcd(A,B) = 1)

(⇒) Par l’algorithme d’Euclide : dans A = BQ+R, les diviseurs de A et B sont ceux de B et R ; jusqu’à
arriver à Rn=pgcd(A,B), dont l’existence est en même temps fournie ; ainsi qu’une relation de
Bezout en remontant [voir déjà 56 ∧ 15 = 1]. On en déduit les conséquences :

1) Théorème de Gauss : A/(divise) B.C et A ∧B = 1⇒ A/C. En particulier la condition de Gauss :
Pour P irréductible (premier avec tout polynôme qu’il ne divise pas) P/BC ⇒ P/B ou P/C.

2) Aussi : (A/C,B/C et A ∧B = 1⇒ AB/C. Cas important A=(x−a)α, B=(x−b)β, a 6= b.

3) Existence et l’unicité de la décomposition en produit d’irréductibles, pour tout polynôme non constant ;
qui donne aussi : pgcd(P,Q).ppcm(P,Q)=P.Q [à une constante non nulle multiplicative près].
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M+ Exercices: Polynômes R[x], C[x]. PTSI

1. Factoriser sur R :

(a) x6 − 1 ; (b) x4 + x2 + 1 ; (c) (*) x4 − x2 + 1 ;

(d) x8 + x4 + 1 ; (e) x6 + 2x4 + 2x2 + 1 [poser y = x+
1

x
si utile ; mieux x2 + 1 en facteur]

(f) Factoriser sur C, en trouvant une racine a ∈ R.i : P (z) = z3− (16− i)z2 +(89− 16i)z +89i.

2. Montrer que B divise A (noté B/A) si :

(a) B = x(x+ 1)(2x + 1) et A = (x+ 1)2n − x2n − 2x− 1, n > 1.

(b) B = x2 + x+ 1 et A = x3p+2 + x3q+1 + x3r [factoriser B].

(c) B = (x− 1)2 et A = nxn+1 − (n+ 1)xn + 1, n > 1 [racine double].

(d) B = x2 − 2x.cos(α) + 1 et A = xn.sin(α)− x.sin(n.α) + sin((n− 1).α), n > 1.
[Factoriser B ; attention au cas où ses racines sont confondues].

(e) B = x2 − 2x.cos(α) + 1 et A = xn+1.cos((n − 1).α) − xn.cos(n.α)− x.cos(α) + 1, n > 1.

3. (a) Quel est le reste de la division euclidienne de [x.sin(θ) + cos(θ)]n par x2 + 1.

(b) Reste de la division euclidienne de A = xn par B = (x− 3)2 [dériver].

(c) Quotient et reste de la division de A = x5n par B = x5 − 1 [q = x5].

4. Racines multiples ?

(a) Montrer que 1 + x+ x2/2! + ...+ xn/n! = Pn(x) n’a que des racines simples (sur C !)

(b) Ordre de multiplicité de x = 1 dans Pn(x) = x2n − n.xn+1 + n.xn−1 − 1 ?

(c) Trouver P de degré 5 : (x− 1)3 divise P + 1 et x3 divise P − 1.

5. (a) Avec les racines de P (x)− P (0), trouver les polynômes P : P (x+ 1) = P (x).

(b) On cherche tous les polynômes P tels que : (x+ 3).P (x) = x.P (x+ 1).

Vérifier que 0,−1,−2 sont racines. Poser P (x) = x(x+ 1)(x+ 2)Q(x) et conclure.

(c) (*) Trouver, de même, les polynômes P tels que : P (x2) = P (x).P (x− 1).

6. (*) Trouver une C.N.S. pour que x3 + px+ q ait une racine au moins double.

7. (*) C.N.S. pour que les racines de z4 − az3 + bz2 − cz + d forment un carré ; un parallélogramme ?

8. (*) Sans division euclidienne (Horner, hors progr.) diviser A = x4−x3 + 2x2 +x− 1 par B = x− 2.

9. (*) Montrer que 1− x.cos(a) = [1− 2x.cos(a) + x2](1 + b1x+ ...+ bnx
n) + xn+1R(x) ;

et x.sin(a) = [1− 2x.cos(a) + x2](1 + c1x+ ...+ cnx
n) + xn+1S(x), bk, ck à trouver.

[C’est, en fait, la division suivant les puissances croissantes à l’ordre n (hors programme) ;
les racines du polynôme de degré 2 sont essentielles ...]

10. (*) Résoudre (
z + 1

z − 1
)n + (

z − 1

z + 1
)n = 1 ; puis (*) (

z + 1

z − 1
)n + (

z − 1

z + 1
)n = 2.cos(α).



Chapitre 27

Fractions rationnelles

Après un difficile chapitre sur les polynômes, en voici un plus facile ; d’autant qu’il ne s’agit que de

la pratique (résultats admis) sur des exemples simples.

27.1 Généralités

27.1.1 Définitions

Une fraction rationnelle est le quotient de deux polynômes
N(X)

D(X)
, avec D 6= O. En fait :

X − 1

X2 − 1
et

1

X + 1
sont deux représentants de la même fraction ; le second : représentant irréductible.

Quand
N

D
est irréductible, une racine de N à l’ordre k est dite racine de la fraction à l’ordre k.

Une racine de D à l’ordre k est dite pôle de la fraction à l’ordre k.

On note :
R(X) l’ensemble des fractions à coefficients réels. X est l’indéterminée (qui peut être une matrice)

C(X) l’ensemble des fractions à coefficients complexes. (Q(X) etc. K(X), K désignant R ou C.)

27.1.2 Opérations

1. Quand on parle de fonction rationnelle (f : x 7→ 1

x+ 1
), on s’occupe du domaine, f est C∞ sur

R\{−1} et f (k)(x) =
(−1)k.k!

(x+ 1)k+1
. Mais quand on parle de fraction, on ne s’en occupe pas (

1

X + 1
).

2. Résumé des opérations :
Somme des fractions rationnelles, produit entre elles. Lien entre + et � : distributivité.

On passe de K[X] à K(X), comme de Z à Q. On met ensuite x au lieu de X par commodité.

3. En complément (*)
Transformer l’équation (1) ax3 + bx2 + cx+ d = 0, a.d 6= 0, par la fonction f(x) = 1/x.

C’est-à-dire, trouver une équation en y (2), dont les racines sont les
1

xk
, xk racines de (1).

Solution1 On cherche σ′1 =
1

x1
+

1

x2
+

1

x3
, σ′2 =

1

x1.x2
+

1

x2.x3
+

1

x3.x1
et σ′3 =

1

x1.x2.x3
... Avec

y3 − σ′1y2 + σ′2y − σ′3 = 0, on arrive à : y3 +
c

d
y2 +

b

d
y +

a

d
= 0 ou (2) d.y3 + c.y2 + b.y + a = 0.

Solution2 "Eliminer" x entre

{
ax3 + bx2 + cx+ d = 0

et : y = 1/x.
C’est-à-dire, trouver une C.N.S. pour que

les 2 équations soient ensemble possibles ; soit une C.N.S. pour que les 2 équations aient au moins
une solution commune en x. C’est facile ici et même réponse !
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27.2 Décomposition en éléments simples sur C

27.2.1 Le résultat

1. Théorème
Si D(x) = k.(x− a1)

α1 ....(x − ap)αp alors on a, et de manière unique,
N(x)

D(x)
= E(x) +

cte

(x− a1)α1
+ ...+

cte

x− a1
+... Idem pour les autres pôles.

E(x) étant un polynôme appelé partie entière
pouvant s’obtenir comme quotient de la division euclidienne de N par D.

Exemple-1 :
2.x4

(x2 + 1).(x+ 1)2
=

2.x4

(x− i).(x+ i).(x + 1)2
= 2+

a

x− i +
b

x+ i
+

c

(x+ 1)2
+

d

x+ 1
.

Comment trouver les 4 coefficients ? "
c

(x+ 1)2
+

d

x+ 1
: partie principale relative au pôle -1".

� Déjà, on voit juste après que a, b et c sont aisés.
� Puis, on peut prendre ici x = 0 d’où d (vu après).
� Faire une vérification ... et c’est fini !
� (Si on voulait, en conjugant tout sauf x : à gauche, fraction invariante ; à droite on aurait

2 +
a

x+ i
+

b

x− i +
c

(x+ 1)2
+

d

x+ 1
. Unicité ⇒ a = b, b = a, c, d réels : autre vérification !)

2. Comment trouver le coefficient du terme de plus haut degré, dans une partie principale ?

Dans l’exemple trouver le coefficient c de
c

(x+ 1)2
+

d

x+ 1
pour le pôle double x = −1.

� Méthode : Multiplier chaque membre par (x+ 1)2 ; puis faire x = −1. Car

à gauche
2.(−1)4

(−1)2 + 1
, à droite (x + 1)2(2 +

a

x− i +
b

x+ i
) +

c

1
+
d.(x+ 1)

1
que c : c = 1.

� Idem : multiplier par x− i puis x = i ; donc a = −1/2.
� multiplier par x+ i puis x = −i ; trouver b = −1/2.
� Enfin, la valeur commode x = 0 donne d = −3.
� Vérification x = 1 acceptable : associer les 2 termes non réels.

3. (*) Dans cet exemple-2, on calcule et utilise le début du reste.

x4 + 1

x2.(x+ i)
= x− i +

a

x2
+
b

x
+

c

x+ i
car : N(x) = D(x).(x− i)+ [−x2 + ...].

donc :
N(x)

D(x)
= x− i +

−x2 + ...

x2(x+ i)
(fractions soulignées égales pour ∞ après).

� Méthode : Multiplier par x2, puis x = 0 [noté ∗x2, x = 0] : a = 1/i = −i.
� Idem : Multiplier par (x+ i), puis prendre x = −i ; alors, cette fois : c = −2.
� x = 0 : pôle déjà vu. Mais on peut utiliser ∞ : dans les 2 fractions soulignées,

on multiplie par x et on fait tendre x vers ∞ ; alors b+ c = −1 ; b = 1.
� Vérification x = i possible. Sans le début du reste, faire aussi x = 1 : moins bon.

27.2.2 Autres exemples

1. Décomposer :
7

(x+ 1)3
. Rép. : déjà fait car on a

cte

(x+ 1)3
+

cte

(x+ 1)2
+

cte

x+ 1
et unicité !

2. Décomposer :
7.x

(x+ 1)3
.

Réponse : il suffit d’écrire 7x = 7(x+ 1)− 7 d’où :
7x

(x+ 1)3
=

7

(x+ 1)2
− 7

(x+ 1)3
.
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3. Décomposer :
1

x2 + 1
. Réponse :

1

x2 + 1
= 0 +

a

x− i +
b

x+ i
. a, b facile par la méthode, a =

1

2i
.

Mais on peut ici utiliser la parité F (x) = F (−x) =
a

−x− i +
b

−x+ i
⇒ b = −a, utiliser x = 0

et aussi multiplier par x, puis x =∞ qui redonne a+ b = 0. (Et conjuguer si on veut : b = a.)

A bien voir car c’est la dérivée de x 7→ Arctan(x).

4. Décomposer
1

x(x+ 1)
. En déduire une expression simplifiée de : Sn =

n∑

k=1

1

k(k + 1)
.

Rép. :
1

x(x+ 1)
= 0+

a

x
+

b

x+ 1
, a = 1, b = −1. Sn = 1− 1

n+ 1
(télescopie) car

1

k(k + 1)
=

1

k
− 1

k + 1
.

5. (*) Décomposer F (x) =
x2 + x+ 1

x2(x− 1)2
. (Exercice de calcul.)

Ind. :
x2 + x+ 1

x2(x− 1)2
= 0 +

a

x2
+
b

x
+

c

(x− 1)2
+

d

x− 1
; et a, b, c, d réels, en conjuguant, si utile.

a = 1 et c = 3 aisément. Puis ∗x, x =∞ donne b+ d = 0. Encore 2 éq. et la vérif. sera faite !

Voir que x = −j est commode vis à vis des dénominateurs : 1/j2 = j, 1/j = j2 = −1− j, avec

l’implication (Aj +B = Cj +D; A, B, C, D réels) ⇒ A = C , B = D. A gauche
j2 − j + 1

j2.j4
= −2j,

à droite aj+ b(1+ j)− c(1+ j)+dj ; d’où 2 éq. b− c = 0, a+ b− c+d = −2 ; donc b = 3, d = −3.

27.2.3 Décomposition de
P ′(x)

P (x)

Remarques • Toute autre solution que la suivante : difficile ! [Penser à P (x) = 9.(x− 1)2.x6.]

• Tous les pôles sont, en fait, simples ; normal car : si a est racine d’ordre k > 1 de P , alors a racine

d’ordre k − 1 de P ′ et donc pôle d’ordre 1 de notre fraction ! Toutefois, le numéro suivant (sur les

pôles simples) ne va pas car la fraction P ′/P n’est pas irréductible si P a des racines multiples !

Si P (x) = k.(x− a1)
α1 .(x− a2)

α2 ....(x − ap)αp , avec (uvw)′ = u′vw + uv′w + uvw′ ... : P ′(x) = ...

donc :
P ′(x)
P (x)

=
α1

x− a1
+ ...+

αp
x− ap

. (Les coefficients sont donc ici des entiers naturels !)

27.2.4 (*) Complément théorique : cas d’un pôle simple

Suposons une fraction rationnelle irréductible
N(x)

D(x)
pour laquelle x = a est un pôle simple, i.e. (=id est) :

D(a) = 0, D′(a) 6= 0. Ainsi :
1

xn − 1
n’admet que des pôles simples : les n racines nièmes de l’unité.

Dans ce cas , le coefficient de
1

x− a est :
N(a)

D′(a)
.

En effet, on a :
N(x)

D(x)
= E(x) +

λ

x− a+ parties principales relatives aux autres pôles.

Et on sait que : λ = [
N(x)

D(x)
.(x− a)]x=a (évalué en x = a) et alors

D(x)

x− a =
D(x)−D(a)

x− a −→
x→a

D′(a)

si a est réel ; (si a non réel, utiliser la formule de Taylor pour les polynômes.)

Exemple
1

xn − 1
= 0+

n−1∑

k=0

λk
x− ωk

en notant ωk = e
ik.2π

n . Alors : λk =
1

n.ωn−1
k

=
ωk
n

. Pourquoi ?

Vérification : Si n > 2, on doit avoir
n−1∑

k=0

ωk = 0. Pourquoi ? (avec ∞). Est-ce vrai ? (connu !)
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27.3 Décomposition en éléments simples sur R

27.3.1 Le résultat

1. Sur un exemple
2x4

[x2 + 1].(x + 1)2
.

� Rien de changé pour la partie entière. Rien de changé concernant le pôle (double) x = −1.

� Pour le pôle x = i regroupé ici avec son conjugué x = −i, la décomposition est :
Ax+B

x2 + 1
, A, B

étant 2 constantes réelles à calculer (après) :
2x4

[x2 + 1].(x+ 1)2
= 2+

Ax+B

x2 + 1
+

c

(x+ 1)2
+

d

x+ 1
.

2. Autres exemples

.
1

(x+ 1).[x2 + x+ 1]2
= 0 +

a

x+ 1
+

bx+ c

[x2 + x+ 1]2
+

dx+ e

x2 + x+ 1
de manière unique.

. L’exemple de fraction non réelle
x4 + 1

x2.(x+ i)
n’a pas lieu sur R.

. Les exemples
7

(x+ 1)3
,

7x

(x+ 1)3
,

1

x(x+ 1)
,
x2 + x+ 1

x2(x− 1)2
identiques sur R ou C.

. Et
1

x2 + 1
déjà décomposée sur R (mais pas sur C : vue).

3. Que devient la méthode, vue sur C, pour le cas de R ?

Sur l’exemple F (x) =
1

(x+ 1).[x2 + x+ 1]2
= 0 +

a

x+ 1
+

bx+ c

[x2 + x+ 1]2
+

dx+ e

[x2 + x+ 1]
.

On multiplie chaque membre par [x2 + x+ 1]2, puis on fait x = j (qui annule [...]) !



A droite : il reste b.j + c seulement.

Et à gauche :
1

j + 1
=

1

−j2 =
−j
1

= −j Or :

Si ω 6∈ R, A.ω +B = Cω +D, A,B,C,D réels ⇒ A = C, B = D [à voir]. D’où b = −1, c = 0.

Finir :
a est facile. x = 0 est bon et donne e. ∗x, x =∞ est bon aussi et donne d. x = i pour vérifier.

(Autre façon ayant b et c : On peut (pas obligé !) aussi faire

F (x)− bx+ c

[x2 + x+ 1]2
= ... =

1

[x2 + x+ 1]
= 0 +

a

x+ 1
+

dx+ e

[x2 + x+ 1]
et ...)

27.3.2 A bien noter

1. Moins commode :
1

(x− 1).[x2 + x+ 1]2
= 0+

a

x− 1
+

bx+ c

[x2 + x+ 1]2
+

dx+ e

x2 + x+ 1
, bj+c =

1

j − 1
.

Alors faire le produit en croix : (bj + c)(j − 1) = 1 et dès qu’on a j2, mettre −1− j :

b(−1− j) + cj − bj − c = 1. 2 éq. : −b− c = 1, −2b+ c = 0. Finir (x = 0,∞), vérifier (x = i).

2. Exemple initial :
2x4

[x2 + 1].(x+ 1)2
= 2+

Ax+B

x2 + 1
+

c

(x+ 1)2
+

d

x+ 1
.
(

Ici : Ai+B = 2.i4/(1 + i)2

A = −1, B = 0, c = 1, d = −3, ?

)

3. Attention : ne pas oublier ni partie entière, ni parité s’il y a lieu

� Paire
1

x4 + 1
sur R. x4 + 1 = (x2 + 1)2− 2x2 ; d’où

1

x4 + 1
= 0+

ax+ b

x2 −
√

2x+ 1
+

cx+ d

x2 +
√

2x+ 1
.

Parité F (−x) = F (x) : plus que 2 coefficients inconnus ! x = 0, x = i : terminent.

(La méthode (*) ? ω annulateur de x2−
√

2x+1 ; ω2 =
√

2ω−1, aω+ b = 1/ ω2 +
√

2.ω+1 ...)

� Impaire
1

x(x2 − 1)2
(R ou C : c’est pareil ici). Ecrire F (x) = −F (−x) et unicité ... Ci-après.
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27.4 (*) En complément

27.4.1 Une fraction impaire
1

x(x2 − 1)2

On a : F (x) =
1

x(x2 − 1)2
=

1

x(x− 1)2(x+ 1)2
=
a

x
+

b

(x− 1)2
+

c

x− 1
+

d

(x+ 1)2
+

e

x+ 1
.

Puis F (x) = −F (−x) =
a

x
+

−b
(x+ 1)2

+
c

x+ 1
+

−d
(x− 1)2

+
e

x− 1
attention ! Donc par unicité

d = −b, e = c Ou
1

x(x2 − 1)2
=

1

x(x− 1)2(x+ 1)2
=
a

x
+

b

(x− 1)2
+

c

x− 1
+

−b
(x+ 1)2

+
c

x+ 1
.

Maintenant :

a est facile avec la ’méthode" ; b idem ; et ∗x, x =∞ est bon et donne c. (x = i pour vérifier

mais on peut aussi relire son calcul) soit
1

x(x2 − 1)2
=

1

x
− 1/4

(x+ 1)2
− 1/2

x+ 1
+

1/4

(x− 1)2
− 1/2

x− 1
.

27.4.2 Un cas de pôle d’ordre élevé
1

(x + 1)(x + 2)6

Notons :
1

(x+ 1)(x+ 2)6
=

a

x+ 1
+

b6
(x+ 2)6

+
b5

(x+ 2)5
+

b4
(x+ 2)4

+
b3

(x+ 2)3
+

b2
(x+ 2)2

+
b1

x+ 2
.

a est facile ; b6 aussi ; b1 aussi (avec ∗x, x =∞). On veut bien à la rigueur passer
b6

(x+ 2)6
à gauche

mais il reste 4 coefficients ! Il y a bien mieux, voici :

Posons x+ 2 = T ou x = −2 + T alors x+ 1 = −1 + T et on cherche :

1

(−1 + T ).T 6
=

a

−1 + T
+
b6
T 6

+ ...+
b1
T

, ou encore :
1

−1 + T
= b6 + b5.T + ...+ b1.T

5 + T 6.
a

−1 + T
.

Eh bien, l’écriture
1

−1 + T
= b6 + b5.T + ...+ b1.T

5 +T 6.G(T ) où T non en facteur dans le dénominateur

de G(T ) s’appelle "division suivant les puissances croissantes" de 1 par −1 + T (hors programme).

Mais ici, elle est connue car :
1− T 6

1− T = 1 + T + T 2 + T 3 + T 4 + T 5 !

Donc
−1

1− T = −1− T − T 2 − T 3 − T 4 − T 5 − T 6.
1

1− T . D’où b6 = b5 = ... = b1 = −1 et a = 1.

27.4.3 Equations réciproques

Une équation (1) a0.z
n + ...+ an=0, an 6= 0, est dite "réciproque" si a racine d’ordre k ⇒ 1/a aussi.

Or l’équation dont les racines sont
1

z
est :

a0

zn
+ ...+ an = 0 ou (2) an.z

n + ...a1z + +a0 = 0.

Donc : (1) et (2) ont les mêmes racines ⇔ a0

an
=

a1

an−1
= ... =

an
a0

= k avec k2 = 1, soit k = ±1.

L’équation est donc du type (I) si ak = an−k [x3 + 2x2 + 2x+ 1 = 0]

ou bien du type (II) si an−k = −ak [x6 − x5 + (α− 1)x4 + (1− α)x2 + x− 1 = 0].

Résolution : Une fois les racines éventuelles ±1 écartées, on arrive à une équation réciproque aussi,

de degré pair et du type (I) (sinon ±1 racine) soit b0x
2r + b1.x

2r−1 + ...+ b2r = 0 et

b0 = +b2r, etc. Ou encore : b0.[x
r +

1

xr
] + b1.[x

r−1 +
1

xr−1
] + ...+ br =0.

Posons y = x+
1

x
; alors x2 +

1

x2
= y2 − 2; y.(y2 − 2) = (x+

1

x
)(x2 +

1

x3
) = x3 +

1

x3
+ y donc

x3 +
1

x3
= y3 − 3y ; et en général xk+1 +

1

xk+1
= (x+

1

x
).(xk +

1

xk
)− (xk−1 +

1

xk−1
).

D’où une équation de degré moitié en y. Voir les 2 exemples.
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M+ Exercices: Fractions rationnelles R(x), C(x) PTSI

1. Calculer la dérivée n-ième de :
3x+ 2

x2 − 4
. Puis de :

1

x2 + 1
. (Décomposer sur C.)

2. Décomposer sur C :
1

x4 − 1
(paire) ;

3x− 1

x2(x+ 1)2
(x = j) ;

(x2 − x− 1)2

x2(x− 1)2
(partie entière non nulle) ;

puis (*)
n!

x(x− 1)(x− 2)...(x − n)
; (*)

1

x(x2 − 1)2
(impaire) ; (*)

1

(x+ 1)(x+ 2)6
.

3. (*) Décomposer

(a) sur C puis sur R :
3

x3 − 1
(à voir) ;

1

(x2 − 1)(x2 + 1)2
(paire).

(b) sur R :
1

x4 + x2 + 1

1

x3(1 + x3)
(T = x3)

x4 + 3x2 + 1

(x+ 1)2(x2 − x+ 1)

x5 + 1

(x2 + x+ 1)2
.

4. Pour P (x) = k(x− a1)
α1 ...(x − ap)αp , calculer P ′ (même avec coefficients complexes) ; puis

P ′

P
.

(*) Déduire que les racines de P ′ sont barycentres de celles de P , affectées de coefficients positifs.

(*) Puis interpréter ce résultat en termes de convexité. (Théorème de Lucas).

5. On cherche les polynômes P tels que P ′ divise P .

(a) Vérifier que O est le seul polynôme constant solution. Essayer de trouver d’autres exemples.

(b) 1ère méthode. Si n=degré(P ) > 1, vérifier que : n.P (x) = P ′(x).(x − a). (∗)
Alors, avec (∗) : Si b est une racine de P d’ordre k > 1, vérifier que b est racine de P ′ d’ordre
k − 1 et donc b = a. Conclure que P n’a qu’une seule racine (d’ordre n).

(c) 2ème méthode. Avec (∗) et la formule de Leibnitz, montrer (n−k).P (k)(x) = P (k+1)(x).(x−a).
Conclure que P (k)(a) = 0, si k 6 n− 1. Donc P (x) = K.(x − a)n.

(d) 3ème méthode (∗) donne
P ′(x)
P (x)

=
n

x− a(∗∗) d’une part. D’autre part
P ′(x)
P (x)

est connu (ex.

précédent ou cours). Par l’unicité de la décomposition (non démontrée, il est vrai), conclure.

[On peut aussi penser à une équation différentielle ; voir cependant que a peut être non réel.]

6. (*) C.N.S. pour que F (x) =
(x− a)(x− b)

(x− c)2(x− d)2 , c 6= d ait des primitives rationnelles ?

[Ind : Ecrire F (x) =
α

(x− c)2 +
β

x− c +
γ

(x− d)2 +
δ

x− d . On veut β = δ = 0 ; mais β + δ = 0

(avec ∗x, x =∞) donc C.N.S. β = 0. Voir alors que ceci se traduit -par équivalence- par :
1

c− a +
1

c− b =
2

c− d ; ceci signifiant que (a, b, c, d) sont en "division harmonique" -ou quadrangle

harmonique si complexes- avec, par ex., la relation équivalente : (a+ b)(c + d) = 2(ab + cd).]

Autre solution commode : identifier une primitive avec k/(x− c) + l/(x− d) et dériver celle-ci !



Chapitre 28

Intégrales simples f : [a, b]→ R

Il s’agit d’un segment [a, b] et d’une fonction bornée ; sinon "Intégrale généralisée". [Spé comme les cas
∫ 1

0

1√
x
.dx,

∫ 1

0

ln(x).dx (non bornée) ;
∫ +∞

1

dx

x2
, I(a) =

∫ +∞

0

dx

(1 + x2)(1 + xa)
=
I(a) + I(−a)

2
=
π

4
!]

28.1 Définition de
∫ b

a

f(x)dx en se limitant à f continue par morceaux

28.1.1 Cas des fonctions en escalier sur [a, b], a < b : aire

1. Définition

f définie sur [a, b] est dite "en escalier" s’il existe un nombre fini n et une subdivision ∆ :
x0 = a < x1 < ... < xn = b dite "adaptée" telle que f soit constante sur chaque ]xi−1, xi[.

Exemple :

� x 7→ E(x) est en escalier sur [0,
5

2
] et 0 < 1 <

3

2
< 2 <

5

2
est une subdivision adaptée.

� D’ailleurs : chaque fois qu’on rajoute un point nouveau à une subdivision
(on dit subdivision "plus fine") si la première était adaptée à f , la seconde aussi !

2. Propriété-Définition

Si f = ki sur ]xi−1, xi[ pour une subdivision adaptée ; alors Σ∆ =
n∑

i=1

(xi − xi−1).ki ne dépend

pas de la subdivision adaptée ∆ ; on l’appelle intégrale de f sur [a, b] et on note

∫ b

a
f(x)dx.

Démonstration. Se limiter simplement à voir que :

∫ 5/2

0
E(x).dx = 2.

Beaucoup de dém. seront omises mais faisons celle-ci : 1) D’abord un dessin !
2) Puis, soit ∆ = x0 = a < x1 < ... < xn = b une subdivision adaptée. Notons :

∆′ = ∆ ∪ x′ ; x′ ∈]xi−1, xi[. Alors Σ∆ = Σ∆′ car (xi − xi−1).ki = (xi − x′)ki + (x′ − xi−1)ki.
Et donc en ajoutant un nombre fini de points à ∆, de même.

3) Puis : si ∆1 et ∆2 sont deux subdivisions adaptées, Σ∆1 = Σ∆1∪∆2 = Σ∆2 .

28.1.2 Cas fondamental des fonctions continues sur [a, b], a < b

1. Théorème
Approximation uniforme des f continues par une fonction en escalier minorante ou majorante.

f étant C0([a, b]) ; ∀ǫ > 0, ∃ϕ et ψ en escalier : ϕ 6 f 6 ψ et ∀x ∈ [a, b], 0 6 ψ(x) − ϕ(x) < ǫ.

Admis. En particulier :

∀x ∈ [a, b], | f(x)− ϕ(x) |< ǫ donc : sup[a,b] | f − ϕ |6 ǫ ; on dit que l’approximation est uniforme.
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2. Conséquence. A partir de là, on voit sans peine que, si a < b, pour ϕ,ψ en escalier :

sup{
∫ b

a
ϕ(x)dx, ϕ 6 f} noté I↑ est égal à inf{

∫ b

a
ψ(x)dx, ψ > f} noté I↓.

Cette valeur commune par définition est appelée intégrale de f sur [a, b] et notée

∫ b

a
f(x)dx. 1

En résumé, on prend soit les fonctions en escalier minorantes ; soit les majorantes ; soit les deux.

Fonctions CM : x 7→ x.E(x)/2

2

2
0
0

28.1.3 (*) Extension au cas des fonctions continues par morceaux sur [a, b]

1. Exemples � Limiter les paragraphes 2,3 à :

∫ 3

0

x

2
.E(x).dx = 0 +

3

4
+

5

2
. Dessus, fig.3.

� Complément f(x) = Arctan(
1 + tan(x)

1− tan(x)
) = Arctan[tan(x+

π

4
)] π-périodique ; graphe ?

On peut la compléter aux points π/4 + k.π par la valeur 0, si on veut.

2. Définition. Théorème (facultatif) Cas a < b.

On dit que f est continue par morceaux sur [a, b] s’il existe un nombre fini N et une subdivision
(adaptée) a0 = a < a1 < ... < aN = b telle que f/]ai−1,ai[ soit continue et prolongeable

par continuité sur chaque [ai−1, ai], ce qui signifie : limites finies aux bornes a+
i−1 et a−i .

Notons : C[a, b] désigne l’ensemble des fonctions continues sur [a, b].
On notera : Esc[a, b] l’ensemble des fonctions en escalier sur [a, b].
CM[a, b] l’ensemble des fonctions continues par morceaux sur [a, b] : il contient les deux autres.

Alors Le théorème d’approximation par des fonctions en escalier s’étend aux fonctions CM[a, b].

3. Conséquence :

On définit l’intégrale de f ∈ CM[a, b] pour a < b comme ci-dessus2. De plus, on pose

si a = b (définition)

∫ a

a
f(x)dx = 0 ; et si a > b

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx.

Note Changer f en un point, donc en un nombre fini de points, ne modifie en rien l’intégrale.

28.1.4 Enoncé des propriétés de l’intégrale

1. Par rapport à l’intervalle. Relation de Chasles

Si f continue par morceaux : ∀a, b, c :

∫ c

a
=

∫ b

a
+

∫ c

b
qui se généralise.

2. Par rapport à la fonction. Linéarité

� Posons : I(f) =

∫ b

a
f(x)dx ; alors I(f + g) = I(f) + I(g); I(λ.f) = λ.I(f), λ ∈ R.

� Pour f : [a, b]→ C, (par exemple x 7→ eix), on définit :∫ b

a
f(x)dx =

∫ b

a
f1(x)dx + i

∫ b

a
f2(x)dx. Alors I(λ.f) = λ.I(f), même pour λ ∈ C.

1Pour la fonction 1Q sur [0, 1], on a aisément: I↑ = 0 < I↓ = 1 ; on dit "non intégrable au sens de Riemann".
2Pour d’autres fonctions aussi. f(0) = 0, f(x) = sin(1/x) sur [0,1] est : non continue par morceaux, mais a une intégrale !
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28.1.5 Inégalités

1. Théorème
Si a 6 b : f > O ⇒

∫ b

a
f(x)dx > 0 ; d’où f 6 g ⇒

∫ b

a
f(x)dx 6

∫ b

a
g(x)dx.

En particulier : a 6 b ⇒ |
∫ b

a
f(x)dx | 6

∫ b

a
| f(x) | dx.

Démonstration3 Attention : a 6 b

� Si f > O, ϕ = O est une fonction en escalier minorante et

∫ b

a
ϕ(x)dx = 0 6

∫ b

a
f(x)dx = I(f).

� Pour la déduction, voir que g − f > O ; donc I(g − f) = I(g)− I(f) > 0.

� Puis le cas particulier :
− | f |6 f 6| f | ; et donc −I(| f |) 6 I(f) 6 I(| f |) ; or −B 6 A 6 B donne | A | 6 B.

2. Remarque : Si | f |6 K et a 6 b, on peut majorer encore :

∫ b

a
| f(x) | dx 6 K.(b − a).

28.1.6 Valeur moyenne de f

1. Définition
On appelle valeur moyenne de f sur [a, b], a 6= b, la valeur µ =

1

b− a

∫ b

a
f(x)dx ;

si m 6 f 6 M , on a : µ ∈ [m,M ]. (Voir le rectangle de même aire).

Démonstration Permuter a et b n’a pas d’effet sur µ : on peut donc supposer a < b. Puis facile.

Exemples � Valeur moyenne de x 7→
√
R2 − x2 sur [0, R]

x
y

:

∫ b

a
f(x)dx = (b− a).µ

x
y

Avec l’interprétation géométrique (quart de cercle) l’intégrale vaut
π.R2

4
; =⇒ µ =

π.R

4
.

� Idem. Calculer par interprétation géométrique (demi-cercle à prouver)

∫ b

a

√
(x− a)(b− x)dx.

Remarque

Si a < c < b et f > 0 sur [a, c], f 6 0 sur [c, b], l’aire géométrique vaut

∫ c

a
f(x)dx+ |

∫ b

c
f(x)dx |.

2. Cas où f est continue sur [a, b]

• Propriété Dans le cas où f est continue sur [a, b], ∃c ∈ [a, b] tel que

∫ b

a
f(x)dx = (b− a).f(c).

Démonstration [Propriété essentielle pour une preuve de la partie suivante.]

On prend M = sup[a,b](f) = f(x1) par Théorème de continuïté sur un segment ; idem m = f(x2).

Par le Théorème ici des valeurs intermédiaires avec la continuïté : ∃c ∈ [x1, x2] ⊂ [a, b] : µ = f(c).

• Théorème : Hypothèses pour pouvoir affirmer

∫ b

a
f(x)dx > 0 [utilisé en Spé.]

Les 4 hypothèses suivantes : a < b; f > O; f 6= O; f continue ; entrainent

∫ b

a
f(x)dx > 0.

Démonstration

Soit x0 tel que f(x0) > 0. Avec ǫ =
f(x0)

2
> 0, comme f continue, ∃α > 0 tel que :

sur ]x0 − α, x0 + α[∩[a, b] intervalle de longueur l > 0, on ait f(x) > f(x0)− ǫ =
f(x0)

2
;

ailleurs f > O ; d’où :

∫ b

a
f(x)dx > l.

f(x0)

2
> 0.

(
Contre-ex. si on enlève la continuité

prendre f : x 7→ E(x), f 6= O sur [0, 1]

)

3Plus généralement, I(| f |) existe dès que I(f) existe ; par exemple pour les fonctions monotones ; 1/E(1/x) sur [0,1].
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28.2 Calcul d’intégrales

28.2.1 Théorème fondamental du calcul intégral : ici f C0

Théorème

Soit f continue sur I intervalle, a ∈ I. Alors F (x) =
∫ x

a

f(t)dt est dérivable de dérivée f .

Puis (aisé) : Toute primitive est du type G(x) = F (x) + cte et
∫ b

a

f(x)dx = [G(x)]ba

Au passage, toute fonction continue sur un intervalle y admet donc des primitives.

Démonstration. Déjà
∫ x

a

f(t)dx existe. Et ∃c ∈ [x0, x0 + h] : F (x0 + h)− F (x0) =
∫ x0+h

x0

f(t)dt = h.f(c)

avec la formule de la moyenne, f C0 (pas seulement continue par morceaux). Donc
1

h
(F (x0+h)−F (x0)) =

f(c) −→
h→0

f(x0) avec encore f C0, d’où F ′(x0) = f(x0). Ex :
∫ π/2

0

sin(x).dx = [−cos(x)]π/20 = +1 > 0.

C’est la 1ère façon de calculer une intégrale (aire) : avec les primitives (mieux vues au ch. suivant) ;
la 2ème : intégration par parties (ci-dessous) ; la 3ème : changement de variables (ci-dessous).

Conséquence
Soit maintenant f C0 de [a, b]→ R et u, v : J −→ [a, b], deux fonctions dérivables.

Alors φ(x) =
∫ v(x)

u(x)

f(t)dt est dérivable sur J et φ′(x) = f [v(x)].v′(x)− f [u(x)].u′(x).

Démonstration. Soit F une primitive même non explicite de f ; alors φ(x) = F [v(x)] − F [u(x)] est

dérivable par composition, etc. Ex : [f(t) =
1

ln(t)
],

d

dx
(
∫ x2

x

dt

ln(t)
) =

2.x

ln(x2)
− 1

ln(x)
=
x− 1

ln(x)
, x > 0, x 6= 1.

28.2.2 Intégration par parties notons
∫
f(x)dx pour

∫ x

a

f(t)dt + cte, primitive si fC0

Théorème
Soit ici x→ u(x), v(x), C1 sur un intervalle [u′, v′ continue par morceaux suffit], alors∫

u(x).v′(x)dx = u(x).v(x) −
∫
v(x).u′(x)dx ou

∫
u.dv = u.v −

∫
v.du; du = u′(x).dx.

Démonstration. C’est (u.v)′ = u′.v + u.v′ et on intègre. 4 exemples à bien voir :

•
∫
x.cos(x).dx = x.sin(x)−

∫
sin(x).dx ...

∫ π/2

0
x.cos(x).dx = [x.sin(x)]

π/2
0 −

∫ π/2

0
sin(x).dx =

π

2
−1,

car on a posé u(x) = x vu qu’on voulait le dériver (diminue le degré du polynôme) et v′(x) = cos(x).

•
∫
ln(x)dx =

∫
ln(x)ց.1րdx... u(x) = ln(x), v′(x) = 1 ⇒

∫
ln(x).dx = x[ln(x)− 1] + C •

∫
ex.x.dx = ...

•
∫ 1

0

Arctan(x)dx = [x.Arctan(x)]
1
0−
∫ 1

0

x

1 + x2
dx =

π

4
− 1

2
.
[
ln(1 + x2)

]1
0

=
π

4
− ln(2)

2
, u(x) = Arctan(x), v′(x) = 1.

28.2.3 Changement de variables

Théorème

1) Pour les primitives : soit x = ϕ(t), C1 ,
∫
f(x)dx =

∫
f [ϕ(t)].ϕ′(t)dt mais on impose

de plus ϕ bijective pour revenir à x : t = ϕ−1(x). 2) Tandis que pour les intégrales :

si ϕ(α) = a, ϕ(β) = b ;
∫ b

a

f(x)dx =

∫ β

α

f [ϕ(t)].ϕ′(t)dt, sans que ϕ soit forcément bijective.

Démonstration de 2). Voir, à droite, que Foϕ est une primitive. 4 exemples :

• f paire sur [−a, a]⇒
∫ 0

−a

f(x)dx =(
t = −x

dx = −dt

)

∫ t=0

t=a

f(−t).(−dt) =(
car f
paire

)

∫ a

0

f(t).dt.
∫ a

−a

f(x)dx = 2.

∫ a

0

f(x)dx.

• De même : f impaire sur [−a, a] ⇒
∫ 0

−a

f(x)dx = −
∫ a

0

f(t)dt ; et donc :
∫ a

−a

=

∫ 0

−a

+

∫ a

0

f(x)dx = 0.

•
∫

(1 + x2)3.x.dx primitive d’un polynôme ; développer (1 + x2)3 mauvais car
1

2
u3(x).u′(x) de prim.

u4

8
!

• Soit Ia =
∫ a

1/a

ln(x)

1 + x2
dx ; on n’a pas de primitive explicite mais t =

1

x
⇒ ∀a > 0, Ia = −Ia : Ia = 0.
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28.3 Sommes de Riemann (f C0 ou C0 par morceaux)

28.3.1 Méthode des rectangles (x0 = a < x1 < ... < xn = b, "pas" : max | xi − xi−1 |)

1. Notation. En général, subdivision ∆ régulière : xi − xi−1 =
b− a
n

. Puis sur [xi−1, xi] : f(ξi), avec

ξi ∈ [xi−1, xi] qui donne Σ∆ =

n∑

i=1

(xi − xi−1.f(ξi), appelée somme de Riemann. 4 On prendra :

� les bords droits : Σn =

n∑

k=1

b− a
n

.f(a+ k.
b− a
n

) � ou gauches : Σ′
n =

n−1∑

k=0

b− a
n

.f(a+ k.
b− a
n

)

� parfois les milieux (ici pareil que les tangentes aux milieux : méthode de Poncelet. Dessin après)

2. Théorème 5

Admis : Les sommes de Riemann Σn tendent vers

∫ b

a
f(t)dt si n→ +∞. D’où

Sn =
1

n
.
n∑

k=1

f(a+ k.
b− a
n

) −→
n→+∞

1

b− a

∫ b

a
f(t)dt = µ =

∫ 1

0
f [a+ (b− a).x]dx.

• Comment reconnaitre une somme de Riemann si le cas ? voir 3 choses :
1

n
, Σ et le défilé "

k

n
".

• On peut se limiter à changer la variable discrète ”
k

n
” en la variable continue x ∈ [0, 1] car on

a aussi : µ =

∫ 1

0

f [a+ (b− a).x]dx [à voir : t = a+ (b− a).x]. Mais ne pas écrire "x =
k

n
" !)

28.3.2 Exemple. Sn =
1

n+ 1
+

1

n+ 2
+ ...+

1

n+ n
=

1

n

∑

16k6n

1

1 + k
n

somme de Riemann :

de f(x) =
1

1 + x
C0 sur [0, 1] avec les bords droits ; ( ou de g(x) =

1

x
C0 sur [1, 2].) Par théorème :

Sn converge et Sn −→
n→+∞

∫ 1

0

dx

1 + x
=

∫ 2

1

dt

t
= ln(2). Analogues Sn =

n∑

k=1

n+ k

n2 + k2
−→
n→+∞

π

4
+
ln(2)

2

Sn =

n∑

k=1

1√
n2 + k2

−→
n→+∞

∫ 1

0

dx√
1 + x2

= [ln(x+
√

1 + x2]10 = ln(1 +
√

2) : avec cette primitive donnée !

28.3.3 Complément : méthodes des trapèzes de calcul approché (cf. 28.5.1)

1. Valeur approchée. Sur [xi−1, xi] au lieu de prendre (xi−xi−1)f(xi) (bord droit) ou (xi−xi−1)f(xi−1)

(gauche), on prend la
1

2
somme (xi − xi−1)

f(xi−1) + f(xi)

2
: l’aire du trapèze

(Base+ base).hauteur

2

qui donne la valeur approchée : Tn =
Σn + Σ′

n

2
=

1

n

(
f(a) + f(b)

2
+

n−1∑

k=1

f(a+ k
b− a
n

)

)
.

2. Dessin : (Note : équivaut à tangentes : )

4On considère aussi la somme : s∆ =

n∑

i=1

(xi − xi−1).mi, où mi = inf f[xi−1,xi] ; appelée somme de Darboux inférieure ;

et encore : S∆ =
n∑

i=1

(xi − xi−1).Mi, où Mi = sup f[xi−1,xi] ; appelée somme de Darboux supérieure.

5Un majorant de l’erreur est | ǫn |6 M1(b− a)2

n
, fC1 pour les bords droits. Mais pour les points milieux, ou méthode dite

"des tangentes" (aux milieux !), | ǫn |6 M2(b− a)3

24n2
, fC2 ; avec g(v) − g(u) = (v − u)g′(

u+ v

2
) +

(v − u)3

24
g(3)(c), c ∈ [u, v].
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28.4 Formule de Taylor Lagrange

28.4.1 Taylor avec reste intégral (*)

Soit f Cn+1 sur [a, b] ; alors f(b) = f(a) +
b− a

1!
f ′(a) + ...+

(b− a)n
n!

f (n)(a) +

∫ b

a

(b− t)n
n!

f (n+1)(t)dt.

Démonstration (en fait facile, par récurrence ; on dit aussi reste de Laplace.)

1. n = 0. On doit voir que :

∫ b

a
f ′(t)dt = f(b)− f(a) avec f C1 ; c’est clair.

2. Passage au rang n+ 1. On doit voir que :
∫ b

a

(b− t)n

n!
f (n+1)(t)dt =

(b− a)n+1

(n+ 1)!
f (n+1)(a) +

∫ b

a

(b− t)n+1

(n+ 1)!
f (n+2)(t)dt si f Cn+2 sur [a, b].

C’est sans problème, par parties, dès qu’on voit que : v′(t) =
(b− t)n

n!
, v(t) = − (b− t)n+1

(n+ 1)!
.

28.4.2 Taylor avec reste de Lagrange

1. Egalité de Taylor-Lagrange pour f : [a, b]→ R.

f Cn+1([a, b],R); ∃c ∈ [a, b]: f(b) = f(a) +
b− a

1!
f ′(a) + ...+

(b− a)n
n!

f (n)(a)+
(b − a)n+1

(n+ 1)!
f (n+1)(c).

Démonstration (∗) : Soit m = inf[a,b]f
(n+1),M = sup[a,b]f

(n+1) où f (n+1) C0 [a, b]→ R. Aisément

Y =
(n+ 1)!

(b− a)n+1
.

∫ b

a

(b− t)n
n!

f (n+1)(t)dt ∈ [m,M ]. Le théorème des valeurs intermédiaires pour

f (n+1), donne : ∃c ∈ [a, b] tel que Y = f (n+1)(c) ; ou
∫ b

a

(b− t)n

n!
f (n+1)(t)dt =

(b− a)n+1

(n+ 1)!
f (n+1)(c).

2. Exemples importants

• Retenons : Le cas n = 0 de la formule de T-L : ∃c ∈ [a, b] tel que f(b) = f(a) + (b− a)f ′(c) est

le Th. des Accr. finis ! (sauf qu’on sait même ∃c ∈]a, b[ si a 6= b avec des hypothèses moins fortes).

• Prenons b = x ;

n∑

k=0

(x− a)k
k!

f (k)(a) est la "partie polynômiale" (de la formule de Taylor) connue.

• Pour f = exp, a = 0, b = x ; on va prendre x = 1 (puis x = −10 ou x = +100 ; non proche de 0)

Alors : | ex − (1 +
x

1!
+
x2

2!
+ ...+

xn

n!
) |6 | x |

n+1

(n+ 1)!
.K où K = sup[0,x](e

t) ne dépend pas de n.

Pour a fixé, n→ +∞, on sait
an

n!
−→

n→+∞
0 ; d’où par exemple Sn = 1 +

1

1!
+

1

2!
+ ...+

1

n!
−→

n→+∞
e.

3. Complément : Inégalité de Taylor-Lagrange pour f : [a, b]→ R2

Au lieu de l’égalité de T-L, on utilise l’inégalité (moins simple) de T-L : En effet, l’inégalité est

vraie pour f : R→ C ou f : R→ R2. Mais l’ égalité des accroissements finis n’est pas vraie pour
f : R→ C. Exemple : f(x) = eix sur [0, π] : f(π)− f(0) = π.f ′(c) impossible avec les modules !

Inégalité de (T-L) : | f(b)−
n∑

k=0

(b− a)k
k!

f (k)(a) | 6 | b− a |n+1

(n+ 1)!
sup[a,b] | f (n+1) |, f Cn+1[a, b].

4. Note (*) : Différence entre le reste de Lagrange et celui de Young ? (ici : DL, ch 30)

• Alors que le reste de Lagrange ne suppose pas x− a "petit" : Bien relire l’exemple précédent.
• Celui de Young (x− a)n.ǫ(x) n’est connu que si x proche de a. (ch.Développements Limités.)

� Retenons l’égalité de T-L pour f : [a, b]→ R, qui généralise les Accroissements Finis.
� L’inégalité s’en déduit aisément (et se démontre pour f : [a, b]→ R2 à partir du reste intégral).
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28.5 Compléments

28.5.1 (*) Majorant de l’erreur dans la méthode des trapèzes

Trapèzes :6 � D’abord : g(v) − g(u) = (v − u).g
′(u) + g′(v)

2
− (v − u)3

12
.g(3)(c), c ∈ [u, v].

(Prendre h(x) = g(x) − g(u)− (x− u)g
′(u) + g′(x)

2
−K(x− u)3, K tel que h(v) = 0.)

� Puis avec

∫ v

u
f(x)dx = g(v) − g(u) arriver à : | ǫn | 6

M2(b− a)3
12n2

, fC2, M2 = sup[a,b] | f” |.

28.5.2 (*) Problème corrigé : intégrales de Wallis

1. Soit In =

∫ π/2

0
sinn(x)dx ; alors In =

∫ π/2

0
cosn(x)dx.

Obtenu avec t =
π

2
− x; (et dessiner cos2, sin2 sur [0,

π

2
])

2. Puis on a la formule de récurrence : n.In = (n− 1).In−2 avec I0 =
π

2
, I1 = 1.

En effet

In =

∫ π/2

0
sinn−1(x)ց.sin(x)րdx = [−cos(x).sinn−1(x)]

π/2
0 +(n−1).

∫ π/2

0
cos(x).sinn−2(x).cos(x)dx

et en écrivant cos2(x) = 1− sin2(x), on a : In = 0 + (n− 1)[In−2 − In] pour n > 2 ... (Finir !)

3. Celà donne : I2 =
1

2
.I0 =

1

2
.
π

2
I4 =

3

4
.I2 =

3.1

4.2
.
π

2
et I3 =

2

3
I1 =

2

3
I5 =

4

5
.I3 =

4.2

5.3
.

4. Ensuite n.In.In−1 =
π

2
En effet : la suite n.In.In−1 est stationnaire (aisé) et vaut 1.I1.I0.

5. Puis In ∼
n→+∞

√
π

2n
En effet sinn−2

> sinn−1
> sinn sur [0,

π

2
] donne In−2 > In−1 > In > 0 ;

d’où In ∼
n→+∞

In−1 en divisant par In : donc n.I2
n ∼
n→+∞

π/2 ...

6. D’où Cp
2p ∼

p→+∞

4p

√
π.p

[Formule de Wallis utile pour montrer la formule de Stirling donnant

un équivalent de n!]. En effet :

I2p =
(2p− 1)(2p− 3)...3.1

(2p)(2p− 2)...4.2
.
π

2
=

2p(2p− 1)(2p− 2)(2p− 3)...3.2.1

[(2p).(2p− 2)...4.2]2
.
π

2
=

(2p)!

22p.(p!)2
.
π

2
∼

p→+∞

√
π

2.2p
...

28.5.3 (*) Précisions

� Quand f continue, x 7−→
∫ x

a
f(t)dt est dérivable : primitive de f . (Théorème fondamental.)

� Quand f est seulement continue par morceaux (donc bornée sur [a, b]), on a quand même (aisé)

F : x 7−→ F (x) =

∫ x

a
f(t)dt est déjà continue [on met la lettre t sous l’intégrale]. car :

| F (x0 + h)− F (x0) | = |
∫ x0+h

x0

f(t).dt | 6 |
∫ x0+h

x0

| f(t) | .dt | 6 K. | h | ; (K majorant de | f |).

Et là où f continue (donc sauf quelques points ), F dérivable. (cf. x 7→
∫ x

0
E(t).dt sur [−1, 2].)

6 Et si f a une convexité constante, encadrement avec la méthode "des tangentes" ! On peut faire aussi un bary-
centre de la méthodes des trapèzes Tn et de la méthode des points milieux ou des tangentes In : c’est la méthode de Simpson.
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M+ Exercices: Intégration des fonctions: R→ R PTSI

1. Par parties.
∫
ln(x).dx,

∫
Arctan(x)dx,

∫
Arcsin(x)dx (

∫
x.dx√
1− x2

: type
k.u′√
u(x)

).

2. Changement de variable : (a)
∫
x.(1 + x2)5.dx (avec u = 1 + x2).

(b) Si f ∈ CM, T -périodique ; montrer :
∫ a+T

a

f(x)dx =

∫ T

0

f(x)dx =

∫ T/2

−T/2

... : indépendant de a.

(c) (*) Avec x = tan(t), t ∈]− π/2, π/2[, montrer que : I =

∫ √
3

−1

dx

(1 + x2)3/2
=

√
3 +
√

2

2
> 0.

3. (*) Calcul des limites des suites [on reconnaitra que ce sont des sommes de Riemann] :

(a) Avec
n∑

k=1

k2 ∼
n→+∞

n3

3
et Sn =

1

n

n∑

k=1

(
k

n
)2, déduire lim

n→+∞
Sn (

∫ 1

0

x2.dx =
1

3
Archimède.)

(b) Sn =
1

n
.[ln(1 +

1

n
) + ...+ ln(1 +

n− 1

n
)]. [Ajouter ln(1 +

0

n
) bords gauches,

∫
ln(t)dt vu.]

(c) Sn =
n∑

k=1

k

n2
.sin(

kπ

n
). [On calcule :

∫ 1

0

x.sin(π.x)dx par parties.]

(d) Sn =

n∑

k=1

k2

n2.( 3
√
n3 + k3)

. [Indication :
∫

[u(x)]−1/3.u′(x).dx =
3

2
u−1/3+1 + Cte.]

(e) Sn =
1

n2
.

n∑

k=1

.
√
k(n− k). [Poser x =

1 + sin(t)

2
dans l’intégrale ou interprétation !]

(f) Pn =

n∏

k=1

(
1 +

k2

n2

) 1
n

. [ln(Pn) ; parties et
x2

x2 + 1
= 1− 1

x2 + 1
] (g*) Pn =

1

n
.

n

√
(2n)!

n!
.

4. (*) Taylor-Lagrange. Soit un = 1− 1

2
+

1

3
+ ...+(−1)n−1 1

n
. vn = 1− 1

3
+

1

5
+ ...+(−1)n−1 1

2n− 1
.

(a) Sur une droite, dessiner u1, u2, u3, u4.... Que penser si on considérait xn = u2n, yn = u2n+1 ?

(b) On donne pour x ∈]− 1, 1] : ln(1 + x) = x− x2

2
+
x3

3
+ ...+ (−1)n−1.

xn

n
+

(−1)n.xn+1

(n+ 1).(1 + c)n+1

où c ∈ [0, x] ; c’est l’égalité de (T-L). En déduire | ln(2)− un | 6 1/(n + 1).

(c) Plus simple. Intégrer sur [0,X] : 1− x+ x2 + ...+ (−x)n−1 =
1

1 + x
− (−1)nxn

1 + x
. Puis : X = 1.

Montrer que : 0 6 In =

∫ 1

0

xn

1 + x
dx 6

∫ 1

0

xn.dx. Conclure. (*) Cas de (vn) avec Arctan ?

5. (*) "Lemme de Riemann-Lebesgue". Soit Iλ =

∫ b

a

f(x)sin(λ.x)dx. Allure de x 7→ sin(8.x) ?

On prend f C1. Montrer que Iλ −→
λ→+∞

0 en justifiant avec soin (par parties) que : | Iλ |6
Cte

λ
.

6. (*) Dans le cas f : [a, b]→ C, (a 6 b) l’inégalité |
∫ b

a

f(x)dx | 6
∫ b

a

| f(x) | dx est vraie (modules).

Une preuve astucieuse : (*) G = eiα

∫ b

a

f(x)dx =

∫ b

a

eiαf(x)dx =

∫ b

a

f1(x)dx 6

∫ b

a

| f1(x) | dx ...



Chapitre 29

Calcul de primitives

29.1 Primitives usuelles

29.1.1 Tableau (sh, ch, th, coth : alléger ; Argsh ... : hors programme)

Fonctions Primitives Domaines et remarques

f(x) = xα





F (x) =
xα+1

α+ 1
+ cte ; sauf si

α = −1 :

∫
dx

x
= ln(| x |) + C





Ex :

∫
dx√
x

= 2.
√
x+ cte : ]0,+∞[

∫
dx

x2
=
−1

x
+ C : ]−∞, 0[; ]0,+∞[

Rationnelles :

.
1

x2 + 1
Arctan(x) + cte

∫
dx

x2 + a2
=

1

a
.Arctan(

x

a
) + cte

.
1

x2 − 1
On décompose sur R

∫
dx

x2 − a2
=
−1

2a
.ln | x+ a

x− a | +cte

Trigonométriques :

sin(x), cos(x) − cos(x)+ cte; +sin(x)+ cte

∫
sin(ax+ b)dx =

−1

a
cos(ax+ b)+ c

1

cos2(x)
= 1 + tan2(x) tan(x) + cte ⇒

∫
tan2(x)dx = tan(x)− x+ cte

1

sin2(x)
= 1 + cot2(x) − cot(x) + cte ⇒

∫
cot2(x)dx = −cot(x)− x+ cte

sh(x), ch(x) + ch(x) + cte; +sh(x) + cte

∫
sh(ax+ b)dx =

1

a
ch(ax+ b) + cte

1

ch2(x)
= 1− th2(x) th(x) + cte ⇒

∫
th2(x)dx = x− th(x) + cte

1

sh2(x)
= coth2(x)− 1 − coth(x) + cte ⇒

∫
coth2(x)dx = ...

Avec le ln :
u′(x)
u(x)

ln | u(x) | +cte





Une primitive de f [u(x)]u′(x) est F [u(x)]
une primitive de f [u(x)] est inconnue !∫
uα(x).u′(x).dx =

uα+1

α+ 1
+ c si α 6= −1

.

. tan(x) − ln | cos(x) | +cte Là où le dénominateur est non nul.

. cot(x) + ln | sin(x) | +cte Idem.

. th(x) + ln[ch(x)] + cte Rappel ch > 1 sur R.

. coth(x) + ln | sh(x) | +cte Là où le dénominateur est non nul.

Par parties : ln(x) x[ln(x)− 1] + cte Idem :

∫
Arctan(x).dx.

195
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Irrationnelles : Seule la 1ère au programme

1√
1− x2

Arcsin(x)+cte = −Arccos(x)+Cte
∫

dx√
a2 − x2

= Arcsin(
x

a
) + cte, a > 0

1√
1 + x2

Argsh(x)+cte = ln(x+
√
x2 + 1)+cte

∫
dx√
x2 + a2

= ln(x+
√
x2 + a2) + cte

1√
x2 − 1

Dépend des intervalles (x 6 −1 ?)

∫
dx√
x2 − a2

= ln | x+
√
x2 − a2 | +cte

Attention une primitive de | f ′ | n’est pas | f | !

29.1.2 Pour retenir

1. Homogénéïté

� Dans

∫
dx

x2 + a2
, si x en [mètres], a aussi ; dx aussi ; le résultat est homogène à [1/mètres] ; d’où

la présence du terme ”
1

a
” devant. Tandis que :

� Dans

∫
dx√
a2 − x2

, si x, a, dx en [m.] : résultat homogène à un pur nombre ; rien devant Arcsin.

2. Démonstration des formules encadrées

�

∫
dx

x2 + a2
, poser x = a.t, a 6= 0 dx = a.dt ...

�

∫
dx

x2 − a2
a 6= 0, décomposer

1

x2 − a2
sur R.

�

∫
dx√

a2 − x2
poser x = a.t ; on a besoin de a > 0 ... Et

π

2
−Arccos(t) = Arcsin(t) !

� Celle-ci et la suivante non faites ... (l’énoncé la donnerait) :

∫
dx√
x2 + a2

, poser x = a.t, a > 0.

� De même

∫
dx√
x2 − a2

... voir que :

∫
dx√
x2 − 1

= ln | x+
√
x2 − 1 | +cte [deux intervalles].

29.1.3 Des exemples (surtout 1, 2)

1. Par linéarisation connue :

∫
sin2(x).dx =

∫
1− cos(2x)

2
.dx =

1

2
.[x− sin(2x)

2
] + C. Mais :

2. Sans linéariser si puissance impaire

∫
cos3(x)dx =

∫
[1−sin2(x)].d(sin(x)) = sin(x)− sin

3(x)

3
+C.

3. (*) Calcul de F (x) =

∫
x.tan2(x)dx par parties ! u(x) = x est un polynôme, mélangé à de la

trigonométrie. On dérive u(x) ; on sait intégrer v′(x) = tan2(x) car on a tan(x) primitive de

1 + tan2(x) donc v(x) = tan(x)− x primitive de tan2(x). D’où (avec des constantes différentes

par intervalles) : F (x) = x.[tan(x)− x]−
∫

[tan(x)− x].dx = x.tan(x) + ln | cos(x) | −x
2

2
+ cte.

4. (*) Calcul de F (x) =

∫
eArctan(x).dx

(1 + x2)3/2
par changement de variables : t = Arctan(x) ou bien :

x = tan(t) avec t ∈]− π/2, π/2[ (choix) dx =
dt

cos2(t)
: I =

∫
et.dt. | cos3(t) |

cos2(t)
=

∫
et.cos(t).dt.

A ce stade, on sait finir (cf. III). Cherchons une primitive, type : et[a.cos(t) + b.sin(t)] ; correct

si a = b = 1/2 (en dérivant). Il reste à revenir à x : cos(t) = +
1√

1 + tan2(t)
=

1√
1 + x2

;

sin(t) = tan(t).cos(t) =
x√

1 + x2
... D’où F (x) =

1 + x

2.
√

1 + x2
.eArctan(x) + cte.
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29.2 Primitive des fractions rationnelles

29.2.1 Théorème [Programme allégé jusqu’à la fin du chapitre]

On sait trouver une primitive d’une fraction rationnelle : on la décompose sur R sauf si elle est impaire !

Cas d’une fraction en x, impaire, poser d’abord t = x2 ou bien f(x)dx invariant en changeant x en −x.

Exemple :

∫
x.dx

1 + x4
=

∫
dt

2(1 + t2)
=

1

2
.Arctan(x2) + cte. 1 minute !

29.2.2 Démonstration

1. La partie entière est un polynôme ; s’intègre sans problème.

2. Les éléments simples de 1ère espèce :
1

(x− a)n connu





∫
(x− a)−n.dx =

(x− a)−n+1

−n+ 1
si n 6= 1

∫
dx

x− a = ln | x− a | +cte

A noter que la première ligne vraie même si a ∈ C.

3. Eléments simples de 2ème espèce :
ax+ b

[x2 + px+ q]n
. Ici, 3 choses à savoir :

• Faire la répartition suivante :
ax+ b

[x2 + px+ q]n
=
a

2
.

2x+ p

[x2 + px+ q]n
+

cte

[x2 + px+ q]n
.

Le premier numérateur [...]′ prend tous les x ; le second une constante à ajuster.

• 1er terme facile du type
a

2
.
u′

un
.

• 2e difficile : trinôme sous forme canonique [x2 + px+ q] = [(x− α)2 + β2] ; cf. après.

Exemple

∫
dx

x.(x2 − x+ 1)
[non impaire !]

On donne le résultat de la décomposition f(x) =
1

x.(x2 − x+ 1)
=

1

x
+
−x+ 1

x2 − x+ 1
.

• le partage :
−x+ 1

[x2 − x+ 1]
=

−1
2 (2x− 1)

[x2 − x+ 1]
+

1
2

[x2 − x+ 1]

• le 1er terme a pour primitive facile : J =
−1

2
ln[x2 − x+ 1]. L’autre (difficile) vaut :

• K =

∫
dx

[x2 − x+ 1]
=

∫
d(x− 1/2)

[(x− 1/2)2 + (
√

3/2)2]
(forme canonique utile maintenant).

Ici, en fait, elle est dans le tableau :

∫
dt

t2 + a2
=

1

a
.Arctan(

t

a
) +C.

D’où F (x) =
1

2
. ln

x2

x2 − x+ 1
+

1√
3
.Arctan(

2x− 1√
3

) + C. (ln(x2) = 2.ln | x | !)

29.2.3 Fin du cas général :

∫
dt

[t2 + β2]n
, n > 2

On en était à

∫
dx

[(x− α)2 + β2]n
. t = x− α ramène à In =

∫
dt

[t2 + β2]n
.

Cas n = 1 (l’exemple) connu : tableau. Et 2 méthodes, n > 2 :

1) On peut poser t = β.tan(ϕ), ϕ ∈]− π/2, π/2[ ou x− α = β.tan(ϕ), ϕ ∈]− π/2, π/2[.

Arriver à :
1

β2n−1
.

∫
cos2(n−1)(ϕ).dϕ et, la puissance étant paire : linéariser ...

2) Ou partant de In−1, relier In−1 et In [t2 = t2 + β2 − β2] ; revenir à x.
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On peut s’entrainer sur un des exemples :

A =

∫
dx

[x2 + x+ 1]2
; B =

∫
dx

[x2 + 1]3
. Trouver :

A =
4.
√

3

9
.Arctan

2x+ 1√
3

+
1

3

2x+ 1

x2 + x+ 1
+cte. B =

1

4

x

[x2 + 1]2
+

3

8

x

x2 + 1
+

3

8
Arctan(x)+cte.

29.3 Polynômes et fractions rationnelles en sin(x), cos(x)...

29.3.1 Monômes

∫
cosp(x).sinq(x)dx

1. Si p et q sont pairs, on linéarise [rien de plus simple pour primitive 6= intégrales de Wallis !]∫
cos2(x).sin4(x).dx =

1

16
[x− sin(2x)

4
− sin(4x)

4
+
sin(6x)

12
] + cte.

2. Si p ou q impair, la linéarisation est médiocre car il y a bien plus simple. Exemple :
∫
cos2(x).sin3(x).dx =

∫
cos2(x).sin2(x).sin(x).dx =

∫
cos2(x).sin2(x).d[−cos(x)] donc

t = cos(x) facile avec sin2(x) = 1− cos2(x) ! ... F (x) =
cos5(x)

5
− cos3(x)

3
+ cte.

3. Remarque

∫
chp(x).shq(x)dx analogue, sauf qu’au lieu de linéariser, mettre des ex, e−x ...

29.3.2 Mélange d’exponentielles

1. Trois façons pour

∫
ex.sin(x)dx :

� Par parties, deux fois : I = ex.sin(x)−
∫
ex.cos(x)dx [ex intégré ; puis intègré à nouveau !]

I = ex.sin(x)− ex.cos(x)− I + cte ! d’où I =
ex[sin(x)− cos(x)]

2
+ cte.

� Avec des coefficients indéterminés :

On cherche une primitive du type ex.[a.cos(x) + b.sin(x)] ; on dérive et on identifie ...

� Avec C : I = ℑm
∫
e(1+i)xdx = ℑme(1+i)x

1 + i
+ cte = ℑmex

2
.[(cos(x) + isin(x))(1 − i)] + cte

d’où I =
ex

2
[sin(x)− cos(x)] + cte.

2. Exercice I =

∫
x.ex.cos(x)dx [et analogues]

P (x) = x est un polynôme mélangé avec de la trigonométrie. Par parties, en dérivant P

u(x) = x, v′(x) = ex.cos(x) ; alors : v(x) = ... [ce qui précède, au choix !]

d’où I =
x.ex

2
[cos(x) + sin(x)]− ex

2
sin(x) + C.

3. Remarque

∫
sin(ax+ b).cos(cx+ d)dx ? On sait transformer un produit en somme !

29.3.3 Fractions rationnelles en sin(x), cos(x)

1. Règles de Bioche Le changement de variables sera donné.

Soit I =

∫
dx

sin(x).(1 + 2cos(x))

{
la quantité encadrée (avec le "dx") étant appelée
"élément différentiel" ou "forme différentielle".
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Règles de Bioche :
� Si l’élément différentiel est INVARIANT en changeant x en −x, poser t = cos(x);
� Si invariance en changeant x en π−x, ici t = sin(x); (x n’est pas forcément dans [−π/2, π/2] !)
� Si invariance en changeant x en π + x, poser t = tan(x) ; (idem...)
� Si pas d’invariance, poser t = tan(x/2). On arrive à une fraction rationnelle en t.

. Ex : t = cos(x)⇒ I =

∫
dx

sin(x).(1 + 2cos(x))
=

∫ −sin(x).dx

−sin2(x).(1 + 2cos(x))
=

∫
dt

2.(t2 − 1)(t+ 1
2)

I =
1

6
ln(1− cos(x)) +

1

2
ln(1 + cos(x)) − 2

3
ln | 1 + 2cos(x) | +C

. Idem avec t = sin(x), J =

∫
dx

sin2(x).cos(x)
=
−1

sin(x)
+

1

2
ln

1 + sin(x)

1− sin(x)
+ C et

. Avec t = tan(x), dt = (1 + t2).dx ! K =

∫
dx

sin2(x).cos2(x)
= tan(x)− 1

tan(x)
+ C.

2. Trois exercices à noter

•
∫

dx

sin(x)
= ln | tan(

x

2
) | +C. Poser t = cos(x) est bon ; mais exceptionnellement t = tan(

x

2
)

est plus rapide : sin(x) =
2t

1 + t2
; dt = [1 + tan2(

x

2
)].
dx

2
⇒ dx =

2.dt

1 + t2
...

•
∫

dx

cos(x)
= ln | tan(

x

2
+
π

4
) | +C car

∫
dx

cos(x)
=

∫
d(x+ π

2 )

sin(x+ π
2 )
... ramène à la précédente !

• I =

∫ 2.π

0

dx

2 + cos(x)

On pose ici : t = tan(
x

2
) ; cos(x) =

1− t2
1 + t2

; trouver :
2√
3
Arctan

tan(x/2)√
3

+C comme primitives.

Mais pour l’intégrale (fonction C0 sur un segment), le changement de variable cause un saut en
x/2 = π/2 ou x = π !

Remède : I =
∫ π

−π

dx

2 + cos(x)
(période) = 2.

∫ π

0

dx

2 + cos(x)
(paire) et prendre π− : I =

2.π√
3
> 0.

29.3.4 Si fonctions hyperboliques : hors programme

1. (*) Par analogie. Exemple : pour I =

∫
ch(3x)

1 + sh(x)
dx ; poser t = sh(x) ... car

dans J =

∫
cos(3x)

1 + sin(x)
dx, fraction rationnelle en cos(1.x), sin(1.x) on poserait t = sin(x).

[Trouver I = 2.sh2(x)− 4.sh(x) + 5.ln | sh(x) + 1 | +cte.]

2. Simplement, le cas t = tan(x/2) est plutôt transformé en t = ex, plus connu que t = th(x/2).

3. Deux exercices : •
∫

dx

sh(x)
= ln | thx

2
| +C [t = th

x

2
, dt =

(1− t2)dx
2

, sh(x) =
2.t

1− t2 ]

Alors que pour •
∫

dx

ch(x)
, on ne peut se ramener, ici, à la précédente ! Au choix :

∫
dx

ch(x)
= Arctan[sh(x)] + C = 2.Arctan[ex] +D = 2.Arctan[th(x/2)] + C = Arcsin[th(x)] + C.

[cf. Ex. ch12 sur les loxodromies de la sphère pour les primitives de 1/cos(x), 1/ch(x).]

29.4 Et irrationnelles ?

Hors programme aussi ; sauf 1/
√

1− x2 et 1/
√
a2 − x2 du tableau.
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M+ Exercices: Primitives des fonctions: R→ R PTSI

1. Des primitives à bien voir

(a)

∫
x4(1 + x5)3dx (b)

∫
ln(x)

x
dx (c)

∫
dx

x.ln(x)
(d) In =

∫
lnn(x)dx

2. Puis à bien voir aussi [(a) : linéarisation inutile ! (b) : linéariser ...]

(a)

∫
sin3(x)dx (b)

∫
cos2(x)dx (c)

∫
e2x.cos2(x)dx (d)

∫
ch(x).cos(x)dx

3. Fractions rationnelles : en décomposant sur R ; sauf si f(x) est impaire : poser d’abord t = x2

(a)

∫
x3 − x

x4 + 3x2 + 2
dx (b)

∫
x7

1 + x4
dx (c)

∫
3x2 − 3x− 10

(x− 2)(x2 − 4x+ 5)
dx

(d)

∫
x.dx

x6 + 1
(I =

1

2
[
1

3
.ln(1 + t)− 1

6
ln(t2 − t+ 1) +

√
3

3
.Arctan

2t− 1√
3

] + cte, où t = x2 ...)

4. (*) Fractions rationnelles en sin(x), cos(x) (changement de variable donné)

(a)

∫
dx

cos3(x)
(b)

∫
sin(x)

cos(3x)
dx (c)

∫
tan(x)

1 + tan(x)
dx (d)

∫
1− sin(x)

sin(x)[1− cos(x)]dx

(e)

∫
tan(x)

1 + sin(x)
dx (f)

∫
tan(x).dx

cos(x)[cos(x) + sin(x)]
(g)

∫
dx

cos4(x) + sin4(x)
, t = tan(2x).

5. (*) Parties ou changement de variables (guidés)

(a)

∫
Arcsin(x)dx (b)

∫
Arcsin 3

√
x.dx ( 3

√
x = sin(t), | t |6 π/2) (c)

∫
x2.Arcsin(x)√

1− x2
dx

(d)

∫
Arctan

√
x+ 1

x+ 3
dx (parties et t =

√
) (e)

∫
Arctan

√
1− x2dx(... puis x = sin(t), | t |6 π/2).

6. (*) Des irrationnelles avec indications (obtenir une fraction rationnelle)

(a)

∫
x.

√
x− 1

x+ 1
dx (t =

√
) (b)

∫ √
x+ 2

x+ 1
dx (t =

√
) (c)

∫
x√

x4 + x2 + 1
dx (t = x2...)

(d)

∫
dx√

ax2 + bx+ c
(forme canonique) (e)

∫ √
ax2 + bx+ c.dx (parties v′ = 1, v = x+

b

2a
)

(f)

∫
dx

(α.x+ β).
√
ax2 + bx+ c

(t =
1

αx+ β
) (g)

∫
dx

x+
√
x2 + x+ 1

(X = x+
1

2
=

√
3

2
sh(t)

ou :

√
3

2
tan(ϕ) avec | ϕ |< π/2 ou bien :

√
x2 + x+ 1 = x+ λ) ! (h)

∫
x.dx√

x2 − 4x+ 3

(idem avec ch ou bien :
√
x2 − 4x+ 3 = t.(x− 1).) (i)

∫ 3
√
x+ 1

x+ 2
dx (ici t = 3

√
x+ 1).



Chapitre 30

Développements limités. Formule de
Taylor-Young

30.1 Généralités

30.1.1 Un problème

On sait bien que : sin(x) ∼
x→0

x ; mais : lim
x→0

sin(x)− x
x3

= ? (x3 pour respecter l’imparité).

C’est un problème "local" ; c’est-à-dire au voisinage d’un point, qui demande plus de précision.

30.1.2 Exemple fondamental (avec 1 + q + ... + qn) et définition

1. On peut écrire
1

1− x = 1 + x+ x2 + x3 + ...+ xn + xn.ǫ(x), ǫ(x)−→
x→0

0 vu que ǫ(x) =
x

1− x .

Puis, changeant x en −x, n fixé : (−1)nǫ(−x) = ǫ1(x) avec ǫ1(x)−→
x→0

0 ; que l’on continue à

noter ǫ(x) (mais ce n’est pas le même) et donc : ǫ(x)− ǫ(x) = ǫ(x) pour ǫ1(x)− ǫ2(x) = ǫ3(x) !

D’où aussi
1

1 + x
= 1− x+ x2 − x3 + ...+ (−1)nxn + xn.ǫ(x), ǫ(x)−→

x→0
0.

2. Remarques. Ci-dessus x→ 0 ; mais plus généralement si x→ x0, ǫ(x)−→
x→x0

0, h = (x−x0) :

– Dans la suite finie 1, h, h2, ..., hn, hn.ǫ(h) ["reste"] chaque terme est négligeable/précédent.

– Notations de Landau. On note : si ǫ(x)−→
x→x0

0, (x− x0)
n.ǫ(x) = o[(x− x0)

n] ou bien si

g(x) = o[(x− x0)
n],

g(x)

(x− x0)n
−→

x→x0

0 ; alors que
O[(x − x0)

n]

(x− x0)n
est seulement bornée.

3. Définition. On dit que f admet un développement limité à l’ordre n en x0 ∈ R (Dln) :

si on a une égalité f(x) = a0 + a1(x− x0) + ...+ an(x− x0)
n + (x− x0)

n.ǫ(x), ǫ(x)−→
x→x0

0

ou avec les notations de Landau : f(x) = a0 + a1(x− x0) + ...+ an(x− x0)
n + o[(x− x0)

n].

– Si on a un Dln, alors on a un Dln−1 car an(x− x0)
n + (x− x0)

n.ǫ(x) = (x− x0)
n−1.ǫ∗(x).

– On peut poser, si nécessaire, ǫ(x0) = 0 (prolongement par continuïté).

– Si on a un premier ak 6= 0 alors f(x) ∼
x→x0

ak(x− x0)
k. Retenir (notations de Landau) :

1

1− x = 1 + x+ x2 + x3 + ...+ xn + o(xn)
1

1 + x
= 1− x+ x2 − x3 + ...+ (−1)n.xn + o(xn).

30.1.3 Unicité

1. Théorème : Si f possède un Dln en x0, il est unique.

201
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Démonstration

• On a DL0 ⇔ f(x)−→
x→x0

a0 (et on prolonge par continuïté si utile) ; a0 = f(x0) unique.

• Puis Dl1 ⇔ f dérivable en x0 de dérivée a1 (à voir !) ; a1 = f ′(x0) unique.

• Fin de l’unicité : [f(x)-partie polynômiale de degré 6 k − 1] / (x− x0)
k −→
x→x0

ak : ak unique.

(*) Par contre f peut avoir un Dl2 sans que f” existe !

2. Conséquence si parité

Le Dl en 0 d’une fonction paire est pair ; celui d’une fonction impaire est impair.

Résulte de f(x) = f(−x) si f paire (ou de l’analogue si impaire) et unicité du Dl.

30.1.4 Exemple et dessin

Montrer que f(x) = 2− 1

2
(x− 3) + 2(x− 3)2 + (x− 3)3.sin

1

(x− 3)2
a un Dl2 en x = 3. Dessin ?

(Vérifier que f ′ n’a même pas de Dl0 en x = 3. Donc f ′ non continue en 3, donc f”(3) n’existe pas !)

Solution � Posons h = (x− 3). Vérifions que h3.sin
1

h2
= o(h2) = h2.ǫ(h), ǫ(h)−→

h→0
0 : c’est vrai.

� Et f(3) = 2 par prolongement par continuïté ; f ′(3) = −1

2
. Puis : y = 2− 1

2
(x− 3) est l’équation de la

tangente en x = 3. Donc "Courbe-Tangente" ∼
x→3

2(x−3)2 > 0.
x

3,33,2

y

3,1

2,4

3

2,3

2,2

2,9

2,1

2

2,8
1,9

2,7

[Tracé aussi de

la parabole y = 2− 1

2
(x−3)+2(x−3)2]. Enfin, calcul de f ′(x) ; et (à voir) f ′(x) sans limite en x = 3 !

Remarques : 1) Quand f”(x0) existe nous allons voir, au III, que a2 =
f”(x0)

2!
.

2) En complément : R =
[1 + y′2(x0)]

3/2

y”(x0)
est le "rayon de courbure" en x0.

30.2 Opérations sur les Dl

30.2.1 Somme de Dl ; multiplication par constante (opérations linéaires)

Exemple. Soit f(x) =
1

1− x2
=

1

2
.(

1

1− x +
1

1 + x
) décomposition en éléments simples.

Alors : f(x) =
1

1− x2
= ... = 1 + x2 + x4 + x6 + ...+ x2p + o(x2p).

Remarques

1) Dans
1

1− x il suffit de remplacer x par x2 ; mais on voulait illuster les opérations linéaires.

2) Le reste est, par parité, x2p+2 + o(x2p+2) donc est un infiniment petit, non seulement par

rapport à x2p, mais même par rapport à x2p+1 sans effort ! Qui s’écrit : o(x2p+1).

D’où finalement :
1

1− x2
= 1 + x2 + x4 + x6 + ...+ x2p + o(x2p+1).
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30.2.2 Produit de Dl

f(x) =
1

1− x2
=

1

1− x.
1

1 + x
= (1 + x+ x2 + o(x2)).(1 − x+ x2 + o(x2)) à l’ordre 2, en x0 = 0 :

Faire le produit des Dl, ne garder que les termes utiles. Trouver f(x) = 1 + x2 + o(x2) cf. avant !

Autre exemple : g(x) =

(
1

1− x

)2

=
1

(1− x)2 =
1

1− x.
1

1− x à l’ordre 2, en x0 = 0 ?

Idem : g(x) =
1

(1− x)2 = 1 + 2x+ 3x2 + o(x2). Ici 2 autres méthodes après.

30.2.3 Quotient de Dl

Même 2ème exemple : g(x) =
1

(1− x)2 à l’ordre 2, en x = 0 ?

Diviser 1 par 1− 2x+ x2 mais selon les puissances croissantes. Encore 1 méthode après.

30.2.4 Théorème d’intégration des Dl : opération nouvelle

Si f ′ admet un Dln en x0 : f ′(x) = a0 + a1(x− x0) + ...+ an(x− x0)
n + o[(x− x0)

n], f admet

un Dln+1 obtenu en intégrant : f(x) = f(x0) + a0(x− x0) + ...+ an
(x− x0)

n+1

n+ 1
+ o[(x− x0)

n+1]

Démonstration. Théorème des accroissements finis à ϕ(x) = f(x)−[f(x0)+a0(x−x0)+...+an
(x− x0)

n+1

n+ 1
].

Exemples de la famille de
1

1 + x
. Retenir : ln(1 + x), Arctan(x)

• Ayant en 0,
1

1− x = 1 + x+ x2 + x3 + ...+ xn−1 + o(xn−1), on en déduit avec ln(1) = 0 :

ln(1− x) = −x− x2

2
− x3

3
− ...− xn

n
+ o(xn). Et changeant x en −x (ou avec

1

1 + x
)

ln(1 + x) = x− x2

2
+
x3

3
− ...+ (−1)n−1x

n

n
+ o(xn). Puis hors cours le suivant :

[Argth(x) =
1

2
.ln(

1 + x

1− x) = x+
x3

3
+
x5

5
+ ...+

x2p+1

2p+ 1
+ o(x2p+2) car impaire.

ou à partir de la dérivée : Argth′(x) =
1

1− x2
pour | x |< 1 ; Argth(x) partie impaire de ln(1 + x).]

• Ayant en 0 :
1

1 + x2
= 1− x2 + x4 + ...+ (−1)p.x2p + o(x2p+1), (parité pour le reste) et

Arctan(0) = 0, par intégration, on a : Arctan(x) = x− x3

3
+
x5

5
+ ...(−1)p.

x2p+1

2p + 1
+ o(x2p+2).

30.2.5 (*) Dérivation des Dl

Difficulté. Il se peut que f admette un Dl2 sans que f ′ admette un Dl0 (vu).

Résultat On n’a pas de théorème nouveau ; c’est le théorème d’intégration lu à l’envers ; c’est pourquoi
il faut connaitre l’existence du Dl de f ′. A ce moment, on dérive celui de f et on perd un ordre.

Exemple : 3ème façon pour le Dl de g(x) =
1

(1− x)2 en 0 ?

Déjà, on est sûr qu’il existe à tout ordre : ou comme produit ; ou comme quotient ; mais mieux encore

comme fonction C∞ au voisinage de 0 : cf. III.

Ensuite (
1

1− x)′ =
1

(1− x)2 et donc, il suffit de dériver celui de
1

1− x .
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Ainsi :
1

(1− x)2 = 1 + 2x+ 3x2 + ...+ (n+ 1)xn + o(xn).

[(*) Idem (
1

1− x)(p) =
p!

(1− x)p+1
d’où le Dl en 0 de :

1

(1− x)p+1
=

1

p!
.(

1

1− x)(p) par dérivations.]

30.2.6 Composition

Exemple : Dl à l’ordre 3 (ou l’ordre 2 déjà) en x = 0, de : f(x) = ln[2 +Arctan(x)] ?

Réponse. Le Dl du ln vu au voisinage de 1 : ln(1 + h) = h− h2

2
+
h3

3
+ o(h3).

Or ici [...] proche de 2. Ecrire [...] = 2.(1 +
Arctan(x)

2
) donc f(x) = ln(2) + ln[1 + h]

avec h =
Arctan(x)

2
=

1

2
(x− x3

3
+ o(x4)) et en ne gardant que les xk, k 6 3 :

f(x) = ln(2) + ln[1 +

(
x

2
− x3

6
+ o(x4)

)
]. Avec h = u+ v =

x

2
+ (
−x3

6
+ o(x4)) pour h2, h3

et : h ∼
x→0

x

2
⇒ o(h3) = o(x3) : f(x) = ln(2) +

x

2
− x3

6
+ o(x4) − 1

2
.
x2

4
+

1

3
.
x3

8
+ o(x3).

Ainsi : f(x) = ln(2) +
x

2
− x2

8
− x3

8
+ o(x3).

Remarques 1) x4 = o(x3) ; o(x4) + o(x3) = o(x3) !

2) ln(1 + h)− h ∼
h→0

− h2

2
en accord avec la concavité. Dessin ?

3) Arctan(x)− x ∼
x→0

− x3

3
en accord aussi avec le dessin : imparité, cas x→ 0+.

30.3 Formule de Taylor-Young et utilisations

30.3.1 Les théorèmes

Si f est n > 1 fois dérivable en x0 (C.S.), alors f admet un Dln en x0

qui est : f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + ...+

f (n)(x0)

n!
(x− x0)

n + o[(x− x0)
n].

(Taylor-Young.)

Cas x0 = 0 : Si f est n > 1 fois dérivable en 0, alors f admet un

Dln en 0 : f(x) = f(0) +
f ′(0)

1!
.x+ ...+

f (n)(0)

n!
.xn + o(xn).

(Formule de Mac-Laurin-Young.)

Démonstration : On part de f (n−1)(x) = f (n−1)(x0) + (x− x0).f
(n)(x0) + o(x− x0) ;

on intègre (cf. Théorème) ce Dl n− 1 fois, sans oublier les constantes à chaque fois.

Notes

1) On retrouve la formule de Taylor pour les polynômes, en prenant n > doP !

2) Thèorème des accroissements finis ⇒ Théorème d’intégration des Dl ⇒ Formule de T-Y.

30.3.2 Exemples à savoir : exp, ch, sh, sin, cos ; et (1 + x)α, binôme

1. Pour a ∈ C : eax = 1 +
a.x

1!
+
a2.x2

2!
+ ...+

an.xn

n!
+ o(xn).

Démonstration. Formule de Mac-Laurin-Young car
d

dx
(eax) = a.eax même si a = α+ iβ ∈ C !

• a = 1 donne : ex = 1 +
x

1!
+
x2

2!
+ ...+

xn

n!
+ o(xn).
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ch(x) = 1 +
x2

2!
+
x4

4!
+ ...+

x2p

(2p)!
+ o(x2p+1).

sh(x) = x+
x3

3!
+
x5

5!
+ ...+

x2p+1

(2p+ 1)!
+ o(x2p+2). (Parties paire et impaire)

• Puis a = i donne : eix = 1 + i.
x

1!
− x2

2!
− i.x

3

3!
+
x4

4!
...+

in.xn

n!
+ o(xn). Donc

cos(x) = 1− x2

2!
+
x4

4!
− ...+ (−1)p.

x2p

(2p)!
+ o(x2p+1).

sin(x) = x− x3

3!
+
x5

5!
− ...+ (−1)p.

x2p+1

(2p + 1)!
+ o(x2p+2).

Remarques

1) Les relations exp′ = exp, cos′ = −sin... se retrouvent (par intégration) dans les Dl.

2) On retrouve : cos(x)− 1 ∼
x→0

−x2

2
, ch(x) − 1 ∼

x→0

+x2

2
, ... et en plus : sin(x)− x ∼

x→0

−x3

6
.

3) Avec exp donc avec cos, sin, ch, ..., les factorielles ne se simplifient pas.

2. Si α fixe (1 + x)α = 1 +
α

1!
x+

α(α− 1)

2!
x2 + ...+

α(α − 1)...(α − n+ 1)

n!
xn + o(xn).

Démonstration. Formule de Mac-Laurin-Young car : [(1 + x)α]′ = α.(1 + x)α−1, α ∈ R.

• Cas α = 6, Dl2 en 0 : (1 + x)6 = 1 + 6x+ 15x2 + o(x2). Binôme tronqué connu.

• Cas α = −1 en 0 :
1

1 + x
= ... Connu aussi : exemple d’introduction !

(Et : Dl2 en x = 0 de
1

(1− x)2 = (1− x)−2 4ème façon ! )

• Cas α =
1

2
, Dl2 en 0 :

√
1 + x = 1 +

1

2
x− 1

8
x2 + o(x2) (2 ! : ne pas oublier.)

• Cas α = −1

2
, Dl en 0 à tout ordre :

1√
1 + x

= 1− 1

2
x+

3

8
x2 + ...+ (−1)n.

1.3.5...(2n − 1)

2.4. ... .2n
xn + o(xn).

30.4 Pratique des Dl et utilisation

30.4.1 Deux exemples

1. Arcsin en 0 ?
1√

1− x2
= 1 +

1

2
x2 +

3

8
x4 + ...+

1.3.5...(2n− 1)

2.4...2n
x2n + o(x2n+1)

est sa dérivée (paire) d’où Arcsin par intégration :

Arcsin(x) = x+
1

2

x3

3
+ ...+

1.3.5...(2n − 1)

2.4...2n

x2n+1

2n+ 1
+ o(x2n+2).

(*) De même, mais hors programme Argsh(x) = ln(x+
√

1 + x2) en 0, de dérivée :
1√

1 + x2
.

2. tan(x) en 0, à l’ordre 4 ? (On va illustrer la composition)

• On peut faire la division tan(x) =
sin(x)

cos(x)
; on trouve tan(x) = x+

x3

3
+ o(x4).

• On peut aussi intéger : tan′(x) = 1 + tan2(x) = 1 + x2 + o(x3) : même réponse.

• Ou composer : Le Dl existe en 0, à tout ordre, car fonction C∞ au voisinage de 0 (sur ]−π
2
,
π

2
[).

Et tan(x) = x+ ax3 + o(x4) (impaire), donc l’ordre 3 suffit ! On cherche a :
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Exprimer que Arctan(tan(x)) = x = x+0.x3 (en 0) et unicité du DL. A faire et même réponse.

De même on a (*) th(x) =
sh(x)

ch(x)
= x− x3

3
+ o(x4).

30.4.2 Remarques très importantes

1. Comment avoir le Dl3 de cos(x), quand x→ 1 ?

. Soit par la formule de (T-Y) en 1 (les dérivées en 1 étant faciles) .

.. Soit cos(1 + h) = cos(1).cos(h) − sin(1).sin(h) = ... A faire !

(cos(x) = cos(1) − sin(1).(x− 1)− cos(1)

2!
(x− 1)2 +

sin(1)

3!
(x− 1)3 + o[(x− 1)3].)

2. Dl2 de ln au point 3 ? [ln(3 + h) au lieu de ln(1 + h) ?]

. Soit par (T-Y) : ln(x) = ln(3) +
1

3
(x− 3)− 1

18
(x− 3)2 + o[(x− 3)2].

.. Soit, aussi bien : ln(x) = ln(3 + h) = ln(3) + ln(1+
h

3
) = ... Idem.

3.
√

2 + h, quand h→ 0, ce qui est
√
... au voisinage de 2 ? (ci-dessus :

√
1 + x).

√
2 + h =

√
2(1 +

h

2
)=
√

2.(1 +
h

2
)1/2 ... (h→ 0, bien sûr) : connu.

4. Dl2 de
√
tan(x) en π/4. [Note : En 0,

√
... a seulement un Dl0, car non dérivable en 0.]

Le Dl de tan en π/4 non connu ; tan peu commode ; puis
√
... ; donc dans ce cas,

x =
π

4
+ h ne doit pas faciliter la travail. [tan(

π

4
) = 1 ; tan(a+ b) = ?]

C’est un rare cas où on utilise (T-Y) : f(π/4) aisé ; f ′(π/4) abordable ; f”(π/4) = ... = 1.

(Trouver :
√
tan(x) = 1 + 1.(x− π

4
) +

1

2!
(x− π

4
)2 + o[(x− π

4
)2].)

30.4.3 Utilisation des Dl

1. Une limite nouvelle :
sin(x)− x

x3
−→
x→0

−1

6
.

2. Branches infinies d’une courbe : on suppose que x→∞ et y →∞
Exemple : Branches infinies de y =

√
x2 + x+ 1 ? Domaine : R. Voyons en ±∞ :

y =| x | .(1 + h)1/2, avec h =
1

x
+

1

x2
−→
x→∞

0. Donc : y =| x | . [1 +
1

2x
+

1

2x2
− 1

8x2
+ o(

1

x2
)],

Puis distinguer +∞ de −∞. y = a.x+ b+
c

x
+ o(

1

x
), c 6= 0 : asymptote et position !

En fait, on a une demi-hyperbole car courbe de degré 2 (y2 = ...), avec asymptotes !

x

210-1-2

y

2,5

2

1,5

1

0,5

0

-0,5

-1

En général





Si
y

x
→ a ∈ R∗





Si y − ax a une limite b ∈ R y = ax+ b est asymptote oblique. Si

y − ax→∞ branche parabolique de direction asymptotique y = ax

Et si y − ax n’a pas de limite, on a seulement la direction y = ax.

Si
y

x
→∞ on dit que l’on a une branche parabolique de direction (asymptotique) Oy

Si
y

x
→ 0 on dit : une branche parabolique de direction (asymptotique) Ox et

Enfin :
y

x
peut ne pas avoir de limite ... Un exemple est : y = x[2 + sin(x)].

On essaie de tout avoir par un seul développement ("asymptotique" ou "généralisé"). cf. Exemple.
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30.4.4 Etude de fonctions

Un exemple traité y = f(x) = x
x

x−1 .

1) On a ici l’égalité : y = f(x) = e
x

x−1
.ln(x), définie pour x > 0, x 6= 1.

2) Variations : y′ = y.[
1

x− 1
+ ln(x).

−1

(x− 1)2
] =

y

(x− 1)2
[x− 1− ln(x)] =

y

(x− 1)2
.ϕ(x).

Puis on étudie ϕ : en dérivant, ln isolé disparait ; ou on sait ici ln(x) 6 x− 1 (concavité).

3) Limites :
Si x→ 0, y → 1 car x.ln(x)−→

x→0
0 et y′ →∞ : tangente verticale.

Si x→ 1, y → e [car ln(x) ∼
x→1

(x− 1)] et avec x− 1 = h, y′ → e/2. (Dl)

On prolonge par continuïté en posant f(1) = e (et f(0) = 1). Alors f est dérivable en 1 et f ′(1) =
e

2
.

Si x→ +∞, y = x.x
1

x−1 = x.e
ln(x)
x−1 = x.[1+

ln(x)

x − 1
+

1

2
.
ln2(x)

(x− 1)2
+

ln2(x)

(x− 1)2
.ǫ(x)], ǫ(x) −→

x→+∞
0. Ainsi :

y

x

5

0
40

y/x −→
x→+∞

1 et y − x ∼
x→+∞

ln(x) : branche "parabolique" de direction y = x.

D’autres exemples

• On prolonge systématiquement par continuïté (si on peut) les fonctions.

• Souvent pour le signe de y′, on fait une autre étude : isoler la fonction "transcendante" (avant de
dériver) comme dans l’Exemple ci-dessus.

1. f(x) = (x2 − 1) . ln |1 + x

1− x | impaire.

Ecrire donc : f ′(x) = 2x.ϕ(x) puis ϕ′(x) ... f ′(0) = −2 ; en x = 1, tangente verticale.

En ±∞, y = 2x− 4

3x
+
ǫ(x)

x

10-1-2

y

4

3

2

1

0

x

-1

-2

32

La suivante

0

x

210-1

y

2. f(x) = 3
√
x2(x− 1). 2 tangentes verticales ! y = x− 1

3
asymptote oblique ...

En x = 0 ou x = 1 : revoir le Théorème de la limite de la dérivée.

3. f(x) =| sin(x) |tan(x) π-périodique.
En x = 0 prolongement par continuïté ; puis tangente verticale (f non dérivable).

En
π

2
, f(x) = 1 +

h

2
+
h2

8
+o(h2) avec h = (x− π

2
) ... Courbe :

y
1

0

x

420-2

4. En compléments, des développements "généralisés" :

Si x→ 0+, ln[sin(x)] = ln(x)−x
2

6
+o(x3). [1er terme infini et parité de ln

sin(x)

x
.]

Si x→ 0,
1

tan(x)
=

1

x
− x

3
+ o(x2). [1er terme infini et imparité ; à voir.]
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M+ Exercices: Développements limités PTSI

1. Préciser les Dl suivants

(a) de
cos(x)

1− x à l’ordre 3 en x0 = 0

(b) de ex à l’ordre 2 en : x0 = 1 [poser x = 1 + h]

(c) de ecos(x) à l’ordre 4 en x0 = 0

(d) de
√
cos(x) à l’ordre 4 en x0 = 0

(e) de ln(ln(e+ x)] à l’ordre 3 en x0 = 0

(f) de
x2 − 1

x2 + 2x
à l’ordre 2 en ∞ [a+

b

x
+

c

x2
+ o(

1

x2
) = a+

b

x
+

c

x2
+
ǫ(x)

x2
, ǫ(x)−→

x→∞
0]

(g) de
1

2 + x
à l’ordre 3 au point x0 = 0 ; puis au point x0 = 1

(h) (*) de [tan(x+ π/4)]−cot(2x) à l’ordre 3 en x0 = 0

(i) (*) de [1 +Arctan(x)]x/sin
2(x) à l’ordre 2 en x0 = 0.

2. Calculer les limites suivantes (*) ici et ex. suivants !

(a)
1

sin2(x)
− 1

x2
en 0 [dénominateur commun ; trouver 1/3]

(b) (3.
n
√

2− 2.
n
√

3)n en +∞ [trouver 8/9]

(c) n
n+1

n − (n − 1)
n

n−1 en +∞ [trouver 1]

(d)
1

2(1 −√x) −
1

3(1− x1/3)
en 1 [dénominateur commun ; trouver 1/12.]

3. Trouver a, b tels qu’en x0 = 0, f(x) = cos(x)− 1 + ax2

1 + bx2
soit un infiniment petit d’ordre le plus élevé

possible. Equivalent de cette différence. [Rép. a = −5/12, b = 1/12, f(x) ∼
x→0

x6/480.]

4. Développements asymptotiques ou généralisés

(a) Préciser l’égalité f(x) = x2.ln | 1 + x

x
|= ax+ b+

c

x
+ o(

1

x
. Branches infinies ?

(b) (*) Branches infinies de y = (x−1).exp[
1

x2 − 3x+ 2
] (1− : y =

(x− 1)(x− 2)

x− 2
.exp[

1

x2 − 3x+ 2
].)

5. Etudier les fonctions suivantes

(a) f(x) =
3
√
x3 − 2x2 + x [tang. vert. en 0 et 1 ; tang. hor. en 1/3 ; f(x) = x−2/3−1/9x+o(1/x)]

(b) f(x) =
x

1 + e1/x
[Asymptote y = x/2− 1/4 ; en 0, point anguleux : pentes 1 et 0]

(c) (*) f(x) = (1 +
1

x
)x [Prolongement par continuïté en 0 ; mais alors tangente verticale]

(d) (**) Etudier la famille de fonctions fa(x) =| x |a .exp( −1√
| x |

). [On distinguera les cas a > 1,

0 < a < 1,−1/2 < a < 0... On montrera aussi que fa est C∞ en 0 et que ∀k, f (k)
a (0) = 0].

6. Equivalent en 0 de : sin(tan(x))− tan(sin(x)) ? Réponse : −x7/30 ... par logiciel de calcul !



Chapitre 31

Les séries numériques

31.1 Généralités

31.1.1 Définitions

1. Somme partielle. Convergence de la série, somme d’une série convergente

Soit la suite (un)n>0 à termes réels (ou complexes). On pose Sn = u0 + u1 + ...+ un =
n∑

k=0

uk

(bien voir l’indice k muet) appelée somme partielle.

Définition : La convergence de la série de terme général un est la convergence de la suite (Sn).

2. Dans le cas de convergence on note S = lim
n→+∞

Sn =
+∞∑

k=0

uk et on appelle Reste d’ordre n la différence

Rn = S − Sn =
+∞∑

k=n+1

uk. On revient de Sn à un par : un = Sn − Sn−1 (dérivée discrète) !

3. Exemple. La série de terme général un =
1

2n
converge car Sn =

n∑

k=0

1

2k
=

1− 1
2n+1

1− 1
2

. S =
+∞∑

k=0

1

2k
= 2.

31.1.2 Plan d’ensemble

1. Condition Nécessaire de convergence : Série convergente ⇒ un −→
n→+∞

0. Réciproque fausse.

Car Sn a une limite finie S. Et Sn − Sn−1 = un −→
n→+∞

S − S = 0. Réciproque fausse : après.

2. Deux séries de références :

(a) Les séries géométriques un = qn (| q |< 1 pour que un −→
n→+∞

0).

(b) Les séries de Riemann un =
1

nα
(avec α > 0 : idem).

3. Les séries à termes positifs essentielles (ou positifs à partir de n0) car ici, Sn croissante.

4. Un cas important : les séries alternées, type un = (−1)n. | un | ; de signe régulièrement alterné.

5. Mais parfois : des séries où un ∈ C ; ou bien un réel de signe quelconque : un =
sin(n)

n2
.

6. Ne pas oublier enfin les cas de somme télescopique : exemple un =
1

n.(n+ 1)
(n > 1) :

Ici, Sn = u1 + ...+ un ; mais un =
1

n
− 1

n+ 1
(décomposition en éléments simples) !

donc Sn =
1

1
− 1

n+ 1
: la série est donc convergente de somme S = 1.

(Bien sûr la condition nécessaire un −→
n→+∞

0 était respectée).

209
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31.1.3 C.N. de convergence

1. Propriété : Série convergente =⇒ un −→
n→+∞

0. Réciproque fausse.

2. Démonstration (rappel) : Soit Sn =

n∑

k=0

uk. Si la série "
∑

un" est convergente c’est (exactement)

que la suite (Sn) convergente. Sn et Sn−1 ont ainsi même limite finie S (dans R ou C). Et donc :

un = Sn − Sn−1 −→
n→+∞

0. Quand un 6→ 0 (n→ +∞), on dit que la série diverge grossièrement.

Exemple. Un exercice (de la feuille) consiste à montrer que
∑

sin(n) diverge grossièrement.

3. Réciproque fausse :

Divergence de la Série harmonique Sn = 1 +
1

2
+ ...+

1

n
où un =

1

n
. [Nicole(las) Oresme.]

1ère façon, subtile. S2n = 1+
1

2
+

1

3
+...+

1

2n− 1
+

1

2n
!⇒ S2n−Sn =

1

n+ 1
+

1

n+ 2
+...+

1

2n
> n.

1

2n
=

1

2
.

Si la suite Sn convergeait, S2n − Sn devrait tendre vers 0, ce qui est impossible.

2ème façon, comparaison avec une intégrale :
1

k
>

∫ k+1

k

1

t
.dt. Donc Sn >

∫ n+1

1

1

t
.dt = ln(n+1).

Et ainsi Sn −→
n→+∞

+∞. [Remarque : un autre petit travail, laissé, donnerait : Sn ∼
n→+∞

ln(n).]

31.1.4 Deux séries de référence

1. La série géométrique

La série de terme général un = qn ∈ C converge ⇔ | q |< 1

et dans ce cas la somme est :
+∞∑

n=0

qn =
1

1− q .

En effet, si | q |< 1, on a : Sn =

n∑

k=0

qk =
1− qn+1

1− q et on sait que qn+1 −→
n→+∞

0. Inversement

Si | q |> 1, la C.N. de convergence n’est pas respectée : la série diverge grossièrement.

2. Les séries de Riemann
La série de terme général un =

1

nα
converge ⇔ α > 1.

La somme est inconnue. [Pour α = 2, c’est (* Euler) π2/6.]

Démonstration difficile en Ligne 3 (*) : En effet α > 0 est nécessaire sinon divergence grossière ;

même α > 1 est nécessaire car la série harmonique est divergente (et par exemple,
1√
n

>
1

n
...)

En sens inverse, α > 1 est suffisant en comparant à nouveau avec une intégrale : pour n > 1, on a :

1

nα
6

∫ n

n−1

1

tα
dt ; Sn =

1

1α
+

1

2α
+ ...+

1

nα
6 1 +

∫ n

1

1

tα
dt = 1 +

1

α− 1
.

(
1− 1

nα−1

)
6 1 +

1

α− 1
par relation de Chasles et primitive.

Donc Sn croissante, majorée par une quantité qui ne dépend pas de n, converge.

Remarque. Pour les séries géométriques
un+1

un
= q ; pour les séries de Riemann

un+1

un
−→
n→+∞

1.

3. Opérations sur les séries convergentes

(a) Bien sûr, si un est le terme général d’une série convergente, λ.un aussi.
C’est ainsi que pour la série un = a.qn, le résultat est connu.

(b) De même si (un) et (vn) sont les termes généraux de séries convergentes, (un + vn) aussi.

(c) Par contre : Série convergente + Série divergente = Série divergente (cas : un =
1

n
− 1

n2
).

Série divergente + Série divergente = on ne sait pas ! cas : un =
1

n
+
−1

n
!
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31.2 Cas des séries à termes positifs

31.2.1 Comparaisons fondamentales par inégalités

1. Théorème.

Soit : 0 6 un 6 vn pour n > 0 (ou pour n > n0, cela suffit) :

Si la série
∑

vn converge, alors la série
∑

un converge aussi.

Par contraposée : si la série
∑

un diverge, alors
∑

vn diverge aussi.

En effet, la suite Sn =

n∑

k=0

uk étant croissante (au moins à partir d’un certain rang), on a :

la suite Sn converge ⇔ suite majorée. Puis assez aisé.

2. Exemple. Si un =
| sin(n) |

n2
: 0 6 un 6 vn =

1

n2
. Comme la série

∑
vn converge,

∑
un aussi.

31.2.2 Conséquence : règle de D’Alembert

1. Enoncé.
On suppose ici que un > 0 (à partir d’un certain rang) et que

un+1

un
−→
n→+∞

l :

si l > 1, la série diverge ; si 0 6 l < 1, la série converge ; si l = 1, cas douteux.

Exemples. Cas un = 1/2n, un = 1/nα, un = n!/nn (ici un+1/un → 1/e), un = (nn.a2n)/n!

2. Démonstration. Cas l < 1 : Introduisons q =
1 + l

2
< 1. ∃n1 > n0 tel que : n > n1 entraine

un+1

un
6 q ; donc un 6 un1.q

n−n1 = a.qn, si n > n1 (a = un1 .q
−n1) et la série de droite converge.

Cas l > 1 : plus facile ! ∃n1 : n > n1 =⇒ un+1

un
> 1 ; donc ∀ n > n1 : un > un1 . Ainsi un 9 0.

31.2.3 Autre conséquence : comparaisons par équivalents, toujours un > 0

1. Théorème Si un > 0 (essentiel) et si un ∼
n→+∞

vn, alors les séries sont de même nature.

La démonstration est laissée en exercice.

2. Exemples � Soit : un = ln(1 +
1

n
) ; on a : un ∼

n→+∞
1

n
= vn > 0.

Comme la série harmonique
∑

vn est divergente, la série
∑

un aussi.

� Série de terme général un = e− (1+
1

n
)n. (D.L. à faire) un ∼

n→+∞
k

n
: série divergente.

3. Contre exemple. On verra au III qu’on peut trouver
∑

un et
∑

vn de nature différente

bien que un ∼
n→+∞

vn. Mais un NON de signe constant et le Théorème ne s’applique pas !

31.2.4 Convergence absolue

1. Théorème

Soit un ∈ R (ou même un ∈ C) le terme général d’une série.

Si
∑
| un | converge (condition suffisante), alors

∑
un est convergente.

On dit que la série, dans ce cas, est absolument convergente.

ADMIS. Et pour la série
∑
| un |, on peut appliquer les numéros 1,2,3, ci-dessus.

2. Exemples. Les séries de terme général :
(−1)n

n2
,
sin(n)

n2
,
cos(ln(n))

n3/2
,

sin(n).ln(n)

n3/2
sont

absolument convergentes (dernière : | un |6 n1/4/n3/2 si n > n0) donc convergentes.

Par contre :
(−1)n

n
,

(−1)n√
n

ne sont pas absolument convergente, MAIS ne pas dire

pour autant divergente ! elles sont "semi-convergentes" ; voir III.
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31.3 Quelques mots sur les séries alternées

31.3.1 Définition (ce n’est plus un objectif de base du programme)

La série de terme général un ∈ R est dite alternée si elle est alternée en signe un = (−1)n. | un |.

Exemples : un =
(−1)n

n
est alternée ; par contre vn =

sin(n)

n
ne l’est pas !

31.3.2 (*) La série harmonique alternée
∑ (−1)n+1

n
, n > 1, converge vers ln(2)

1. Elle est non Absolument convergente, mais elle converge ; preuve avec S2n, S2n+1 adjacentes :

S1 = u1 = 1, S2 = u1 + u2 = 1− 1

2
, S3 = u1 + u2 + u3 = 1− 1

2
+

1

3
, S4 = 1− 1

2
+

1

3
− 1

4
, ...

Dessin : S2n+1 et S2n sont respectivement décroissantes, croissantes, et S2n+1 − S2n −→
n→+∞

0 :

adjacentes donc convergent vers la même limite S. (*) Et ici
+∞∑

n=1

(−1)n+1

n
= ln(2). 3 façons :

2. (*) cf. la formule de Mac-Laurin Lagrange à ln(1 + x). Puis x = 1. Trouver | ln(2)−Sn |6 1

n+ 1
.

3. Idem, plus facile
n−1∑

k=0

(−x)k =
1− (−x)n

1− (−x) ou
1

1 + x
= 1− x+ x2 = ...+ (−1)n−1.xn−1 +

(−1)n.xn

1 + x
:

ln(1+X) = X−X2

2
+ ...+(−1)n−1X

n

n
+(−1)n

∫ X

0

xn.dx

1 + x
. X = 1 : | ln(2)−Sn |=

∫ 1

0

xn.dx

1 + x
6

∫ 1

0

xn.dx =
1

n+ 1
.

4. Ou (*) Tn =
n∑

k=1

1

k
⇒ T2n−S2n = Tn : S2n somme de Riemann conv. vers ln(2), S2n+1 = S2n+

1

2n+ 1
...

31.3.3 (*) Exercice : "Le Théorème spécial des séries alternées" (idem, S2n, S2n+1 adj.)

1. Enoncé
On est ici dans le cas où : un = (−1)n.an avec an = | un | > 0. Si on a de plus :

an tend vers 0, en décroissant, cela suffit pour que la série
∑

un soit convergente.

2. Autres exemples.
∑

un où un =
(−1)n

√
n

converge par le Théorème spécial des séries alternées.

∑ (−1)n

n2
conv. par le Th. spécial des séries alternées ; mais mieux : absolument convergente !

Rem.
∑

(
(−1)n

√
n

+
1

n
) : somme d’une série conv. et d’une div. ; div. Pourtant wn ∼

n→+∞
un !

31.3.4 (**) Complément :

1.
∑

un, un = ln(1+
(−1)n

√
n

) =
(−1)n

√
n
− 1

2n
+

(−1)n + ǫn
3.n3/2

, est somme : d’une série semi-convergente,

d’une série div. et d’une série absol. convergente (| cn | ∼
n→+∞

k

n3/2
) donc diverge ; (idem).

2. Nature de la série de terme général un = sin(π.
√
n2 + 2) avec sin(n.π + α) = (−1)n.sin(α).

Solution. On a :
√
n2 + 2 =

√
n2(1 +

2

n2
) = n.(1 +

2

n2
)1/2 = n.

(
1 +

1

2
.

2

n2
+
k + ǫn
n4

)
. ( k =

1
2 .

−1
2

2!
.22)

Et par D.L. de sin(h) : un = sin(n.π+
π

n
+
k.π + ǫn
n3

) = (−1)n.

(
π

n
+
K + ǫn
n3

)
, K inutile à connaitre.

Alors la série apparait comme somme d’une série semi-convergente (qui est connue : harmonique

alternée) et d’une série absolument convergente (à voir !) ; donc la série
∑

un converge.

3. Exercice (*) : Dans les hypothèses du Théorème spécial des séries alternées, montrer que :

| Rn | = | S − Sn | 6 | Sn+1 − Sn | = | un+1 | et que le signe de Rn est celui de un+1.
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31.4 Quelques cas où on connait la somme d’une série

31.4.1 La série géométrique (et sa famille)

1. La série de terme général un = xn ∈ C converge ⇔ | x |< 1. La somme est :
+∞∑

n=0

xn =
1

1− x .

2. Exercice (**) : En dérivant
1− xn+1

1− x =
n∑

k=0

xk, trouver x.
n∑

k=1

k.xk−1 = ... ; et
∑

k>0

k

2k
?

Rép.
n∑

k=0

k.xk =
x[1 − (n+ 1).xn + n.xn+1]

(1 − x)2 . Converg. si | x |< 1 car n. | x |n −→
n→+∞

0.
+∞∑

k=0

k

2k
= 2

avec x = 1/2 (on peut aussi faire sa convergence par la règle de D’Alembert).

31.4.2 La série exponentielle (et sa famille)

1. La série de terme général un =
xn

n!
converge ∀x ∈ R (même x ∈ C). La somme est

+∞∑

n=0

xn

n!
= ex.

Démonstration par la formule de Taylor-Lagrange avec pour le reste de T-L :
an

n!
−→

n→+∞
0.

2. Exercice (**) : En écrivant
n(2n+ 1)

n!
=

2n+ 1

(n− 1)!
=
α.1 + β(n− 1)

(n− 1)!
si n > 1 (β = 2, α = 3)

préciser la convergence et la somme de cette série.

Réponse. Série convergente par la règle de d’Alembert si on veut et avec l’indication :
∑

n>1

un = 3.
∑

n>1

1

(n− 1)!
+ 2.

∑

n>1

n− 1

(n− 1)!
. Or :

∑

n>1

n− 1

(n− 1)!
=
∑

n>2

n− 1

(n− 1)!
=
∑

n>2

1

(n− 2)!

d’où
∑

n>1

un = 3.
∑

n>1

1

(n− 1)!
+ 2.

∑

n>2

1

(n− 2)!
= 3e+ 2e = 5.e car

∑

n>0

1

n!
= e.

31.4.3 (1 + x)α si x ∈]− 1, 1[ (et sa famille) : Spé

31.4.4 Cas de sommes télescopiques. (*) 2 exercices corrigés :

1. Convergence et somme de :
∑ 1

n(n+ 2)
? Série convergente (un ∼

n→+∞

1

n2
) et ... somme

3

4
.

(Attention
1

x(x + 2)
=

1

2
(
1

x
− 1

x+ 2
) : dans les simplifications reste deux termes au début et à la fin).

2. Trouver a, b pour que la série
∑

ln(n) + a.ln(n+ 1) + b.ln(n+ 2) converge ; calculer la somme.

Solution : un = ln(n) + a.ln(n+ 1) + b.ln(n+ 2) = (1 + a+ b).ln(n)+
1

n
(a+ 2b) +

A+ ǫn
n2

car

ln(1 + h) = h− h2

2
+ h2.ǫ(h). Donc (convergence) ⇒ 1 + a+ b = 0 (sinon un 9 0) et a+ 2b = 0

(sinon un ∼
n→+∞

K

n
div. par équivalence de séries de signe constant) : a = −2, b = 1.

En sens inverse, avec ces valeurs, un =
A+ ǫn
n2

: série convergente. Puis on a :

Sn = ln

(
1.3

22
.
2.4

32
.
3.5

42
...

(n− 1).(n+ 1)

n2
.
n(n+ 2)

(n+ 1)2

)
= ln

(
1

2
.
n+ 2

n+ 1

)
−→

n→+∞
ln

1

2
. D’où S = −ln(2).

31.4.5 Souvent la somme est inconnue ; alors calcul approché :
∑

k>1

1

k3
≃ 1.202056903
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M+ Exercices: Les séries numériques PTSI

1. Un cas de divergence grossière. On pose : un = sin(n).

Développer sin(n+ 1) ; déduire que l’hypothèse sin(n) −→
n→+∞

0 entrainerait cos(n) −→
n→+∞

0 ;

et qu’elle contredirait sin2(n) + cos2(n) = 1. Conclusion sur la nature de la série
∑

sin(n) ?

2. Nature de
∑ n!

nn
et

∑ (n+ 1)(n+ 2)...(2n)

(2n)n
? (Règle de d’Alembert

un+1

un
−→

n→+∞

1

e
,
vn+1

vn
−→

n→+∞

2

e
.)

(Avec [(n+ 1)/n]n tend vers e en +∞.)

3. Soit un =
2[(−1)n]

3n
; nature de la série ? (0 6 vn 6

2

3n
) Et trouver la somme : (2 +

1

6
).

1

1− 1/9
.

4. On pose En = 1+
1

2
+ ...+

1

n
−ln(n). Donner un équivalent de dn = En+1 − En. (−1/2n2)

En déduire que la suite (En) converge. (Ind. : En = E1+
∑

16k6n−1

dk)

5. (*) Montrer que la série
∑ ln(n).sin(n)

n4/3
converge. (Indication : Comparer | un | à

1

n1+1/6
.)

6. (*) Nature des séries de terme général un =
1

n1+1/n
, vn = e−

√
n, wn = e−

(
1 +

1

n

)n
.

(1ère : un =
1

n
− (1 + ǫn).ln(n)

n2
∼

n→+∞
1

n
: et de signe positif ; de même nature, divergentes.

2ème : n2.vn −→
n→+∞

0. Donc ∃n0 : n > n0 =⇒ 0 6 vn 6
1

n2
: D’où série convergente.

3ème : wn ∼
n→+∞

e

2.n
. Donc série divergente par équivalent des séries à termes positifs.)

7. Nature de :
∑ (−1)n

ln(n)
? (Th. spécial S.A.). (*) Puis de

∑
vn =

(−1)n√
n+ (−1)n

? (DL, div. !)

8. Convergence et somme des séries de terme général : un = ln

(
1− 1

n2

)
, vn = ln(cos

( x
2n

)
)

Rép : n > 2, somme : −ln(2). Utiliser sin(2a) = 2.sin(a).cos(a). Puis les cas :

wn = Arctan(n+ 1)−Arctan(n) = Arctan
1

n(n+ 1) + 1
, xn = rn.cos(n.α), 0 6 r < 1.

9. Dans le cas où f est positive, décroissante pour n > n0 et C0 (par morceaux).

(a) Montrer que la série
∑

f(n) converge ⇔
∫ X

n0

f(t)dt a une limite finie quand X → +∞.

(b) Que dire sur le reste si
∑

f(n) converge ? sur la somme partielle si
∑

f(n) diverge ?

(c) Montrer que la suite Sn −
∫ n

n0

f(t).dt dans tous les cas, décroit et converge.



Chapitre 32

Probabilités : généralités

32.1 Le vocabulaire

32.1.1 Définitions

1. Exemple. On lance 2 dés Bleu et Rouge ; on regarde les couples obtenus. On note souvent :

Ω = {(1, 1), (1, 2), ..., (1, 6), (2, 1), ..., (6, 6)} dit : Univers des (cas) possibles.

. A = {(1, 3)} est un événement possible (une éventualité).

. B = {(2, 3), (2, 5)} en est un autre, signifiant obtenir en 1 lancer : (2, 3) ou (2, 5).

. Ω est appelé événement certain. ∅ : événement impossible.

A et B sont dit incompatibles si A ∩B = ∅. A est dit événement contraire de A.

Un événement N tel que p(N) = 0 est dit "négligeable" (ici, c’est quand Ω est infini ...).

2. Une famille d’événements Ai est un système complet d’événements si Ai ∩
i6=j

Aj = ∅ et ∪Ai = Ω.

Ci-dessus {(1, 1)}, {(1, 2)}, ... ,{(6, 5)}, {(6, 6)} : système complet d’événements élémentaires.

32.1.2 Espace probabilisé fini

1. Une probabilité p sur Ω est une application

p : P(Ω)→ [0, 1] telle que p(Ω) = 1 et (A et B incompatibles) ⇒ p(A ∪B) = p(A) + p(B).

Exemple fondamental

Si Ω est constitué d’un système complet d’événements élémentaires équiprobables, (on dit

aussi probabilité uniforme), alors : p(A) =
| A |
| Ω | =

Nombre− de− cas− favorables
Nombre− de− cas− possibles .

Ci-dessus, (avec des dés non biaisés), p(B) =
2

6.6
=

1

18
.

Autre Probabilité d’avoir au moins 1 as en 8 cartes d’un jeu de 32 ? p(A) =

(
28
8

)
/

(
32
8

)
...

2. Attention. Sur le même exemple, probabilité que la somme des 2 chiffres soit égale à 5 (noté C).

Les sommes possibles sont entre 2 et 12 ; il y a 11 sommes mais non équiprobables !

La probabilité de la somme cherchée correspond à 4 cas équiprobables sur 36 ; soit p(C) =
1

9
6= 1

11
.

3. Propriétés. Il est facile de voir que (exercice) :

� p(∅) = 0 � p(A) = 1− p(A) � p(A ∪B = p(A) + p(B)− p(A ∩B)
� p(A\B) = p(A)− p(A ∩B) � A ⊂ B ⇒ p(A) 6 p(B), croissance
� et, si on a n événements incompatibles, alors : p(∪ni=1Ai) =

∑

16i6n

p(Ai).

215
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32.2 Probabilités conditionnelles

32.2.1 Définition (probabilité de A si B)

1. On note p(A|B) ou pB(A) la "probabilité de A sachant (que) B (est Vraie)", pour p(B) 6= 0.

Cette probabilité (au sens déjà dit) est définie par pB(A) =
p(A ∩B)

p(B)
. Donc :

2. p(A ∩B) = p(A).pA(B) = p(B).pB(A) et (inversion des conditionnements) pB(A) =
pA(B).p(A)

p(B)
.

32.2.2 Formule des probabilités composées

1. La formule ci dessus se généralise : p(A ∩B ∩C) = p(A).pA(B ∩ C) = p(A).pA(B).pA∩B(C).

C’est la formule des probabilités composées : p(∩Ai) = p(A1).pA1(A2). ... .pA1∩A1∩...∩An−1(An).

2. Exemple
Trois urnes contiennent des boules Blanches et Noires. U1 contient 2B et 3N ; U2 contient 4B et
2N ; U3 : 6B et 1N. On tire une boule de U1, on note sa couleur, on la met dans U2 ; on tire
alors une boule de U2, on note sa couleur, on la met dans U3 ; on tire une boule de U3, on note sa
couleur. Probabilité pour que les 3 boules aient la même couleur ?

On a : p(N1 ∩N2 ∩N3) = p(N1).pN1(N2).pN1∩N2(N3) =
3

5
.
3

7
.
2

8
=

9

140
.

Idem : p(B1 ∩B2 ∩B3) =
35

140
. On obtient la probabilité cherchée : p =

11

35
= 0, 314.

32.2.3 Formule des probabilités totales

1. Ici, on a un système complet d’événements non négligeables Ai : Ai ∩
i6=j

Aj = ∅ et ∪Ai = Ω.

Alors p(B) =
∑

p(B ∩Ai) =
∑

p(Ai).pAi(B) (sommes sur i). (p(Ai) > 0)

2. Exemple
Trois urnes contiennent des boules Blanches et Noires. U1 contient 2B et 3N ; U2 contient 6B et
4N ; U3 : 4B et 1N. On choisit une urne au hasard et on tire une boule. Probabilité que ce soit
une Blanche, si p, q, r avec p+ q + r = 1 désigne les probabilités de choisir les Urnes 1, 2, 3 ?

Trouver : p(B) = pU1(B).p(U1) + pU2(B).p(U2) + pU3(B).p(U3) =
2.p

5
+

6.q

10
+

4.r

5
.

Si p = q = r, p(B) =
3

5
= 0, 6. (Et il est possible de choisir p, q, r pour avoir p(B) = 0, 5 ...)

32.2.4 Formule de Bayes (probabilité des causes !)

1. C’est l’inversion des conditionnements : pB(Aj) =
p(Aj ∩B)

p(B)
; le numérateur vaut p(Aj).pAj(B) ;

et au dénominateur, en utilisant la formule des probabilités totales : pB(Aj) =
p(Aj).pAj (B)∑
i p(Ai).pAi(B)

.

2. Exemple
Quatre urnes contiennent des boules Blanches et Noires. U1 contient 4B et 1N ; U2 contient 3B

et 2N ; U3 : 2B et 3N ; U4 : 1B et 4N. La probabilité de choisir l’Urne i est
i

10
.

� Probabilité d’avoir 1 B en 1 tirage ?
� Probabilité qu’on ait choisi l’Urne U1, si on a obtenu une blanche ?

1) Avec la formule des probabilités totales (correct car on a
1 + 2 + 3 + 4

10
= 1 !) :

p(B) = p(B|U1).p(U1) + ...+ p(B|U4).p(U4) =
4

5
.
1

10
+

3

5
.
2

10
+

2

5
.
3

10
+

1

5
.
4

10
=

2

5
= 0, 4.

2) Et aussi p(U1|B) =
p(U1 ∩B)

p(B)
=
p(U1).p(B|U1)

p(B)
=

4/50

2/5
=

1

5
= 0, 2 (urnes non équiprobables).
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32.3 Indépendance en probabilités

32.3.1 Cas de 2 événements

1. A et B sont dit indépendants si p(A ∩B) = p(A).p(B) (attention 6= "incompatibles").

� Un événement B négligeable (p(B) = 0), est toujours indépendant avec un événement A.

� Si p(B) > 0, cela veut dire pB(A) = p(A) : connaitre B ne change rien
(
car pB(A) =

p(A ∩B)

p(B)

)
.

2. Propriété. Si A et B indépendants, alors A et B, (donc A et B, A et B) sont indépendants.

En exercice : p(A ∩B) = p(A)− p(A ∩B) = p(A)− p(A).p(B) = p(A).p(B).

32.3.2 Cas de plusieurs événements

1. A,B,C sont dits indépendants si on a : p(A ∩B) = p(A).p(B), p(A ∩C) = p(A).p(C),

p(B ∩C) = p(B).p(C) et aussi p(A ∩B ∩ C) = p(A).p(B).p(C). Etc. en général.

(Donc : une sous-famille d’événements indépendants est indépendante !)

2. Trois événements indépendants 2 à 2, non indépendants ! On lance 2 fois de suite un dé équilibré.
A : le chiffre du 1er lancer est pair. B : le chiffre du 2ème lancer est impair. C : avoir 2 chiffres
de parité différente : A et B sont indépendants ; A et C aussi ; B et C aussi ; mais pas A,B,C.

Réponse. p(A) = p(B) =
1

2
. p(A ∩B) =

3.3

6.6
=

1

4
. p(C) = p((I, P )) + p((P, I)) =

1

4
+

1

4
=

1

2
.

A∩C = (P, I) : A et B indépendants car p(A∩B) = p(A).p(B) ; A et C aussi ; B et C aussi.

Mais : p(A ∩B ∩ C) = p(A ∩B) 6= p(A).p(B).p(C) ; donc A,B,C ne sont pas indépendants.

32.3.3 Exemples sur l’indépendance

1. On lance n fois une pièce avec probabilité p d’avoir Pile et q = 1− p d’avoir Face.

(a) Probabilité d’avoir au moins une fois Pile ?

(b) Probabilité qu’en ces n lancers, Face ne soit jamais suivi de Pile ?

Rép. : (a) Le contraire est F1 ∩ F2 ∩ ... ∩ Fn de probabilité qn (indépendance des lancers).
D’où la réponse ici : 1− qn.

(b) Soit Ak : P1 ∩ P2 ∩ ... ∩ Pk ∩ Fk+1 ∩ ... ∩ Fn, pour 0 6 k 6 n. On veut ici p(∪Ak) et ces
évènements sont incompatibles ; de plus : p(Ak) = pk.qn−k. D’où la réponse :

n∑

k=0

pk.qn−k. (On sait que
n∑

k=0

pk.qn−k =
pn+1 − qn+1

p− q si p 6= q et si p = q, p = q = 1/2 ...

et : lim
x→1/2

xn+1 − (1/2)n+1

x− 1/2
= lim

x→1/2

f(x)− f(1/2)

x− 1/2
= f ′(

1

2
) = (n+ 1).

1

2n
...)

2. Trois machines M1, M2, M3, produisent 50/100, 30/100, 20/100 des produits, respectivement.

De plus, 2/100 des produits fabriqués par M1 sont défectueux, 3/100 et 5/100 avec M2 et M3.

(a) Probabilité qu’un produit pris au hasard soit défectueux ?

(b) Probabilité d’obtenir une pièce défectueuse provenant de M1 ?

(c) Les événements "La pièce est défectueuse" et "La pièce provient de M1" sont-ils indépendants ?

(d) Une pièce est défectueuse. Probabilité qu’elle provienne de M1 ? (C’est : pD(M1).)

Réponses :

(a) Avec la formule des probabilités totales p(D) = p(D|M1).p(M1) + ... = 0, 02.0, 5 + ... = 0, 029.
(b) Maintenant, on veut : p(M1 ∩D) = p(D|M1).p(M1) = 0, 02.0, 5 = 0, 01. Par suite :
(c) On a p(M1 ∩D) 6= p(M1).p(D) ; donc ces événements ne sont pas indépendants.

(d) Ici, c’est une probabilité des causes : p(M1|D) =
p(M1 ∩D)

p(D)
=

0, 01

0, 029
≃ 0, 3448.
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32.4 Des exercices corrigés

32.4.1 Simple dénombrement mais pas facile (*) !

1. Avec 52 cartes, probabilité d’avoir exactement 1 Dame et 2 Coeurs en 5 cartes ? (13 coeurs ...)

2. On tire 2 dominos ensemble, d’un jeu de 28 (7+
7.6

2
). Probabilité d’avoir une face commune aux 2 ?

Rép 1.

(
12
1

)
.

(
36
3

)
+

(
3
1

)
.

(
12
2

)
.

(
36
2

)

(
52
5

) ≃ 0, 081. Rép 2.

(
7
1

)
.

(
6
1

)
+

(
7
1

)
.

(
6
2

)

(
28
2

) =
7

18
≃ 0, 389.

32.4.2 Indépendance, conditionnement, probabilité des causes

1. Pour ouvrir une porte, on a n clés distintes. Si k ∈ [[1, n]], probabilité pk d’ouvrir au kème essai ?

Rép. On a : p1 =
1

n
; p2 =

n− 1

n
.

1

n− 1
=

1

n
... Finalement pk =

1

n
tout le temps !

2. A etB indépendants, p(A) =
1

2
, p(A∪B) =

2

3
: calculer p(B). [p(A∪B) = p(A)+p(B)−p(A).p(B)...]

3. On dispose de 2 pièces de monnaie, l’une non truquée, l’autre truquée T où la probabilité d’avoir

Face est p > 1/2. On fait les jets successifs avec la même pièce.

(a) Probabilité d’avoit choisi T si on a eu Face au 1er lancer, noté F1 ? [p(T |F1) = 2p/(2p+ 1)]

(b) Les événements F1 et F2 sont-ils indépendants ? [Non : p(F1)p(F2) =

(
1

4
+
p

2

)2

,

et : p(F1 ∩ F2) = p(F1 ∩ F2 ∩NonT ) + p(F1 ∩ F2 ∩ T ) =
1

8
+
p2

2
.]

(c) Probabilité d’avoir choisi T si on a eu n F , en n lancers ? [p(T |F1∩F2∩...∩Fn) =
1

1 + 1/(2p)n
.]

32.4.3 (*) Limite de probabilités avec somme de Riemann

1. On tire une boule avec remise dans une Urne de n boules numérotées de 1 à n. Probabilité qu’au

k-è tirage (pk), on ait un numéro inférieur ou égal à tous les précédents ? Limite si n→ +∞ ?

Prendre en première lecture k = 2 et comprendre que p2(n) −→
n→+∞

1

2
; puis si k = 3,

comprendre que p3(n) −→
n→+∞

1

3
[plus petit numéro : position 1) 2) ou 3).] Non demandé

mais si, par contre, on prenait n = 10 et k = 1000, voir que p1000 ≃
1

10
[tirer la (1)].

2. Solution. Tirages indépendants et équiprobables. nk cas possibles ; si on tire la boule i au tirage

k, on a tiré avant dans [[i, n]] : (n− i+ 1)k−1 cas favorables. ⇒ pk =
1

nk

n∑

i=1

(n− i+ 1)k−1 et avec

j = n− i+1, pk =
1

nk

n∑

j=1

jk−1. Ainsi p2 =
n(n+ 1)

2.n2
=
n+ 1

2n
et pk =

1

n

n∑

j=1

(
j

n
)k−1 −→

n→+∞

∫ 1

0

tk−1dt =
1

k
.

32.4.4 (*) Limite de probabilités avec une Matrice

N enfants Ej jouent au ballon : au départ, E1 a le ballon et l’envoie à un autre ; etc. Relier les

les probabilités pk,n : Ek ayant le ballon au pas n (p1,0 = 1) avec une matrice. Et si n→ +∞ ?

Solution [On ne traite que le cas N = 3.] Soit (Ak,n)16k63 le système complet d’événements :

Ek a le ballon au pas n. Notons pn = p(A1, n), qn = p(A2, n), rn = p(A3, n).
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Alors pn+1 = p(A1,n+1) =
∑

j

p(A1,n+1 ∩ Aj,n) =
1

3− 1

∑

j 6=k
pj,n. Donc



pn+1

qn+1

rn+1


 =

1

2




0 1 1
1 0 1
1 1 0


 .



pn

qn
rn


.

ou : Xn+1 =
1

2
.A.Xn, Xn =

1

2n
An.X0 X0 =




1
0
0


. Si J =




1 1 1
1 1 1
1 1 1


, A = J − I3, montrons que

1

2n
An =

1

3
.

(
1− (−1)n

2n

)
.J +

(−1)n

2n
.I : qui "tend vers"

1

3
.J. D’où pn, qn, rn → 1

3
: limite attendue !

(*) Calcul de : An, n > 1. Déjà J2 = 3.J , Jn = 3n−1.J pour n > 1 ; tandis que J0 = I3 !

1. 1è façon (un peu artisanale et pas la plus simple) par le binôme An = (J − I)n : on sépare donc en

deux, selon : J0 et J i, i > 1. (*) En général An =
(3− 1)n − (−1)n

3
J + (−1)nI. Exemple A5 :

A5 = J5−
(

5
1

)
J4+

(
5
2

)
J3−

(
5
3

)
J2+

(
5
4

)
J−I3 =

1

3

(
35 −

(
5
1

)
34 +

(
5
2

)
33 −

(
5
3

)
32 +

(
5
4

)
3

)
J ...

... −I3 =
1

3

(
35 −

(
5
1

)
34 +

(
5
2

)
33 −

(
5
3

)
32 +

(
5
4

)
3 − 30

)
J +

1

3
J−I3 =

(3− 1)5 + 1

3
.J−I3.

Autres façons de calculer An, peut-être plus simples ! (ci-dessus, binôme).

2. Si on a une matrice facile, par exemple diagonale D, et P inversible telles que P−1AP = D, alors
An = P.Dn.P−1 : c’est le programme de Spé-PT.

3. Ou (Spé-PSI) avec A2 −A− 2.I3 = O, Xn = (X + 1)(X − 2)Q(X) + pnX + qn, on trouve pn, qn
avec X = −1, 2 puis on déduit que : An = O + pn.A+ qn.I.

4. Ou encore ici An =



an bn bn
bn an bn
bn bn an


 avec an+1 = 2.bn, bn+1 = an + bn. Tirer an de (2), reporter dans

(1) ⇒ bn+2 − bn+1 − 2.bn = 0 d’équation caractéristique r2 − r − 2 = 0 : bn = α.2n + β.(−1)n...

32.4.5 (**) Limite de probabilités avec suite arithmético-géométrique

Une urne B blanche contient une proportion 0 < a < 1 de boules noires (et 1 − a de bl.) ; une urne N
noire contient une proportion 0 < b < 1 de blanches (1− b de n.) On choisit une urne (probabilité p pour
B), on tire une boule avec remise ; si elle a même couleur que l’Urne, on garde l’Urne, sinon on change.

- Soit Vn =

(
pn
qn

)
où pn est la probabilité que la n ème soit blanche. Limite de Vn en l’infini ?

- Probabilité que la n ème soit blanche si blanche au k ème tirage : k 6 n ; puis k > n ?

Solution. Soit An l’événement : Au n ème tirage, on a une blanche ; qui implique : on est dans

l’urne B, au rang n+ 1. Déjà : p1 = p.(1− a) + q.b et pn + qn = 1. Puis :

pn+1 = p(An+1 ∩An) + p(An+1 ∩Bn) = (1− a).pn + b.qn, ∀n > 0, en posant p0 = p, q0 = q.

Ainsi : pn+1 = (1− a− b).pn + b. pn est une suite arithmético-géométrique (connue) d’où :

( ... ) pn =
b

a+ b
+ (1− a− b)n.

(
p− b

a+ b

)
de limite :

b

a+ b
. Puis :

Cas où n > k. Ici : Vn = Mn−k.Vk où M =

(
1− a b
a 1− b

)
et Vk =

(
1
0

)
. La relation est donc

analogue à la précédente et devient : pn,k =
b

a+ b
+ (1− a− b)n−k.

(
1− b

a+ b

)
pour n > k

Cas où k > n. Cette fois : 1 =
b

a+ b
+ (1− a− b)k−n.

(
pn,k −

b

a+ b

)
; d’où on trouve, par

calcul ... pn,k =
b

a+ b
+ (1− a− b)n−k.

(
1− b

a+ b

)
pour n 6 k. Même expression !
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M+ Exercices: Probabilités, généralités PTSI

1. (Dénombrement). On lance 4 fois un dé à 6 faces. On appelle tirage cette suite de 4 lancers.

(a) Combien a-t-on de tels tirages ?

(b) Combien avec exactement 2 numéros différents ?

(c) Combien avec exactement 3 numéros différents ? (1296, 210, 720).

2. (Dénombrement). On lance 3 dés (Bleu, Jaune, Rouge) à 6 faces.

(a) Nombre total de tirages possibles ?

(b) Nombre de tirage ayant au moins un "6" ?

(c) Nombre de tirage ayant au moins 2 faces identiques ?

(d) Nombre de tirage tels que la somme des 3 dés soit paire ?

(e) Nombre de tirage vérifiant 2) et 3) ? puis 3) et 4) ? (216, 91, 96, 108, 31, 48)

3. (Probabilités) Un joueur atteint sa cible avec une probabilité de 0,04.

Combien doit-il faire d’essais pour l’atteindre (> 1 fois) avec une probabilité d’au moins 0,95 ?

Réponse : En n lancers, on résout : 1− p = (0, 96)n 6 0, 05. On trouve n > 74.

4. (Probabilités) On dispose de deux dés : A a 4 faces rouges, 2 blanches. B : 2 rouges, 4 blanches.
On joue toujours avec le même dé ; mais avec une probabilité 1/3 pour A ; et 2/3 pour B.

(a) Probabilité d’avoir la couleur rouge au premier coup ?

(b) On a eu 2 fois rouge (sur deux). Probabilité d’avoir rouge au 3ème ?

(c) On a obtenu n fois rouge en n coups. Probabilité d’avoir utilisé A ?

Réponses : (a) p(R1) = p(R1|A).p(A) + p(R1|B).p(B) =
4

6
.
1

3
+

2

6
.
2

3
=

4

9
≃ 0, 4444.

(b) On cherche p(R1∩R2∩R3|R1∩R2). p(R1∩R2) = p(R1∩R2|A).p(A)+p(R1∩R2|B).p(B) ... =
2

9
.

p(R1 ∩R2 ∩R3) analogue... et vaut
10

81
. D’où la réponse :

5

9
≃ 0, 5555.

(c) Déjà la probabilité d’avoir n rouge est (de même)
1

3
.

(
2

3

)n
+

2

3
.

(
1

3

)n
=

2n + 2

3n+1
d’une part.

Et p(A|n− rouge) =
p(A ∩ n− rouge)
p(n− rouge) =

p(R1 ∩R2 ∩ ... ∩Rn|A).p(A)

p(n− rouge) (selon la formule de

Bayes). Le numérateur est
2n

3n+1
. D’où la probabilité

2n

2n + 2
(qui tend vers 1, si n→ +∞).

5. (Probabilités) Une particule se déplace entre 3 points A,B,C. Si en A, elle va en B avec la prob.

0,75 ou en C avec la prob. 0,25. Si en B, elle va en A avec la prob. 0,75 ou en C avec la prob. 0,25.

Si en C, elle va forcément en B. On note an, bn, cn les probabilité d’être en A,B,C au temps n.

On considère aussi les matrices : M =




0 3/4 0
3/4 0 1
1/4 1/4 0


 P =




12 3 1
16 −1 −1
7 −2 0


 et Xn =



an

bn
cn


.

(a) Vérifier que Xn+1 = M.Xn.

(b) Calculer P−1 (on peut s’aider d’une machine) et vérifier que P−1MP = diag(1,−1/4,−3/4).
En déduire Mn puis Xn en fonction de X0.

(c) En déduire la limite X, quand n tend vers +∞, de Xn.



Chapitre 33

Probabilités : Variables aléatoires

33.1 Variables aléatoires sur un espace probabilisé fini

33.1.1 Définitions

1. Soit Ω un ensemble fini, muni d’une probabilité. Par exemple, avec un dé lancé 2 fois,

Ω = {(1, 1), (1, 2), (1, 3), ..., (6, 5), (6, 6)} chacun de probabilité
1

36
si les faces sont équiprobables.

2. On définit une application de Ω dans R mais les notations usuelles ici sont X. Sur le cas ci-

dessus, par exemple, X est la somme des numéros pour 2 lancers : X(Ω) = {2, 3, 4, ...12}.

p(X = 2) =
1

36
, p(X = 3) =

1

18
, p(X = 4) =

1

12
, p(X = 5) =

1

9
, p(X = 6) =

5

36
, p(X = 7) =

1

6
,

p(X = 8) =
5

36
, p(X = 9) =

1

9
, p(X = 10) =

1

12
, p(X = 11) =

1

18
, p(X = 12) =

1

36
.

3. Souvent X(Ω) = {x1, x2, ..., xn} ⊂ N ; on note {X = xi} l’ensemble {ω : X(ω) = xi} avec :

pi = p(X = xi). C’est une autre probabilité :
∑

pi = 1. (X ∈ A signifie {ω ∈ Ω : X(ω) ∈ A}.)

33.1.2 Autres exemples

1. Composition foX : Sur l’exemple précédent, on peut considérer une fonction f (par exemple

un gain) disant si la somme vaut k, le gain est f(k). Par exemple avec : f(x) = 2.x,

foX se noterait 2.X et son ensemble de valeurs serait : foX(Ω) = {4, 6, 8, ..., 24}.

2. Toujours avec 2 lancers de dés, soit Y : le minimum obtenu. Ici, Y (Ω) = {1, 2, 3, 4, 5, 6} et :

p(Y = 1) =
11

36
, p(Y = 2) =

9

36
, p(Y = 3) =

7

36
, p(Y = 4) =

5

36
, p(Y = 5) =

3

36
, p(Y = 6) =

1

36
.

3. Exemple. Loi de X, rang d’apparition de la Noire : tirages sans remise dans une Urne (2 B, 1N) ?

Solution. X(Ω) = {1, 2, 3}. Puis (X = 1) signifie qu’on tire de suite la noire p(X = 1) =
1

3
.

p(X = 2) = p
(
(B,N)

)
=

2

3
.
1

2
=

1

3
. p(X = 3) =

2

3
.
1

2
.
1

1
=

1

3
. X suit une loi uniforme sur [[1, 3]].

33.1.3 Couple de variables aléatoires. Indépendance

1. Définition Etant donné, deux variables aléatoires, notées ici : X, Y à valeurs dans R, on peut

définir les probabilités : pij = p(X = xi ∩ Y = yj). Exemple : Y \X | − 1 0 1

——–|———————
0 | 1/5 0 1/5
1 | 1/5 1/5 1/5

Ici : p(X = 0 ∩ Y = 1) = 1/5 6= p(X = 0). p(Y = 1) = 1/5 . 3/5.

221
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2. Ce qu’on appelle "lois marginales", c’est : p(X = −1), p(X = 0), p(X = 1) ; idem avec Y ; en

général : pi, � = p(X = xi, Y quelconque) =
∑

j

pi,j et p�, j = p(Y = yj, X quelconque) =
∑

i

pi,j.

3. On appelle loi conditionnelle de Y sachant que X = xi, la donnée de : p(Y = yj|X = xi) =
pi,j

pi, �

4. X et Y sont dites indépendantes si p(X = xi, Y = yj) = p(X = xi).p(Y = yj). Se généralise ...

Deux propriétés immédiates. Si indépendance : p
(
(X ∈ A) ∩ (Y ∈ B)

)
= p(X ∈ A). p(Y ∈ B)

et f(X), g(Y ) indépendantes. Ainsi :X,Y indépendantes ⇒ a.X+b, cY +d indépendantes.

33.2 Espérance, variance, écart-type.

33.2.1 Définitions

1. Soit X une variable aléatoire prenant les valeurs xi avec les probabilités pi.

Alors l’espérance mathématique vaut, par définition : E(X) =
∑

xi.pi =
∑

xi.p(X = xi).

2. Exemple. Supposons une variable aléatoire représentant la longueur de divers lancers ; soit :

Longueurs | 5m. | 10m. | 12mètres
———————————————-
Effectifs : | 6 | 9 | 5. La moyenne ou l’espérance vaut : E(X) = X = 9 mètres.

3. Variance et écart-type (dispersion) V (X) =
∑

(xi − E(X))2. pi =
∑

(xi −X)2. pi σ =
√
V .

4. L’exemple : la variance en m2 ; l’écart-type en mètres. V = 7, 5 m2 ; σ ≃ 2, 74 mètres.

Note : V (X) = E
(
[X −X ]2

)
= E

(
[X − E(X)]2

)
(Et une v.a. constante est dite "certaine".)

33.2.2 Propriétés de l’Espérance (Si E(X) = 0, on dit v.a. "centrée")

1. Linéarité. E(λ.X + µ.Y ) = λ.E(X) + µ.E(Y ) que X, Y soient, ou non, indépendantes.

Donc E(X1 +X2 + ...+Xn) = E(X1) + ...+ E(Xn).

Démonstration de Ligne 1 (*). E(λ.X) = λ.E(X) évident avec la définition ; et (intéressant) :

E(X + Y ) =
∑

i,j

(xi + yj)pi,j =
∑

i,j

(xi + yj).pi,j =
∑

i,j

xi.pi,j +
∑

i,j

yj.pi,j. Or doubles indices :

∑

16i62,16j63

ai.bj = a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a3b2 =
∑

16i62

(
∑

16j63

ai,j) =
∑

j

(
∑

i

...) à voir !

⇒
∑

i,j

xi.pi,j =
∑

i

(
∑

j

xi.pi,j) =
∑

i

xi.pi = E(X). Idem l’autre terme avec
∑

j

∑

i

.

2. Croissance : E(X) > 0 si X > O et donc (linéarité) : X 6 Y =⇒ E(X) 6 E(Y ).

3. Formule "de transfert" : E(f(X)) =
∑

f(xi).p(X = xi). En exercice.

4. Enfin X, Y indépendantes ⇒ E(X.Y ) = E(X).E(Y ). p(X = xi∩Y = yj) = p(X = xi).p(Y = yj).

Démonstration : Ici, E(X.Y ) =
∑

xi.yj.p(X = xi ∩ Y = yj) =
∑

i,j

xi.yj.p(X = xi).p(Y = yj) !

(//ci-dessus) ... =
∑

i

xi.p(X = xi).E(Y ) = E(Y ).E(X). Réciproque fausse : à voir au I.

33.2.3 Propriétés de la Variance

1. Si a, b ∈ R, E(a.X + b) = a.E(X) + b. V (a.X + b) = a2.V (X) donc σ(a.X + b) = | a | . σ(X).

Démonstration. V (a.X+ b) =
∑(

a.xi − a.E(X)
)2
. pi = a2.

(∑
(xi −E(X))2. pi

)
= a2.V (X).
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2. Formule de Huyghens. V (X) = E(X2)−
(
E(X)

)2
mais ici on voit mal V (X) > 0. (cf. Ex. II.1.)

Démonstration. Notons m = E(X) = X ; alors : V (X) = E
(
(X −X)2

)
= E

(
(X −m)2

)
=

∑
(xi −m)2.pi =

∑
x2
i .pi − 2m.

∑
xi.pi +m2.

∑
pi = E(X2)− 2.m.m+m2 = E(X2)−m2.

3. Covariance. On a : V (X +Y ) = E
(
(X + Y )2

)
−
(
E(X + Y )

)2
d’après la formule précédente ; d’où

V (X + Y ) = E(X2) + E(Y 2) + 2.E(X.Y )−
(
E(X)

)2 −
(
E(Y )

)2 − 2.E(X).E(Y ). Qui donne

V (X + Y ) = V (X) + V (Y ) + 2
(
E(X.Y )− E(X).E(Y )

)
. Puis on définit (avec X = E(X)) :

Cov(X,Y ) = E
(
(X −X).(Y − Y )

)
= E(X.Y )−X.E(Y )−Y .E(X)+X.Y = E(X.Y )−E(X).E(Y )

donc : Cov(X,Y ) = E
(
(X −X).(Y − Y )

)
= E(X.Y )− E(X).E(Y ) ; V (X) = Cov(X,X).

Et V (X + Y ) = V (X) + V (Y ) + 2.Cov(X,Y ) avec X, Y indépendantes ⇒ Cov(X,Y ) = 0.

(dernière implication déjà vue en II.2.)

Analogie avec un produit scalaire : (forme bi-linéaire symétrique, positive ...)

Analogie −→x �
−→y ↔ Cov(X,Y ) = E

(
(X −X).(Y − Y )

)
= E(X.Y )− E(X).E(Y ).

−→x �
−→x ↔ Cov(X,X) = V (X) d’où : V (X + Y ) = V (X) + V (Y ) + 2.Cov(X,Y ) est le Théorème

d’Al-Kashi ‖−→x +−→y ‖2 = ‖−→x ‖2 + ‖−→y ‖2 + 2.(−→x �
−→y ) [+ Inég. de C-S et de Minkowski !]

4. Note. X−X ’centrée’ car E
(
X −X

)
= 0. X,Y ind.⇒ X−X,Y −Y ind. (fin I), Cov(X,Y ) = 0.

A nouveau et retenir : X, Y indépendantes ⇒ V (X + Y ) = V (X) + V (Y ).

33.3 Lois de probabilités finies usuelles.

33.3.1 Loi uniforme X(Ω) = {x1, x2, ..., xn} ; p(X = xk) = 1/n

Pour la loi uniforme sur [[1, n]] : E(X) =
n+ 1

2
; V (X) =

n2 − 1

12
Car, avec

∑
k2 (donné)

V (X) = E(X2)−X2
=

1

n
.

n∑

k=1

k2 − (n+ 1)2

4
=

1

n
.
n(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
= ... =

n2 − 1

12
.

33.3.2 Loi de Bernoulli B(p) X(Ω) = {0, 1}, p(X = 1) = p, p(X = 0) = 1− p = q

(Succès, échec) : E(X) = p ; V (X) = p− p2 = p.q. (avec : V (X) = E(X2)− E(X)2.)

Exercice. X,Y,Z sont 3 v.a. ind. suivant la même loi de Bernoulli B(p) ; calculer E(X +XY +XY Z).

Solution Soit U = X +XY +XY Z. Par linéarité E(U) = E(X) + E(XY ) + E(XY Z) ; et
par indépendance : E(U) = E(X) + E(X).E(Y ) + E(X)E(Y )E(Z) = p(1 + p+ p2).

33.3.3 Loi Binômiale B(n, p), X(Ω) = [[0, n]], p(X = k) : avec les coeff. binômiaux

Théorème :
Si X1, ...,Xn v.a. indépendantes suivent une Loi de Bernoulli, alors Sn = X1 + ...+Xn

(Nombre de Succès en n tentatives indépendantes) suit une loi binomiale : B(n, p).

Démonstration. Si indépendance, Sn = k signifie qu’on a choisi k Xi où Xi = 1 ; les autres : 0. D’où

p(Sn = k) =

(
n
k

)
.pk.qn−k. E(Sn) = n.p ; V (Sn) = n.p.q car X, Y ind. ⇒ V (X + Y ) = V (X) + V (Y ).

Exercice 1. Une Urne contient 5 boules numérotées de (1) à (5). Tirons successivement avec remise 2

boules ; soit X le nombre de numéros pairs obtenus. Loi de X ? Rép. X suit la loi B(2,
2

5
).

Exercice 2. Espérance, variance par calcul : Simplifier f(x) =
n∑

k=0

(
n
k

)
.xk.yn−k [(x + y)n] ; calculer f ′(x)

[n(x+ y)n−1] ; en déduire E(X) = n.p. Vérifier que
∑

k.(k− 1).xk.yn−k = n.(n− 1).x2.(x+ y)n−2 avec

f” ; en déduire E(X2)− E(X) = n.(n− 1).p2 et V (X) = E(X2)− n2p2 = n.p.q, comme ci-dessus !



224 CHAPITRE 33. PROBABILITÉS : VARIABLES ALÉATOIRES

33.4 Inégalité de Bienaymé-Tchebychev

33.4.1 Enoncé et démonstration

On a p
(
| X − E(X) | > t

)
6

1

t2
.V (X) ou bien : p

(
| X − E(X) | > k.σ(X)

)
6

1

k2
.

Preuve. V (X) >
∑

|X−E(X)|> t

(
xi − E(X)

)2
.pi > t2.p

(
| X − E(X) |> t

)
et isoler le terme cherché.

33.4.2 Exemples

1. Exemple 1 : On fait divers lancers d’un dé parfait à 6 faces. Nombre de lancers à faire pour pouvoir

affirmer avec une erreur < 5/100 que la fréquence d’apparition du 6 est dans [
1

6
−0, 01,

1

6
+0, 01] ?

Sol. Xn, le nombre de 6 obtenus en n lancers, suit la loi : B(n,
1

6
).

Xn

n
est la fréquence :

p

(
| Xn

n
− 1

6
|> 0, 01

)
6
V (Xn/n)

0, 012
=

104.n.p.q

n2
=

5.104

36.n
.

5.104

36.n
6

5

100
suffit ; réalisé si n > 27778.

2. Exemple 2 : On effectue n > 1 lancers avec une pièce équilibrée. Trouver n pour qu’on puisse affirmer

avec un risque d’erreur < 4/100 que la fréquence des piles ne diffère pas de 1/2 de plus de
3

100
.

Sol. Xn, nombre de piles obtenus, suit la loi B(n, 1/2). La fréquence Fn = Xn/n vérifie :

p(| Fn−
1

2
|> 3

100
) 6

104

36.n
. On veut p(| F − 1

2
|< 3

100
) > 1− 4

100
.

104

36.n
<

4

100
suffit ; n > 6945.

3. Exemple 3 : Un avion peut transporter 400 passagers. Un passager prévu fait défaut avec une

probabilité de
8

100
. 420 réservations ont été faites. Probabilité qu’il manque des places ?

Sol. On étudie les désistements : on a la loi B(420; 0, 08) d’espérance m = 33, 6 et de variance

V = 30, 912. Si D est le nombre de désistements : p(D 6 19) = p
(
(D −m) 6 −14, 6

)
.

Donc : p(D 6 19) 6 p(| D −m | > 14, 6) 6
σ2

14, 62
≃ 0, 1450. Probabilité inférieure à

14, 5

100
.

33.5 Exercices corrigés

33.5.1 Une Urne a 4 boules 1B, 1N, 2R. On tire sans remise chaque boule ...

1. X rang de la B. ; Y de la 2è R. Loi de (X,Y ) ? Loi marginale de X ? de Y ? de Z = | X−Y | ?

2. Solution : Y \X ‖ 1 | 2 | 3 | 4 avec un arbre ! X : loi uniforme ; et :
−−−−−−−−−−−−

2 ‖ 0 | 0 | 1/12 | 1/12 p(Y = 2) = 1/6; p(Y = 3) = 1/3; p(Y = 4) = 1/2
−−−−−−−−−−−−

3 ‖1/12 |1/12 | 0 | 1/6 Loi de Z = | X − Y | temps d’attente :
−−−−−−−−−−−−

4 ‖ 1/6 | 1/6 | 1/6 | 0 p(Z = 1) = 1/2; p(Z = 2) = 1/3; p(Z = 3) = 1/6.

33.5.2 Comment trouver la loi de la somme de 2 v.a., à valeurs dans N

p(S = n) =
∑

k

p
(
(X = k) ∩ (Y = n− k)

)
. Et si X, Y sont indépendantes, somme de produits !

33.5.3 (*) Comment trouver la loi de Z = minimum(X, Y ), à valeurs dans N

Ce qui est commode p(Z > n) = p
(
(X > n) ∩ (Y > n)

)
puis p(Z = n) = p(Z > n− 1)− p(Z > n).
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33.5.4 (*) Comment trouver la loi de Z = maximum(X, Y ), à valeurs dans N

Idem : p(Z 6 n) = p(X 6 n ∩ Y 6 n) puis : p(Z = n) = p(Z 6 n)− p(Z 6 n− 1).

Ex. : Une Urne contient n boules numérotées 1,2, ...n. On tire 2 boules à la fois et Z=max(Numéros).

Loi de Z ? Rép. p(Z 6 k) =
k(k − 1)

n(n− 1)
car

(
n
2

)
=
n(n− 1)

2.1
. Donc p(Z = k) =

2.(k − 1)

n.(n− 1)
, 2 6 k 6 n.

33.5.5 (*) Espérance et Variance d’une Loi hypergéométrique H(N, n, p)

Sondage de n ’personnes’ (n 6 N) dans une ’Population’ de N , avec proportion p de tel caractère - ex.
groupe sanguin AB - (donc N.p ∈ N au total) et q sans ce caractère (donc N.q ∈ N non groupe AB).

Soit X la v. a. donnant le nombre de ’AB’ dans le sondage : p(X = k) =

(
N.p
k

)
.

(
N.q
n− k

)

(
N
n

) , 0 6 k 6 n.

[Ex. si N = 12, p = 1/3, N.p = 4 AB, N.q = 8 non, n = 3, en notant pk = p(X = k) :
on vérifie que : p0 + p1 + p2 + p3 = ( 1.

8.7.6

3.2.1
+ 4.

8.7

2.1
+ 6.8 + 4.1) /

12.11.10

3.2.1
= 1.]

La somme de ces probabilités vaut 1, c’est normal : formule de Van Der Monde, exercice.

(L’idée, dans une grande population de 70 millions d’h, est de chercher p = 1/3 ( ?) par des tests dans
des échantillons de n = 500 personnes par ex.) Puis E(X) avec ce qui suit et le rappel :

(
r
k

)
=
r

k
.

(
r − 1
k − 1

)
E(X) =

∑

k>1

k.p(X = k) =
∑

k>1

N.p.

(
N.p− 1
k − 1

)
.

(
N.q
n− k

)

N
n .

(
N − 1
n− 1

) =N.p.
n

N
= n.p (bon).

(**) Et toujours avec la formule encadrée ci-dessus et celle de Van Der Monde :

E(X2) =
∑

k>1

k2.p(X = k) = E(X)+
∑

k>2

k.(k−1).p(X = k) = n.p+
∑

k>2

N.p(N.p−1).

(
N.p − 2
k − 2

)
.

(
N.q
n− k

)

N.(N−1)
n.(n−1)

(
N − 2
n− 2

)

E(X2) = n.p+N.p.(N.p − 1).
n(n− 1)

N(N − 1)
. D’où avec la formule de Huyghens V (X) = n.p.q.

N − n
N − 1

.

33.5.6 (**) Indépendance ? (On a besoin de la somme des k2)

Une urne contient n boules numérotées de 1 à n. On tire une boule, soit X son numéro. On la remet et
on ajoute alors une boule numérotée X. On tire une boule dans l’urne modifiée et soit Y son numéro.

Questions : Loi de X ? de Y ? E(X.Y ) ? Conclusion ? Réponses :

1. X suit la loi uniforme sur [[1, n]]. P (X = k) =
1

n
. E(X) =

n+ 1

2
(sera utile).

2. Puis avec un système complet d’événements évident, Y suit aussi cette loi uniforme car :

p(Y = i) = p(Y = i|X = i).p(X = i) + p(Y = i|X 6= i).p(X 6= i) =
2

n+ 1
.
1

n
+

1

n+ 1
.
n− 1

n
=

1

n
.

3. Ensuite : p(X = i ∩ Y = i) = p(X = i).p(Y = i|X = i) =
1

n
.

2

n+ 1
;

et si i 6= j : p(X = i ∩ Y = j) = p(X = i).p(Y = j|X = i) =
1

n
.

1

n+ 1
. Donc, avec S =

n∑

i=1

i2

E(X.Y ) =
∑

16i=j6n

i2.
2

n(n+ 1)
+
∑

i6=j
i.j.

1

n(n + 1)
= S.

2

n(n+ 1)
+

n∑

i=1

( n∑

j=1

i.j − i2
)
.

1

n(n+ 1)
=

1

n(n+ 1)
.
n(n+ 1)(2n + 1)

6
+
n(n+ 1)

4
=

3n2 + 7n + 2

12
6= E(X).E(Y ) : V.a. non indépendantes.
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M+ Exercices: Variables aléatoires. PTSI

1. Dans une ville, il y a une proportion p de personnes ayant un virus. Si on est en contact avec une

telle personne, on a 2 chances sur 3 d’être contaminé. Un représentant rencontre n personnes.

(a) Montrer que la variable aléatoire N : nombre de malades rencontrés suit une loi B(n, p).

(b) Montrer que la probabilité que le représentant soit contaminé est : 1−
(

1− 2p

3

)n

.

2. Une puce fait des sauts (égaux) à Droite avec une probabilité p, ou à G. (1− p).
Au départ son abscisse vaut 0. Soit Xn l’abscisse au pas n. Loi, espérance et variance de Xn ?

Rép. Soit Sk la v.a. de Bernoulli valant 1 si le kème pas est à D, 0 sinon. Alors Dn =
∑

Sk (k 6 n)

suit une loi B(n, p). Et Gn = n−Dn. Donc Xn = 2.Dn − n.

D’où : p(Xn = 2k − n) =

(
n
k

)
.pk.qn−k. E(Xn) = n.(2p − 1) et V (Xn) = 4.n.p.q.

3. Montrer la "formule de Van Der Monde" :
∑

k

(
n1

k

)
.

(
n2

n− k

)
=

(
n1 + n2

n

)
. (N = n1 + n2).

4. (*) Avec une matrice 3x3 (à la puissance n). On a deux casiers A et B contenant chacun 2 jetons.

Au départ (n = 0), A possède les jetons 0 et 0 ; B les jetons 1 et 1.

A chaque coup, on permute un jeton de A et un de B. Soit Xn la somme en A après n coups.

(Xn(Ω) ∈ [[0, 2]]). On note : an = p(Xn = 0), bn = p(Xn = 1), cn = p(Xn = 2). Avec :

(a) p(Xn+1 = i) = p(Xn = 0).p(Xn+1 = i|Xn = 0) + p(Xn+1 = i|Xn = 1) + p(Xn+1 = i|Xn = 2),
on a :


an
bn
cn


 = An




1
0
0


 où A =




0 1/4 0
1 1/2 1
0 1/4 0


= PDP−1 =




1 1 −1
0 4 2
−1 1 −1


diag(0, 1, −1

2
)




1/2 0 −1/2
1/6 1/6 1/6
−1/3 1/6 −1/3




(b) On déduit pour n > 1 : an = cn =
1

6
+

1

3
.

(
−1

2

)n
→ 1

6
; bn =

2

3
− 2

3
.

(
−1

2

)n
→ 2

3
.

5. (*) Indépendance ? (on a besoin des
∑

k2 et
∑

k3). Une urne contient n− 2 boules N et 2 B.

On tire successivement une boule sans remise : X ∈ [[1, n− 1]] est le numéro du tirage pour lequel

la 1ère B. apparaît ; Y ∈ [[2, n]] le numéro de la 2ème B. Loi de X ? de Y ? E(X.Y ) ? Conclure.

(a) On a : p(X = k) =
(n− 2).(n − 3)...[(n − 2)− (k − 2)].2

n(n− 1)...(n − (k − 1))
=

2(n− k)
n(n− 1)

.

D’où : E(X) =

n−1∑

k=1

k.
2(n − k)
n(n− 1)

= ... =
n+ 1

3
. Et (...)

(b) p(Y = k) =
2.(k − 1).(n − 2).(n − 3)...[(n − 2)− (k − 3)]

n(n− 1)...(n − (k − 1))
=

2(k − 1)

n(n− 1)
. E(Y ) =

2(n+ 1)

3
.

(c) Et pour 0 < i < j 6 n, pij =
2.(n − 2)(n − 3)...(n − k + 1)

n(n− 1)...(n − (k − 1))
=

2

n(n− 1)
. On trouve alors :

E(X.Y ) =
2

n(n− 1)

n∑

j=1

j.
j.(j − 1)

2
= ... =

(n+ 1)(3n + 2)

12
6= E(X).E(Y ). Non ind.



Chapitre 34

Compléments : Hyperboliques réciproques

34.1 Fonctions hyperboliques réciproques

34.1.1 sh−1=Argsh (graphe après)

sh est bijective de R dans R, C1 et sh′ > 1. La réciproque est Argsh, de dérivée Argsh′(x) =
1√

1 + x2
.

Ceci se voit par le Th. de dérivation des fonct. réciproques ou bien avec Argsh(x) = ln(x+
√

1 + x2).

En effet
y = sh(x) ⇔ 2y = ex − e−x ⇔ e2x − 2y.ex − 1 = 0 (second degré). On trouve ex = y +

√
y2 + 1 car il

faut choisir la racine positive ; d’où x = Argsh(y) = ln(y +
√

1 + y2).

Exercice. Argsh(x) ∼
x→+∞

ln(x). Retenir
1√

1 + x2
admet pour primitive ln(x+

√
1 + x2) + cte.

34.1.2 ch−1=Argch (graphe après)

ch est bijective de [0,+∞[ dans [1,+∞[, C1 mais ch′ > 0 que sur ]0,+∞[. La réciproque est Argch, de

dérivée Argch′(x) =
1√

x2 − 1
, x > 1.

Ceci se voit par le Th. de dérivation des fonct. réc. ou bien avec Argch(x) = ln(x+
√
x2 − 1), x > 1.

En effet
y = ch(x)⇔ 2y = ex + e−x ⇔ e2x − 2y.ex + 1 = 0 (second degré). On trouve ex = y ±

√
y2 − 1 et il faut

choisir la racine > 1 [produit des racines =1], donc + ; d’où x = Argch(y) = ln(y +
√
y2 − 1).

Exercice. Argch(x) ∼
x→+∞

ln(x).

On peut retenir ici

1√
x2 − 1

admet pour primitive sur chaque intervalle : x < −1 ou x > 1,

ln | x+
√
x2 − 1 | +cte, cte dépendant ici de l’intervalle.

34.1.3 th−1=Argth. coth−1=Argcoth

Argth définie sur ]− 1,+1[. Argcoth définie hors de [−1,+1].

Attention : c’est th (et non Argth) qui "ressemble" à Arctan. (Mais très différentes pour la dérivée).

On a : Argth(x) =
1

2
.ln

1 + x

1− x ; et : Argcoth(x) =
1

2
.ln

x+ 1

x− 1
; chacune de dérivée

1

1− x2
!

En exercice.
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En sens inverse :
Si on veut une primitive de

1

x2 − 1
, décomposer en éléments simples

et on trouve
−1

2
.ln | x+ 1

x− 1
| +cte, avec cte dépendant de l’intervalle.

34.2 Expressions logarithmiques -parfois-, dérivées et graphes.

(On peut ainsi donner deux preuves des dérivées : soit avec une telle expression, soit comme dérivée de

fonction réciproque)

x

y

5
0
0

Argsh(x) = ln(x+
√
x2 + 1) de dérivée

1√
x2 + 1

y

2

5
0
0 Argch(x) = ln(x+

√
x2 − 1) de dérivée

1√
x2 − 1

, x > 1

0

y

x

0
2

y

x

0
0

Argth(x) de dérivée
1

1− x2
> 0, | x |< 1 et Argcoth(x) de dérivée

1

1− x2
6 0, | x |> 1.



Chapitre 35

Courbes en paramétriques [hors coniques]

35.1 Exemple : la tractrice

35.1.1 Domaines

Soit t ∈ R 7−→ F (t) ∈ R2

{
x = a[t− th(t)]
y = a/ch(t).

a>0. F définie pour t ∈ R [chaque coordonnée de M(t) ou

composante de
−−→
OM(t)]. Mais en changeant t en −t, on a une symétrie / Oy. Domaine d’étude : t > 0.

35.1.2 Variations. Tableau à faire !

On a : x′(t) = a.th2(t); y′(t) = −a. sh(t)
ch2(t)

. Pour t = 0 :

−−→
dM

dt
(0) =

−→
0 ; on dit point stationnaire A

(
0
a

)
.

Tangente au point stationnaire A 1ère méthode : Calcul de

−−→
d2M

dt2
(0)... souvent par D.L. cf. II-III

2ème méthode : On a

−−→
dM

dt
=
a.sh(t)

ch2(t)
.−→u colinéaire à −→u =

(
sh(t)
−1

)
6= −→0 .

Alors : −→u (0) = −−→ colinéaire à

−−→
dM

dt
mais non nul en t = 0, donne la tangente en A, car :

dy

dx
=
dy

dt
.
dt

dx
[dér. des f. composées] et

dt

dx
=

1
dx
dt

[dér. des f. réciproques] donc ici
dy

dx
=
−1

sh(t)
−→
t→0
−∞.

Par le th. de la limite de la dérivée, on a une tangente verticale en A. 0
0

1

35.1.3 Courbe ci-dessus et propriété géométrique

Pour tout point M de la courbe, avec T intersection de la tangente en M avec Ox, on a MT = cte = a.

(D’où l’appellation de courbe tractice : MT = a longueur de la barre de remorquage.)

En effet : déjà Attention
dy

dx
=

dy
dt
dx
dt

=
y′(t)
x′(t)

6= y′(t) =
dy

dt
selon la notation usuelle précédente !

Puis :

Y − y
X − x =

−1

sh(t)
, T [X = x+y.sh(t), Y = 0].

1

ch2(t)
= 1−th2(t) donne MT 2 = (X−x)2+(Y −y)2 = a2.
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35.2 Fonctions à valeurs dans Rn n =2 ou 3

35.2.1 Définition [Fonction vectorielle d’une variable réelle]

F : t ∈ R 7−→ F (t) =
−−→
OM(t) ∈ R2 ou R3 (ou −→a (t) ou M(t)). Au I, c’était

−−→
OM(t) =

{
x(t)
y(t)

∈ R2.

35.2.2 Limites, Continuité, Dérivée 1ère (vitesse) : voir chaque composante

• Opérations et les théorèmes généraux usuels.

• Composition : u ∈ R 7→ t = ϕ(u) ∈ R 7→ F [ϕ(u)] ∈ Rn est continue si F et ϕ le sont : on dit que
c’est un changement de "paramètre". Dérivée : (Foϕ)′(u) = ϕ′(u).F ′[ϕ(u)]. (coefficient .Vecteur)

• Remarques
1) Pas d’égalité ses accroissements finis, seulement une inégalité vue avec les intégrales.

En effet : eiπ/2 − ei0 =
π

2
.i.eic est impossible avec les modules.

2) Dérivation du produit scalaire :
d

dt
[F (t) �G(t)] = F ′(t) �G(t) + F (t) �G′(t). (Avec les composantes)

3) Dérivation du produit vectoriel dans R3 :
d

dt
[F (t) ∧G(t)] = F ′(t) ∧G(t) + F (t) ∧G′(t)

4)
d

dt
(
−−→
MN ) =

d
−→
N

dt
− d
−→
M

dt
où

d
−→
M

dt
=

d

dt
(
−−→
AM), ∀A fixe, est le vecteur vitesse du point M .

35.2.3 Dérivées successives. Fonctions Cp, C∞

• Analogue au cas des fonctions : R→ R, à voir.

• Exemple : Vitesse et accélération en coordonnées polaires

1) D’abord étant donnée une courbe, ne pas confondre les coordonnées polaires (−→u =
−−→
OM

‖−−→OM‖
,−→u 1),

avec −→u 1 unitaire aussi, directement perpendiculaire à −→u [à dessiner] ; avec le repère de Frenet (
−→
T ,
−→
N ),−→

T unitaire sur la tangente,
−→
N unitaire, directement perpendiculaire sur la normale [à dessiner].

Le risque de confusion provient des mouvements circulaires (uniformes ou non) de centre O.

2) On a
−−→
OM = ρ(t).−→u (t) avec −→u = (cos[θ(t)], sin[θ(t)]) ; d’où

d−→u
dt

=
d−→u
dθ

.
dθ

dt
=
dθ

dt
.−→u 1.

Donc
d
−→
M

dt
=
dρ

dt
−→u + ρ

dθ

dt
−→u 1. De même ...

d2−→M
dt2

= [
d2ρ

dt2
− ρ(dθ

dt
)2]−→u + [2

dρ

dt

dθ

dt
+ ρ

d2θ

dt2
]−→u 1.

3) En fait le 2e [...] vaut
1

ρ

d

dt
(ρ2dθ

dt
). D’où Mouv. à acc. centrale de centre O⇔ ρ2.

dθ

dt
= cte, loi des aires.

En effet, l’aire balayée pendant dt par le rayon-vecteur est : dA =
1

2
ρ.ρ.dθ =

1

2
ρ2dθ

dt
dt = Cte.dt.

35.2.4 Développements limités. Formule de Taylor-Young

Si F (p)(t0) existe, ∃−→ǫ (t)/F (t) = F (t0) +
t− t0

1!
F ′(t0) + ...+

(t− t0)p
p!

[F (p)(t0) +−→ǫ (t)], avec ‖−→ǫ (t)‖−→
t→t0

0.

Exemple "DL" au point stationnaire (t = 0) pour la tractrice : t ∈ R 7→ F (t) ∈ R2

{
x = a[t− th(t)]
y = a/ch(t).

On a th(t) = t− t3/3+ t4.ǫ1(t) donc x = a.t3/3+ t4.ǫ1(t). Puis 1/(1+h) = 1−h+h2 +h2.ǫ(h) et

y =
a

1 + t2/2 + t4/24 + t4ǫ2(t)
= a.(1− t

2

2
)+ t3ǫ2(t) qui suffit car −→u = F”(0), −→v = F ′′′(0) non colin. :

−−→
AM =

(
x− 0
y − a

)
= t.

(
0
0

)
+
t2

2!
.

(
0
−a

)
+
t3

3!
.

(
2a
0

)
+ t3.−→ǫ (t) = X(t).−→u + Y (t).−→v , X ∼

t→0

t2

2!
, Y ∼

t→0

t3

3!

Tracé (recto) : Le 1er vecteur 6= −→0 , col. à −→ , donne la tangente. Et Y (t) change de signe avec t.
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35.3 Courbes en paramétriques : plan affine euclidien

35.3.1 Autres exemples

• t ∈ [0, 4π] 7→
{

x = R.cos(t)
y = −Rsin(t)

est un cercle parcouru deux fois et en sens inverse.

• u ∈]−∞,+∞[ 7→





x = R.
1− u2

1 + u2

y = R.
2u

1 + u2

est un cercle sauf un point. (u = tan(θ/2), θ ∈]− π, π[).

35.3.2 Tangente

• Définition : Position limite, si elle existe, de M0M(t) quand t→ t0.

• Calcul (Par la formule de T-Y) :

Si F ′(t0) 6=
−→
0 il donne la tangente : point ordinaire. Si F ′(t0) =

−→
0 , on dit point "stationnaire" :

en général, s’il existe un plus petit p tel que F (p)(t0) 6=
−→
0 , il donne la tangente.

Remarques
1) En pratique, on peut éviter ceci : faire comme dans Exemple I.

2) Exercice laissé (*) t ∈]−∞,+∞[ 7→
{

x = e−1/t2

y = t.e−1/t2 , après prolongement continue en O,

possède quand même une tangente (horizontale) en O(0, 0) bien que chaque F (p)(0) soit
−→
0 .

35.3.3 Position de la courbe par rapport à la tangente

On suppose qu’il existe un plus petit p tel que F (p)(t0) 6=
−→
0 ;

et qu’il existe un plus petit q > p tel que F (q)(t0) soit non colinéaire au précédent.

La formule de (T-Y) donne
−−−→
M0M(t) = X(t)F (p)(t0) + Y (t)F (q)(t0) ; X(t) ∼

t→t0

(t− t0)p
p!

, Y (t) ∼
t→t0

(t− t0)q
q!

d’où 4 dessins selon la parité de p et q. A faire :

1) Cas usuel p = 1, q = 2 : point régulier ; p impair, q pair : idem (x = t, y = t2)
2) Le cas p et q impairs : inflexion (Par exemple : x = t, y = t3)
3) p pair, q impair : rebroussement de 1ère espèce (Tractrice ; ou x = t2, y = t3).
4) p et q pairs : rebroussement de 2ème espèce (x = t2, y = t4 + t5).

Retenir Inflexion ⇒ F ′(t0), F”(t0) colinéaires. dét(F ′(t0), F”(t0))−→ı ,−→ = 0 si l’on veut.

35.3.4 Exemple classique

L’astroïde : t ∈ R 7→
{
x(t) = a.cos3(t)

y(t) = a.sin3(t)
Fonction C∞ sur R.

Tout est dans le domaine d’étude
F (t+ 2π) = F (t) montre qu’un intervalle de longueur 2π donne tout ; on le centrera après !

Demi-période : F (t+ π) = −F (t) un intervalle de longueur π suffit en faisant une symétrie /O(0,0).

Puis x(t+
π

2
) = −y(t); y(t+

π

2
) = x(t) : un intervalle de longueur

π

2
suffit avec des rotations d’angle

π

2
.

Maintenant, on va changer t en −t, donc on centre notre intervalle en t = 0 : [−π
4
,
π

4
]. Le changement t

en −t montre que : De = [0,
π

4
] suffit en faisant de plus la symétrie /Ox.

Attention : on fera les symétries en sens inverse, à partit du "motif" t ∈ [0,
π

4
].

Tableau de Variations sur [0,π/4] On prend a > 0. x′(t) = −3a.cos2(t)sin(t) ; y′(t) = 3a.sin2(t)cos(t).
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� Pour t = π/4, point B : on a OB =
a

2
et

−−→
dM

dt
colinéaire à

(
−1
1

)
.

� Pour t = 0, point stationnaire A. Tangente ?

−−→
dM

dt
est col. à

(
−cos(t)
sin(t)

)
donc col. à

−→
i , car t = 0.

Compléments

1

x

-0,5

0,5

1
0

0,5

-1

0-0,5-1

1) Inflexions :

A partir de :
dy

dx
=

dy
dt
dx
dt

=
y′(t)
x′(t)

on a :
d2y

dx2
=
y”(t)x′(t)− x”(t)y′(t)

[x′(t)]3
. On retrouve que

d2y

dx2
= 0 ⇔ (sauf si x′ infini)

−−→
dM

dt
,

−−→
d2M

dt2
colinéaires ; même :

d2y

dx2
du signe de

y”(t)x′(t)− x”(t)y′(t)
x′(t)

.

2) Obtention cinématique de la courbe :

Soit K fixé sur un cercle (centre Ω, rayon R/4) roulant à l’intérieur du cercle (centre 0, rayon R).

On note A(R, 0) I le point de tangence ; t l’angle (OA,OI) ; θ l’angle (ΩK,ΩI).

Alors si roulement sans glissement, les arcs IA et IK sont égaux à R.t = R.θ/4.

Donc θ = 4t et angle (ΩK,Ωx) = 3t. Avec
−−→
OK =

−→
OΩ +

−−→
ΩK, on a [calcul]

(
xK = R.cos3(t)

yK = R.sin3(t)

)
.

Le point K décrit une astroïde.

35.3.5 Autre classique

La cycloïde : Mouvement d’un point d’un cercle roulant sans glisser sur un plan

Soit I le point de contact cercle-plan ; K fixé sur le cercle ; θ = (ΩK,ΩI) :

Sans glissement : OI =arcOK = R.θ. Puis
−−→
OK =

−→
OI +

−→
IΩ +

−−→
ΩK donne

{
x = R[θ − sin(θ)]
y = R[1− cos(θ)]

Etude à faire.

Domaine d’étude : déjà se ramener à [0, π]. Tableau ?

Tangente au point stationnaire :

−−→
dM

dθ
= 2.R.sin

θ

2
.

(
sin(θ/2)
cos(θ/2)

)
...

Courbe (voici une arche) : 50

2

0

Compléments

1) Tangente en K ⊥ KI car I "centre instantané de rotation".

2) Aire d’une arche [cf. ch. Intégrales]∫
y.dx =

∫ π

−π
R.[1− cos[θ)].R.[1− cos(θ)]dθ = 2.R2.

∫ π

0
(cos2(θ)− 2.cos(θ) + 1)dθ. Pour finir

on linéarise : cos2(θ) =
1 + cos(2θ)

2
. D’où l’aire valant : 3π.R2= 3 fois l’aire du disque.

3) Longueur d’une arche > 2.πR. cf. ch. Longueur des courbes (plus tard) !
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35.3.6 Cas de branches infinies

1. Déjà bien voir le numéro Branches infinies du ch. Dév. limités.

2. Un exemple

{
x = t2 − 2t

y = 1/t2 + t2

� Domaine : R∗ ; pas de symétrie apparente.

� Variations : x′ = 2(t− 1); y′ =
2(t− 1)(t+ 1)(t2 + 1)

t3
.

� Points particuliers : A(t = −1) tangente horizontale ; (t = 0) Asymptote x = 0 ; B(t = 1) Point

stationnaire et Tangente : (cf. I) dirigée par

(
1
4

)
. C(t = 2) intersection avec Oy.

Branches infinies pour t→ ±∞ : y/x → 1 ; puis y − x = 2t+ 1/t2 tend vers +∞ si t→ +∞ et
tend vers −∞ si t→ −∞ : Branches paraboliques de direction y = x mais pas d’asymptote.

Point double : ∃t 6= t′ tels que

{
x(t) = x(t′)
y(t) = y(t′)

soit, après simplification par t − t′ :

{
t+ t′ = 2

(tt′)2 = 1
.

Deux cas à voir : t, t′ solutions de T 2 − sT + p = 0 !
On trouve : t = t′ = 1 le Point stationnaire ! et t, t′ = 1±

√
2 soit D(1, 6).

(Inflexion : une recherche facultative conduit à t = 1.)

Au point stationnaire : Faire un "Dl" (instructif) et retrouver tangente et position/tangente.

t = 1 + h, 1/(1 + h)2 = 1− 2h+ 3h2 − 4h3 + h3.ǫ(h) par produit ; ou puissance −2... A Finir.

3. Exercices complémentaires (*)

(a) Une courbe de Lissajoux. Note 1

{
x = sin(t)
y = cos(t/3)

Réduire le domaine à t ∈ [0, 3.π/2] avec des symétries.
Pas de point stationnaire ici. Points doubles faciles par symétries.

(b) La Cubique ("Versiera") d’Agnesi. Note 2

� Soit une droite D1 parallèle à Ox et D2 parallèle à Oy coupées par ∆ passant par O en P ∈ D1

et Q ∈ D2. Alors, si M = Py ∩Qx, M décrit une hyperbole équilatère.
� Si on remplace D1 par le cercle passant par O et tangent à D2 sur Ox, M décrit la cubique

d’Agnesi.

Elle a pour équations paramétriques

{
x = a.cos2(θ)
y = a.tan(θ)

et en cartésiennes : xy2 = a2(a− x).

1 Cette famille de courbes fut étudiée par Nathaniel Bowditch en 1815, puis plus en détail par Jules Lissajous en 1857.

2 "Cubique étudiée avant elle par Fermat, James Gregory en 1668, Huygens en 1674 ..."

"Maria-Gaetana Agnesi était d’une beauté touchante, avec sa physionomie douce et candide. Sa taille était élancée. Ses yeux
noirs et se cheveux noirs faisaient ressortir l’éblouissante blancheur de son teint. Elle avait un doux sourire. On admirait sa
beauté et sa grâce. A 13 ans, outre l’italien et le français, elle a appris le latin, le grec, l’hébreu, l’espagnol et l’allemand.
Son oeuvre (scientifique) principale, les "Institutions analytiques" parait en 1748, elle a alors 30 ans.
A la mort de son père, Maria entra dans l’ordre assez rigoureux des religieuses appelées Célestes ou Turquines, d’après la
couleur de leur robe. Elle renonça complètement à la science humaine et devint supérieure de l’hôpital Trivulzio à Milan
(où elle est née). Après avoir abandonné tous ses biens aux malades, on la vit mendier pour eux afin de "servir Dieu ainsi
que le prochain". Maria Agnesi, la servante des pauvres, est morte dans son cher hôpital à 81 ans, en 1799".
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M+ Exercices: Courbes en paramétriques PTSI

1. Tracer les courbes d’équations paramétriques suivantes :

(a)

{
x = a[t− th(t)]
y = a/ch(t).

[Tractrice ; on a aussi

{
x = a[ln(tan(u/2)) + cos(u)]

y = a.sin(u),
u ∈]0, π[.]

(b)

{
x = a.cos3(t)

y = a.sin3(t)
[Astroïde]

(c)

{
x = a[t− sin(t)]
y = a[1− cos(t)] [Cycloïde]

(d)

{
x = a.t2

y = a.t3
[Parabole "semi-cubique"]





(*) Sa courbe orthoptique -lieu des points d’où
l’on voit cette courbe sous un angle droit- est

la parabole tangente : x = 27y2/(4a) + 4a/27.

(e)

{
x = a.t2/(1 + t2)

y = a.t3/(1 + t2)
[Cissoïde droite]

(f)

{
x = a.(t2 − 1)/(1 + t2)
y = t.x (cf. ci-dessus)

[Strophoïde droite]

(g) (*)

{
x = 3a.t/(1 + t3)
y = t.x (idem)

[Folium de Descartes. Changer t en 1/t]

(h) (*) Autre cubique x =
4t2 − 1

t3 + 1
, y = t.x.
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(i) (*)

{
x = a.t/(1 + t4)

y = a.t3/(1 + t4)
[une Lemniscate de Bernoulli. Changer t en 1/t]

2. (*) Tracer la courbe d’équations paramétriques

{
x = t2 − 2t

y = t2 + 1/t2
. Etudier

– les branches infinies,
– le point double,
– et au point stationnaire, faire un développement limité suffisant pour certifier la nature du point

(de rebroussement)

3. (*) Une courbe de R3 : L’hélice circulaire (qui sera revue pour sa longueur)





x = r.cos(ω.t)
y = r.sin(ω.t)

z = h.t.



Chapitre 36

Courbes en polaires [hors coniques]

36.1 Coordonnées polaires (ρ négatif permis ici)

36.1.1 Généralités

1. Points

Ici, le paramètre est l’angle polaire θ =
−→
Ox,
−−→
OM(π) ; de façon précise :

Si M 6= O, et θ1 =
−→
Ox,
−−→
OM (2π)

{
soit θ = θ1(2π), alors ρ = +

√
x2 + y2

soit θ = θ1 + π(2π), alors ρ = −
√
x2 + y2

Dessin ?

Et si M = O, il est repéré par θ quelconque, ρ = 0.

Insistons
Pour les courbes en coordonnées polaires, ρ n’est pas toujours > 0 : c’est plus commode !
Voir des exemples après [ainsi le cercle : ρ = a.cos(θ)].

Dans tous les cas

Notant −→u = [cos(θ)]−→ı + [sin(θ)]−→ on a :
−−→
OM = ρ.−→u ou x = ρ.cos(θ), y = ρ.sin(θ).

En sens inverse : ρ2 = x2 + y2, tan(θ) = y/x.

2. Vecteurs

En dérivant :
d−→u
dθ

= −→u 1 = [−sin(θ)]−→ı + [cos(θ)]−→ soit (−→u ,−→u 1) = π/2, −→u 1 unitaire.

3. Remarques. • Quand θ est fonction de t,
d−→u
dt

=
dθ

dt
.
d−→u
dθ
⊥ −→u .

• Même en dim. 3, si ‖−→u ‖ = 1,
d−→u
dt
⊥ −→u [car −→u �

−→u = 1 dérivé en
d−→u
dt

�
−→u +−→u �

d−→u
dt

= 0].

36.1.2 Equations de droites et de cercles

1. Droites

Passant par O : θ=cte (π). Ne passant pas par O : ρ =
1

Acos(θ) +Bsin(θ)
, (A,B) 6= (0, 0).

Démonstration. ax+ by = c, c 6= 0 devient
a

c
.ρ.cos(θ) +

b

c
.ρ.sin(θ) = 1. Etc.

Exemple

x.cos(α) + y.sin(α) = d⇔ ρ.[cos(θ).cos(α) + sin(θ).sin(α) = d ⇔ ρ =
d

cos(θ − α)
.

2. Cercles

Centré en O : ρ = cte. [Ainsi ρ = −1 est le cercle trigonométrique !]
Passant par O : ρ = 2a.cos(θ) + 2b.sin(θ). Sinon : trop compliqué en polaires !
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236 CHAPITRE 36. COURBES EN POLAIRES [HORS CONIQUES]

Démonstration

x2+y2−2ax−2by = 0 [O ∈Cercle]⇔ ρ2−2aρcos(θ)−2bρsin(θ) = 0⇔
{

ρ = 0 (1) et (2) :
ρ = 2acos(θ) + 2bsin(θ)

mais O [ρ = 0] appartient à (2) [à voir], donc inutile à rajouter !

Exemples. Cercles d’équation : ρ = 2a.cos(θ) ρ = 2b.sin(θ) ρ = 2r.cos(θ − π/4).

3. Pour retenir

• ρ =
1

A.cos(θ) +B.sin(θ)
(A,B) 6= (0, 0) : équation polaire d’une droite ne passant pas par O.

• ρ = A.cos(θ)+B.sin(θ), (A,B) 6= (0, 0), est l’équation d’un cercle passant par O. Ceci s’explique
par l’inversion géométrique de pôle O, vue au ch. Applic. géométriques des Complexes.

36.2 Tracé de courbes en polaires

36.2.1 Tangentes en polaires

1. Formule. Notons V = (−→u , d
−→
M

dθ
)(π) l’angle de la tangente avec −→u (−→ı , d

−→
M

dθ
) = θ + V (π). Alors :

−−→
OM = ρ.−→u ⇒ d

−→
M

dθ
=
dρ

dθ
−→u+ρ.−→u 1 : tan(V ) =

ρ

ρ′
. Si ρ(θ0) = 0

(
passage
au pôle

)
, la tangente est θ = θ0.

Démonstration du 2ème résultat
Ici ρ′ = dρ/dθ ; ce qui termine, sauf le cas où ρ(θ0) = ρ′(θ0) = 0 : laissé à l’étude.

2 dessins pour un passage au pôle [ρ(θ0) = 0] : à faire !

� Cas où ρ passe du signe + au signe − pour θ0 [le plus naturel].
� Cas où ρ s’annule mais garde le signe + [point de rebroussement].

2. Exemple : la Lemniscate de Bernoulli ρ = a.
√
cos(2θ)

• Domaines
� Domaine d’étude : ρ(θ + π) = ρ(θ) : Donc un int. de longueur π suffit en faisant la symétrie /O.
ρ(θ + π/2) ne donne rien (mais c’est bien d’essayer !)
Choix [−π/2, π/2] de longueur π car ρ(−θ) = ρ(θ) ramère à [0, π/2] en faisant la sym⊥/Ox.

� Domaine de définition : Ddef ∩Detude = [0, π/4].

• Tableau de signes de ρ
On se contente d’un tableau de signe [ici, clair que ρ décroit de a > 0 à 0, θ allant de 0 à π/4].

• Tangentes et Courbe ci après.
� En A (θ = 0, ρ = a), ρ′ = 0 [sans calcul !] donc tan(V ) =∞, V = π/2 : Tangente //Oy
� En O (θ = π/4, ρ = 0), tangente : θ = π/4 soit y = x.
� Complément : point à tangente horizontale.

On veut θ + V = 0(π) donc tan(θ) = −tan(V ), qui donne tan(θ) = −cot(2θ). Plusieurs
façons : cot(2θ) = tan(π/2−2θ) = −tan(2θ−π/2) par exemple ! Trouver θ = π/6, ρ = a/

√
2.

0
0 0

0
2



36.2. TRACÉ DE COURBES EN POLAIRES 237

3. Autre exemple : La Cardioïde ρ = a[1 + cos(θ)]

• Domaine Un intervalle de longueur 2π donne tout car ρ(θ + 2.π) = ρ(θ).
Choix [−π, π] car ρ(−θ) = ρ(θ) ramène à [0, π] en faisant la sym⊥/Ox.

• Tableau de signes :
ρ varie de 2a (point A, θ = 0) à 0 (point O, θ = π) en passant par a (point B, θ = π/2)

• Tangentes et Courbe :
� En A (θ = 0, ρ = 2a), ρ′ = 0 [sans calcul !] donc tanV =∞, donc V = π/2 : Tangente //Oy
� En O tangente θ = π : y = 0
� En B trouver V = −π/4(π) angle fait par la tangente avec −→u = −→ , ici !

36.2.2 Branches infinies

1. Dessin de la Spirale logarithmique [ou exponetielle] ρ = aemθ

� Etude pour θ ∈ R !
� tan(V ) = cte, V = cte ! Un point-asymptote : le pôle.

Note : Courbe invariante par similitude (bien choisie) de centre O.

2. Dessin de la Spirale d’Archimède ρ = a.θ

� Etude pour θ ∈ [0,+∞[ avec une symétrie /Oy car ρ(−θ) = −ρ(θ) !
� Tangente y = 0 au pôle. Ne pas oublier la symétrie.

5

0

0

0
0

0

1

0

3. Dessin de la Spirale de Nicomède ρ = a/θ

� Même domaine (sauf θ = 0) que Spirale d’Archimède !

� Asymptote en paramétriques

{
x = ρ(θ).cos(θ)
y = ρ(θ).sin(θ)

y = a (*) ou en polaires 1

� Dessin : sans oublier la symétrie ; le pôle, point asymptote.

4. Autres courbes classiques en polaire : surtout les coniques.

� Théorème d’un ch. ultérieur . Conique avec, ici, 1 seul foyer et directrice associée :

Soit F (foyer) 6∈ D droite dite directrice. Alors {M :
MF

δ(M,D)
= e}, e > 0, est une conique :

e = 1 Parabole ; 0 < e < 1 Ellipse (cercle si e→ 0) ; e > 1 Hyperbole (équilatère ⇔ e =
√

2)

p = e.d dit paramètre ; δ(F,D) = d Pour Parabole : δ(F,D) = p ; δ(Sommet, Foyer) =
p

2
Pour toute conique, le paramètre p = longueur du "rayon-vecteur" issu de F// D directrice.

1
Supposons que ρ−→

θ→θ0

∞. Si ρ.sin(θ − θ0)−→
θ→θ0

l : si l finie, Y0 = l est asymptote [direction θ0] ;

si l infinie, branche parabolique. [Si pas de limite, seulement "direction asymptotique" θ = θ0].

Démonstration

On se place dans (O,X0, Y0) d’angle θ0 ; la projection de
−−→
OM sur OY0 est OH = ρ.sin(θ − θ0) ...

L’exemple : direction asymptotique θ = 0 ; et asymptote Y = a ; qui se traduit (θ = 0 !) par y = a asymptote.
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� Conséquence : Equation polaire des coniques

O est un foyer : ni centre, ni sommet ! et D d’équation x.cos(α) + y.sin(α) = d ; une équation

polaire des coniques est ρ =
p

1 + e.cos(θ − α)
. Et ρ =

p

e.cos(θ − α)
=

d

cos(θ − α)
redonne D.

Démonstration
OM2 = ρ2 et δ2(M,D) = [ρ.cos(θ).cos(α)+ ρ.sin(θ).sin(α)− d]2 = [ρ.cos(θ−α)− d]2 conduisent à

±ρ = ρ.cos(θ − α)− d. Donc : Conique =C1 ∪ C2 ρ1 =
p

1 + ecos(θ − α)
, ρ2 =

−p
1− ecos(θ − α)

.

Or C1 = C2 car ρ2(θ + π) = −ρ1(θ) : M1(ρ1, θ) = M2(ρ2, θ + π) !

Et enfin D : ρ.cos(θ)cos(α) + ρ.sin(θ)sin(α) = d. Correct ! (2ème dessin : α = 0)

Remarques
� L’intérêt (outre que les coniques sont des courbes de degré 2, les plus simples après la droite)

provient de la trajectoire des planètes autour du soleil ...

� ρ =
a

1 + cos(θ)
est une parabole (que l’on peut tracer ; et en cartésiennes : 2a.x = a2 − y2).

36.3 Des compléments en polaires

36.3.1 Dans le repère tournant, équation de tangente et de normale

Tangente : Y =
ρ

ρ′
(X−ρ). Intersection avec OY : OT = −ρ

2

ρ′
appelé "sous-tangente polaire" (O,−→u ,−→u 1).

Normale : Y =
−ρ′
ρ

(X − ρ). Intersection avec OY : ON = +ρ′ appelé "sous-normale polaire".

Courbes à "sous-tangente polaire" constante ?

1) Cas
−ρ2

ρ′
= k ∈ R∗ on trouve ρ =

a

θ − θ0
: Spirale de Nicomède à une rotation près.

2) Cas OT = 0, qui ne veut pas dire ρ = 0 : θ n’est pas un paramètre possible puisqu’on va voir qu’il est

fixé !
−−→
OM = ρ(t).−→u (t) ⇒ d

−→
M

dt
=

dρ

dt
−→u + ρ

dθ

dt
−→u 1 donc col. à

−−→
OM ⇔ ρ.

dθ

dt
= 0 soit θ = θ0 :

Droites passant par O qui correspond à ON =∞.

3) Cas OT =∞ qui correspond à ON = 0 ; ici ρ′ = 0 : Cercles de centres O.

Courbes à "sous-normale polaire" constante ?

Hors les deux cas particuliers déjà vus, il reste ρ′ = a ∈ R∗ ou ρ = a(θ − θ0) : Spirale d’Archimède !
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36.3.2 Etude générale

1. Le plus important est le domaine d’étude.
• On commence par la période éventuelle, (puis la demi-période), qui fixe la longueur (et non pas
le centre !) de l’intervalle d’étude. De plus les cas T = 2mπ et T = (2m+ 1)π sont différents : dans

celui-ci, une sym/O = rotation(O,π) est nécessaire ! A noter que T = 2π.
m

n
est aussi possible.

Des exemples : ρ = a.cos(
2θ

3
) ; ρ = a.cos(

3θ

2
) ; ρ = a.cos(

6θ

5
) [6 rotations ici !]

• Demi-période. Si ρ(θ+
T

2
) = −ρ(θ), amplitude réduite à

T

2
en faisant une rotation d’angle

T

2
+π.

• Symétries éventuelles, enfin :

ρ(−θ) = ρ(θ) est une symétrie /Ox. Avant, on centrait l’intervalle en θ = 0.
ρ(−θ) = −ρ(θ) est une symétrie /Oy. Avant, on centrait l’intervalle en θ = 0.
ρ(θ0 − θ) = ρ(θ) est une symétrie / Droite θ = θ0/2. Avant, on centrait l’intervalle en θ0/2.
ρ(θ0 − θ) = −ρ(θ) est une symétrie /Droite θ = θ0/2 + π/2. Avant, on centrait l’intervalle en θ0/2.

2. Ensuite un tableau (facile) du signe de ρ suffit en général. Et tan(V ) =
ρ

ρ′
si utile.

3. Branches infinies : on sait trouver une asymptote éventuelle. Courbe.

4. Points multiples ?

{
soit ρ(θ + k2π) = ρ(θ),

soit ρ(θ + π + k2π) = −ρ(θ)

5. Concavité(très rare) ?

• A l’origine, la courbe est connue.

• Si M 6= O, soit
−→
k = −→ı ∧ −→ ; on considère le signe de [

d
−→
M

dθ
∧ d

2−→M
dθ2

].
−→
k

Cette quantité vaut par calcul : [ρ2 + 2(ρ′)2 − ρ.ρ”]. Donc :

si [...] > 0 : concavité tournée vers O ; si [...] < 0, convexité tournée vers O ; si [...] = 0, inflexion
(en général). La quantité [...] sera naturellement retrouvée quand on parlera de la courbure.

Question : Quelles sont les courbes telles que ∀θ, [...] = 0 ? On s’attend à trouver les droites ne
passant pas par O (car θ variable) ; y en a-t-il d’autres ? Non :

En remarquant que (
1

ρ
)” +

1

ρ
=

[...]

ρ3
, c’est facile : (

1

ρ
)” +

1

ρ
= 0 donne

1

ρ
= Acos(θ) +Bsin(θ).

36.3.3 Notes finales (toujours en compléments)

1. ρ = a.cos(θ) est un cercle passant par 0. Plus généralement ρ = acos(θ) + λ est une famille de
courbes appelées "Limaçons de Pascal" (Etienne, père de Blaise). Etude ?

Elles ont même ρ′ que le cercle : on dit "conchoïdes de cercle par rapport à un de ses points".

2. De même les "conchoïdes de droites" ρ =
a

cos(θ)
+ λ.

3. Par inversion de pôle O des "Limaçons", on obtient ρ =
p

1 + e.cos(θ)
ce sont des coniques de foyer

O [vu plus tard]. L’inverse de la parabole par rapport à son foyer est justement la cardioïde (e = 1).

4. Attention et à voir :

L’inverse d’une hyperbole équilatère par rapport à son centre est la Lemniscate de Bernoulli !

5. (*) On appelle podaire d’une courbe par rapport à O, le lieu des projections orthogonales de O sur
les tangentes. Cas de la courbe ρ = 2a.cos(θ) ? [Cardioïde].
Cas d’un cercle ne contenant pas O ? [Limaçons de Pascal].
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M+ Exercices: Courbes en polaires PTSI

Pour les branches infinies, on peut se ramèner à des paramétriques : θ 7→
{
x = ρ(θ).cos(θ)
y = ρ(θ).sin(θ)

1. Tracer les courbes d’équation polaire :

(a) ρ = a.[1 + cos(θ)] [Cardioïde]

(b) ρ = a.
√
cos(2θ) [Lemniscate de Bernoulli]

(c) (*) ρ = a.sin2(θ)/cos(θ) [Cissoïde droite]

(d) (*) ρ = a.cos(2θ)/cos(θ) [Strophoïde]

(e) (*) ρ = a.θ [Spirale d’Archimède] ρ = a/θ [de Nicomède] ρ = a.em.θ [Spirale logarithmique]

2. Tracer les courbes d’équation polaire :

(a) ρ = a.cos(2.θ) [Trèfle ; domaine réduit à [0,π/4] !] (*) ρ = a./cos(2.θ) [Son "inverse"] ;

(b) (*) ρ =
a

| cos(θ) | + | sin(θ) | [Jolie !] (*) ρ = a.cos(
2.θ

3
) ; (*) ρ = a.cos(

3.θ

2
).

3. (*) L’inversion géométrique (et le cours !) intervient en (a) [et (c)]

(a) Courbes d’équation ρ =
1

A.cos(θ) +B.sin(θ)
(A,B) 6= (0, 0) puis ρ = A.cos(θ) +B.sin(θ).

(b) (*) "Coniques" : 1) ρ =
a

1 + cos(θ)
; 2) ρ =

4

2 + cos(θ − π/4) ; 3) ρ =
1

1 +
√

2.sin(θ)
.

(c) [(*) Et aussi] Courbes d’équation ρ =
p

1 + e.cos(θ)
? et ρ = a[cos(θ) + λ] ?

Remarques. 1) Ellipse de centre O :
1

ρ2
=
cos2(θ)

a2
+
sin2(θ)

b2
; d’où si on prend θ et θ +

π

2
:

1

OM2
+

1

ON2
=

1

a2
+

1

b2
=

1

OH2
: "l’enveloppe des droites (MN) est un cercle" (Newton) !

2) Coniques passant par O : ρ =
2.p.cos(θ)

sin2(θ)
; ρ =

2.a.b2.cos(θ)

b2.cos2(θ)± a2.sin2(θ)
.



Chapitre 37

E.v. euclidiens/Affines, affines euclidiens

Introduction : Le travail élémentaire d’une force est donné par δW =
−→
F �
−→
dl = F.dl.cos(α).

Plus généralement, on a dégagé les axiomes (de calcul) suivants en e.v. de dim. finie ou infinie :

37.1 Produit scalaire

37.1.1 Définitions

On appelle produit scalaire sur E e.v. réel : toute "forme bilinéaire symétrique définie positive".

forme signifie : φ(−→u ,−→v ) ∈ R
bilinéaire : φ(−→u 1 +−→u 2,

−→v ) = φ(−→u 1,
−→v ) + φ(−→u 2,

−→v ) ; φ(λ.−→u ,−→v ) = λ.φ(−→u ,−→v ) ; idem /−→v
symétrique : φ(−→u ,−→v ) = φ(−→v ,−→u )
positive : φ(−→u ,−→u ) > 0 et

définie : φ(−→u ,−→u ) = 0⇒ −→u =
−→
0 (réciproque évidente).

Remarques
� La linéarité /−→u et la symétrie entrainent la linéarité /−→v .

� On a φ(−→u ,−→u ) > 0 ; mais on peut avoir φ(−→u ,−→v ) < 0.

� On note φ(−→u ,−→v ) = (−→u �
−→v ) ou < −→u ,−→v > ;

√
φ(−→u ,−→u ) = ‖−→u ‖.

37.1.2 Exemples : en dim. finie et en dim. infinie

1. Sur R2, avec −→u
(
x
y

)
,−→v

(
x′

y′

)
Note 1

φ(−→u ,−→v ) = xy′ + x′y : f.b.s. Linéarité/−→u car : x′, y′ fixés, on a
(
cte cte

)
.

(
x
y

)
non positive.

2. Sur R3, avec −→u


x
y
z


,−→v



x′

y′

z′


 φ(−→u ,−→v ) = xx′ + yy′ + zz′

est un produit scalaire dit produit scalaire canonique. Valable aussi pour R2 !

3. Dans E = C([0, 1],R) e.v. de dim. infinie (car contient R[x]), maintenant :

φ(ϕ,ψ) =

∫ 1

0
ϕ(x).ψ(x).dx est un produit scalaire. "Définie" : avec un théorème du

ch. Intégration, dit "des 4 hypothèses" : (ϕ2
> O, ϕ2 6= O, ϕ2 C0, 0 < 1) =⇒ φ(ϕ,ϕ) > 0. 2

1 . φ(−→u ,−→v ) = xx′ + 1 non linéaire /−→u ; donc n’est pas un produit scalaire. . φ(−→u ,−→v ) = x2x′ idem.

2 Sur E′ = CM([0, 1],R) ce n’est pas un (vrai) produit scalaire, cet axiome n’étant pas satisfait. Pas trop grave ...
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37.1.3 Inégalités

1. Inégalité de Cauchy-Schwartz : | −→u �
−→v |6 ‖−→u ‖.‖−→v ‖, avec les nouvelles notations.

On va voir que c’est vrai sans utiliser φ "définie" ; [donc même pour les fonctions continues

par morceaux : |
∫ 1

0
ϕ(x).ψ(x).dx |2 6 [

∫ 1

0
ϕ2(x).dx] . [

∫ 1

0
ψ2(x).dx], par exemple ! ]

Démonstration
Avec les anciennes notations : φ(λ.−→u +−→v , λ.−→u +−→v ) > 0, ∀λ. Ou [calcul essentiel] :
λ2.φ(−→u ,−→u ) + 2.λ.φ(−→u ,−→v ) + φ(−→v ,−→v ) > 0 , ∀λ ∈ R.

Cas φ(−→u ,−→u ) > 0 ; on a un trinôme du second degré et forcément ∆ 6 0 : c’est l’inégalité de C-S.
Cas φ(−→u ,−→u ) = 0 ; il reste 2.λ.φ(−→u ,−→v ) + φ(−→v ,−→v ) > 0, ∀λ ; ce qui exige φ(−→u ,−→v ) = 0. Fini.

2. Inégalité de Minkowski : ‖−→u +−→v ‖ 6 ‖−→u ‖+ ‖−→v ‖, avec les nouvelles notations.

Démonstration
‖−→u +−→v ‖2 = φ(−→u +−→v ,−→u +−→v ) = φ(−→u ,−→u ) + 2.φ(−→u ,−→v ) + φ(−→v ,−→v ) = ‖−→u ‖2 + 2.(−→u �

−→v ) + ‖−→v ‖2
a déjà été vu. On majore : −→u �

−→v 6 | −→u �
−→v | 6 ‖−→u ‖.‖−→v ‖ et c’est fini.

37.1.4 Théorème géométriques

1. Norme euclidienne.

Définition
−→u ∈ E −→ N(−→u ) ∈ R+ est appelée une norme si on a, de plus, les 3 propriétés :

N(−→u ) = 0⇒ −→u =
−→
0 ; N(λ.−→u ) =| λ | .N(−→u ) ; N(−→u +−→v ) 6 N(−→u ) +N(−→v )

Théorème
‖−→u ‖ (radical du produit scalaire) est une norme ; dite euclidienne car de plus on a

le théorème du parallélogramme : ‖−→u +−→v ‖2 + ‖−→u −−→v ‖2 = 2[‖−→u ‖2 + ‖−→v ‖2].
Démonstration
Ce qui était difficile était l’inégalité triangulaire, appelée ici inégalité de Minkowski.

Le théorème du parallélogramme ou de la médiane est laissé en exercice (facile).

2. Théorème d’Al Kashi ou de Pythagore généralisé

‖−→u +−→v ‖2 = ‖−→u ‖2 + 2.(−→u �
−→v ) + ‖−→v ‖2 (déjà vu ci dessus !)

Remarques, en plus de faire des dessins !

• Théorèmes vrais pour tout produit scalaire, même avec celui vu en dim. infinie.

• La norme à l’aide du produit scalaire (p.s.) : ‖−→u ‖ =
√

(−→u �
−→u ).

Le p. s. à l’aide de la norme ? −→u .−→v =
1

2
[‖−→u +−→v ‖2 − ‖−→u ‖2 − ‖−→v ‖2] =

1

4
[‖−→u +−→v ‖2−‖−→u −−→v ‖2].

37.1.5 Bases orthonormées

1. Introduction. Dans E = C0([0, 2.π],R) soit le p.s. (facile à voir) < ϕ,ψ >=

∫ 2.π

0
ϕ(x).ψ(x)dx.

Considérons la famille (cos(p.x), sin(q.x), p ∈ N, q ∈ N∗).

Limitons-nous à, pour p 6= p′ : < cos(px), cos(p′x) >=

∫ 2.π

0

1

2
[cos(p+p′)x+cos(p−p′)x]dx = ... = 0 ;

on dit que la famille infinie, ici des (cos(px)) est orthogonale pour ce p.s.

Définition (−→u 1, ...,
−→u k, ...) est dite orthogonale si −→u i �−→u j = 0 pour i 6= j ; normée si ∀i, ‖−→u i‖ = 1.

2. Intérêts d’une base o.n. : on suppose être en dim. finie, quitte à se placer dans un s.e.v.

Soit −→e1 , ...,−→en une base orthonormée de E, muni d’un p.s. Alors :
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• Si −→x =

n∑

i=1

xi.
−→ei , −→y =

n∑

i=1

yi.
−→ei , le p.s. −→x �

−→y =

n∑

i=1

xi.yi la norme ‖−→x ‖ =

√√√√
n∑

i=1

x2
i .

• Si −→x =
n∑

i=1

xi.
−→ei , on a xi = −→x �

−→ei : composantes de −→x obtenu avec le p.s. Toutefois :

Si la base est seulement orthogonale (−→a1, ...,
−→an), et −→x =

n∑

i=1

αi.
−→ai , alors : αi =

−→x �
−→ai

‖−→ai‖2
.

3. Théorème
Dans tout e.v. euclidien : e.v. : réel et dim. finie muni d’un p.s.,il existe une
base orthonormée. (Procédé d’orthogonalisation de Gram-Schmidt par exemple.)

Démonstration (*) On se limite à un exemple en dim. 3 avec une base initiale −→ı ,−→ ,−→k .

Pour −→u =



x
y
z


 ,−→v =



x′

y′

z′


, soit φ(−→u ,−→v ) = xx′−xy′−x′y+2yy′−2yz′−2y′z+2xz′+2x′z+8zz′.

• φ est un produit scalaire. Forme : évident ; Linéarité/−→u car−→u 7→ φ(−→u ,−→v ) =
(
cte cte cte

)


x
y
z


 ;

Symétrie facile ; Définie positive : φ(−→u ,−→u ) = (x− y + 2z)2 + y2 + 4z2 ; [φ(−→u ,−→u ) = 0⇒ −→u =
−→
0 ].

• Pourquoi n’a-t-on pas la forme xx′ + yy′ + zz′ ? Car :

la base canonique




1
0
0


 ,−→ =




0
1
0


 ,
−→
k =




0
0
1


 n’est pas orthonormée pour ce produit scalaire.

• On va donc construire une b.o.n. Procédé de Schmidt : on pose



−→a = −→ı ; puis :−→
b = λ.−→a+−→ ; et :
−→c = µ.−→a + ν.

−→
b +
−→
k

−→ı ,−→ ,−→k ∈ V ect(−→a ,−→b ,−→c ) : générateurs ; donc nouvelle base !

On orthogonalise au fur et à mesure et on se sert du travail déjà fait comme suit :
−→a ⊥ −→b ⇔ φ(−→a ,−→b ) = 0⇔ λ.φ(−→a ,−→a ) + φ(−→a ,−→ ) = 0⇔ ...⇔ λ = 1.
−→a ⊥ −→c ⇔ φ(−→a ,−→c ) = 0⇔ µ.φ(−→a ,−→a ) + φ(−→a ,−→k ) = 0⇔ ...⇔ µ = −2.−→
b ⊥ −→c ⇔ φ(

−→
b ,−→c ) = 0⇔ ν.φ(

−→
b ,
−→
b ) + φ(

−→
b ,
−→
k ) = 0⇔ ...⇔ ν = 0.

Enfin, on normalise pour ce produit scalaire : [ainsi ‖−→b ‖2φ = 1 !]

−→
I =

−→a
‖−→a ‖ =




1
0
0




−→ı ,−→ ,−→k

,
−→
J =

−→
b

‖−→b ‖
=




1
1
0




−→ı ,−→ ,−→k

,
−→
K =

−→c
‖−→c ‖ =

1

2



−2
0
1




−→ı ,−→ ,−→k

est o.n. D’où,

si −→u =



X
Y
Z




−→
I ,

−→
J ,

−→
K

,−→v =



X ′

Y ′

Z ′




−→
I ,

−→
J ,

−→
K

: φ(−→u ,−→v ) = XX ′+Y Y ′+ZZ ′. Et



x
y
z


 =




1 1 −1
0 1 0

0 0
1

2






X
Y
Z


.

Complément 3

3 D’autres produits scalaires (*Spé)

� Sur M2(R), vérifier que Tr(tA.B) =< A,B > est un produit scalaire. Préciser (I2)
⊥. Vérifier encore que les sous e.v. des

matrices sym. et antisymétriques sont orthogonaux. (Idem dans Mn(R)).

� Sur E = Rn[x] de dim. n+1, avec ai réels distincts et le p.s. φ(P,Q) =< P,Q >=
n∑

i=0

P (ai)Q(ai) ["défini" car un polynôme

de Rn[x] nul en (n+1) valeurs est identiquement nul], une base o.n. est constituée des polynômes d’interpolation de Lagrange
signalés en compléments au ch. Déterminants.

� En e.v. de dim. infinie, on a divers produits scalaires (avec des intégrales : φ(P,Q) =

∫ 1

−1

P (x)Q(x)dx par ex. sur E = R[x],

qui donne des polynômes "orthogonaux" classiques : Polynômes de Legendre, ici)
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37.2 Projections et symétries orthogonales

37.2.1 Orthogonal d’une partie

Définition Pour A une partie quelconque de E A⊥ = {−→x ∈ E : ∀−→a ∈ A,−→x ⊥ −→a }

(
Vecteurs orthogonaux
à tout vecteur de A.

)

Propriété A⊥ est toujours un sous e.v. et A⊥ = (V ectA)⊥ ; {−→0 }⊥ = E ; E⊥ = {−→0 }; −→u ⊥ = V ect(−→u )⊥.

Facile en exercice (pour E⊥ : si −→x ∈ E⊥, −→x est orthogonal à tout vecteur, donc à lui-même : −→x �
−→x = 0...)

37.2.2 Projection orthogonale sur un sous e.v. de dim. finie

Théorème
Soit E de dim. quelconque et E1 un sous e.v. de dim. finie. Alors E = E1 ⊕ E⊥

1 .

Par suite, la proj. sur E1 // E⊥
1 est appelée proj. orthogonale ; la symétrie de même.

Démonstration intéressante
1) E1 ∩ E⊥

1 = {−→0 } est vrai même si dim(E1) = +∞ : −→x ∈ E1 ∩ E⊥
1 =⇒ −→x �

−→x = 0. Donc −→x =
−→
0 .

2) E ⊂ E1+E⊥
1 pas toujours vrai si dimE1 = +∞ ! Si dim(E1) finie : soit −→e1 , ...,−→er une base orthonormée

de E1 (existe : Schmidt) ; pour −→x ∈ E, posons −→x 1 = (−→x �
−→e1).−→e1 + ...+ (−→x �

−→er ).−→er ∈ E1 [choix malin !]
Voyons que −→x −−→x 1 ∈ E⊥

1 ou (−→x −−→x 1) �
−→ek = 0 si 1 6 k 6 r ; [celà finira, car alors −→x = −→x 1 +(−→x −−→x 1)]

Or : si −→x 1 = α1.
−→e 1 + ...+αr.

−→er , alors −→x 1 �
−→ek = αk ; donc ici : −→x 1 �

−→ek = −→x �
−→ek ; d’où (−→x −−→x 1) �

−→ek = 0.

Remarques

• Si on a seulement une base orthogonale de E1, (−→a1, ...,
−→ar), alors −→x1 = p(−→x ) =

−→x �
−→a1

‖−→a1‖2
.−→a1 + ...+

−→x �
−→ar

‖−→ar‖2
.−→ar

en particulier, la projection orthogonale sur V ect(−→u ) est telle que : p(−→x ) =
(−→x �

−→u )

‖−→u ‖2 .−→u .

• Soit −→x 2 = −→x −−→x 1. Alors ‖−→x ‖2 = ‖−→x 1‖2 + ‖−→x 2‖2. Pourquoi ? Dessin ?

Et s(−→x ) = −→x 1 − −→x 2 est la symétrie orthogonale qui vérifie donc ‖s(−→x )‖ = ‖−→x ‖ : conserve la norme.

Tandis que pour p = proj.⊥ : ‖p(−→x )‖ 6 ‖−→x ‖. [Id+ s = 2p]

37.2.3 Exemple dans E = R3, avec base canonique o.n.

Expression de la symétrie orthogonale (matrice M) / plan Π d’équation 2x− 3y + z = 0.

Solution : D’abord, si la base est orthonormée, −→n =



a
b
c


 ⊥ Π : ax+ by + z = 0. Ici −→n =




2
−3
1


.

Puis si q est la proj.⊥ sur V ect(−→n ) = Π⊥, alors

−→x : X =



x
y
z


 7→ q(−→x ) =

(−→x �
−→n )

‖−→n ‖2 .−→n =
1

14
.(2x− 3y + z).




2
−3
1


 =

1

14




4 −6 2
−6 9 −3
2 −3 1


 .



x
y
z


 = A.X.

On aurait pu aussi trouver la matrice A par colonnes en faisant q(−→ı ), etc [laissé]. Et si s est la symétrie

cherchée, on a (dessin) : −→x − s(−→x ) = 2.q(−→x ) ; d’où : M = I3 − 2A =
1

7




3 6 −2
6 −2 3
−2 3 6


. cf. ch.25.

Vérifications Tr(A) = rg(A) = 1 (proj.) M.M = I3 et Tr(M) = +1, dét(M) = −1 (pourquoi ?)

Enfin on va voir au III que tM.M = I3 était attendu, qui donne tM = M−1. Avec M−1 = M ici, on a

expliqué que tM = M ou bien que M soit symétrique ; et donc A aussi car : A =
1

2
(I3 −M).

(Rappel : une symétrie orthogonale conserve la norme de tout vecteur, pas une projection)

37.3 Automorphismes orthogonaux. Changements de bases o.n. (ch.25)
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37.4 Espaces affines

37.4.1 Généralités

1. Définition

E 6= ∅, dont les éléments sont appelés points, est un e.a. attaché à un e.v. E si :

� Quand on choisit une origine O ∈ E , on a la bijection : M ∈ EO 7−→
−−→
OM ∈ E;

� Les changements d’origine se faisant par la relation de Châsles :
−→
PR =

−−→
PQ+

−−→
QR.

Ainsi
• Dans un espace vectoriel (e.v.), il y a un élément particulier, à savoir :

−→
0 .

• Un espace affine-muni-d’une-origine EA est "identique" à un e.v. ; mais justement : on n’est pas
obligé de choisir une origine ! dans un e.a., tous les points jouent le même rôle : homogénéïté.

2. Translations : Soit −→u ∈ E. ∀M ∈ E ,∃M ′ ∈ E :
−−−→
MM ′ = −→u ; noté aussi M ′ = M +−→u

d’après la bijection. On dit que M 7−→M ′ est la translation de vecteur −→u .
L’ensemble des translations muni de la composition (T , o) est un groupe abélien comme (E,+)

Au lieu de dire "comme", on peut dire "isomorphe à" (sans importance).
Simplement comprendre que composer 2 translations, c’est additionner 2 vecteurs.

3. Exemple usuel : E = R3 est un e.affine attaché à l’e.v. E = R3. (O,−→ı ,−→ ,−→k ) est un repère de E si

O ∈ E et (−→ı ,−→ ,−→k ) base de E.




1
2
3


 : point ou vecteur

−−→
OM,

−−→
AB, ... ∈ E. Chang. de repère : cf. Ex.

37.4.2 Sous espace affine

1. Définition
Un sous e.a. E1 est défini par la donnée de : A ∈ E et d’un sous e.v. E1 de E selon

M ∈ E1 ⇔
−−→
AM ∈ E1 ou M = A+−→u ,−→u ∈ E1 A ∈ E1 6= ∅. E1 : direction de E1.

Dessin dans R2 : (O,−→ı ,−→ ) avec E1 = ∆ = V ect(−→u ), −→u 6= −→0 ? On a des droites parallèles affines
D1,D′

1 passant par A, B. Attention : Pas de parallélisme avec des sous e.v. !

2. Les sous e.a. de E = R3 sont : les points, les droites affines, plans affines et E. Notes 4

37.5 Applications affines (cf. ch 25)

37.5.1 Définition

Soit E ,F deux e.a. associés aux e.v. E.F. f : M ∈ E →M ′ ∈ F est dite affine s’il existe une A.L.,

forcément unique notée
−→
f (changement de notation pour les A.L.) : ∀O,M,

−−−→
O′M ′ =

−→
f (
−−→
OM )

Remarques
� Au lieu de dire "∀O,M ...", il est équivalent de dire "∀M”, O fixé. En effet :

Si
−−−→
O′M ′ =

−→
f (
−−→
OM ) pour O ∈ E fixé, alors

−−→
O′I ′ =

−→
f (
−→
OI) ; par différence

−−→
I ′M ′ =

−→
f (
−−→
IM ),∀I,M .

� Cas
−→
f = O ∈ L(E,F ) : M ′ = O′ soit f = Cte. Peu d’intérêt géométrique. On préfère f bijective.

� On peut écrire au choix M ′ = O′ +
−→
f (
−−→
OM) ou f(M) = f(O) +

−→
f (
−−→
OM). (F d’origine Ω.)

37.5.2 Expression d’une application affine

Théorème En dimensions finies, p pour E , n pour F , on a l’écriture matricielle Y = A.X +B.

Démonstration. Résulte de ce qui précède.

4
� L’intersection de 2 sous e.a. est ou bien ∅ ou bien un sous e.a. de direction E1 ∩E2.

� Dans E = R3, quelles sont (dessiner) les intersections du tétraèdre ABCD, avec le plan (MNP ), où :
M ∈ [A,B]; N ∈ [B,C]; P ∈ [C,D] ? [Facultatif et indication : considérer MN ∩AC].
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37.5.3 Exemples dans le cas F = E
1. Homothéties affines et Translations, donc F = E mais dimension quelconque

On a

−→
f = IdE ⇔ f translation. Et si k 6∈ {0, 1} :

−→
f = k.IdE ⇔ f homothétie affine de

rapport k, de centre l’unique point fixe. En particulier :
−→
f = −Id⇔ f symétrie-point.

2. Cas d’un point fixe (au moins), donc F = E (dimension quelconque)

Une application affine est, en général, plus compliquée que l’A.L. associée ;
(penser, en dim. finie, à : Y = A.X et à : Y = A.X +B). Mais :

si f a au moins un point fixe I en prenant I pour origine,
−→
f et f ont même expression

−→
f : −→y =

−→
f (−→x ) f :

−−→
IM ′ =

−→
f (
−−→
IM) ; f n’est ici pas plus compliquée, seul le langage change.

3. Autres exemples dans E = R3 [La lettre P est réservée pour un point. A pour une matrice ...]

• Soit P un plan affine contenant un point I ; −→w un vecteur qui n’est pas dans la direction Π de
P ; c’est-à-dire la droite affine D = (I,−→w ) non inclue dans P ; ou encore : si ax + by + cz = d

(a, b, c) 6= (0, 0, 0) est une équation de P dans un repère (O,−→ı ,−→ ,−→k ), alors : ax+ by + cz = 0

de Π dans (−→ı ,−→ ,−→k ), −→w = α−→ı + β−→ + γ
−→
k ne vérifie pas l’équation de Π : aα+ bβ + cγ 6= 0.

Attention : Dire −→w ∈ P ou dire −→w 6∈ P sont tous deux absurdes. Dessin ?

L’application q : M 7→ Q où Q ∈ P ∩ D′, D′//D passant par M , est affine, appelée projection
oblique sur P de direction ∆ = V ect(−→w ), d’endomorphisme associé −→q proj. vect sur Π de dir. ∆.

• Si enfin
−−→
QM” = k.

−−→
QM, k 6= 0, fk : M 7→M” est dite "dilatation affine ou affinité" de base P, de

direction ∆, de rapport k. Questions Si (−→u ,−→v ) base de Π, matrice de
−→
fk dans (−→u ,−→v ,−→w ) ?

37.5.4 Propriétés générales des applications affines : ch. 25

37.6 Espaces affines euclidiens

37.6.1 Généralités

1. Définitions E est un e.a.e. si l’e.v. associé E, est euclidien (p.s. et dim. finie) ; distances, angles.

2. Isométries affines
f est une isométrie affine de E , [f ∈ Is(E) (groupe)] si l’application

linéaire associée est une isométrie vectorielle de E :
−→
f ∈ O(E) (groupe).

3. Non isométrie, mais connu

• −→f ∈ {k.IdE , k 6= 0} (gr. abélien des hom. vect.) ⇔ f ∈ {Homothéties-Translations de E}
(groupe non abélien pour les homothéties-affines et translations !)

• −→f = k.(
−−−−−−−−−−→
isométrie vect.) [on dit similitude vectorielle] ⇔ f : similitude affine de E .

Similitudes vectorielles/et affines en dimension 2

– En vect. Matr. de
−→
f en base o.n. r.

(
cos(α) −sin(α)
sin(α) cos(α)

)
=

(
u −v
v u

)
ou r.

(
cos(α) sin(α)
sin(α) −cos(α)

)

On peut aussi utiliser les complexes z 7→ z′ = r.eiα.z ou z 7→ z′ = r.eiα.z.

– En affine z 7→ z′ = r.eiα.z + Cte (similit. directes) ou z 7→ z′ = r.eiα.z + Cte (indirectes).

37.6.2 Projection et symétrie affines orthogonales, dans E3 = R3

Exercice (*) Soit P, le plan affine : ax+ by + cz = d, (a, b, c) 6= (0, 0, 0) dans (O,−→ı ,−→ ,−→k ), de

direction Π : a.x+ b.y + c.z = 0. Expression de q : M 7→ Q = M ′, projection orthogonale sur P ?
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� On cherche 12 coefficients : Q = M ′ :



x′

y′

z′


 =



. . .
. . .
. . .


 .



x
y
z


+



.
.
.


. Notons −→n =



a
b
c


⊥ Π ou P ;

et f∗(M) = ax+ by + cz − d. [La lettre f étant gardée pour une application affine R3 → R3].

� Posant
−−→
QM = λ.−→n (1), on passe de 12 à 1 inconnue : λM . Reste à exprimer que M ′ = Q ∈ P (2).

Dessin ?

Cherchons λ



x′

y′

z′


 =



x
y
z


− λ



a
b
c


 et ax′ + by′ + cz′ = d : ax+ by + cz − d = λ.(a2 + b2 + c2) 5

� En reportant



x′

y′

z′


 =



x
y
z


− 1

a2 + b2 + c2
(ax+ by + cz − d).



a
b
c


, d’où la réponse Y = A.X +B

ou bien :



x′

y′

z′


 =

1

a2 + b2 + c2



b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc a2 + b2


 .



x
y
z


+

d

a2 + b2 + c2



a
b
c


.

Vérifications. Remarques.
1) A : est la matrice de −→q proj. vect. associée : rg(−→q ) = Tr(−→q ) = 2 (vérification) et −→q o−→q = −→q .

2) B : X = 0 (soit O) a pour image O′ ; B =
−−→
OO′ = µ.−→n ; et

−−→
O′O �

−→n = f∗(O) = −d ⇒ µ =
d

[...]
.

3) Si d = 0, ce n’est rien d’autre qu’une projection orthogonale en espace vectoriel : endomorphisme.

4) Si on voulait la symétrie orthogonale / P, il suffit de dire
−−−→
M”M = 2.λ.−→n , avec le même λ : fini.

5) Au passage soit σ cette cette symétrie ; −→σ + Id = 2.−→q conserve la norme ; comme −→σ est une symé-

trie orthogonale, sa matrice est symétrique : S = S−1 =tS ; donc A =
1

2
(I3 + S) est symétrique !

6) Si I ∈ P, la proj. orth. p de M sur D(I,−→n ) est aisée :
−→
IP = λ.−→n . (−→p = 1/(tN.N).(N.tN) = Id−−→q ).

• Retenir −→n =



a
b
c


⊥ P et les égalités :

−−→
QM =

−→
IP =

(
−−→
IM �

−→n )

‖−→n ‖2 .−→n =
f∗(M)

‖−→n ‖2 .
−→n .

• Elles redonnent la distance de M1 à P : δ(M1,P) = ‖−−−→QM1‖ =
| f∗(M1) |
‖−→n ‖ =

| ax1 + by1 + cz1 − d |√
a2 + b2 + c2

.

• Si, plus généralement,
−−→
QM ′′ = k.

−−→
QM,k 6= 0 fixe, M 7→M ′′ est appelée dilatation affine, orthogonale ...

37.7 Isométries affines en espace affine euclidien : ch.25

37.8 (*) Exercice : dans E = R3, projection affine générale oblique !

Soit P plan affine ax+ by+ cz = d (a, b, c) 6= (0, 0, 0) dans (O,−→ı ,−→ ,−→k ) ; −→w 6∈ Π, où Π direction de P :

aα+ bβ + cγ 6= 0. Expression de q : M 7→ Q = M ′, projection oblique sur P de direction ∆ = V ect(−→w ).

On trouve :



x′

y′

z′


 =

1

a.α+ b.β + c.γ



bβ + cγ −bα −cα
−aβ aα+ cγ −cβ
−aγ −bγ aα+ bβ


 .



x
y
z


+

d

a.α+ b.β + c.γ



α
β
γ


.

Vérifications. Remarques.
1) A : est la matrice de −→q proj. vect. associée ...

2) B : X = 0 (soit O) a pour image O′ ; B =
−−→
OO′ = µ.−→w [et

−−→
O′O �

−→n = f∗(O) = −d donnent µ =
d

[...]
)

5 ou : cf Notes ; ou : on a vu (ch. R2, R3)
−−−→
M0M �

−→n = f∗(M), ∀M0 ∈ P . Puis M0 = Q = M ′... : même λ.
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M+ Exercices: E.v.euclidiens/affines euclidiens (cf. ch 25) PTSI

1. Angles dans R3 e.v.e. : (a) Avec la relation dim(Π1 + Π2) = dim(Π1) + dim(Π2)− dim(Π1 ∩Π2),

montrer que pour Π1,Π2, plans vectoriels de R3 : Π1 = Π2 ; ou Π1 ∩Π2 = ∆ droite vectorielle.
(b) Angle des plans x− 3y + z = 0, x+ y + z = 0 ? [penser à des vecteurs orthogonaux et dessin.]

(c) Soit ∆′ = V ect(−→u ) où −→u = −→ı + 2−→ + 3
−→
k (base o.n.). Angle approximatif de ∆′ et de Π2 ?

2. Montrer qu’une famille orthogonale de vecteurs non nuls (même infinie) est toujours libre.

3. (a) Montrer l’inégalité (

n∑

i=1

ai)
2

6 n.
n∑

i=1

a2
i où ai ∈ R (comme cas d’inégalité de Cauchy-Schwartz).

(b) Soit A =
(
aij
)

une matrice orthogonale (de vecteurs colonnes −→v 1, ...,
−→v n : nouvelle base o.n.).

Avec −→v = −→v 1 + ...+−→v n, −→w = −→e1 + ...+−→en (−→ek : ancienne base o.n.) montrer : (
∑

i,j

aij)
2

6 n2.

4. (a) En e.v.e., rappeler l’expression (du cours) de p(−→x ), p = proj.⊥ sur V ect(−→u ). Maintenant :

(b) Dans R3, si −→u = α−→ı +β−→ + γ
−→
k en base o.n., vérifier que la matrice de p est alors

1
tU.U

(U.tU)

5. (*) En e.v.e., montrer, plus généralement, que la projection oblique sur V ect(−→v ) parallèlement à

−→u ⊥ est : p(−→x ) =
(−→x �

−→u )

(−→v �
−→u )

.−→v [où (−→v �
−→u ) 6= 0 donc V ect(−→v ) et−→u ⊥ supplémentaires].

6. (*) Dans R3 e.v. e. orienté. (a) Montrer : (−→u ∧−→v ) � (−→w ∧−→t ) = (−→u �
−→w ).(−→v �

−→
t )− (−→u �

−→
t ).(−→v �

−→w ).

(b) Puis (−→u ∧ −→v ) ∧ (−→w ∧−→t ) = (−→u ,−→v ,−→t ).−→w − (−→u ,−→v ,−→w ).
−→
t = (−→u ,−→w ,−→t ).−→v − (−→v ,−→w ,−→t ).−→u .

Si −→u ,−→v ,−→w libres, composantes de
−→
t ? [Formules de Cramer reconnues, dans ce cas.]

7. Chang. de repères en dim finie pour un point. (a) Commenter les formulesX = P.X ′ etX −X0 = X ′.

(b) Montrer le cas général X −X0 = P.X ′ (Changer d’ origine ; puis de vecteurs de base).

8. (*) Lien : points fixes de f–Vecteurs invariants de
−→
f . Cas où f : E −→ E (donc

−→
f : E −→ E).

Notons E1 l’ensemble des points fixes.

Vérifier : M ′ = M ⇔
−−−→
O′M =

−→
f (
−−→
OM) ⇔ (

−→
f − Id)(−−→OM ) = −−−→OO′. (∗∗)

Donc : soit E1 = ∅ ; soit sous espace affine de direction Ker (
−→
f − Id). Exemples ?

9. (*) Préciser les antidéplacements de R2 ? [z′ = ei.θ.z + b]

Solution. on sait que
−→
f est une sym⊥/y = x.tan(θ/2). Soit

−→
I sur cette droite vect. et (

−→
I ,
−→
J ) o.n.

Dans ce repère (O,
−→
I ,
−→
J ) on a M

(
X
Y

)
7→ M ′

(
X ′

Y ′

)
=

(
1 0
0 −1

)(
X
Y

)
+

(
α
β

)
: X ′ = X + α;

Y + Y ′

2
=
β

2
.

Si α = 0 on reconnait la sym⊥/D : Y = β/2, notée σ. Sinon : f apparait comme la composée
commutative de σ et de la translation t

α.
−→
I

(vecteur dirigeant D !) : on l’appelle "symétrie-glissée".

[f = σot = toσ ⇒ fof = toσoσot = tot = t
2.α.

−→
I

; d’où t ; puis σ = t−1of uniques !]

10. Etude des similitudes affines indirectes en dimension 2 : z′ = a.z + b, a ∈ C∗.

(a) Pour | a |6= 1 (sinon ex. précédent), vérifier qu’il y a un point fixe.

(b) Etudier le cas z′ = rei.α.z, r > 0. Puis conclure qu’on a une composée commutative d’une
homothétie de centre M0 et d’une sym. orthogonale / D, M0 ∈ D.

Voir aussi le chapitre 25.



Chapitre 38

Les cercles et les coniques

38.1 Cercles [révisions]

38.1.1 Revoir les équations

En général

{
x = a+R.cos(u)
y = b+R.sin(u)

Passant par O x2 + y2 − 2ax− 2by = 0 ; ρ = 2a.cos(θ) + 2b.sin(θ) 1

38.1.2 Et le théorème de l’angle inscrit

D’où :
a

sin(A)
=

b

sin(B)
=

c

sin(C)
=
abc

2S
= 2R relation des sinus. Relation des cosinus ?

38.1.3 Et le théorème de la puissance d’un point

1. Au ch. Géométrie de R2 on a vu {M :
MA

MB
= k} : Cercles. Ou {M : MA2 − k2.MB2 = 0}, k > 0.

(*) En compléments, le théorème de la puissance d’un point/un cercle avait permis de montrer

l’orthogonalité de ces Cercles Ck, k 6= 1, (C1 médiatrice) avec tout cercle passant par A et B.2

2. Exercice : une généralisation {M : α.MA2 + β.MB2 + γ.MC2 = λ} ?

Solution. Soit φ(M) = α.MA2 + β.MB2 + γ.MC2 : "fonction scalaire de Leibnitz". Alors

∀G ∈ P : φ(M) = α.(
−−→
MG+

−→
GA)2 + β.(

−−→
MG +

−−→
GB)2 + γ.(

−−→
MG +

−−→
GC)2 = (α+ β + γ).MG2+

2
−−→
MG � (α.

−→
GA + β.

−−→
GB + γ.

−−→
GC) + φ(G). Donc deux cas :

• Si α+ β + γ 6= 0

Prenant G = Bar

(
A B C
α β γ

)
, on a : φ(M) = (α+ β + γ)MG2 + φ(G). D’où

φ(M) = λ⇔ GM2 =
λ− φ(G)

α+ β + γ
= Cte : cercles de centre G sous réserve que Cte > 0.

• Si α+ β + γ = 0. Soit ici G = O (comme on veut)

Soit
−→
V0 = α.

−→
OA+ β.

−−→
OB + γ.

−−→
OC (on sait même que ce vecteur ne dépend pas de O). Alors :

φ(M) = λ⇔ −→V0 �
−−→
OM =

φ(O)− λ
2

ou

(
α
β

)
�

(
x
y

)
= Cte : droites affines ⊥ −→V0 si

−→
V0 6=

−→
0 .

1 Un paramétrage de cercle passant par O : y = t.x⇒





x = 2.
a+ bt

1 + t2

y = 2.
t.(a+ bt)

1 + t2

(
cercle qui contient aussi O :

t =
−a
b

si b 6= 0 ; t = ∞, sinon

)
.

2 Au ch. Equations différentielles, on avait aussi vu que les cercles d’équation x2 + y2 − 2µx = 0 (tangents à Oy en O)

étaient "trajectoires orthogonales" aux cercles x2 + y2 − 2λ.y = 0.

249
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38.2 Ellipse, hyperbole, parabole : équations réduites

38.2.1 Courbes du second degré Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (A, B, C) 6= (0, 0, 0)

Classification. Il n’y a que 3 coniques propres : parabole, ellipse, hyperbole (et quelques cas dégénérés).

Démonstration en compléments (plan affine euclidien) (*)

Commençons par un éventuel centre de symétrie. Soit f(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F.

Posons

{
x = x0 + h
y = y0 + k

:

(
On supprime les h et k, ou bien on a :

Ah2 +Bhk +Ck2 + 0.h+ 0.k +G = 0

)
⇔ ...

{
2Ax0 +By0 = −D
Bx0 + 2Cy0 = −E.

Note 3

• Cas B2 − 4AC 6= 0, système de Cramer. On dit ici : conique à centre, type ellipse ou hyperbole E ,H. 4

On arrive à Ellipse
X2

a2
+
Y 2

b2
= 1. Dessins si a > b ; puis si b > a ; dorénavant, a > b : Fig 1.

0

x

0y y0

x

0

x

y

0 5
0

x

0
0y

ou Hyperbole
X2

a2
− Y 2

b2
= 1 ou

X2

a2
− Y 2

b2
= −1. On verra que

X2

a2
− Y 2

b2
= 0 sont les asymptotes.

Dorénavant, on prendra OX pour "axe transverse" : Fig 3.

[Sauf cas dégénérés : 2 droites sécantes (4.X2−Y 2 = 0), point (X2 + 2Y 2 = 0), ∅ : (X2 + 2Y 2 = −1).]

• Cas B2 − 4AC = 0 : On est ramené, si C 6= 0, à C(y −mx)2 +Dx+ Ey + F = 0 : type parabole P .

[Sauf cas dégénérés : 2 droites parallèles (X2 = 1), confondues (X2 = 0), ∅ : (X2 = −1)], on a avec

changement de repère o.n. possible : Parabole X2 = 2pY ou Y 2 = 2pX. 5

y

5

x

0
0

x

0
y 0

5

Ellipse :

0
0

y

x

38.2.2 Ellipse
x2

a2
+
y2

b2
= 1 [On reprend x, y]

1. Paramétrage

{
x = a.cos(t)
y = b.sin(t)

cercle "directeur" (a > b)

{
x = a.cos(t)
y = a.sin(t)

(Aussi : T = tan(
t

2
).)

2. Par affinité (ou dilatation) f :

(
x
y

)
7→
(
x′ = x

y′ =
b

a
y

)
, ce cercle a pour image l’ellipse. Ci-dessus.

3 On a exactement le système

{
∂f/∂x(x0, y0) = 0
∂f/∂y(x0, y0) = 0

ou
−−→
grad(f)(M0) =

−→
0 . B2 − 4AC intervient.

4
� Une solution de Spé consiste alors à étudier la forme quadratique (h, k) 7→ Ah2 +Bhk + Ck2.

� Solution de Sup : Posant ici

(
h
k

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
X
Y

)
[rotation d’axes, donc P−1 =tP ]

(On supprime le terme "rectangle" en h.k) ⇔ B.cos(2.θ) + (C − A).sin(2.θ) = 0 ; qui est possible.

5 On verra que p est le "paramètre" et OF =
p

2
, où F foyer, O sommet ; cf. Propriétés monofocales.
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3. Compléments • D’où l’aire de l’ellipse :
b

a
.π.a2 = π.ab. cf. intégrales : gellipse(x) =

b

a
.fcercle(x)

• Méthode de la "bande de papier". M lié à une tige PQ, P ∈ Ox,Q ∈ Oy, QM = a, PN = b, décrit

une ellipse. (N ∈ C(O, a) 7→M ,
−−→
ON =

−−→
QM : affinité de dir. Oy de base Ox de rapport −b/a). 6 [Ou

Cercles de Châsles. M = mil(R

(
r.cos(t)
r.sin(t)

)
, S

(
s.cos(t)
−s.sin(t)

)
), r = a+ b, s = a− b ; F ′, F,R, S quadr.harm.

car (OF ) biss., OF 2 = OF ′2 = OR.OS ; donc (RM) biss., MR2 = MS2 = MF.MF ′ (F ′FRS cocycl.) !]

• Théorèmes d’Apollonius. Avec M(t)[a.cos(t), a.sin(t)], on a : m(t)[a.cos(t), b.sin(t)], p = m[t+ π/2].
−−→
Om,

−→
Op, diam.conj. 1) Om2 +Op2 = a2 + b2 2) Aire.parall(Om,Op) = a.b 3)

∏
coeff.dir : −b2/a2.

38.2.3 Hyperbole
x2

a2
− y2

b2
= 1 Axe transverse Ox

1. Paramétrage

{
x = ǫ.a.ch(t)
y = b.sh(t)

ǫ = ±1 ou x = a(T +
1

T
), y = b(T − 1

T
); x =

1

cos(t)
, y = tan(t)...

2. Asymptotes :
x2

a2
− y2

b2
= 0 ou y = ± b

a
x. Hyperbole "équilatère" (asymptotes ⊥)⇔ b = a.

Preuve : cas x > 0, y > 0. On a :
y

x
=
b

a
th(t) −→

t→+∞
b

a
; puis : y − b

a
x = b.[sh(t) − ch(t)] =

− b.e−t −→
t→+∞

0− ; d’où une asymptote. Et asymptotes orthogonales ⇔ produit des pentes : −1.

Autre preuve : Pour l’asymptote cherchée, dire y =
b.x

a
.

√
1 − a2

x2
et Dl : (1 + h)α = ...

3. Théorème Equation de l’hyperbole rapportée à ses asymptotes : X.Y = Cte ou Y = Cte/X.

Car
−→
I =

1√
a2 + b2

(a.−→ı − b−→ ),
−→
J =

1√
a2 + b2

(a.−→ı + b−→ ), nouvelle base non orthogonale en

général convenable.

(
x
y

)
= P

(
X
Y

)
=

1√
a2 + b2

(
a a
−b b

)(
X
Y

)
: x =

a√
a2 + b2

(X + Y ), y...

(cf. Matrices) et l’ancienne équation :
x2

a2
− y2

b2
= 1 donnent (à voir !) X.Y =

a2 + b2

4
.

x

y

0 5
0

y

5

x

0
0

38.2.4 Parabole. Prenons ici l’équation x2 = 2py : tournée comme ci-dessus

Compléments • Pour M sur le parabole, soit MT , T ∈ Ox la Tangente, P la projection de M sur

Ox. Alors OP = 2.OT par son équation. Et donc la Tangente coupe Oy en U avec yU = −yM .

• Exercice Lieu des milieux des cordes d’une parabole de direction donnée ?

On résout

{
x2 = 2py

y = m.x+ λ
λ variable. Milieux

x′ + x”

2
= m.p = cte dans x2 − 2.p.m.x− 2.p.λ = 0 :

Droite //Oy qui est la direction asymptotique. [Déjà vu avec le Théorème des accroissements

finis pour f(x) = α.x2, C∞(R) : f(b)− f(a) = (b− a).f ′( a+ b

2
)]. Note sur les Coniques.7

6 Avec cette génération, on peut construire la tangente en M à l’ellipse de deux façons :

� Les normales à Ox et Oy en P et Q donnent le "centre instantané de rotation" I = R, d’où (tangente en M) ⊥ −−→
IM !

� Et aussi : l’image de la droite tangente au cercle en N coupant Ox en T est la tangente MT (T fixe) à E en M !

Th. d’Apollonius et Hyperbole. Si m[a.ch(t), b.sh(t)], p[a.sh(t), b.ch(t)] ∈ Hyp. x2/a2 − y2/b2 = ±1,
−−→
Om,

−→
Op diamètres

conjugués/forme bilin. sym. xx′/a2 − yy′/b2 [Des //(O, p) coupent Hyp en K,L, Asympt en U, V , Om en µ : milieu] ; alors

on a encore (2), (1’) Om2 −Op2 = a2 − b2 et (3’). Et les diagonales du parallélogramme mOpq sont // Asymptotes.
7 Ce sont les sections planes du cône de révolution z2.tan2(α) = x2 + y2. [Théorèmes de Dandelin-Quetelet].



252 CHAPITRE 38. LES CERCLES ET LES CONIQUES

38.3 Propriétés monofocales des coniques

38.3.1 Théorème : 1 seul foyer utilisé et sa directrice associée

Soit F (foyer) 6∈ D droite ’directrice’. Alors {M :
MF

δ(M,D)
= e}, e > 0, est une conique :

e = 1 Parabole ; 0 < e < 1 Ellipse (cercle si e→ 0) ; e > 1 Hyperbole (équilatère ⇔ e =
√

2).

Soit p = e.d dit paramètre, d = δ(F,D). Pour la Parabole : δ(F,D) = p ; δ(Sommet, Foyer) =
p

2
Pour toute conique, le paramètre p est la longueur du "rayon-vecteur" issu de F // D directrice.

Démonstration (*) 8

Remarques et dessin

2

0

-2

0
10-1-2

3

2

1

3

0

-1

2

-2

• Pour x = 0, on a aisément (sur l’équation initiale) y = ±p comme annoncé.

• L’étonnant, quand e 6= 1, est que l’équation :
X2

a2
+
y2

B
= 1 donne un autre axe de symétrie ! cf.IV.

38.3.2 Conséquence : Equation polaire des coniques

O étant un foyer, ni centre, ni sommet ! et D d’équation : x.cos(α) + y.sin(α) = d, une équation

polaire des coniques est ρ =
p

1 + e.cos(θ − α)
Et ρ =

p

e.cos(θ − α)
=

d

cos(θ − α)
redonne D !

Démonstration

OM2 = ρ2 et δ2(M,D) = [ρ.cos(θ).cos(α) + ρ.sin(θ).sin(α)− d]2 = [ρ.cos(θ − α)− d]2 conduisent à

±ρ = ρ.cos(θ − α)− d. Donc : Conique =C1 ∪ C2 d’équations ρ =
p

1 + ecos(θ − α)
, ρ =

−p
1− ecos(θ − α)

.

C1 = C2 car ρ2(θ+π) = −ρ1(θ) : M1(ρ1, θ) = M2(ρ2, θ+π) ! D : ρ.cos(θ)cos(α)+ ρ.sin(θ)sin(α) = d.

Remarques

• On retrouve, pour θ = α+
π

2
(Rayon-vecteur // Directrice) la valeur connue ρ = p (paramètre).

• Dessiner la parabole ρ =
p

1 + cos(θ)
[α = 0] qui est aussi y2 = −2p[x− p

2
] = −2pX, X = x− p

2
.

8 Prenons ici, F (0, 0) et D : x = d > 0. d = FD : distance d’un foyer à la directrice associée. Alors :

x2 + y2 = e2 | d− x |2= (ex− p)2 [parfois x2 + y2 = (ex+ p)2, x = x0 +X : y2 = 2pX + (e2 − 1)X2.]

ou si e = 1 : y2 + 2px = p2 ; soit y2 = −2p.[x− p

2
]. Parabole : δ(F,D) = p ; δ(Sommet, Foyer) =

p

2
.

tandis que si e 6= 1 appelée excentricité, on obtient : (1 − e2)x2 + 2pe.x+ y2 = p2 ou encore :

[x+ pe
1−e2 ]2

p2

(1−e2)2

+
y2

p2

1−e2
= 1

Donc si 0 < e < 1 : Ellipse. Si e→ 0, d→ +∞, p = e.d 6= 0 fini, on a : x2 + y2 = p2, cercle.
(Planètes autour du soleil : excentricité faible. Mercure 1/5, Vénus 1/140 ; même 1/2 quasi-cercle).

Si e > 1 : Hyperbole. Et hyperbole équilatère ⇔ e2 − 1 =
√
e2 − 1 ⇔ e =

√
2 : est revu plus loin.

On a aussi une définition pour Ellipse et Hyperbole par Foyer et Cercle directeur avec 2 foyers : après.
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38.3.3 Ellipse (avec foyer) : Retenir surtout a2 = b2 + c2 ; e =
c

a
< 1

Dém.(*) Soit Ω(
−pe

1− e2 , 0) le centre de symétrie,
−→
ΩF = c−→ı ,

−−→
ΩD = δ−→ı ,

−→
ΩA = −−→ΩA′ = a−→ı ,

−→
ΩB = b−→ :

e =
AF

AD
=
A′F
A′D

=
a− c
δ − a =

a+ c

δ + a
=

2a

2δ
=

2c

2a
car

x

y
=
z

t
= k ⇒ x

y
=
z

t
=
x+ y

z + t
=
x− y
z − t . Donc

e =
c

a
=
a

δ
=
BF

δ
< 1 δ =

a2

c
BF = a BF 2 = a2 = b2 + c2 ou c2 = a2 − b2, axe focal=Grand axe.

Placer les points et distances ci-dessous (ici, un seul couple Foyer F = O, Directrice D). Note 9

3 exercices � (E,H), O pôle : ρ2 =
±b2

1 − e2.cos2(θ)
, d = dist(F,D) =

b2

c
. � M,F,M ′ alignés,

1

FM
+

1

FM ′ =
2

p
.

� Théorème (angles, foyer, directrice) Si M,N ∈ C et I ∈ D alignés, FI est bissectrice de FM,FN :

Biss.-ext. sauf siM,N ∈ 2 branches d’hyp. En particulier si MI tang. FM ⊥ FI cas M,F,M ′ alignés ?

Fig.1,2 :
IM

IN
=
dist(M,D)

dist(N,D)
=
FM

FN
⇒ I sur une biss deMFN ; puisN →M .

(
F pied de hauteur de IMM ′ et* I
centre de cercle (ex)inscrit MM ′F ′

)

⇒ νM = p, ν = proj⊥(K,FM), K = NormM ∩G.axe. [D = pr(F,D), H = pr(M,D), I = Tg∩D, MFIH ∈ cercle

u = M̂HF = M̂IF = F̂MK : MHF,FMK semblables ; νM = MK.cos(u) = e.HF.cos(u) = e.FD = p. Parabole : verso.]

(Note : FM ⊥ FI donne les propr. des tang. à la P. et, pour E et H : TangM . biss. de F ′MF ! IV.)

0
0

0
0

38.3.4 Hyperbole (avec foyer) : c2 = a2 + b2 ; e =
c

a
> 1. Equilatère ⇔ e =

√
2

Dém. (*) en complément. Ayant
X2

a2
− y2

b2
= 1, (B = −b2) : L’axe focal est toujours l’axe transverse.

Soit Ω(
+pe

e2 − 1
>
p

e
= d, 0) centre de symétrie,

−→
ΩF = −c.−→ı ,

−−→
ΩD = −δ.−→ı ,

−→
ΩA = −−→ΩA′ = −a.−→ı . Alors

e =
AF

AD
=
A′F
A′D

=
c− a
a− δ =

c+ a

a+ δ
=

2c

2a
=

2a

2δ
⇒ e =

c

a
=
a

δ
> 1, δ =

a2

c
(comme l’ellipse) mais e > 1.

Ici c2 = a2 + b2 : soit B′,
−−→
A′B′ = b.−→ ; ΩB′ asymptote car pente

b

a
; si M (

x > 0
grand

,≈ b.x

a
) dans Ω,−→ı ,−→

sur H : e2 =
c2

a2
=

MF 2

δ2(M,D)
≈ (a2 + b2)x2

a2x2
(x→ +∞) ! Enfin (hyp. équil.) ⇔ a = b⇔ e =

c

a
=
√

2.

Donc ΩB′ = ΩB = c (triangle rectangle) ce qui donne une construction de c = ΩF = ΩF ′ rigoureuse.

9 Complément � Tang. en M0(x0, y0) ∈ E :
x.x0

a2
+
y.y0
b2

= 1. Si MF = (c, p) p = b2/a et Tang∩axes (δ, 0); (0, a).

Dir. D : polaire de F . 4 façons 1) TangMF
∩ Ox = D(δ, 0) ∈ D et sur la polaire de F . 2) Affinité, triangles semblables

ΩFPF , PF (c, b) ∈ cercle.principal C(Ω, a) et PFFD, d = b2/c. 3) Ici, MFM ′ alignés : MFI = M ′FI = π/2, I ∈ D
aussi sur la polaire de F . 4) AF/AD = −A′F/A′D : (A,A′, F,D) D. H. (donc D aussi pol.(F/C), d’où C ⊥ tout cercle

de diam FL,L ∈ D). On déduit : T = TM ∩ TN pôle de (M,N) est conjugué de I ∈ (M,N) ; I et F aussi conjugués

⇒ FT Biss.(FM,FN) (Poncelet) FT ⊥ FI . Et ∀∆ passant par F coupant Con. en U, V ; Dir. en J : [U, V, F, J ] = −1.

� Axe radical des cercles 38.4 (F ′, 2a) (F, 0) cercle-point
(

droite des points qui
ont même puissance

)
: toujours Dir. D car

(
DFMF rectangle
et sym⊥/DMF

)
.

Hyp. idem ! IV. H = {centres(c), F ∈ (c) tang. à CF ′,2a en Q, tangM médiatr[FQ]}. M → ∞, (c) → dr(FQ∗) ⊥ Asympt.

homF,2(Cprincipal) = CF ′,2a : tang. issue de F à Cp le rencontre en P ∗ ∈ D ∩Asympt. (P ∗ conj. de F (c, 0)/CP donc /H).
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38.3.5 Parabole (avec foyer)

Soit ici F (
p

2
, 0) ; D : x =

−p
2

. Alors {M : MF = δ(M,D)} est la parabole y2 = 2px p paramètre.

[Ex. facile] L’origine n’est pas le foyer maintenant ! Par contre FD = p (e = 1) ! O milieu de FD.

1. Théorème

La tangente en P ∈ Parabole, projeté sur D en M , est médiane de FPM isocèle
donc médiatrice, hauteur, surtout bissectrice intérieure de FPM . D’où
la propriété des rayons lumineux pour les miroirs paraboliques et le mot "foyer".

2. Démonstration vue au II ; mais la parabole non tournée ainsi. Aussi voyons ce calcul : pour y′,

explisciter y fonction de x, y = ±
√

2px mal aisé et inutile ! y2 = 2px⇒ 2yy′ = 2p; y′ =
p

y
.

Tang. en P
(
x
y

)
∈ P Y − y

X − x =
p

y
; (x, y) : y2 = 2px. Tang∩Oy : X = 0 ; U(0,

y

2
) mil[PT ], mil[MF ].

Tang∩Ox : T (−x, 0) ; F mil[TN ] car HN = p = νP , H(x, 0) ; N : Norm∩Ox ; ν : proj⊥(N,FP )

donc les rayons lumineux parallèles à l’axe, passant par M convergent vers F ! A dessiner.

3. Exercices en complément. Les deux Th. de Poncelet 1) FT biss de FP,FP ′ 2) P̂ Tx = F̂ TP ′.

1) T̂MP = T̂M ′P ′ (car TM = TM ′) donc ... [Autre figure à voir : T à droite de la directrice].

2) M̂Tx = x̂TM ′ : 2.P̂ TF − x̂TF = x̂TF + 2.F̂ TP ′ ..., isogonalité. D’où : [ii) vrai que pour P]

PFP ′ alignés ⇔ T ∈ D car P̂FT = π/2 = T̂MP . Si TangP ′ ⊥ TangP , T ∈ D car M̂TM ′ = 2(F̂ TP+F̂ TP ′).

y

x

0
0

0

x

0y

x

y

0 5
0

38.4 Propriétés bifocales des coniques

38.4.1 Théorème : 2 foyers (pas de directrice ici)

Nouvelles notations : soit un repère o.n. Ω = O ici, −→ı ,−→ et F (c > 0, 0) ; F ′(−c, 0). Fig. 3,4. Dém.(*) 10

{M : MF +MF ′ = 2a} est si a < c : ∅ ; si a = c : [F ′, F ] ; et si a > c : l’ellipse
x2

a2
+

y2

a2 − c2 = 1

{M : |MF −MF ′ |= 2a} est si a > c : ∅ ; si a = c : (F,F ′)\]F ′, F [ et si a < c :
x2

a2
− y2

c2 − a2
= 1

38.4.2 Conséquences (parabole exclue ici)

1. "Construction du jardinier" pour l’ellipse. Avec un fil de longueur 2a tendu entre 2 piquets F,F ′,

FF ′ = 2c < 2a : MF +MF ′ = 2a. Placer les foyers ci-dessus : fig 3,4. (Hyperbole analogue).

10 1) Cas a 6 c : aisé. Cas a > c : soit E ′ = {M : MF +MF ′ = 2a}, E l’ellipse. E ⊂ E ′ clair avec la "déf. monofocale".

Réciproque : M ∈ E ′ ⇔ [MF 2 = (2a−MF ′)2; MF ′
6 2a] ⇔ [a.MF ′ = a2 + cx; MF ′

6 2a]

⇔ [M ∈ E ; MF ′
6 2a; a2 + cx > 0] ⇔ M ∈ E , car les 2 conditions sont satisfaites pour M ∈ E .

2) Cas a > c : aisé. Cas c > a : Soit H′ = {M :|MF −MF ′ |= 2a}, H l’hyperbole. H ⊂ H′ aisé avec la "déf. monofocale".

Réciproque : [M ∈ H′; x > 0] ⇔MF ′ = MF + 2a ⇔ cx− a2 = a.MF ⇔ [M ∈ H; cx− a2
> 0] ⇔ [M ∈ H; x > 0] car

[x > 0;M ∈ H] ⇒ c.x > c.a > a2 ! D’où E, H avec cercle.dir. C(F ′, 2a) : M centre de Γ tang. à C en ϕ, F ∈ Γ ; F 6∈ C.
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2. Propriété des tangentes. [Autre dém. : position limite de MM ′ avec ϕ,ϕ′ et axe radical de CM,M ′ ;
ou bien, D étant la médiatrice de F ′ϕ, M est le seul point de D tel que FM + F ′M = 2a. (*)]

La tangente en M est bissectrice extérieure de FMF ′ pour E et intérieure pour H.
Pour l’ellipse, convergence des rayons issus de F vers F ′ par réflexion. Divergence pour hyp.

Dém.
√−−→
FM2(t) ±

√−−−→
F ′M2(t) = cte, or

d

dt

√−−→
FM2(t) = 2

−−→
FM.

d
−→
M

dt
/2

√−−→
FM2(t) = −→u .d

−→
M

dt
, ‖−→u ‖ = 1 d’où

d
−→
M

dt
⊥ −→u ±−→v !

Propriété "des confessionaux" F=pénitent, F ′=confesseur seul lieu d’audition (abbaye de La Chaise-Dieu 43).11

� D’où le lieu des sym. de F ′/tang. est le cercle directeur (F, 2a) F,M,ϕ′ alignés [directrice si par.]

et par hF ′,1/2 le lieu des proj⊥(F ′,tang) est le cercle principal [tangente au sommet si parabole.]

Si projtM (F,F ′) = α, β, alors : Fα.F ′β = b2. [Puissance de F/ cercle principal]. Th. de La Hire.

� 1er Th. de Poncelet (1 foyer, fig.1) : M̂FP = P̂FM ′ [car Pϕ = PF ′ = Pϕ′ : PF biss. de ϕFϕ′.]

� 2è Th. de Poncelet (2 foyers, fig.2) : PM,PM ′;PF,PF ′ isogonales [PM,PM ′ ⊥ F ′ϕ,F ′ϕ′ : biss.
de (PM,PM ′) (F ′ϕ,F ′ϕ′) même dir. : F ′I, F ′J et IJPF alignés*, même dir. de biss. que FPF ′.]

*F, P, I milieu de de [ϕ, ϕ′] alignés par le 1er Th. de Poncelet, cf. aussi III [ ... ligne suivante : 2.ÎFJ = M̂FM ′.]
� Angle pivotant : portion de tang. mobile IJ entre 2 tang. PM,PM ′ vue de F sous un angle fixe !
� T ∈ Orthoptique, T = ϕ ∗ ϕ′, FT ⊥ Tϕ : TF 2 + TF ′2 = 4a2, TO2 = a2 + b2 (Th. de la Médiane à FTF ′)

[ou Fϕ′P , 4a2 = PF 2 + PF ′2 − 2PF.PF ′cos(V ), angle des tang. donc V = π/2⇔ PO2 = a2 + b2.]
Ex. 1) Si tang.M∈Ell.ou.Hyp.∩ tang.A,A′ = {P, P ′} : PF ⊥ FP ′. 2) Si H,H ′ = proj⊥(F, F ′/tang.M ), I = FH ′ ∩HF ′ :

MI ⊥ tang ; N = sym(M/I) ∈ (F, F ′) ; O,H ′, K′ = proj(F ′, Norm.) alignés. [hom.centres.F,F ′ , ψ,ψ′ = sym(F, F ′).]

Puis
MN

2.F H
=

F ′M

2a
; MN2 =

b2

a2
MF.MF ′ et si t = F̂MN , cos(t) =

F H

MF
=

F ′H′

MF ′
; d’où MN.cos(t) = p (aussi pour P).

3) E. (H.) Si (BB′) coupe tang.M en U , norm. en V , µ = sym(M,BB′) 6= M : F ∈ Cercle(MUµ) [à voir] F ′, V aussi.

11
� Compléments : un exercice sur l’hyperbole équilatère et les fonctions hyperboliques et coniques :

� Perspectives : la vision euclidienne devenant vision projective d’Alberti. Ici, "l’Annonciation" de Léonard de Vinci.
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M+ Exercices: Cercles et coniques PTSI

1. Sur les cercles. Montrer, avec le théorème de l’angle inscrit, que le symétrique de l’orthocentre H,
par rapport aux côtés d’un triangle, est sur le cercle circonscrit.

2. Dans le plan affine euclidien, soit A,B,C tels que AB = 3;AC = 4;BC = 5. Dessin ? Quel est
l’ensemble C = {M : −5MA2 + 4MB2 + 3MC2 = 12} ? [Vérifier que (B,C) est tangente à C.]

3. (*) Soit M un point quelconque du plan P : A,B,C. (a) Montrer que M est forcément barycentre

de A,B,C avec des coefficienst α, β, γ judicieux [
−−→
AM = λ.

−−→
AB + µ.

−→
AC ou

−−→
AM,

−−→
BM,

−−→
CM liés.]

(b) Montrer qu’on peut choisir α = Aire(MBC) etc. [Prendre le produit vectoriel de α
−−→
MA+ ...+

γ
−−→
MC =

−→
0 par

−−→
MA ; se limiter à M intérieur au triangle (α, β, γ > 0) ici et pour la suite.]

(c) I étant le centre du cercle inscrit à PQR, déduire que I = Bar
(
P Q R
QR PR PQ

)
[PQ longueur.]

(d) En déduire la position du centre de gravité d’un fil triangulaire homogène ABC pesant.

(e) Cas de la plaque triangulaire homogène ? [Découpage en lamelles parallèles à (B,C)].

4. (*) Soit I le centre d’une similitude directe plane A 7→ A′;B 6= A 7→ B′ donnés, donc α =
−−→
AB,

−−→
A′B′.

Que dire des angles
−→
IA,
−→
IA′,

−→
IB,
−→
IB′ ? Déduire que I est intersection de 2 cercles connus et que

c’est le point autre que (A′, B′) ∩ (AB). [Sinon, cercles tangents et résultat encore vrai.]

5. Parabole. Soit D : x =
−p
2

et F (
p

2
, 0). Equation de {M : MF = δ(M,D)} ? [y2 = 2px.] Puis

(a) Equation de la tangente en M(x, y) ∈ Par décrite par(X,Y ) ? Tangente ∩Oy, conséquences ?

(b) Si N = Normale ∩Ox et P (x, 0), vérifier que PN = cte. [Peut servir pour la courbure en O].
(c) (*) Avec (a) mais fixons ici V (X,Y ). Nombre de tang. contenant V [second degré en y ; ∆ > 0] ?
Lieu de V d’où la parabole est vue sous 90degrés [courbe orthoptique ; tangentes ⊥ : produit des

pentes -1] ? Vérifier que les points de tangence sont alignés avec F et que (V, F ) ⊥ (M1,M2) !
[(*) Lieu d’où Par est vue sous un angle α : hyperbole(foyer F , direct. D, excentricité 1/ | cos(α) |).]

6. Hyperbole. Lieu des centres de symétrie des hyperboles : Hm (m− x).y = x2 − 1 ? (m 6= ±1.)

7. Ellipse, image du cercle par affinité. (a) Aire de l’ellipse et "méthode de la bande de papier" ?
(b) Coupant E par des droites parallèles, déduire que les milieux des cordes sont alignés. [On dit
"diamètre conjugué" ; par une application affine bijective, l’image d’une droite est une droite !...]

(c) Soit E1 :
x2

4a2
+

y2

4b2
= 1 ; E2 :

x2

a2
+
y2

b2
= 1. Montrer que si deux cordes de E1, AB, AC, sont

tangentes à E2, il en est de même de BC. [Qui se généralise "grand théorème de Poncelet".]

8. Courbe d’éq. pol. ρ =
a

1 + cos(θ)
; ρ =

a

1 +
√

2.cos(θ)
; ρ =

2.a

2 + cos(θ)
? Si ρ =

p

1 + e.cos(θ)
, ρ =

p/
√

2

1 + e√
2
.cos(θ)

,

(*) montrer que les droites (P [θ = α− π/4], Q[α+ π/4]), P,Q ∈ 1ère conique, enveloppent la 2ème !

[Trouver (P,Q) : (e+
√

2).X.cos(α) +
√

2.Y.sin(α) = p. Point caractéristique θ = α !]

9. (*) Si A 6∈ D, lieu des foyers des paraboles passant par A de directrice D ; puis lieu des sommets ?
[Affinité encore pour les sommets : trouver une ellipse.]

10. (*) Soit l’hyperbole équilatèreH : x.y = k,M0 ∈ H,N0 son symétrique / O et {M1,M2,M3} = H∩C
où C est le cercle de centre M0 passant par N0. Montrer que le triangle obtenu est équilatéral :

(a) Avec les complexes. (b) Puis en montrant que G[(x1 + x2 + x3)/3, ...] coïncide avec M0.



Chapitre 39

Longueur/courbure des courbes planes

39.1 Longueur d’un arc paramétré

39.1.1 Généralités

1. Exemples d’arc paramétré. C’est la donnée de F : t ∈ I [I segment] 7→ −−→OM(t) ∈ E = R2 ou R3.

• en cartésiennes : x ∈ [x0, x1] 7→ F (x) =

{
x = x

y = x2/2p
[Arc de parabole.]

• en paramétriques : t ∈ [0, 2π] 7→ F (t) =

{
x = a.cos(t)
y = b.sin(t)

[Ellipse.]

autre cas à voir : t ∈ [0, 1] 7→ F (t) =





x = x0 + tα
y = y0 + tβ
z = z0 + tγ

[Segment [M0,M1] si −→u


α
β
γ


 6= −→0 .]

• en polaires : θ ∈ [0, 2π] 7−→ F (θ) =
−−→
OM(θ) = ρ(θ).−→u (θ) où −→u = cos(θ)−→ı + sin(θ)−→ ;

[ρ =
p

1 + e.cos(θ − α)
: coniques de foyer O ; ρ = 2a.cos(θ) + 2b.sin(θ) : cercle passant par O.]

2. Etude de l’hélice circulaire dans R3 : t ∈ [0,
2.π

ω
] 7→ F (t) =





x = r.cos(ω.t)
y = r.sin(ω.t)

z = h.t.

Elle est tracée sur le "cylindre de révolution" : x2 + y2 = r2 dans R3.

La période en projection sur Oxy est T =
2.π

ω
. Le "pas" de l’hélice est

2.π

ω
.h (avancée sur Oz).

On a :
d
−→
M

dt
=



−r.ω.sin(ω.t)
r.ω.cos(ω.t)

h


 donc : ‖d

−→
M

dt
‖ =
√
h2 + r2ω2 : vecteur vitesse constant en norme ;

et α =(
d
−→
M

dt
,
−→
k ) = cte, car cos(α) =

h√
h2 + r2ω2

; le vecteur vitesse fait un angle constant avec
−→
k .

3. Longueur d’un arc
Soit t ∈ [a, b] ; pour la subdivision ∆ : t0 = a < t1 < ... < tn = b soit λ∆ = M0M1 + ...+Mn−1Mn la

longueur polygonale. On appelle longueur de l’arc : sup{λ∆,∆ quelconque}. Et si ce sup est fini,

on dit que l’arc est rectifiable. Un arc continu [F C0] n’est pas forcément rectifiable ! cf. au dos.

39.1.2 Longueur d’un arc C1

1. Théorème Si F est C1[a, b] alors l’arc est rectifiable de longueur L =

∫ b

a
‖d
−→
M

dt
‖dt =

∫ b

a
‖F ′(t)‖dt.

2. Interprétation cinématique : Petite longueur : dL = ‖
−−→
dM

dt
‖.dt = ‖−→V (t)‖.dt = ‖d−→M‖.

257
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39.1.3 Changement de paramètre

Définition. On écrit plutôt : s(t) =Longueur-arcM̃aMt, appelée "abscisse curviligne" ; donc
ds

dt
= ‖d

−→
M

dt
‖

sauf si on change l’orientation en prenant s(t) =Longueur-arcM̃tMb, cas où
ds

dt
= −‖d

−→
M

dt
‖. D’où :

ds = ±‖d
−→
M

dt
‖.dt = ±‖−→V (t)‖.dt = ±‖d−→M‖. Toujours + en pratique ! Puis : L =

∫

Arc
ds.

s est un paramètre essentiel, car "intrinsèque" ; on dit "paramétrage normal".

1 2 3

39.1.4 Calculs de longueur (paramétriques, polaires, cartésiennes)

1. Arche de cycloïde

{
x = R[t− sin(t)]
y = R[1− cos(t)] 50

2

0

d
−→
M

dt
= R

(
1− cos(t)
sin(t)

)
= 2R.sin

t

2
.


sin

t

2

cos
t

2


 avec 1− cos(t) = 2.sin2 t

2
; 1 + cos(t) = 2.cos2

t

2

et ‖λ.−→v ‖ =| λ | ‖−→v ‖ : ds = ‖d
−→
M

dt
‖.dt = 2R | sin t

2
| dt. L = 2R

∫ π

−π
| sin t

2
| dt = ... = 8R.

2. Hélice circulaire (pour un tour) : t ∈ [0,
2.π

ω
] 7→ F (t) =





x = r.cos(ω.t)
y = r.sin(ω.t)

z = h.t.

On a vu que ‖d
−→
M

dt
‖ =

√
h2 + r2ω2 ; donc : ds = ‖d

−→
M

dt
‖dt =

√
h2 + r2ω2.dt ; d’où la longueur

pour un tour : L =

∫

Arc
ds =

2π

ω
.
√
h2 + r2ω2.

Vérifions. On découpe et déplie le cylindre : hypoténuse d’un rectangle de côtés
2π.h

ω
et 2π.r.

1 (*) Complément et cas de fonction F,C0, où la longueur est infinie : Flocon de Von Koch.

Soit ABC équilatéral ; sur AB divisé en 3 parties égales AA1A2B, on remplace A1A2 par A1A
′A2 extérieur avec

A1A
′ = A′A2 = A1A2 ; idem sur BC, CA, ce qui fait que la longueur est multipliée par 4/3 à ce premièr pas. Dessin ?

On recommence sur chacun des 12 côtés. Etc ! Enfin, on prend la courbe limite ...

2 Démonstration (*)

Déjà : Mi−1Mi = ‖−−−−−→Mi−1Mi‖ = ‖
∫ ti

ti−1

F ′(t)dt‖ 6

∫ ti

ti−1

‖F ′(t)‖dt, en utilisant ‖
∫ d

c

φ(t)dt‖ 6

∫ d

d

‖φ(t)‖dt pour c 6 d

qui est vrai pour φ C0 (mais non prouvée) ; donc λ∆ 6

∫ b

a

‖F ′(t)‖dt d’où L 6

∫ b

a

‖F ′(t)‖dt.

Inégalité inverse : Posons L(t) =Longueur-arcM̃aMt ;

on déduit h > 0 =⇒ 1

h

∫ t+h

t

‖F ′(u)‖du >
L(t+ h) − L(t)

h
>

‖F (t+ h) − F (t)‖
h

=
1

h
‖
∫ t+h

t

F ′(u)du‖.
Par passage à la limite quand h→ 0, on a [norme continue] L′(t) = ‖F ′(t)‖ ; et ceci termine.

Remarque. Le résultat se généralise à F C0 et C1 par morceaux, dont voici une définition :

F est C1 par morceaux sur [a, b] s’il existe un entier N et une subdivision a0 = a < a1 < ... < aN = b

telle que F/]ai−1,ai[ soit C1 sur ]ai−1, ai[ et prolongeable en une fonction C1 sur [ai−1, ai].

Exemples. Si f à valeurs dans R : f(x) =| x | sur [−1, 1]. Non C0 et C1 p.m. : f(x) = E(x) sur [0, 6].

3 Propriété (*)

D’abord : t = ϕ(u), u ∈ [α, β], est dit changement de paramètre "admissible" si ϕ bijective et ϕ, ϕ−1 sont C1.

On a vu [fonctions R→ R] que ceci équivaut à ϕ C1 et ∀u ∈ [α, β] : ϕ′(u) 6= 0.

[L =

∫ β

α

‖(Foϕ)′(u)‖du, pour tout paramètre admissible. Voir le cas ϕ décroissante : ϕ(α) = b ...]

Si | ds
dt

|= ‖d
−→
M

dt
‖ 6= 0, ∀t ∈ [a, b], soit avec un arc C1 sans point stationnaire, alors s est "admissible".
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3. Cardioïde : ρ = a[1 + cos(θ)].
−−→
OM = ρ(θ).−→u (θ)⇒ d

−→
M/dθ = ρ′−→u + ρ.−→u 1.

d
−→
M

dθ
=

(
ρ′

ρ

)

−→u ,−→u 1

= a

(
−sin(θ)

1 + cos(θ)

)
= 2a.cos

θ

2



−sinθ

2

cos
θ

2


 donc ds = ‖d

−→
M

dθ
‖dθ = 2a | cosθ

2
| dθ

D’où L = 2a

∫ π

−π
| cosθ

2
| dθ = ... = 8a. (−→u =

(
cos(θ)
sin(θ)

)

−→ı ,−→

−→u 1 =
d−→u
dθ

= ... aussi o.n.)

Courbe(s) :

0
0

2

y

x

5

0
0

4. Chainette : x 7→
{

x = x

y = ach
x

a

d
−→
M

dx
=

(
1

sh
x

a

)
ds = ch

x

a
.dx D’où L =

∫ x0

0
ch
x

a
.dx = ...

39.2 Repère de Serret-Frenet

39.2.1 Définitions

On note
−→
T =

d
−→
M

ds
unitaire dirigeant la tangente (d’après le théorème). Et α tel que (

−→
Ox,
−→
T ) = α.

Donc
−→
T =

d
−→
M

ds
=

(
dx/ds
dy/ds

)
=

(
cos(α)
sin(α)

)
puis

−→
N =

d
−→
T

dα
=

(
−sin(α)
cos(α)

)
.

Ainsi pour passer de
−→
T à

−→
N , inutile de dériver ; mais permuter les composantes et signe −.

Enfin
−→
T ∧ −→N =

−→
B =

−→
k : binormale. (M,

−→
T ,
−→
N,
−→
B ) est appelé repère de Serret-Frenet.

39.2.2 Exemple

Chainette : x 7→
{

x = x

y = ach
x

a

On a
d
−→
M

dx
=

(
1

sh(x/a)

)
donc : ds = ch

x

a
.dx.

D’où, dans la base (−→ı ,−→ ) :
−→
T =

d
−→
M

ds
=
d
−→
M/dx

ds/dx
=


1/ch

x

a
th
x

a
;


 et

−→
N =


−th

x

a
,

1/ch
x

a


 !

39.3 Courbure des courbes planes

39.3.1 Dérivée seconde : courbure

On a donc :
d2−→M
ds2

=
d
−→
T

ds
=
d
−→
T

dα
.
dα

ds
=
dα

ds
.
−→
N . Qu’est-ce

ds

dα
? (homogène à une longueur).

Soit M(s), N(s+ ∆α) ∆α = angle des tangentes. Dessin ?

Ainsi
∆s

∆α
≃ rayon du cercle, centré en IMN intersection des normales en M et N (passant par M).

Deux dessins à voir : Cas
∆s

∆α
> 0 (virage à gauche) puis

∆s

∆α
< 0 (virage à droite).

Définition

dα

ds
= lim

∆α

∆s
est dit courbure en M , notée c ; R =

ds

dα
=

1

c
: rayon de courbure en M

et on a, pour le signe : R > 0⇐⇒ virage à gauche.

Enfin C défini par C = M +R.−→N (ou
−−→
MC = R.−→N ) est appelé centre de courbure.
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39.3.2 Formulaire. Formules de Frenet

� Calculer

−−→
dM

dt
ou en polaires

−−→
dM

dθ
=

(
ρ′

ρ

)

−→u ,−→u 1

: ds= ǫ ‖
−−→
dM

dt
‖.dt ou ... choix

ds

dt
> 0 ou ǫ = +1

� Puis :
d
−→
M

ds
=
−→
T =

d
−→
M/dt

ds/dt
et
−→
N en permutant les composantes avec changement de signe. Alors :

� R =
ds

dα
dα





paramétriques

−−→
dM

dt
col. à

(
cos(α)
sin(α)

)
⇒ tan(α) =

y′

x′
(t), dα en différentiant

polaires

−−→
dM

dθ −→u ,−→u 1

col. à

(
cos(V )
sin(V )

)

−→u ,−→u 1

⇒ tan(V ) =
ρ

ρ′
, dV en différentiant

attention ici : α = θ + V (π) ⇒ dα = dθ + dV .

� Enfin C = M +R.−→N. Et conséquence : deux formules de Frenet
d
−→
T

ds
=

−→
N

R ;
d
−→
N

ds
=
−−→T
R .

Formule donnant R : après. 1ère de Frenet : ci-dessus. 2ème :
d
−→
N

ds
=
d
−→
N

dα
.
dα

ds
=

1

R .(−
−→
T ).

Deux exercices corrigés (et voir que C est dans la concavité : R > 0 ou R < 0)

1) Courbes dont la courbure est toujours nulle ?

2) Courbes dont la courbure est constante, non nulle (R = cte) ?

Solution 1)
dα

ds
= 0 soit α = cte = α0. Alors

−→
T =

(
cos(α)
sin(α)

)
constant en norme, est aussi constant en

direction, soit
−→
T =

−→
T 0. La 1ère dérivation

d
−→
M

ds
=
−→
T donne

−−→
OM = s.

−→
T 0 +

−−→
OM0 ou

−−−→
M0M = s.

−→
T 0.

Droites.

2) Ici on a
ds

dα
= R = R0 d’où [s = R0(s− s0) non utile] et

d
−→
M

ds
=
−→
T qui est

{
dx/ds = cos(α)
dy/ds = sin(α)

.
{
dx = cos(α)ds
dy = sin(α)ds

⇒
{
dx = R0.cos(α)dα
dy = R0.sin(α)dα

donc

{
x− x0 = R0.sin(α)
y − y0 = −R0.cos(α)

. Cercles de rayon | R0 |.

39.3.3 Rayon de courbure en tout point

1. Courbes paramétrées

{
x = x(t)
y = y(t)

On a
d
−→
M

dt
=

(
x′(t)
y′(t)

)
qui donne ds et dα :

• ds = ±‖d
−→
M

dt
‖dt = ǫ.

√
[x′]2(t) + [y′]2(t)dt, ǫ = +1 en général, notre choix ; et

• −→T =

(
cos(α)
sin(α)

)
étant colinéaire à

d
−→
M

dt
: tan(α) =

y′(t)
x′(t)

; d’où dα en différentiant.

Voici : [1 + tan2(α)]dα =
y”x′ − x”y′

[x′]2(t)
dt ; soit en remplaçant tan(α) : dα =

y”x′ − x”y′
[x′]2(t) + [y′]2(t)

dt.

Donc : R =
ds

dα
=

([x′]2 + [y′]2)3/2

y”x′ − x”y′ ce qui est : R =
‖−→M ′‖3

[
−→
M ′,
−−→
M”]

car on a

dénominateur = [
−→
M ′,
−−→
M”] =

∣∣∣∣
x′ x”
y′ y”

∣∣∣∣, numérateur : cube de v =
ds

dt
= ‖−→V ‖.

Remarques 1) Points d’inflexions à chercher parmi ceux tels que : y”x′ − x”y′ = 0. Connu.

2) Preuve cinématique en paramètre quelconque. [Noter l’accélération centripète au passage]

−→
V =

d
−→
M

dt
= v.
−→
T ;

−→
Γ =

d2−→M
dt2

=
dv

dt

−→
T +

v2

R
−→
N ;

−→
V ∧ −→Γ =

v3

R
−→
B : R =

‖−→V ‖3

(
−→
V ∧ −→Γ ).

−→
k

.

[
1

R
=
dx

ds
.
d2y

ds2
− dy

ds

d2x

ds2
; (
dx

ds
)2 + (

dy

ds
)2 = 1,

dx

ds
.
d2x

ds2
+
dy

ds

d2y

ds2
= 0 ; avec l’id. de Lagrange

1

R2
= (

d2x

ds2
)2 + (

d2y

ds2
)2].
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Exemple Tractrice

{
x = a[t− th(t)]
y = a/ch(t)

Prendre R =
ds

dα
. (Formule ci-dessus longue !)

Rayon : Ici
d
−→
M

dt
= a.

sh(t)

ch2(t)

(
sh(t)
−1

)
donc ds = a. | th(t) | dt ; et tan(α) =

−1

sh(t)
;

d’où (1 + tan2(α))dα = (1+
1

sh2(t)
).dα =

ch(t)

sh2(t)
dt donc dα =

dt

ch(t)
. R = a. | sh(t) |.

Centre de courbure : C = M +R−→N ;
−→
T =

d
−→
M

ds
=
d
−→
M/dt

ds/dt
=

sh(t)

| sh(t) | ch(t)

(
sh(t)
−1

)
=

(
cos(α)
sin(α)

)

d’où
−→
N =

sh(t)

| sh(t) | ch(t)

(
1

sh(t)

)
, puis

(
xc
yc

)
= a

(
t− th(t)
1/ch(t)

)
+ a

sh(t)

ch(t)

(
1

sh(t)

)
= a

(
t

ch(t)

)

et yc = a.ch(xc/a) : la développée est la "chainette" ! 4 x

y

0

4

0

y

x

5

0
0

2. En cartésiennes

{
x = x
y = y(x)

[cas particulier t = x] : x′ =
dx

dx
= 1; x” = 0; y′ =

dy

dx
; y” =

d2y

dx2
.

Ici : R =
ds

dα
=

(1 + [y′]2)3/2

y”
. 5 (C’est aussi : R =

1

y”.cos3(α)
cf. 3.4.)

Exemple Chainette (ci-dessus) : y = a.ch
x

a
.

d
−→
M

dx
=

(
1

sh(x/a)

)
... Trouver R = a.ch2 x

a
.

3. En polaires : ρ = ρ(θ). Base locale −→u ,−→u 1 ; α = (−→ı ,−→T ), V = (−→u ,−→T ) ; donc α = θ+V (π)

dα = dθ + dV .
d
−→
M

dθ
=

(
ρ′

ρ

)

−→u ,−→u 1

d’où ds = ‖d
−→
M

dθ
‖ dθ =

√
ρ2 + (ρ′)2.dθ. tan(V ) =

ρ

ρ′
donne

en différentiant : [1 + tan2(V )]dV = ... d’où dV =
(ρ′)2 − ρ.ρ”
ρ2 + (ρ′)2

dθ, dα =
ρ2 + 2(ρ′)2 − ρρ”

ρ2 + (ρ′)2
dθ

R =
[ρ2 + (ρ′)2]3/2

ρ2 + 2(ρ′)2 − ρρ”=
( 1

ρ2 + [( 1
ρ )′]2)3/2

1
ρ3 [ 1ρ + ( 1

ρ )”]
pôle : R =

ρ′

2
. Et R =

1

[ 1ρ + ( 1
ρ )”].sin3(V )

pour une conique de foyer O, R =
p

sin3(V )
6 pour la spirale log., V = cte ici, R =

ρ

sin(V )
.

[Note. Pour une conique, soit MN la sous-normale, N sur l’axe focal et ν = proj⊥(N,FM) ;

si on sait que νM = p (Ex.) on en déduit une 1ère construction du centre de courbure !]

Cardioïde ρ = a[1+cos(θ)]

0
0

2

d
−→
M

dθ
= 2acos

θ

2

(
−sin(θ/2)
cos(θ/2)

)

−→u ,−→u 1

ds = 2a| cosθ
2
| dθ, choix | θ |6 π

tan(V ) = −cot θ
2
... = tan[

π

2
−(−θ

2
)] ; ici V =

π

2
+
θ

2
+kπ ! dα = dV + dθ =

3

2
dθ. R =

4

3
a. | cos θ

2
|.

4 On a P = Tang ∩Ox = proj⊥(C,Ox); δist(P, TangC∈chainette) = a ! et inv. (éq. diff.) D’où le lieu de F foyer d’une

Parabole roulant sans glisser en I(CIR) sur D = Ox est une chainette. Dém. ∆ =Dir., K = proj(I,∆);P = mil[KF ]

T = ∆ ∩ D (T, I, P alignés) : TF ⊥ FI , donc (TF ) tangente et dist(P, TF ) = dis(P,∆) = dist(F,∆)/2 = cte. Fini.

5 Si N = Normale ∩ Ox, (1 + y′2) =
MN2

y2
⇒ R =

MN3

y3.y”
. Cas y3.y” = α : u = y′,

.
u =

du

dy
, y” = u

.
u (*) donne

(yy′)2 = −α+ qy2. Si q = 0, −α = p2 : parabole, axe Ox ; si q 6= 0, y2 = 2px+ qx2+
α + p2

q
; cas α < 0 : choisir

p2 = −α conique d’axe Ox [Ox axe focal que si q = e2 − 1 > −1] ; et cas α > 0 : q > 0, qy2 − (qx+ p)2 = α.

6 Centre de courbure pour ellipse : soit deux normales en M et M ′ (proche) sécantes en C ; α = M̂FM ′, β = M̂F ′M ′,

θ = M̂CM ′. Avec les réflexions F ′MF, F ′M ′F , on a : θ = (α+ β)/2 ; comme θ/MM ′ ≃ 1/R (diam.-cercle-circonscrit) si

P,Q sont sur Normale-en-M et M̂FP = M̂F ′Q = π/2,
2

MC
=

1

MP
+

1

MQ
: [P,Q,M,C] D.Harm. ! Supposons MF > MF ′,

ϕ = sym(F ′/Normale), U = (FF ′) ∩ Normale, γ ∈ (MF ) avec M̂Uγ= π/2. Comme ϕ sym⊥(F ′), UM,Uγ biss.(UF, Uϕ)

M,γ, F, ϕ DH. Les perp. donnent C,P,Q : C ∈ Cercle(M,M, γ). (Si MT tangente au cercle de dim [Fϕ], γ = proj⊥(T )).

Si parabole : Q = ∞. MC = 2.MP = 2.Mµ, µ ∈ Normale ∩Dir. (triangles égaux). Si hyperbole : θ = (α− β)/2, β avec

le foyer F ′ de l’autre branche. Mais MP,MQ sont de sens contraire, à nouveau [P,Q,M,C] D.H . Si U = Normale∩(F ′F ),

M̂Uγ = π/2 avec γ ∈ (MF ), prendre encore : Normale ∩ perp.en.γ à (MF ) ! ["René Godefroy, élève à Polytechnique".]

Autre solution de Mannheim utilisant le théorème de Pascal et l’hyp. équil. d’Apollonius passant par M,M ′ confondus ...
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39.3.4 Rayon de courbure en un seul point

1. Relation simplifiée. Dans (M,
−→
T ,
−→
N ) La courbe a pour équation y = f(x) avec f(0) = f ′(0) = 0 :

R =
(1 + [y′]2)3/2

y”
⇒ Avec f(0) = f ′(0) = 0 : R =

1

f”(0)
= lim

x→0

x2

2.y
car y ∼

x→0

y”(0)

2
x2 ...

2. C’est le cas des exercices classiques suivants :

– Parabole : x2 = 2p.y donne : R = p au sommet seulement. (*) Autre solution : sachant que

la normale en M coupe Oy en N avec QN = p, où Q = proj⊥(M,Oy), faire tendre M vers O !

– Ellipse aux sommets seulement : x = a.cos(t); y = b.sin(t). [cf. plus loin pour la "développée".]

On fait une translation de repère : X = x; Y = y− b alors lim
t→π/2

X2

2Y
est possible et donne :

| RB |= a2/b (calcul intéressant, t = π/2 + h, 1− cos(h) ∼
h→0

h2/2) ; et donc : | RA |= b2/a !

y

5

x

0
0

0

x

0y

x

y

0

4

0

39.4 Courbe développée

39.4.1 Définition (3ème figure ci-dessus et 39.5.3)

Soit une courbe Γ. Le lieu C du centre de courbure C en M ∈ Γ est dit : courbe développée de Γ.

On a déjà vu que la développée de la tractrice est la chainette : le centre de courbure C est non

seulement sur la normale en M à la tractrice initiale ; mais de plus (ci-après) cette normale

est tangente en C à la développée, ici la chainette ! [c’était d’ailleurs "prévu", vu 39.3.1.]

39.4.2 Propriété générale de la développée [et développante 5.3]

Théorème

La normale en M ∈ Γ (courbe initiale), non seulement contient le centre de courbure

C = M +R−→N ; mais encore est tangente à la développée C, en C ∈ C.
On dit que C est "l’enveloppe" des normales à la courbe initiale Γ.

Démonstration. Avec C = M +R−→N , la tangente est donnée par
d
−→
C

d∗ où ∗ est un paramètre

quelconque (admissible). Prenons donc l’absisse curviligne s sur Γ. Dessin ?

On a
d
−→
M

ds
=
−→
T ;

d
−→
N

ds
=
−−→T
R ; qui donne

d
−→
C

ds
=
dR
ds

−→
N et qui termine si

dR
ds
6= 0.

[Sinon point stationnaire de C ; qui correspond en général, à un extremum de la courbure de Γ].

Remarques. (1) Ainsi dσ = ‖−→dC‖ = ± dR : la longueur de la développée est toujours calculable

car c’est la différence de rayons de courbure de Γ (hors des points stationnaires).

(2) Si Γ env. des Dθ : x.cos(θ) + y.sin(θ) = f(θ), [ρ = f(θ), podaire] alors C enveloppe des D′
θ ;

R = (f + f”)(θ). | ∆σ |=| [f + f”]βα |. Idem ∆s avec une primitive de f ! Ex. développantes :

M = C + λ.−→τ ,
−−→
dM/dσ = cte.−→ν ⇒ dλ/dσ = −1, λ = −σ + σ0 ou σ + λ = σ0 : C̃0C + CM = Cte.

C cercle : f ′(θ) = R, f(θ) = R.θ, F (θ) = R.θ2/2 ; ∆s = R[
θ2

2
]βα. Développante de cercle, par ex. env.

des x.sin(θ)− y.cos(θ) = R.θ ; param. : x = R.cos(θ) +R.θ.sin(θ), y = R.sin(θ)−R.θ.cos(θ).
(3) xc − x =

−y′(x′2 + y′2)

x′y” − x”y′
, yc − y =

x′(x′2 + y′2)

x′y” − x”y′
: calculs rationnels ; intersect. de 2 droites, enveloppe.

(4) Si C est convexe (pas de rebroussement), ayant ‖−−−→C1C2‖ 6 | R2 −R1 |, forcément un cercle
de courbure (ou osculateur) est intérieur à l’autre ! (cf. encore les développantes de cercle.)
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39.4.3 Autre exemple en paramétriques

Développée de la cycloïde

{
x = a[t− sin(t)]
y = a[1− cos(t)] Rayon On a

d
−→
M

dt
= ... = 2a.sin

t

2

(
sin(t/2)
cos(t/2)

)

d’où : ds = 2a | sin t
2
| dt

et tan(α) = cot
t

2
= tan(

π

2
− t

2
) ; donc ici : α =

π

2
− t

2
+ kπ ; dα =

−1

2
dt. R = −4a. | sin t

2
|

Puis C = M +R−→N donne ...

{
xc = a[t+ sin(t)]
yc = a[−1 + cos(t)]

. Un dessin montre que c’est une nouvelle

cycloïde, ce qui se prouve :

{
Xc = xc − aπ = a[θ − sin(θ)]
Yc = yc + 2a = a[1− cos(θ)] où θ = t− π !

100
0

5

y 0

x

0 2

39.4.4 Autre exemple en polaires

Développée de la cardioïde : ρ = a(1+cos(θ)). Rayon de courbure vu. Prenons θ ∈ [−π, π], c’est permis :

−→
T =

d
−→
M

ds
=
d
−→
M/dθ

ds/dθ
=

(
−sin(θ/2)
cos(θ/2)

)

−→u ,−→u 1

;
−→
N =

(
−cos(θ/2)
−sin(θ/2)

)

−→u ,−→u 1

(−→u ,−→N ) = π+
θ

2
; (−→ı ,−→N ) = π+

3.θ

2

−→
N =

(
−cos(3θ/2)
−sin(3θ/2)

)

−→ı ,−→
. [ou ch. Matrices : X = P.X ′ pour changement de bases des vecteurs.]

C = M +R−→N conduit à

(
xc
yc

)
=

(
ρ.cos(θ)
ρ.sin(θ)

)
+

4

3
a.cos

θ

2

(
−cos(3θ/2)
−sin(3θ/2)

)

−→ı ,−→
, ρ = a(1 + cos(θ)).

Alors : sin(a)cos(b) =
1

2
[sin(a+ b) + sin(a− b)]; cos(a)cos(b) =

1

2
[cos(a+ b) + cos(a− b)] donnent





xc =
a

3
[cos(θ)− cos2θ] + 2

3
a ; et

yc =
a

3
[sin(θ)− sin(θ)cos(θ)]

Donc





Xc = xc −
2a

3
=
a

3
[1− cos(θ)].cos(θ)

Yc = yc =
a

3
[1− cos(θ)].sin(θ).

dans (Ω,−→ı ,−→ ) avec

Ω(
2a

3
, 0) ; c’est-à-dire : ρ =

a

3
[1− cos(θ)] est une équation polaire de la développée dans (Ω,−→ı ,−→ ).

On reconnait une nouvelle cardioïde trois fois plus petite, ce qui se prouve : posant ϕ = θ + π,

donc étant dans (Ω,−−→ı ,−−→ ), une équation polaire est : ρ =
a

3
[1 + cos(ϕ)].
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39.5 Des compléments

39.5.1 D’autres longueurs (pas toujours calculables !)

1. Arc de parabole [cartésiennes] x2 = 2py, 0 6 x 6 p.

On écrit x 7−→





x = x

y =
x2

2p

x paramètre ! Alors
d
−→
M

dx
=

(
1
x/p

)
donc : ds =

√
1 +

x2

p2
.dx.

d’où L =

∫ p

0

√
1 +

x2

p2
.dx. Reste le calcul : c’est une intégrale irrationnelle difficile.

Posons x = p.sh(t) ; alors x = p⇐⇒ sh(t) = 1⇐⇒ t = Argsh(1) = ln[1 +
√

1 + 12]

et L =

∫ ln(1+
√

2)

0
ch(t).p.ch(t)dt = p.

∫ ln(1+
√

2)

0

ch(2t) + 1

2
dt = ... = p.

√
2 + ln(1 +

√
2)

2

2. Ellipse

{
x = acos(t)
y = bsin(t)

ds =
√
a2sin2(t) + b2cos2(t)dt. Mais intégrale non calculable exactement !

� Intégrales dites "elliptiques" pour

0

x

0y

et :

0
0

� Idem : la longueur de la lemniscate : ρ = a.
√
cos(2θ) est, elle aussi, inconnue. Enfin :

� Dans R3 : (ds)2 = (dx)2 + (dy)2 + (dz)2 = (dρ)2 + (ρdθ)2 + (dz)2 = (dr)2 + (rdθ)2 + (rsin(θ)dϕ)2.

39.5.2 Cercle osculateur

On cherche le cercle qui approche le mieux la courbe : osculateur. Avec de bonnes hypothèses :

(1) ycourbe = f(0) +
f ′(0)

1!
x+

f”(0)

2!
x2 +

f (3)(0)

3!
x3 + x3ǫ(x) =

f”(0)

2!
x2 +

f (3)(0)

3!
x3 + x3ǫ(x) et

(2) cercle : x2 + (y −R)2 = R2 soit x2 + y2 − 2Ry = 0 ou y = R−
√
R2 − x2 car x = 0 =⇒ y = 0.

Donc ycercle = R−R(1− x2

R2
)1/2 =

x2

2R
+ 0.x3 + cte.x4 + x4.ǫ(x). [f”(0) > 0, R > 0 supposé]

Pour que la différence soit la plus petite possible, un et un seul cercle : R =
1

f”(0)
= lim

x→0

x2

2.ycourbe

Nous voyons que ceci est exactement le rayon de courbure : | R |=| 1/f”(0) | si f ′(0) = 0. De plus :

– En général, le cercle de courbure traverse la courbe en M

car ycourbe − ycercle ∼
x→0

k.x3, k = f (3)(0)/3! 6= 0 : 1er dessin.

0

x

0,5

0

x

– Cas particulier k = 0, par exemple si f paire : souvent ycourbe − ycercle ∼
x→0

l.x4, l 6= 0 :

on dit cercle surosculateur 2ème dessin (donc cas assez particulier).
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39.5.3 La développée comme "enveloppe des normales" (Spé)

1. Le théorème sur la "développée" donne une autre méthode de calcul : enveloppe des normales

– Développée de la Tractrice (en bleue)=la Chainette (en rouge)
– Développée de la Chainette (en bleue)=la Courbe en rouge.
– Développée de la Cycloïde (en bleue)=la Cycloïde translatée (en rouge)

21

5

1

-2
0

2

3

3

-3

4

-1 0

y

4

x

-4

8

4

2

0 2

6

0
-2

-4

8640

4

2

-2

2

0

2. Inversement, on dit que Γ est une "développante" de C. [Ici, on a limité les traits]

– Développée de la Cardioïde (en bleue)=Une Cardioïde semblable (en rouge)
– Développée de l’Ellipse (en bleue)=Une astroïde-dilatée (en rouge)
– Développée de l’Astroïde (en bleue)=Une Astroïde semblable (en rouge)

-0,5

21,50,5

1

-1

0

0,5

0 1

0
0

1

1

0,5

0,5
0

-0,5

0

-1

-0,5-1

3. Dans R3, on a seulement une courbure arithmétique
1

R = ‖d
−→
T

ds
‖.

On parle aussi de "torsion"...

4. Voici enfin 3 autres courbes (de la feuille d’exercices, verso) en compléments !

Respectivement : La Deltoïde. La Néphroïde. Le Bicorne.

0
0 0

0

1

0
0
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M+ Exercices: Longueur/courbure des courbes planes PTSI

1. Longueur de courbes

(a) Hélice circulaire : t ∈ [0,
2.π

ω
] 7→ F (t) =





x = r.cos(ω.t)
y = r.sin(ω.t)

z = h.t.
(b) Astroïde

{
x = a.cos3(t)

y = a.sin3(t)

(c) Arche de cycloïde

{
x = a[t− sin(t)]
y = a[1− cos(t)] (d) (*) Arc de parabole [cartésiennes] x2 = 2py, x ∈ [0, p]

(e) Cardioïde ρ = a[1 + cos(θ)] (f) Spirale logarithmique ρ = aem.θ, θ ∈]−∞, θ0] ; m > 0.
[On trouve s(θ) = k.ρ(θ); k > 1. (*) Réciproque ?]

(g) (*) Deltoïde

{
x = a.[2.cos(t) + cos(2t)]
y = a.[2.sin(t)− sin(2t)]

(h) (*) Néphroïde

{
x = a.[3.cos(t) − cos(3t)]
y = a.[3.sin(t)− sin(3t)]

(i) (*) Bicorne





x = a.cos(t)

y =
a.sin2(t)

2 + sin(t)

(j) (*)
x2

4a2
+
y2

a2
= 1 et ρ = a.cos(2θ) ont même longueur.

2. Trouver les courbes

(a) dont la courbure est toujours nulle.

(b) dont la courbure est constante non nulle [i.e. R = R0].

3. Rappel : si y = f(x) avec f(0) = f ′(0) = 0 R =
1

f”(0)
= lim

x→0

x2

2y
(au signe près).

(a) Rayon de courbure de la parabole x2 = 2py au sommet ?

(b) Cas de l’ellipse x = a.cos(t), y = b.sin(t) aux sommets A et B ?
Equation de D ⊥ (A,B) passant par I(a, b) ? Vérifier que CA, CB sont sur D !

(c) (*) En général, quelle est la position du cercle de courbure/ une courbe ? (cf. cours et dessin)

4. Rayon de courbure en tout point et lieu du centre de courbure : développée

(a) Tractrice

{
x = a.[u− th(u)]
y = a/ch(u)

cf. dessin

(b) Ellipse

{
x = a.cos(t)
y = b.sin(t)

cf. dessin

(c) Cycloïde (équation ci-dessus) cf. dessin

(d) Spirale logarithmique (idem ; un changement de bases à faire pour le vecteur
−→
T !)

(e) (*) Cardioïde (idem) cf. dessin

(f) (*) Chainette y = a.ch(x/a) cf. dessin

(g) (*) Parabole x2 = 2py. Si U = proj⊥(C, (FM)) voir que F est le milieu de [MU ]

(h) (*) Hyperbole équilatère Γ : xy = a2. Voir que C = M + 1/2.
−−→
NM où N = Normale ∩ Γ.

(i) (*) Astroïde. Trouver xc = a.[c3 + 3c.s2], yc = a.[s3 + 3c2.s] où c = cos(t), s = sin(t)
[c’est surtout pour voir cette notation ! et] nouvelle astroide.

5. (*) Pour la cycloïde, avec une arche centrée sur Oy, vérifier que : R2 + s2 = 16a2.

[En fait, on peut chercher toutes les courbes vérifiant cette propriété].



Chapitre 40

Continuité des fonctions de plusieurs
variables

On a vu les fonctions de R dans R. Puis de R dans Rn : t 7−→ −−→OM(t).

Maintenant voyons celles de Rp dans Rn; p = 2, 3 : c’est plus difficile.

40.1 Exemples géométriques

40.1.1 Cas f : R2 → R

Retenir z = f(x, y) est l’équation en cartésiennes, d’une surface de R3, en général.

Des exemples :

– z = f(x, y) = 1− 2x+ 3y : équation d’un plan affine (non vertical).

– z = f(x, y) =
√

1− x2 − y2 : 1/2 sphère de centre O.

– 2p.z = x2 + y2 :
Surface de révolution autour de Oz (faire z = cte) ; paraboloïde de révolution autour de Oz.

– z.tan(α) =
√
x2 + y2, 0 < α < π/2 :

Surface de révolution autour de Oz (faire z = cte) ; puis 1/2 cône de révolution (sommet O, axe Oz).

– a.z = x2, a > 0 ; y n’intervenant pas : cylindre parabolique d’axe Oy (gouttière). Dessins ? 1

40.1.2 Cas f : R2 → R2

– M

(
x
y

)
7→M ′

(
x′

y′

)
=

(
a b
c d

)(
x
y

)
+

(
α
β

)
est affine de R2 dans R2 ; f bijective ⇔ ad− bc 6= 0.

– M

(
x
y

)
7−→M ′

(
x′

y′

)
=

(
x2

sin(xy)

)
est non affine mais définie sur R2.

Exercices

1) Domaine de définition de f : M

(
x
y

)
7→M ′

(
x′

y′

)
=




1

x− y
ln(xy − 1)


 : dessin dans le plan O,x, y ?

2) Revoir l’inversion géométrique de R2 : M

(
x
y

)
6=
(

0
0

)
7→M ′

(
x′

y′

)
= k.




x

x2 + y2
y

x2 + y2


 [f−1 = f ].

1 Sur les deux derniers cas

1) Si : ∀λ, (x, y, z) ∈ S =⇒ (λ.x, λ.y, λ.z) ∈ S, on dit cône de sommet O.

2) De même si : ∀y, (x, 0, z) ∈ S =⇒ (x, y, z) ∈ S, on dit cylindre d’axe Oy.

267
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40.1.3 Cas f : R2 → R3 (surface en paramétriques)

–

(
u
v

)
7→



x = 1 + 7u+ v
y = 3u− v

z = 3− u+ 2v


 : M = M0+u.

−→a+v.
−→
b (−→a ,−→b ) libres :

(
plan affine dét(

−−−→
M0M,−→a ,−→b ) = 0

ou bien : (−→a ∧ −→b ) �
−−−→
M0M = 0.

)

– Inversement, partant d’une équation cartésienne, trouvons une représentation paramétrique :

Partons de l’ellipsoïde
x2

a2
+
y2

b2
+
z2

c2
= 1. Posons

z2

c2
= cos2(v) et

x2

a2
+
y2

b2
= sin2(v).

Alors
x2

a2.sin2(v)
+

y2

b2.sin2(v)
= 1 ... On peut donc le paramétrer :

(
u
v

)
7−→



x = a.cos(u).sin(v)
y = b.sin(u).sin(v)

z = c.cos(v)


.

40.1.4 Cas f : R3 → R : fonction numérique de 3 variables

Soit f(x, y, z) = x2 + y2 + z2 − 2ax− 2by − 2cz ; on dit que f(x, y, z) = k est une ligne de niveau de f .

Les "lignes de niveau" (ici Surfaces 2) sont des sphères sous réserve que Rayon2 = k+a2 + b2 + c2 ∈ R+.

40.2 Exemples calculatoires

40.2.1 Produit scalaire

f =<,> : −→u (x, y, z),−→v (x′, y′, z′) ∈ R6 7−→ −→u .−→v = xx′ + yy′ + zz′ ∈ R est polynômiale.

Par composition avec
√

, on obtient g : −→u ∈ R3 7−→ ‖−→u ‖ =
√−→u .−→u ∈ R+.

40.2.2 Produit mixte

Dét : −→u (x, y, z),−→v (x′, y′, z′),−→w (x”, y”, z”) ∈ R9 7−→ Dét(−→u ,−→v ,−→w ) ∈ R est polynômiale.

40.2.3 Produit vectoriel

Soit f : −→u (x, y, z),−→v (x′, y′, z′) ∈ R6 7−→ f(−→u ,−→v ) = −→u ∧ −→v =



f1(
−→u ,−→v ) = yz′ − zy′

f2(
−→u ,−→v ) = zx′ − xz′

f3(
−→u ,−→v ) = xy′ − yx′


 ∈ R3.

On dit que f1, f2, f3 sont les applications coordonnées de f . Chacune ici polynômiale de R6 dans R.

� Pour la continuïté, on peut étudier les composantes (ou applications coordonnées) l’une après l’autre.

� Ce qui fait qu’on peut (pour la continuïté) se limiter aux fonctions de Rp dans R.

40.2.4 Applications partielles

Définition

Soit A(a1, ..., ap) ∈ Df . Fixant p− 1 variables, on obtient les p applications partielles en A :

ϕ1 : x1 7→ f(x1, a2, ..., ap); ... ; ϕp : xp 7→ f(a1, a2, ..., xp) chacune fonction d’une variable.
A ne pas confondre avec les applications coordonnées (du numéro précédent)

Exemple

Soit la fraction rationnelle f(x, y) =
x.y

x2 + y2
si(x, y) 6= (0, 0); f(0, 0) = 0. Applications partielles en O ?

• Hors de O, fraction rationnelle et le dénominateur ne s’annulle pas : aucun problème (cf. §III).

• En O(0, 0), les applications partielles sont ϕ1 : x 7−→ 0 même si x = 0 ; et ϕ2 : y 7−→ 0 idem.

2 Remarque. Les surfaces du second degré sont appelées quadriques. Comme les coniques, elles sont toutes connues.
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40.3 Continuité des fonctions de plusieurs variables

40.3.1 Définitions

1. Normes Sur Rp, pour −→u = (x1, ..., xp), on a 3 normes usuelles [définition déjà vue]

� ‖−→u ‖2 =
√
x2

1 + ...+ x2
p (norme euclidienne) ;

� ‖−→u ‖1 =| x1 | +...+ | xp | et :
� ‖−→u ‖∞ = max[| x1 |, ..., | xp |].
La norme 1, par exemple, ne provient pas d’un produit scalaire car ne vérifie pas le théorème du

parallélogramme : −→ı (1, 0); −→ (0, 1) ∈ R2 et ‖−→ı +−→ ‖21+‖−→ı −−→ ‖21 = 4+4 6= 2.(‖−→ı ‖2+‖−→ ‖2) = 4.
Exercice

Dessiner les 3 "boules unités" fermées {M : ‖OM‖ 6 1} dans le cas de R2.

2. Limite finie. Continuïté
• V est un voisinage de M0 s’il contient une boule de centre M0 de rayon > 0 (norme quelconque) !

• Soit f définie dans un voisinage de M0. On dit que f(M) tend vers
−→
l ∈ Rn quand M tend vers

M0 ∈ Rp si ‖f(M)−−→l ‖ tend vers 0 quand : ‖−−−→M0M‖ tend vers 0 (normes quelconques).
• On dit que f est C0 en M0 si : f(M) −→

M→M0

f(M0).

Exercice (norme quelconque ici.) Les "projections" (ou plutôt les "formes coordonnées")

pi :



y1

...
yn


 ∈ Rn 7→ yi ∈ R, sont C0. [Si Y0 =




(y1)0
...

(yn)0


 on a : | yi− (yi)0 | 6 ‖Y −Y0‖.]

40.3.2 Théorèmes généraux

1. Enoncés
� La somme de fonctions C0 est C0.
� Si ϕ : Rp → R est C0 et f : C0 de Rp dans Rn, alors : M 7−→ ϕ(M).f(M) est C0.
� Si f, g C0 de Rp dans R, alors M 7−→ f(M)/g(M) est C0, là où le dénominateur non nul.
� Ajoutons la composition. (f : Rp 7−→ Rn et g : Rn 7−→ Rm C0) =⇒ gof : C0.

2. Conséquences

• Les fonctions polynômiales Rp → R sont C0 partout.
• Les fonctions rationnelles Rp → R sont C0 sur leur domaine de définition.
• Soit f : Rp → Rn de composantes (ou coordonnées) f1, ..., fn.

Avec fi(M) = piof(M) et f(M) = f1(M)




1
...
0


+ ...+ fn(M)




0
...
1


, on déduit fC0 ⇔ ∀i, fiC0.

40.3.3 Exercice classique (et modèle)

Continuïté de f(x, y) =
x.y

x2 + y2
si (x, y) 6= (0, 0); f(0, 0) = 0 ?

• Hors de O(0, 0) f est continue comme fraction rationnelle avec dénominateur non nul.

• En O, les théorèmes généraux ne s’appliquent pas ;

on voit que les applications partielles, d’une variable, sont continues, mais

f n’est pas continue en O : s’approcher de O sur la demi-droite y = x > 0 : f(x, x) =
1

2
6−→
x→0

0.

40.3.4 Difficulté

1. Attention
fC0 en A =⇒ chacune des p applications partielles ϕ1, ..., ϕp est continue : ϕ1 en a1

fonction d’une variable, ... , ϕp en ap. Mais réciproque fausse : vu sur l’ex. traité.

Démonstration
=⇒ Car une application partielle est une manière particulière de tendre vers A(a1, ..., ap).
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2. Exercices en compléments Peut-on prolonger par continuïté :

1) f(x, y) =
x3 + y3

x2 + y2
2) g(x, y) =

ex − ey
x− y (*) 3) h(x, y) =

y.x3

(y − x2)2 + x6
? (*)

Réponses :

1) f est une fraction rationnelle définie continue sur R2\O(0, 0). En O :
� La 1ère application partielle est x 6= 0 7→ ϕ1(x) = f(x, 0) = x ; donc

le seul prolongement éventuellement continue ne peut être que ϕ1(0) = f̃(0, 0) = 0.

� Inversement avec f̃(0, 0) = 0 : f(x, y)−f̃(0, 0) =
ρ3[cos3(θ) + sin3(θ)]

ρ2
= ρ.[bornée] −→

(x,y)→(0,0)
0. f̃C0(R2).

2) g est définie continue (par composition) sur le domaine D = R2\∆(y = x). En M0(x0, x0) :

� La 1ère application partielle (à titre indicatif) est x 6= x0 7→ ϕ1(x) =
ex − ex0

x− x0
donc la seule manière

que ϕ1 (et donc g) soit continue oblige de poser g̃(x0, x0) = ex0 .
� Inversement si g̃(x0, x0) = ex0 , par le théorème des accroissements finis, ∃c ∈ [x, y] : ey−ex = (y−x)ec ;

donc ec −→
(x,y)→(x0,x0)

ex0 . D’où g̃ (g prolongée) est ainsi continue sur R2. [A bien voir]

3) h est une fraction rationnelle définie continue là où le dénominateur est non nul : sur D = R2\O(0, 0).
Tout le problème est en O(0, 0) :

� La 1ère application partielle est x 6= 0 7→ ϕ1(x) = 0 ; donc ϕ1 C
0 en x = 0⇔ ϕ1(0) = h(0, 0) = 0.

� La 2ème application partielle est y 6= 0 7→ ϕ2(y) = 0 ; donc ϕ2 C
0 en y = 0⇔ ϕ2(0) = h(0, 0) = 0.

� Tendons vers O selon un trajet rectiligne quelconque, non vertical : y = a.x, a 6= 0 fixé (sinon, vus).

Alors h(x, ax) =
a.x4

x2(a− x)2 + x6
∼
x→0

a.x4

a2.x2
−→
x→0

0. Peut-on donc dire que poser h̃(0, 0) = 0 rend h C0 ?

Non ! ce n’est pas vrai : Si x 6= 0, h(x, x2) =
x5

x6
−→
x→0+

+∞ ! (arc de parabole y = x2.)

En particulier retenir que la continuïté des applications partielles n’entraine pas celle de la fonction.

40.3.5 Propriétés des fonctions C0

1. Généralisations
• Le théorème en une variable "fC0 sur un segment est bornée et atteind ses bornes" se généralise :

f continue sur un fermé-borné de R2 ou R3 à valeurs dans R est bornée et atteind ses bornes".

Mais 1) qu’est-ce un fermé ? 2) un borné ?
Pour 2) c’est naturel : une ellipse partage R2 en 2 parties ; l’une bornée, l’autre non.
Pour 1) disons (intuitivement) qu’une partie est fermée si elle contient sa "frontière" (non définie !).
Exemples dans R2 : l’intérieur d’un triangle avec son contour ; un disque avec le contour ; une demi-
droite fermée ; (une droite aussi est fermée). Dans R3 : un plan est fermé. R2\O non fermé !

• Le théorème des valeurs intermédiaires (à bien revoir pour f : R→ R) se généralise aussi.

2. Exercice corrigé Pour M ∈Triangle-fermé, minimum de MA2 +MB2 +MC2. Dessin ?

Solution f(M) = MA2 + MB2 + MC2 est continue (si M(x, y), elle est polynomiale) sur un
"fermé-borné", donc posssède un minimum atteint. Mais attention : le minimum peut être atteint
en plusieurs points ! (Penser aux fonctions d’une variable). Ici, on a une solution aisée :

La fonction scalaire de Leibniz donne : f(M) = 3.MG2 +GA2 +GB2 +GC2 où G isobarycentre.
Donc minimum atteint uniquement en G et valeur connue ; de plus, cette solution montre qu’on a
un minimum en G même si M ∈ R2 (le plan) ! Finir : ... GA2 +GB2 +GC2 = (a2 + b2 + c2)/3.
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3. Complément Autre Exercice corrigé (Transition avec le chapitre suivant) (*)

Pour M ∈Triangle-fermé, soit x = δ(M,BC); y = δ(M,CA); z = δ(M,AB), maximum de x.y.z ?

Solution en plusieurs étapes

1) Déjà,M est sur un plan ; 2 degrés de liberté ; il y a un lien entre x, y et z. Avec AMB,BMC,CMA
et a = BC,..., on a a.x+ b.y + c.z = 2S = Cte. Car c.z = 2.Aire(AMB) !

2) Ensuite f(x, y) = x.y.
2S − a.x− b.y

c
=

1

c
.[x.y.(2S − a.x − b.y)] est continue sur le domaine :

0 6 x; 0 6 y; 2S − ax− by > 0 qui est un fermé-borné. Donc maximum (et minimum) atteint.

Dessin ? (En repère orthonormé Oxy, on a le triangle rectangle : O(0, 0) P (0,
2S

a
) Q(0,

2S

b
).)

3) Le maximum peut-il être atteint sur la frontière ?
Non car alors x = 0 ou y = 0 ou 2S = ax+ by ⇔ z = 0 : c’est le minimum du produit.
Ainsi le maximum (absolu) est atteint en un point "intérieur" (on dit maximum local) !

4) Pensons aux fonctions d’une variable : un maximum local, si f dérivable, se décèle par f ′(x0) = 0.
On fait pareil ici (c’est là qu’on anticipe !) : au maximum local, vu les dérivées partielles, forcément





∂f

∂x
(x0, y0) = 0

∂f

∂y
(x0, y0) = 0

Ce qui donne, comme y 6= 0, x 6= 0 :

{
2S − ax− by − ax = 0
2S − ax− by − by = 0

Soit encore, en faisant jouer des rôles symétrique à x, y, z :

ax = by = 2S − ax− by = c.z =
ax+ by + cz

3
=

2S

3
= cte

x, y, z connu : un seul point candidat ; comme on sait que le maximum est atteint au moins une fois
(sans calcul, par notre continuïté sur un fermé-borné), c’est le bon ! Maximum en ce point.

5) Reste à savoir si on connait ce point géométriquement ! Oui, une question de barycentre :

• Admettons un moment que M (quelconque, intérieur au triangle) est barycentre de(
A B C

aireMBC > 0 aireMCA > 0 aireMAB > 0

)
. Comme ax = by = cz, on déduit que

Le maximum est atteint ici en un seul point : l’ isobarycentre M = G ; et il vaut
8.S3

27.a.b.c
.

• Montrons le résultat utilisé pour finir.

Déjà
−−→
MA, ...,

−−→
MC liés (3 vecteurs en dim 2) ; donc ∃(α, β, γ) 6= (0, 0, 0) : α

−−→
MA+β

−−→
MB+γ

−−→
MC =

−→
0 ;

puis A,B,C non alignés =⇒ α+β+ γ 6= 0 (laissé). Alors, en faisant le produit vectoriel avec
−−→
MA

et ayant ici α;β; γ > 0, on termine sachant que ‖−−→MC ∧ −−→MA‖ = 2.Aire(TriangleMCA) :

β

‖−−→MC ∧ −−→MA‖
=

γ

‖−−→MB ∧ −−→MA‖
= ...

α

‖−−→MC ∧ −−→MB‖
!

(les coefficients barycentriques étant définis à une constante multiplicative non nulle près).
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M+ Exercices: Continuïté des fonctions de plusieurs variables PTSI

1. Domaine de définition de

(a) f(x, y) =

√
x2 + y2

1− (x− 2)2 − y2
(point isolé en O ! )

(b) f(x, y) = ln
y

x2 + y2 − 1
(f C0 par composition sur le domaine)

(c) (*) f(x, y) = Arcsin
2x+ y

x− y ? (idem).

2. Peut-on prolonger par continuïté ?

fa(x, y) =
| x+ y |3
x2 + y2

en O(0, 0) ? g(x, y) =
x2.y2

x2 + y4
(Noter : 2 | x | y2

6 x2 + y4)

3. Interprétation de f : R2 −→ R2

(a) M

(
x
y

)
7→M ′

(
x′

y′

)
=

1√
2
.

(
x− y
x+ y

)
+

(
α
β

)
(isométrie affine : laquelle ?)

(b) M

(
x
y

)
7→M ′

(
x′ = x

y′ = 2y + 3

)
(application affine à décrire)

(c) M(z) 7→M ′ (z′ = a.z + b), a = r.ei.α 6= 0, b = α+ i.β ? (connue)

(d) (*) M

(
x
y

)
7→M ′

(
x′

y′

)
=

k

x2 + y2
.

(
x
y

)
: domaine ? fof ? (inversion géométrique z′ =

k

z
)

4. Interprétation géométrique de f : R2 −→ R

(a) Soit le paraboloïde de révolution 2pz = x2 + y2 ; et l’affinité :



x
y
z


 7→



x′ = x
y′ = 2y
z′ = z


 .

Equation du paraboloïde elliptique image (PE) ? Dessin ?

(b) Etudier diverses sections planes du paraboloïde hyperbolique (PH) 2pz = x2 − y2. Dessin ?

Que dire des familles de droites Da
{

x− y = a
2pz = a(x+ y)

et D′
b

{
x+ y = b

2pz = b(x− y) pour (PH) ?

(c) (*) En sens inverse : équation du cône de révolution d’axe Oz, de demi-angle au sommet π/6 ?

5. (*) Dessins et paramétrages.

(a) Reconnaitre la courbe
x2

a2
− z

2

c2
= 1 dans Oxz. Puis la surface (de révolution)

x2

a2
+
y2

a2
− z

2

c2
= 1.

Image par l’affinité M



x
y
z


 7→M ′




x′ = x
y′ = b/a.y
z′ = z


 (H1 comme hyperboloïde à 1 nappe) ?

Justifier que x = a.cos(u).ch(v), y = b.sin(u).ch(v), z = c.sh(v) est un paramétrage possible.

(b) Reconnaitre −x
2

a2
+
z2

c2
= 1 dans Oxz. Puis la surface (de révolution) −x

2

a2
− y2

a2
+
z2

c2
= 1.

Image par l’affinité précédente (H2 : hyperboloïde à 2 nappes) ? Dessins ? Paramétrage ?

6. (*) Le tore.
Décrire et dessiner la surface (de révolution/Oz) d’équation (x2 + y2 + z2)2 − 4a2(x2 + y2) = 0.



Chapitre 41

Dérivation des fonctions de plusieurs
variables

41.1 Dérivées partielles (d.p.)

41.1.1 En un point

On appelle d.p. de f en A(a1, ..., ap), par rapport à la 1ère variable, la dérivée de la 1ère application

partielle en a1 [ϕ′
1(a1)]. On note f ′x1

(A) ou
∂f

∂x1
(A). Idem pour les p− 1 autres d.p. en A.

Exemple

Soit (x, y) 7−→ f(x, y) = sin(ex.y) + g(x.y2) + 2.Arcsin(x), g étant forcément d’une variable [sinon
g(−,−)], et g supposée dérivable. Calcul de : f ′x(0, 0) ; f ′y(0, 0) ; f ′x(x0, y0) ; f ′x(y, x).
Réponse
• En O(0, 0)
ϕ1 : x 7−→ sin(0) + g(0) + 2.Arcsin(x) ; donc f ′x(0, 0) = 2.

Et de même ϕ2 : y 7−→ sin(y) + g(0) + 0 ; donc f ′y(0, 0) = 1.

• En (x0, y0)
Pour f ′x(x0, y0) y bloqué en y0 ; x varie, on dérive, puis x = x0

f ′x(x0, y0) = ex0y0.cos(e
x0y0) + y2

0.g
′(x0.y

2
0) +

2√
1− x2

0

g fonction d’une variable, g′x serait incorrect

• Donc : f ′x(y, x) = ey.x.cos(ey.x) + ....

Ainsi, à bien voir

• Dans la notation abusive f ′x(x, y) les deux ”x" n’ont pas vraiment de rapport ! Jamais on ne verra
f ′0(0, y) (absurde) ! L’énoncé doit fixer les notations dès le début du problème.

• On ferait mieux de noter f ′1(x, y), le 1 désignant la première variable qui peut être parfois u, d’ailleurs.
(Exemple (u, v) 7−→ f(u, v) !) Maple note, quant à lui : D[1](f)(x, y).

41.1.2 Sur un domaine

On fait de même en chaque point A où c’est possible.
On obtient p dérivées partielles ; et chacune est fonction de p variables !

Exemple Dans le passage (ρ, θ) 7→ (x, y) calculer les matrices jacobiennes



∂x

∂ρ

∂x

∂θ
∂y

∂ρ

∂y

∂θ


 ,



∂ρ

∂x

∂ρ

∂y
∂θ

∂x

∂θ

∂y




Solution [Jacobienne vient de "Jacobi"]

1) On a x = ρ.cos(θ), y = ρ.sin(θ) d’où J =

(
cos(θ) −ρ.sin(θ)
sin(θ) ρ.cos(θ)

)
de déterminant (noté)

D(x, y)

D(ρ, θ)
= ρ.

2) Pour la deuxième matrice :

273
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Attention
∂ρ

∂x
6= 1

∂x
∂ρ

, comme on va le voir ! (Quand on dérive/x, y est fixé, mais pas θ).

On part de ρ2 = x2 + y2 ; tan(θ) = y/x. alors 2.ρ.
∂ρ

∂x
= 2x... et [1 + tan2(θ)].

∂θ

∂x
=
−y
x2
...

D’où la matrice : K =




cos(θ) sin(θ)

−sin(θ)

ρ

cos(θ)

ρ


 : K = J−1. dét(K) =

D(ρ, θ)

D(x, y)
= 1/dét(J) (dét. jacobien).

41.1.3 Fonctions C1 (*)

1. Attention ! En une variable, on sait que : f dérivable en x0 =⇒ f continue en x0.

Faux en 2 variables : exemple vu de fonction ayant des d.p. en M0 mais non continue

Soit f(x, y) =
x.y

x2 + y2
, f(0, 0) = 0. f non C0 en O déjà vu : s’approcher sur x = y.

Mais les applications partielles en O, vues aussi, sont ϕ1(x) = 0, ∀x : dérivable en x = 0, ϕ′
1(0) = 0,

d’où f ′x(0, 0) existe et vaut f ′x(0, 0) = 0. De même ϕ2(y) = 0, ∀y ; donc f ′y(0, 0) = 0.

2. Théorème
Si f admet des d.p. définies sur un voisinage de M0 et continues en M0, comme

fonctions de plusieurs variables, alors f est continue en M0.

On dit : fC1(admet des d.p. définies sur un voisinage de M0 et continues) ⇒ fC0.

� Ceci est un résultat théorique.
En effet, si on l’applique à f : (x, y) 7−→ f(x, y), il faudrait voir la continuité de (x, y) 7−→ f ′x(x, y)
et (x, y) 7−→ f ′y(x, y) d’une part ; et d’autre part, c’est une condition suffisante !
� Démonstration
Cas de fonction de 2 variables à valeur dans R (Si dans Rn : chaque composante). On écrit

f(x, y)− f(x0, y0) = [f(x, y)− f(x0, y)] + [f(x0, y)− f(x0, y0)]!

L’égalité des accroissements finis en une variable pour fonction à valeurs dans R donne

∃x1 ∈ [x0, x]; y1 ∈ [y0, y] : f(x, y)− f(x0, y0) = (x− x0).f
′
x(x1, y) + (y − y0).f

′
y(x0, y1)

Comme f ′x(x1, y) −→
(x,y)→(x0,y0)

f ′x(x0, y0) et analogue l’autre, la différence tend donc vers 0. Fini.

41.1.4 Extremum local d’une fonction numérique ; c’est-à-dire f : R2 −→ R

1. Théorème

Si f numérique définie au voisinage de M0, présente un extremum local en M0 :

∃r > 0 /{M : M0M < r} = B ⊂ Domaine et f/B > f(M0), pour minimum local,

alors on a l’implication : f possède des d.p. en M0 ⇒ Les d.p. sont nulles en M0.

Démonstration
Elle est immédiate en ne faisant varier qu’une variable après l’autre. Mais réciproque fausse

déjà en 1 variable : f(x) = x3 C∞(R) vérifie f ′(0) = 0, sans extremum local.

2. Exemple. Dans R3, soit I(3, 0,−1) et le paraboloïde de révolution (P.R.) z = x2 + y2. Dessin ?

Distance de I à M ∈(PR) : minimum de : IM2 = (x− 3)2 + y2 + [x2 + y2 + 1]2 = f(x, y) ∈ R+ ?
• Le domaine en (x, y) est ici R2, non fermé−borné : bien que f soit C0, l’existence du minimum
n’est donc pas acquise mais supposée ici vu le problème géométrique. Au minimum absolu (atteint
en un ou plusieurs points !) on a un minimum local de fC∞ car polynômiale. En un tel point M0 :

{
0 = f ′x(x0, y0) = 2(x0 − 3) + 2.(x2

0 + y2
0 + 1).2.x0

0 = f ′y(x0, y0) = 2y0 + 2(x2
0 + y2

0 + 1).2.y0 .

• On a un seul point candidat : y0 = 0; 2x3
0 + 3x0 − 3 = 0 (x0 ≃ 0, 7; z0 ≃ 0, 5) : donc c’est le bon !

Remarque : si g(x, y) = z− x2 − y2, vérifier :
−−→
grad(g)(M0) colinéaire à

−−→
IM0, comme vu plus loin.

(Cette condition donne la même équation de degré 3 ...)
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41.2 Calcul de d.p. de fonctions composées (*)

41.2.1 Cas de Rp → R→ R

Soit h(x1, ..., xp) = g[f(x1, ..., xp)] ; pour calculer
∂h

∂x1
(x1, ..., xp), on a une seule variable x1.

C’est donc connu :
∂h

∂x1
(x1, ..., xp) = g′[f(x1, .., xp)].

∂f

∂x1
(x1, ..., xp).

41.2.2 Cas de Rp → Rn → R

Ici f : (x1, ..., xp) 7−→





f1(x1, ..., xp)
...

fn(x1, ..., xp)
et : h(x1, ..., xp) = g[f1(x1, ..., xp), f2(x1, ..., xp), ..., fn(x1, ..., xp)].

Par choix, les d.p. seront notées :
∂f

∂x1
, ...,

∂f

∂xp
et

∂g

∂y1
, ...,

∂g

∂yn
.

Théorème [règle de la chaine]

On a f , g, C1 =⇒ gofC1 et
∂h

∂x1
(M) =

∂g

∂y1
[f1(M), ..., fn(M)].

∂f1

∂x1
(M) + ...+

∂g

∂yn
[..., ..., ...].

∂fn
∂x1

(M)

C’est-à-dire : On passe successivement en revue les n casiers de g en faisant des +. En exercice (*)

Exemples

1) Soit (x, y) 7−→ f(x, y) de classe C1 et F (ρ, θ) = f [ρ.cos(θ), ρ.sin(θ)]. Calculer
∂F

∂ρ
(ρ, θ).

[Notre "f" est la fonction "g" de ci-dessus]. Vérifier avec f(x, y) = x2 + y2. (Donc f ′x(x, y) = 2.x...)

Solution : On note les d.p.
∂f

∂x
,
∂f

∂y
,
∂F

∂ρ
,
∂F

∂θ
; toute autre notation exclue ; [donc

∂f

∂(ρ.cos(θ))
insensé !]

On a, par théorème,
∂F

∂ρ
(ρ, θ) =

∂f

∂x
[ρ.cos(θ), ρ.sin(θ)].

∂(ρ.cos(θ))

∂ρ
+
∂f

∂y
[ρ.cos(θ), ρ.sin(θ)].

∂(ρ.sin(θ))

∂ρ

Ou encore :
∂F

∂ρ
(ρ, θ) =

∂f

∂x
[ρ.cos(θ), ρ.sin(θ)].cos(θ) +

∂f

∂y
[ρ.cos(θ), ρ.sin(θ)].sin(θ).

Vérification : Calcul direct F (ρ, θ) = ρ2 =⇒ ∂F

∂ρ
(ρ, θ) = 2.ρ.

Par notre formule
∂F

∂ρ
(ρ, θ) = 2.ρ.cos(θ).cos(θ) + 2.ρ.sin(θ).sin(θ) = 2.ρ. Idem.

2) Autre exemple (*) 1

41.2.3 Cas de Rp → Rn → Rm

Le cas général gof(M) = h(M) =





h1(M)
...

hm(M)
n’est heureusement pas plus compliqué :

Appliquer ce qui précède à chaque hk.

1 Complément. Trouver f , C0 R→ R : f(x+ y) = f(x) + f(y). [déjà vue au ch. Continuïté].

Solution. Montrons déjà que f est dérivable ! Soit α < β. Une fonction C0 est intégrable :∫ β

α

f(x+ y)dy =

∫ β

α

f(x)dy +

∫ β

α

f(y)dy = (β − α)f(x) + cte. Mais x+ y = t ⇒ g(x) =

∫ β

α

f(x+ y)dy =

∫ x+β

x+α

f(t)dt

dérivable ; de dérivée g′(x) = f(x+ β) − f(x+ α) ! Donc (β − α).f et f dérivables.

Alors, en dérivant/x : f ′(x+ y) = f ′(x) ; d’où f ′ = Cte ; donc f(x) = ax+ b. Réciproque : f(x) = a.x.
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41.3 Différentielle (*) (relire si trois variables)

41.3.1 Objectif

On a vu f C1 ⇒ f C0. On va intercaler f C1 ⇒
{

f différentiable
ou admet un Dl1

⇒
{

1) f C0 et
2) f admet des d.p.

Rappels

• Pour les fonction d’une variable
f C1 en x0 ⇒ f admet un D.l. d’ordre 1 [ou différentiable] ⇔ f dérivable [f ′(x0) existe] =⇒ f C0.

• Mais pour les fonctions de plusieurs variables
Existence des d.p. en M0 6=⇒ continuïté en M0 ! Donc : Existence des d.p. pour f 6=⇒ f différentiable.

41.3.2 Développement limité d’ordre 1 en M0. Théorème fondamental

Soit f : R2 → Rn. Alors [f C1 en M0(x0, y0)] =⇒ ∃ǫ : R2 → Rn avec ǫ(M) −→
M→M0

−→
0 tel que

f(M) = f(x, y) = f(x0, y0) + [(x− x0).f
′
x(x0, y0) + (y − y0)f

′
y(x0, y0)] + ‖−−−→M0M‖.ǫ(x, y). (∗)

On dit que : [f C1 en M0] =⇒ [f possède un Dl1 en M0 ou que f est différentiable en M0.]

Démonstration en exercice.

Même début que pour f C1 ⇒ f C0, appliqué à chaque composante ... Note 2

41.3.3 Différentielle en M0 (termes de degré 1)

On reprend f fonction de deux variables ; on pose
−−−→
M0M = −→u =

(
h
k

)
=

(
x− x0

y − y0

)
=

(
∆x
∆y

)
, au choix.

Alors df(M0) définie par −→u =

(
h
k

)
7−→ h.f ′x(x0, y0) + k.f ′y(x0, y0) = df(M0)(

−→u ) ∈ Rn est linéaire

appelée différentielle de f en M0 (ou A.L. tangente en M0) ; sa matrice dite "matrice jacobienne".

(∗) devient f(M) = f(M0 +−→u ) = f(M0) + df(M0)(
−→u ) + ‖−→u ‖.ǫ(−→u ), avec ǫ(−→u )→ −→0 ,−→u → −→0 . (∗∗)

On écrit : df(M0)(∆x,∆y) = f ′x(M0).∆x+ f ′y(M0).∆y ou, sans que dx, dy soient forcément "petits" :

df(M0)(dx, dy) = f ′x(M0).dx+ f ′y(M0).dy

41.3.4 Deux exemples importants

1. Cas f affine. Préciser df(M0) si f : M

(
x
y

)
7−→M ′

(
x′ = x− y + 2
y′ = x+ y + 3

)
[sim. aff. dir. à centre].

Réponse : f ′x(x, y) =

(
∂x′/∂x
∂y′/∂x

)
(x, y) =

(
1
1

)
=⇒ f ′x(x0, y0) =

(
1
1

)
; idem f ′y(x0, y0) =

(
−1
1

)
.

2 Remarques :

1. Si au lieu de (∗) on dit (∗bis) f(M) = f(x, y) = f(x0, y0) + [(x− x0).p+ (y − y0).q] + ‖−−−→M0M‖.ǫ(x, y)
alors on montre aisément que : f ′

x(x0, y0) existe et vaut p. Idem pour q. Donc (∗) ⇐⇒ (∗bis).

2. Et même : Dérivée suivant un vecteur.

f différentiable en M0 =⇒ f(M0 + t.−→u ) − f(M0)

t
a une limite finie quand t→ 0 réel,

valant df(M0)(
−→u ), appelée dérivée suivant le vecteur −→u . En particulier, avec −→u = −→ı ,−→ , ...

On a [f C1] =⇒ f différentiable (ou admet un Dl1 en M0) =⇒ f admet des d.p. en M0.

Démonstration (facile). Le numérateur vaut df(M0)(t.
−→u )+‖t.−→u ‖.ǫ(t.−→u ) = t.[df(M0)(

−→u )+‖−→u ‖.ǫ∗(t.−→u )] car df(M0)

linéaire ; ce qui termine. En particulier :
∂f

∂x
(x0, y0)=f

′
x(x0, y0) = f ′

x(M0) = df(M0)(
−→ı ), etc.

3. Enfin f différentiable en M0 [qui est donc (∗) ou (∗) bis] ⇒ f continue en M0 est clair ! (Exercice)
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Donc df(M0)(
−→u ) = df(M0)(

(
h
k

)
) = h.

(
1
1

)
+ k.

(
−1
1

)
=

(
1 −1
1 1

)(
h
k

)
: df(M0) ne dépend pas

ici de M0, on reconnait l’application linéaire associée notée
−→
f df(M0) =

−→
f constante/M0. Note 3

2. Cas fréquent où f est numérique ; soit f : R2 → R ; donc f ′x(x0, y0); f
′
y(x0, y0) sont sdes nombres.

L’introduction du vecteur gradient
−−−→
grad f(M0) = f ′x(x0, y0).

−→ı + f ′y(x0, y0).
−→ conduit, en notant :

−−→
dM = dx.−→ı + dy.−→ un vecteur quelconque, au produit scalaire : df(M0)(

−−→
dM ) =

−−−→
grad f(M0) �

−−→
dM

Retenir : Pour f numérique (à valeurs dans R), on a df(M0)(
−→u ) =

−−−→
grad f(M0) �

−→u .

41.4 Dérivées partielles d’ordre k > 2 (*)

41.4.1 Définitions

Si on peut dériver f ′x1
(x1, ..., xp) par rapport à x2, par exemple, on note f”

x1x2

(M) ou
∂2f

∂x2x1
(M). Etc.

Note : Celà fait donc p2 dérivées secondes.

On dit que f est de classe Ck si les d.p. d’ordre k existent et sont continues comme fonctions de

plusieurs variables. En appliquant : g C1 =⇒ g C0 [connu], on en déduit : f Ck =⇒ f Ck−1.

Note : Pour la réciproque (fausse) toujours penser, d’abord, au cas des fonctions d’une variable.

41.4.2 Théorème de Schwarz

Si
∂2f

∂x∂y
et

∂2f

∂y∂x
existent dans un voisinage de M0 et sont continues en M0,

∂2f

∂x∂y
(M0) =

∂2f

∂y∂x
(M0)

Généralisation : Si les d.p. qui interviennent sont C0, alors on peut permuter l’ordre des dérivations.

Admis. On dit que les dérivées partielles mixtes sont égales. Note 4

41.4.3 Formule de Taylor à l’ordre 2 (avec de bonnes hypothèses)

Rappels : Pour f : R→ Rn f(x) = f(x0) +
(x− x0)

1!
f ′(x0) +

(x− x0)
2

2!
f”(x0) +Reste.

Si n = 1, c’est-à-dire pour f : R 7→ R : l’équation de la tangente est y = f(x0) +
(x− x0)

1!
f ′(x0)

et f”(x0) 6= 0 =⇒ (ycoube − ytangente) ∼
x→x0

(x− x0)
2

2!
f”(x0).

Le cas n > 1 : On a une égalité de Taylor-Young ; mais seulement une inégalité de Taylor-Lagrange ;

(*) celle-ci démontrée à partir d’une égalité de Taylor avec reste intégral (rappelée ci-après).

Cas de f : R2 → Rn ? Méthode : F (t) = f(x0 + t.h, y0 + t.k) ramène au cas d’une variable :

(∗) F (1) = F (0) +
1

1!
F ′(0) +

1

2!
F”(0) +

∫ 1

0

(1− t)2
2!

F (3)(t)dt.

On calcule F ′(t) ; on déduit F ′(0) et on reconnait les termes de degré 1 (à savoir la différentielle) :

F ′(t) = f ′x(x0 + t.h, y0 + t.k).h+ f ′y(x0 + t.h, y0 + t.k).k

3 Complément. Pour une application affine en dim. quelconques E → F : M ′ = O′ +
−→
f (

−−→
OM), ∀O, M .

Avec O = M0, on a f(M) = f(M0) +
−→
f (

−−−→
M0M) ; donc f différentiable en M0 et même réponse.

4 Exemple : Pour f(x, y) = xy définie, C∞ par composition sur ]0,+∞[xR, vérifier :
∂2f

∂x∂y
(M) =

∂2f

∂y∂x
(M).
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F ′(0) = f ′x(x0, y0).h+ f ′y(x0, y0).k = df(M0)(h, k) !

Puis (à bien voir encore)

F”(t) = f”
x2

(x0 + th, y0 + tk)h2 + f”
xy

(x0 + th, y0 + tk)hk + f”
yx

(x0 + th, y0 + tk)kh+ f”
y2

(x0 + thy0 + tk)k2

Alors (∗) devient la relation suivante notée (∗∗), R désignant le Reste :

f(x0 + h, y0 + k) = f(x0, y0) + hf ′x(x0, y0) + kf ′y(x0, y0) +
1

2!
[h2f”

x2

(M0) + 2hkf”
xy

(M0) + k2f”
y2

(M0)]+R.

Complément. Soit f(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F :

• La formule de Taylor à l’ordre 2 , en O(0, 0), revient tout simplement à écrire :

f(x, y) = F +Dx+ Ey +Ax2 +Bxy + Cy2 et ici, Reste=O.

• Et en (x0, y0) ? Ecrire x = x0 + h, y = y0 + k. On obtient dans ce cas :

f(x, y) = f(x0, y0) + h.[2Ax0 +By0 +D] + k.[Bx0 + 2Cy0 + E] +Ah2 +Bhk + Ck2. (∗∗)

• On suppose, de plus, f numérique : ou que les coefficients sont des nombres avec (A,B,C) 6= (0, 0, 0).

Alors f(x, y) = 0 est une conique ; on a en vue un éventuel centre de symétrie M0(x0, y0).

Ayant (∗∗), la condition d’avoir 0.h + 0.k est, par équivalence :

{
f ′x(x0, y0) = 2.Ax0 +By0 +D = 0
f ′y(x0, y0) = Bx0 + 2Cy0 + E = 0

Ce qui re-donne (ch. Coniques) M0 solution de
−−−→
grad f(M0) =

−→
0 .

(ou bien, avec notre vocabulaire : ∀h, k : df(M0)(h, k) = h.f ′x(x0, y0) + k.f ′y(x0, y0) = O.)

Le cas B2 − 4AC 6= 0 (système de Cramer, déterminant principal 6= 0, ou solution unique) est le cas :

conique à centre Ah2 +Bhk+Ck2 + f(x0, y0) = 0, type "Ellipse" ou "Hyperbole". Cependant, celà peut
ne pas donner de centre de symétrie pour la conique réelle ; x2 + y2 + 1 = 0 : cercle imaginaire ! Note 5

41.5 Théorème des fonctions implicites (*)

41.5.1 Enoncé pour f : R2 → R

1. Problème. Soit la courbe d’équation f(x, y) = 0 passant par M0. Supposons ne pas avoir d’expres-

sion explicite de y fonction de x ; on aimerait toutefois avoir la tangente en M0, si elle existe.6

5 Remarque : Dans le cas général où f est quelconque, mais à valeurs dans R : numérique, on dit que

(h, k) 7→ h2f”
x2

(M0) + 2hkf”
xy

(M0) + k2f”
y2

(M0) = A.k2 +B.h.k +C.k2 est une "forme quadratique".

. Et dans ce cas particulier (des dérivées), cette forme quadratique est appelée la "hessienne".

. C’est elle qui renseigne sur la différence : f(x0 + h, y0 + k) − f(x0, y0) − [hf ′
x(x0, y0) + kf ′

y(x0, y0)].

6 Exemple : x2 + y2 − 1 = 0.

Ici, on arrive à expliciter : y = +
√

1 − x2 = ϕ1(x) ; soit y = −
√

1 − x2 = ϕ2(x).

� Donc au point M0(1, 0), on n’a pas une fonction, mais deux fonctions ... Dessin ?

� Par contre vers ce point, on peut dire : x = +
√

1 − y2 = ψ(y) ! Ce problème était prévu car tangente verticale !

Nous allons voir, sous de bonnes hypothèses, que :
−−→
grad(f)(M0) ⊥ Tangente en M0.

Donc à partir de f , avec
−−→
grad(f)(M), on aurait pu deviner le problème en M0(1, 0) sans dessin !



41.5. THÉORÈME DES FONCTIONS IMPLICITES (*) 279

2. (*) Théorème difficile en complément. 7

3. Conséquence

Avec les hypothèses : f(M0) = 0, f C1 et
−−−→
grad f(M0) 6=

−→
0 :

Au voisinage de M0(x0, y0), f(x, y) = 0 est une courbe (contenant ce point)

ayant une tangente, dont un vecteur orthogonal est :
−−−→
grad f(M0).

Démonstration.

Une fois le théorème admis, la tangente en M0 a pour équation :
y − y0

x− x0
= −f

′
x(x0, y0)

f ′y(x0, y0)
soit

f ′x(x0, y0).[x− x0] + f ′y(x0, y0).[y − y0] = 0

On reconnait la droite passant par M0 orthogonale au vecteur
−−−→
grad f(M0).

Exercice. Tangente à la courbe 1+x.ey−2y = 0 au point (
1

e
, 1)

(
y(

1

e
) = 1, y′(

1

e
) = e, y”(

1

e
) = 3.e2

)

41.5.2 Cas f : R3 → R

1. Le résultat (admis) est analogue

Soit f numérique de classe C1 au voisinage de M0 avec f(x0, y0, z0) = 0 et
−−−→
grad f(M0) 6=

−→
0 .

Au voisinage de M0, f(x, y, z) = 0 est une surface de plan affine tangent: [M0,⊥
−−−→
grad f(M0)].

2. L’équation du plan tangent en M0, sur la surface, est donc

f ′x(x0, y0, z0).[x− x0] + f ′y(x0, y0, z0).[y − y0] + f ′z(x0, y0, z0).[z − z0] = 0

En physique, cf. la fonction potentiel M 7→ V (M) et le champ electrique
−→
E = −−−→grad(V )

⊥ aux surfaces équipotentielles d’équation : V (M)− cte = 0. Complément.8

7 [Retenir seulement la conséquence]

� Soit f : R2 → R avec f(M0) = 0 où M0 = (x0, y0). Supposons f et f ′
y C

0 au voisinage de M0 et f ′
y(M0) 6= 0.

Alors au voisinage de M0 : f(x, y) = 0 ⇔ y = ϕ(x). [d’où ϕ(x0) = y0]

(ϕ existe donc en théorie ! mais on ne sait pas l’explisciter ... )

� Si de plus f est C1 (donc f ′
x continue aussi au voisinage de M0), alors ϕ est dérivable et :

(∗) ϕ′(x0) = −f
′
x(M0)

f ′
y(M0)

. Généralisation : ϕ′(x) = −f
′
x[x, ϕ(x)]

f ′
y[x, ϕ(x)]

.

Admis. Un calcul toutefois à voir : on a donc ∀x proche de x0 : f [x, ϕ(x)] = 0 ; donc dérivée par rapport

à x, (par composition !), identiquement nulle ; ce qui donne (∗) et sa généralisation :

f ′
x[x, ϕ(x)].1 + f ′

y [x, ϕ(x)].ϕ′(x) = 0

8 Exercice corrigé : Soit la surface d’équation f(x, y, z) = 0. On suppose qu’on peut écrire z = ϕ(x, y) et alors
∂z

∂x
(x, y) = ϕ′

x(x, y), ... ; idem : x = ψ(y, z) et
∂x

∂z
(y, z) = ψ′

z(y, z) ; etc. Montrer que
∂z

∂y
.
∂y

∂x
.
∂x

∂z
= −1.

Solution. � On peut déjà voir le cas où f(x, y, z) = 2x− 3y + 4z − 5 (surface plane).

� Cas général. (*) Bien voir que dans ces dérivées partielles, ce n’est pas toujours la même fonction !

Puis un calcul analogue au cas de R2 montre que ∀(x, y) proches de (x0, y0) f [x, y,ϕ(x, y)] = 0 ; donc, en dérivant

par rapport à y, par exemple (à bien voir) :

f ′
y [x, y,ϕ(x, y)].1 + f ′

z[x, y, ϕ(x, y)].ϕ′
y(x, y) = 0

D’où une dérivée partielle de z = ϕ(x, y) (analogue au cas de R2)

ϕ′
y(x, y) =

∂z

∂y
= −f

′
y(x, y, z)

f ′
z(x, y, z)

Analogue pour les deux autres et on reporte.
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M+ Exercices: Dérivabilité des fonctions de plusieurs variables PTSI

1. Soit f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0) ; f(0, 0) = 0. Etudier sa continuïté [vue au ch. précédent].

Montrer que f possède des d.p. partout sur R2. Prouver leur non-continuïté sans calcul.

2. Montrer que f(x, y) =
x2.y2

x2 + y2
si (x, y) 6= (0, 0) ; f(0, 0) = 0 admet des d.p. en O puis est C1 sur R2.

3. Soit f(x, y) = Arctan
x+ y

1− x.y −Arctan(x)−Arctan(y). Domaine ? Vérifier : f ′x(x, y) = 0 = f ′y(x, y)

sur chacune des 3 parties du domaine. Conclusion ? [formule déjà vue au ch. Fonct. élémentaires]
En déduire une expression simplifiée de : Arctan(b)−Arctan(a), si a > 0, b > 0.

4. Plan tangent à la surface −x+ 2y + z − ch(x.y.z) + sin(x.z) = 0 en M0(1, 1, 0) ?
[Orthogonal au gradient, en ce point, de la fonction f(x, y, z) = −x+ 2y+ z− ch(x.y.z) + sin(x.z)]

5. (*) Pour une boite de dimension x, y, z, sans couvercle, de surface S0 donnée, comment choisir ses
dimensions pour avoir un volume maximum? [Se ramener à un domaine fermé-borné. x = y = 2.z].

6. (*) Calcul de la distance de I(x1, y1, z1) au plan ax+ by+ cz = d, comme problème de minimum de

f(x, y) = (x−x1)
2+(y−y1)

2+(
d− ax− by

c
−z1)2 si c 6= 0 et retrouver δ =

| ax1 + by1 + cz1 − d |√
a2 + b2 + c2

.

7. (*) Distance de I(3, 0,−1) au paraboloïde hyperbolique (P.H) d’équation z = x2 − y2 [cf. cours].

8. (*) Vecteur directeur de la tangente en M0(2, 1, 2) à la courbe : x2 + y2 + z2 = 9 ∩ x2 − y2 = 3.

9. (*) La fonction f(x, y) = 3x.y − x3 − y3 possède-t-elle un extrémum sur R2 ?

10. (*) Identité d’Euler pour les fonctions homogènes différentiables ; hypothèse notée ici : diff.

f : R2 → Rn est dite (positivement) homogène de degré α si f(λ.x, λ.y) = λα.f(x, y), ∀λ > 0.
Si f diff., montrer : f (positivement) homogène de degré α⇔ x.f ′x(x, y) + y.f ′y(x, y) = α.f(x, y).

[⇒ dériver /λ. ⇐ Si g(λ) = f(λ.x, λ.y)−λα.f(x, y), voir g′(λ) =
α

λ
.g(λ) ; g(λ) = k.λα et g(1) = 0].

11. (**) Equations aux dérivées partielles du 1er ordre : En posant u = x + y ; v = x − y, résoudre

∂z

∂x
− ∂z

∂x
= a ; et en passant en polaires x

∂z

∂y
− y ∂z

∂x
= k.z. Puis du 2ème ordre :

∂2f

∂x2
− 1

c2
∂2f

∂t2
= 0

(cette dernière étant l’équation des ondes planes ; c la vitesse de la lumière).

12. (**) Traversée d’un prisme constitué de 2 demi-plans d’angle au sommet A, d’indine n, le rayon
incident faisant l’angle i (3 variables), puis r après une réfraction, puis arrivant sur le 2ème plan avec
l’angle r′ puis enfin i′ en sortie. Ayant sin(i) = n.sin(r); sin(i′) = n.sin(r′); r+r′ = A;D = i+i′−A
(déviation) vérifier que :

∂D

∂i
= 1− cos(i).cos(r′)

cos(i′).cos(r)
;
∂D

∂n
=

sin(A)

cos(i′).cos(r)
;
∂D

∂A
=
n.cos(r′)
cos(i′)

− 1.

13. (**) Extremum lié. Extrema de f(x, y, z) = xy + yz + zx quand x2 + y2 + z2 = 1.
[Maximum valant 1 sur ±(1/

√
3, ., .) ; minimun valant −1/2 sur Sphère∩x+ y + z = 1].



Chapitre 42

Intégration des fonctions de plusieurs
variables

42.1 Intégrales doubles sur une surface plane

42.1.1 Domaine

Ce sera : l’intérieur d’un triangle, d’un rectangle, d’un cercle ... en général.
Un domaine borné, auquel on peut attribuer une aire ...

Propriétés : Invariance de l’aire par translation.
Si D1 et D2 sont 2 domaines avec Aire(D1 ∩ D1) = 0, alors Aire(D1 ∪ D1) = Aire(D1) +Aire(D2).

42.1.2 En cartésiennes

1. Définitions Pour f à valeurs dans R, continue, sur un domaine découpé en petits rectangles :

(xi−1 6 x 6 xi ; yi−1 6 y 6 yi) d’aire µij autour du point Mij , on considère
∑

f(Mij).µij .

La limite de cette somme (µij → 0), si elle existe, est notée : I =

∫ ∫

D
f(x, y)dxdy.

Propriétés
1) Par rapport à f : Linéarité I(f + g) = I(f) + I(g); et I(λ.f) = λ.I(f).

Croissance f 6 g =⇒ I(f) 6 I(g).
2) Par rapport aux domaines : additivité si Aire(D1 ∩ D1) = 0.

Remarque : Si f = 1, on trouve l’aire du domaine

∫ ∫

D
1.dx.dy = Aire(D).

2. Théorème de Fubini
On suppose que le domaine s’écrit [a 6 x 6 b et ϕ1(x) 6 y 6 ϕ2(x)] : dessin ? et qu’il
s’écrit aussi [c 6 y 6 d et ψ1(y) 6 x 6 ψ2(y)] : dessin à compléter. Alors, au choix :

I =

∫ b

a
dx.[

∫ haut(x)

bas(x)
f(x, y).dy] =

∫ b

a
dx.[

∫ ϕ2(x)

ϕ1(x)
f(x, y)dy] ou I =

∫ d

c
dy.[

∫ ψ2(y)

ψ1(y)
f(x, y)dx]

3. Exemples

1) I =

∫ ∫
x2.y.dx.dy sur D : (y 6 1; x 6 y; 0 6 x) de deux façons.

Dessiner le domaine : triangle, non carré ! Trouver I = 1/15.

2) J =

∫ ∫
x.y3.dx.dy sur D : (y 6 x; x2

6 y) de deux façons. J = 1/60. Autre 1

1 3) "Masse" de la plaque de densité ρ(x, y) = 2x limitée par le cercle x2 + y2 − 2x− 3 = 0.

. Bien dessiner le domaine limité par le cercle : (x− 1)2 + y2 = 22. Trouver M = 8.π avec

. M = 2.

∫ 3

−1

2x.dx[

∫ +
√

22−(x−1)2

0

dy] = ... On utilise alors le paramétrage naturel

{
x− 1 = 2.cos(θ)√
= 2.sin(θ), θ ∈ ?

281
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42.1.3 En coordonnées polaires

1. D’abord z = f(x, y) = f(ρ.cos(θ), ρ.sin(θ)) = g(ρ, θ).

2. Ensuite, prendre ρ > 0 : le petit élément de surface est alors dρ.ρ.dθ : dessin ? Admis. D’où :

I =

∫ ∫

D
f(x, y)dxdy =

∫ ∫

∆
g(ρ, θ).ρ.dρ.dθ; ρ > 0.

∆ étant le même domaine, mais exprimé à l’aide de (ρ, θ)

Exemple Calculer I =

∫ ∫
(x2 + y2)dx.dy sur D : x2 + y2 − 2a.x 6 0.

Nous verrons que cette intégrale est un "moment d’inertie" (sans importance pour le calcul). Le domaine
est l’intérieur d’un cercle passant par O, ce qui va bien en polaires : 0 6 ρ 6 2a.cos(θ) ; dessin ?

D’où I = 2.

∫ π/2

0
dθ.[

∫ 2acos(θ)

0
ρ2.ρ.dρ] car domaine et la fonction sont symétriques /Ox. Donc

I =
1

2

∫ π/2

0
24.a4.cos4(θ)dθ = 8.a4.

3.1

4.2
.
π

2
=

3.π.a4

2
avec les intégrales de Wallis

∫ π/2

0
cos4(θ)dθ =

3.1

4.2
.
π

2
(sinon, linéariser, car la puissance est paire).

42.1.4 Formule de Green-Riemann

1. Enoncé. Comme dans le théorème de Fubini supposons, pour commencer que le domaine D est
limité par un contour fermé Γ et s’écrit [a 6 x 6 b et ϕ1(x) 6 y 6 ϕ2(x)] ; et qu’il s’écrit aussi
[c 6 y 6 d et ψ1(y) 6 x 6 ψ2(y)] : on dira "fermé-borné élémentaire" ; dessin ? 2

Alors : si

(
x
y

)
7−→

(
P (x, y)
Q(x, y)

)
est C1 sur un domaine contenant Γ et son intérieur D,

∫ ∫

D
(
∂Q

∂x
− ∂P

∂y
)dx.dy =

∮
y
Γ
P (x, y)dx+Q(x, y)dy,

y

Γ orienté trig., ici fermé, entourant D.

Analogie : En une variable,

∫ b

a
f ′(x)dx ne dépend que du bord, avec une primitive : f(b)− f(a).

La formule de Stockes (VI) généralise et aide à retenir (G-R) : opérateur Nabla
−→∇(

∂

∂x
,
∂

∂y
,
∂

∂z
)

Si
−→
V (M) = (P,Q,R) calculer

−→
rot(
−→
V (M)) =

−→∇ ∧−→V (M) puis
−→
rot(
−→
V (M)) �

−→n , si −→n =
−→
k .

Démonstration 3

2. Des exemples

1)

∮
y
Γ
(x− y2)dx+ 2xydy = I ? de deux manières sur le triangle OABO A(1, 0);B(1, 1).

Soit par calcul de

∫
=

∫
y
OA

+

∫
y
AB

+

∫
y
BO

=
1

2
+ 1 + (

−1

2
+
−1

3
) (cf § VI) ; soit par

∫ ∫
: I =

2

3
.

2) Calcul de I =

∫ ∫
xy.
√
x2 + y2dxdy sur le domaine [x > 0; y > 0; y 6 x; x2 + y2

6 1]

Soit polaires, pour

∫ ∫
: I =

1

20
; soit : P (x, y) = O ; Q(x, y) =

y

3
.(x2 + y2)3/2 et

∮
: idem.

2 Remarque : Soit, par exemple A(1, 0)B(1, 2)C(0, 1)D(−1, 2)E(−1, 0). La formule s’étend au contour (polygonal ici)

ABCDEA bien qu’on n’ait pas ψ1(y) 6 x 6 ψ2(y) : il suffit en effet de le décomposer en ABCOA et en OCDEO et

additivité ! Dessin ? On dit que c’est un fermé-borné (ou un "compact") "simple".

3

∫ ∫

D

∂P

∂y
dxdy =

∫ b

a

dx[

∫ haut

bas

∂P

∂y
dy] =

∫ b

a

(P [x, ϕ2(x)] − P [x, ϕ1(x)]).dx =

∫
y

ADB

P (x, y)dx −
∫

y

ACB

P (x, y)dx =

−
∫

y

ACBDA

P (x, y)dx = −
∫

y

Γ

P (x, y)dx. Et l’autre terme est analogue.
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42.1.5 Application aux aires planes en cartésiennes

Prenons Q(x, y) = x, P (x, y) = 0. Alors :

∫ ∫
dx.dy = Aire(D) =

∮
y
Γ
x.dy.

Prenons P (x, y) = −y, Q(x, y) = 0 :

∫ ∫
dx.dy = Aire(D) =

∮
y
Γ
−y.dx. On retient :

Aire(D) =

∮
y
Γ
−y.dx =

∮
y
Γ
x.dy =

1

2

∮
y
Γ
x.dy − y.dx

Exemple Ellipse x = a.cos(t); y = b.sin(t). Avec la dernière relation on trouve de suite :

Aire(D) = π.a.b (comme vu sans calcul, par affinité).4

42.1.6 Application aux aires planes en polaires

On a : xdy − ydx = x2.d(
y

x
) = ρ2.cos2(θ).d[tan(θ)] = ρ2.d(θ). D’où Aire(D) =

1

2

∮
y
Γ
ρ2.dθ

Exemple Aire de la cardioïde ρ = a(1 + cos(θ)) ? Trouver
3.π.a2

2
.

Compléments.5

42.2 Utilisation des intégrales doubles pour l’intégrale de Gauss

(*) Existence et calcul de l’intégrale I =

∫ +∞

0
e−x

2
dx (Intervient en probalilité en particulier).

4 Remarque Dans le cas particulier de courbe y = f(x), a 6 x 6 b, vérifier :

∮
y

Γ

−y.dx =

∫ b

a

f(x)dx.

5 1) Calculer I =

∫ ∫
(x2 + y2).dx.dy sur D : intérieur du triangle A(−2, 0)B(1,−

√
3);C(1,

√
3).

Ici le domaine et la fonction sont symétriques /Ox. En cartésiennes. Trouver I = 3.
√

3.
(On est amené à écrire l’équation de Droite (AC).)

2) L’intégrale

∫ ∫
x.y

x2 + y2
dx.dy sur D : (x > 0 ; y > 0 ; x+ y 6 a) ne pose-t-elle pas problème en O ?

Réponse : f non continue en O, mais bornée : 0 6 x ; 0 6 y ; 2.x.y 6 x2 + y2 ; pas de problème.

En polaires : I =

∫ π/2

0

sin(θ).cos(θ).dθ.[

∫ a

sin(θ)+cos(θ)

0

ρ.dρ] car la droite : ρ =
a

sin(θ) + cos(θ)
.

Donc avec la règle de Bioche, qui nous conduit ici à une intégrale "généralisée" t = tan(θ) :

I =
a2

2

∫ π/2

0

sin(θ).cos(θ).dθ

[sin(θ) + cos(θ)]2
=
a2

2

∫ +∞

0

t.dt

(t2 + 1)(t+ 1)2
=
a2

4

∫ +∞

0

dt

t2 + 1
− dt

(t+ 1)2
=
π − 2

8
a2

3) Aire en polaires ; calcul direct. Pour θ donné, on suppose : 0 6 ρ1(θ) 6 ρ 6 ρ2(θ).

. 1er cas : Domaine limité par une courbe fermée entourant le pôle.

A partir de A =

∫ ∫
ρ.dρ.dθ : A =

1

2

∫ 2π

0

dθ[

∫ ρ2(θ)

0

ρ.dρ] =
1

2

∫
y

Γ

ρ2.dθ, le symbole
y

Γ signifiant qu’on est sur le contour

pour ρ.

. 2ème cas : Domaine limité par une courbe fermée n’entourant pas le pôle. Ici A =
1

2

∫ θ2

θ1

dθ.[ρ2]
ρ2(θ)
ρ1(θ) ou encore (dessin !)

A =
1

2
[

∫
y

PRQ

ρ2(θ).dθ −
∫

y

PSQ

ρ2(θ).dθ] =
1

2

∫
y

PRQSP

ρ2(θ).dθ.

Donc dans chaque cas on retrouve la formule déjà encadrée.

4) Remarque. Changements de variables généraux : Spé.
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42.2.1 Existence

Soit F (β) =

∫ β

0
e−t

2
dt. F est non calculable ! Mais F dérivable et F ′(β) = e−β

2
[bien voir les lettres] :

F , croissante (même strictement), a forcément une limite en +∞ par le théorème de la limite monotone.

De plus, pour β > 1, F (β) =

∫ 1

0
∗+

∫ β

1
e−t

2
dt 6

∫ 1

0
∗+

∫ β

1
e−tdt 6 1 + e−1 − e−β 6 2. F est majorée.

Donc : F possède une limite finie L en +∞ et c’est cette limite que l’on note L =

∫ +∞

0
e−t

2
dt 6 2.

42.2.2 Un calcul astucieux

D’abord F (β) =

∫ β

0
e−x

2
dx =

∫ β

0
e−y

2
dy. Ensuite

∫ ∫

06x6β;06y6β
e−(x2+y2)dxdy = [F (β)]2 aisément.

Soit alors φ(β) =

∫ ∫

x>0;y>0;x2+y26β2

e−(x2+y2)dxdy. Avec exp > 0 φ(β) 6 F [β)]2 6 φ(β.
√

2) : dessin !

Or φ(β) calculable en polaires ! φ(β) =
π

4
[1− e−β2

]. Par passage à la limite (...)
∫ +∞

0

e−t2dt =

√
π

2
.

42.3 Intégrale double dans le cas de surface non plane (*)

Pour
∫ ∫

f(M)dA où dA est la petite aire de surface non plane : Spé.

On va se limiter à deux calculs d’aire, cas f = 1. (*) Noter que si la surface a pour

équation z = f(x, y), avec les notations de Monge et ‖
−−→
∂M

∂x
∧

−−→
∂M

∂y
‖ , l’aire vaut

∫ ∫ √
1 + p2 + q2.dx.dy.

42.3.1 Tranche sphérique d’épaisseur h

L’aire de la tranche sphérique d’épaisseur h a pour aire 2.π.Rh. Résultat dû à Clairaut.

Donc : 1) L’aire ne dépend pas qu’on soit ou non proche du pôle.

2) Projetant⊥ une sphère à partir d’un axe sur le cylindre circonscrit, cette projection conserve la surface
(mais déforme les angles) ! [Aire du fuseau sphérique 2.R2.Vϕ∈[0,V ] ⇒ Aire du triangle sphérique (*)]

3) L’aire totale de la sphère est 4.π.R2 (Archimède) (Faire h = 2R)

Démonstration. Soit θ = (Oz,OM) la colatitude, ϕ = (Ox,Om) la longitude. Dessin ?

Le petit élément d’aire vaut ici : dA = R.dθ.Rsin(θ)dϕ [déplacements orthogonaux] et donc :

A = R2.

∫ ∫
sin(θ)dθ.dϕ = 2.π.R2

∫ θ2

θ1

sin(θ).dθ = A = 2π.R[Rcos(θ1)−Rcos(θ2)] = 2π.R.h.

42.3.2 Rotation de la lemniscate ρ = a.
√

cos(2.θ) autour de Ox : aire

Soit ds l’élément d’abscisse curviligne sur la courbe : ds =
a.dθ√
cos(2.θ)

(laissé). Puis le petit déplacement

en rotation autour de Ox est | y | dϕ = a.
√
cos(2.θ).sin(θ).dϕ si ϕ est un angle de rotation :

dA = ds. | y | dϕ. A = 2.a2.

∫ π/4

0
sin(θ).dθ.[

∫ 2π

0
dϕ] = 2.π.a2.(2−

√
2) [deux boucles].

0,4

1

0,2

0

-0,2

-0,4

0,5-0,5 0-1

Rapport des aires des surfaces de révolution autour de Ox, côté droit :
4.π.(a2 )2

π.a2.(2−
√

2)
∼ 1, 7 ; plausible !
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42.4 Intégrales triples (*)

42.4.1 Domaine

De manière analogue aux
∫ ∫

, ce sera un domaine volumique borné usuel. Cf. Exemples.

42.4.2 En cartésiennes

1. Intégration par piles :
∫

puis
∫ ∫

∫ ∫ ∫
f(x, y, z)dxdydz =

∫ ∫

d
dx.dy.[

∫ z2(x,y)

z1(x,y)
f(x, y, z).dz] où d est le domaine en x, y permettant

d’avoir tout D. [z1(x, y) bas de la pile ; z2(x, y) haut].

2. Intégration par couches :
∫ ∫

puis
∫

∫ ∫ ∫
f(x, y, z)dxdydz =

∫ zB

zA

dz.[

∫ ∫

S(z)
f(x, y, z).dx.dy], S(z) étant la section à la "hauteur"z.

3. Exemples 1) Volume de la sphère par couches. Ici f(x, y, z) = 1.

On a V = 2.

∫ R

0
dz.[

∫ ∫

S(z)
1.dx.dy] ; mais S(z) est le disque de rayon

√
R2 − z2 ; donc

V = 2.

∫ R

0
dz.π.(R2 − z2) = 2.π.[R2z − z3

3
]R0 =

4

3
π.R3. V =

4

3
π.R3 pour la sphère.

2) Volume de la sphère par piles

Ici V = 2.

∫ ∫

x2+y26R2

dx.dy.[

∫√R2−x2−y2

0
1.dz] = 2.

∫ ∫

06ρ6R;06θ62π
ρ.dρ.dθ.

√
R2 − ρ2. Fin en

polaires : ce sont donc les coordonnées cylindriques ! V = 2.2π.
−1

3
[(R2−ρ2)3/2]R0 =

4

3
π.R3. Idem.

3) Volume d’un cône à base plane quelconque . Pour z = h, soit un contour (usuel) limitant
une surface plane d’aire S et la portion de cône de centre O s’appuyant sur ce contour. Dessin ?

Le volume de la portion de cône est V =
S.h

3
où S=Surface de base. En effet :

V =

∫ h

0
dz.[

∫ ∫

S(z)
dx.dy]. Or

S(z)

S
= (

z

h
)2 par homothétie de centre O donc V =

S

h2

∫ h

0
z2.dz !

42.4.3 En cylindriques

Au lieu de prendre (x, y, z), on prend (ρ > 0,θ, z). Soit I =

∫ ∫ ∫
g(ρ, θ, z)ρ.dρ.dθ.dz.

Exemples 1) Volume de la sphère par piles ou par couches : relire ; c’était en cylindriques, en fait !

2) Complément. (*) Dans Oxz, soit A(a, 0). Pour 0 6 h 6 a, on considère le triangle OI(h, h)H(0, h)
et la petite surface AK(a, h)JA telle que J soit sur le quart de cercle de rayon OA, avec zJ = h
et JA = Arc JA. Dessin ? Par rotation autour de Oz, on a deux volumes de révolution à comparer.

Rép. : L’un est un cône V1 =
π.h3

3
. L’autre V2 = π.

∫ h

0
dz.[a2− (a2−z2)] = V1 car couches = couronnes.

3) (*) Volume limité par la sphère x2 + y2 + z2 = a2, z > 0 et le cylindre de révolution x2 + y2 − ax = 0.
Dessin ? (La surface découpée sur le cylindre est appelée fenêtre de Viviani.)

On a V =

∫ ∫

x2+y2−ax60
dxdy[

∫ √a2−x2−y2

0
dz] =

∫ ∫
ρ.dρ.dθ.

√
a2 − ρ2 = 2.

∫ π/2

0

∫ a.cos(θ)

0

√
a2 − ρ2ρ.dρ

Soit V =
2a3

3

∫ π/2

0
[1− sin3(θ)]dθ =

3π − 4

9
a3 (intégrale de Wallis pour finir si l’on veut).
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(*) Remarque sur l’aire (non plane) de la surface de Viviani (z > 0) : trouver Aire = (π − 2).R2 donc

l’aire du complémentaire dans le 1/4 de sphère s’exprime sans facteur transcendant et vaut 2R2.

[Et l’aire de la section droite (toujours avec z > 0) vaut : R2.]

42.4.4 En sphériques

Les coordonnées sont : r = OM > 0, θ = (Oz,OM) colatitude, ϕ = (Ox,Om) longitude ; ici θ ∈ [0, π]

Et I =

∫ ∫ ∫
h(r, θ, ϕ)dr.rdθ.rsin(θ)dϕ =

∫ ∫ ∫
h(r, θ, ϕ)r2.sin(θ)dr.dθ.dϕ

Exemple : Volume de la sphère en sphériques !

Finissons par dr. Alors V =

∫ R

0
dr.[

∫ ∫
r2.sin(θ).dθ.dϕ].

Mais

∫ ∫
représente l’aire (déjà vue) de la sphère de rayon r : 4.π.r2. On retrouve V =

4

3
π.R3.

42.5 Applications diverses

42.5.1 Calculs de masse

• Pour un fil de masse linéïque µ(s), sa masse est M =
∫
dm =

∫
µ(s).ds.

• Pour une plaque plane de masse surfacique µ(x, y), sa masse est M =
∫ ∫

µ(x, y).dxdy.

(On peut passer en polaires ! Et le cas de surface non plane n’est pas mentionné).

• Pour un volume de masse volumique µ(x, y, z), sa masse est M =
∫ ∫ ∫

µ(x, y, z).dxdydz.

42.5.2 Centre de gravité

Par définition
−−→
OG =

Σαi.
−−→
OAi

Σαi
est généralisé. Notation :

−−→
OG =

∫ −−→
OM.dm∫
dm

dans tous les cas.

Remarques • On a ainsi :

∫ −−→
GM.dm =

−→
0 .

• −−→OG = xG
−→ı + yG

−→ + zG
−→
k et

−−→
OM = x−→ı + y−→ + z

−→
k . Donc zG =

∫
z.dm∫
dm

• Cas particulier : solide homogène. µ = cte =
M

V . Aisément (dm =
M

V dxdydz) :
−−→
OG =

∫ ∫ ∫ −−→
OM.dxdydz

V
C’est le centre de gravité géométrique.

Exemples 1) Centre de gravité géométrique de la demi-sphère homogène : x2 + y2 + z2
6 R2; z > 0.

2) Centre de gravité géométrique de la plaque homogène (plane) limitée par y2 = x3; x = a : dessin ?

3) Centre de gravité de la tranche sphérique homogène non plane comprise entre z1 et z2 : zG =
z1 + z2

2
.

4) De l’hélice x = a.cos(t), y = a.sin(t), z = h.t,06t6θ ? xG + iyG = ρ.ei.θ/2, zG = h.θ/2, ρ = a.
sin(θ/2)

θ/2
.

Pour 1) de volume V =
2

3
π.R3

Par symétrie : xG = yG = 0. Et : zG =

∫
z.dm∫
dm

=

∫
z.µ.dv∫
µ.dv

=
1

V

∫
z.dv, dv étant l’élément de volume.

Donc
2

3
π.R3.zG =

∫ ∫
ρ.dρ.dθ[

∫√R2−ρ2

0
z.dz] =

1

2

∫ R

0
(R2ρ−ρ3)dρ.2π =

π.R4

4
. zG =

3R

8
<
R

2
correct.

Pour 2)

La courbe est très intéressante et appelée parabole "semi-cubique". On trouve G(
5a

7
>
a

2
, 0) [2 calculs].
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42.5.3 Théorèmes de Guldin [centres de gravité géométriques] (*)

1. Premier théorème. Dans le demi-plan Oxy x > 0, soit une surface S d’aire A, de centre de gravité
géométrique G. Par exemple un disque.

Alors, par rotation autour de Oy, on engendre un solide de volume tel que : V = A.2.π.xG.

2. Deuxième théorème. Dans le demi-plan Oxy x > 0, soit une courbe Γ de longueur L, de centre de
gravité géométrique G (pas forcément le précédent !) Par exemple un cercle ; un demi-cercle ! ...

Alors par rotation autour de Oy, on obtient une surface non plane d’aire telle que : A = L.2.π.xG.

Démonstrations : En exercice ; mais sans difficulté, sauf la nouveauté. (Guldin, Suisse, 1577-1643.)

Note. Quel est le centre de gravité d’un fil homogène triangulaire ? Vu au chapitre Cercles, Coniques.

42.5.4 Moment d’inertie (*)

1. Définitions

On appelle moment d’inertie par rapport à un axe D la quantité J/axe =
∫
δ2(M,axe).dm où δ

désigne la distance de M à l’axe. Ceci intervient dans le mouvement d’un solide autour d’un axe.

[Rappelons que tout solide ayant un point fixe (au temps t) décrit une isométrie de O+
3 soit possède

un axe instantanné de rotation ; le cas plus général étant un mouvement hélicoïdal au temps t (*)].

Ainsi J/Oz =
∫

(x2 + y2).dm, l’intégration étant sur le volume du solide.

2. Moment d’inertie de la poulie homogène par rapport à son axe : J =
1

2
M.R2.

En effet, soit Oz son axe et h son épaisseur. Alors : J/Oz =

∫ ∫ ∫
(x2 + y2)

M

V dxdydz =

M

V

∫ ∫
ρ2.dρ.ρ.dθ[

∫ h

0
dz] ; soit J/Oz =

Mh

π.R2h

∫ 2π

0
dθ.[

∫ R

0
ρ3.dρ] =

M

πR2
.
R4

4
.2π =

MR2

2
.

3. Moment d’inertie de la sphère homogène / un de ses axes : J =
2

5
M.R2. (*)

En effet : Astuces car (*) Pour faciliter des calculs, sans tenir compte du sens physique, on

pose de plus :

∫
x2.dm = J/plan : yOz, ... , et

∫
(x2 + y2 + z2)dm = J/point : O.

Soit x2 + y2 + z2
6 R2 la sphère. J/Oz = J/yOz + J/xOz =

2

3
J/O avec les notations signalées.

Nous allons calculer J/O avec les coordonnées sphériques : c’est le plus simple !

J/O =

∫ ∫ ∫
(x2+y2+z2).

M

V dxdydz =

∫ ∫ ∫
r2.
M

V .dr.rdθ.rsin(θ)dϕ =
M

V

∫ ∫
sin(θ)dθ.dϕ.

R5

5

Ou J/O =
MR5

5.V .2π.[−cos(θ)]π0 =
3

5
MR2. D’où la réponse : J/Oz =

2

3
.
3

5
MR2 =

2

5
MR2.

42.5.5 Théorème de Huyghens (ou Koenig) : lien entre moments d’inertie (*)

1. Soit D un axe quelconque et DG l’axe parallèle passant par le centre de gravité G à la distance d.

On a : J/D = J/DG +M.d2. C’est donc en DG qu’on a le minimum d’inertie. Dessin ?

2. En effet, soit K la projection orthogonale de M sur D et H sur DG. Alors :

J/D =

∫
KM2dm =

∫
(KH2 +2.

−−→
KH �

−−→
HM+HM2)dm =

∫
d2.dm+2

−−→
KH � (

∫ −−→
HM.dm)+J/DG.

(Le domaine d’intégration pouvant être un volume). Or

∫ −−→
HM.dm =

∫ −−→
HG.dm +

∫ −−→
GM.dm.

La 2ème intégrale est nulle ; la 1ère est un vecteur orthogonal à
−−→
KH (qui est fixe) ! Fini.

[Note : On parle encore "d’ellipsoïde d’inertie" ... (Poinsot 1777-1859).]
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42.6 Champs de vecteurs (*)

42.6.1 Définitions

1. Un champ de vecteurs est la donnée d’une application M ∈ Domaine ⊂ E3 7−→
−→
V (M) ∈ E3 (E.v.).

Exemples : Champ des vecteurs forces et accélérations. Champ des vitesses ; dans le cas particulier

d’un solide, c’est un champ équiprojectif, soit :
−−−−−−→
P (t)Q(t)2 = cte =⇒ −−→PQ �

d
−→
Q

dt
=
−−→
PQ �

d
−→
P

dt
. Torseur !

Ici, surtout en vue : champ électrique avec potentiel scalaire et magnétique avec potentiel vecteur.

2. La circulation d’un champ M



x
y
z


 7−→ −→V (M) =



P (x, y, z)
Q(x, y, z)
R(x, y, z)


 le long de l’arc t ∈ [a, b] 7→



x(t)
y(t)
z(t)




est :

∫
y
AB

−→
V (M).

−−→
dM =

∫
y
AB

P (x, y, z).dx +Q.dy +R.dz =

∫ b

a
[P (x(t), y(t), z(t)).x′(t) + ...+ ...].dt

3. Exemple Soit l’arc d’hélice t ∈ [a, b] 7−→ (r.cos(ωt), r.sin(ωt), h.t) et
−→
V (M) =

−−→
OM . Circulation ?

On a

∫
y
AB

−−→
OM.

−−→
dM =

∫
y
AB

x.dx+ y.dy + z.dz =
1

2

∫
y
AB

d(x2 + y2 + z2) =
1

2
(OB2 −OA2).

Ici, la circulation ne dépend pas du trajet ; seulement des points initial et final ! On va y revenir.

(Note : Ne pas confondre cette intégrale avec
1

L

∫
(x.−→ı + y.−→ + z.

−→
k )ds =

−−→
OG si dm = cte.ds.)

42.6.2 Champ de gradients, potentiel scalaire et forme différentielle exacte (totale)

1. Rappels (1) [f C1 : Rp → Rn] =⇒ f(M) = f(M0) + df(M0)(
−−−→
M0M) + ‖−−−→M0M‖.ǫ(M), ǫ(M) −→

M→M0

−→
0

(2) Et, pour une fonction numérique, soit f : Rp → R, on a ∀ −−→dM, df(M0)(
−−→
dM ) =

−−−→
grad f(M0) �

−−→
dM

2. (*) Ceci va permettre de trouver le gradient dans tout système de coordonnées. Déjà les notations :

f(x, y, z) = f(ρ.cos(θ), ρ.sin(θ), z) = g(ρ, θ, z), noté U = f(x, y, z) = g(ρ, θ, z) = h(r, θ, ϕ) ∈ R
(de même). Ainsi

∂f

∂x
sera noté

∂U

∂x
; ... ;

∂h

∂r
noté

∂U

∂r
: abus d’écriture à bien voir !

Alors : dU =
∂U

∂ρ
.dρ+

∂U

∂θ
.dθ +

∂U

∂z
.dz =

∂U

∂r
.dr +

∂U

∂θ
.dθ +

∂U

∂ϕ
.dϕ (ch. précédent).

Et : dU(
−−→
dM ) =

−−−→
grad U �

−−→
dM ,

−−→
dM = dρ.−→u +ρ.dθ.−→u 1+dz.

−→
k = dr.−→e r+r.dθ.−→e θ+r.sin(θ).dϕ.−→e ϕ

donnent les composantes de :
−−−→
grad U(M)





(
∂U

∂ρ
,
1

ρ

∂U

∂θ
,
∂U

∂z
) : (−→u ,−→u 1,

−→
k ), en cylindriques;

(
∂U

∂r
,
1

r

∂U

∂θ
,

1

r.sin(θ)

∂U

∂ϕ
) : (−→e r,−→e θ,−→e ϕ), en sphériques.

3. Trois définitions • −→V (M) est un champ de gradients si ∃U(M)/
−→
V (M) =

−−−→
grad U(M) ; U(M) est

appelé potentiel scalaire [En physique, on prend le signe opposé
−→
V (M) =

−−−→
grad (−U) = −−−−→grad U(M)]

• On a ainsi : dU(
−−→
dM ) =

−−−→
grad U(M) �

−−→
dM =

−→
V (M) �

−−→
dM = P.dx+Q.dy+R.dz. On dit encore que

P (x, y, z).dx +Q.dy +R.dz, égal à dU = P.dx+Q.dy +R.dz, est une forme différentielle exacte.

• U(M), potentiel ou primitive, se calcule alors par
∂U(x, y, z)

∂x
= P (x, y, z);

∂U

∂y
= Q;

∂U

∂z
= R.

Propriété Si
−→
V (M) est un champ de gradients, les deux résultats (équivalents) suivants sont vrais




∫
y
AB

−→
V (M).

−−→
dM =

∫
y
AB

dU = U(B)− U(A) ne dépend que de A et B, pas du chemin suivi C1

∮ −→
V (M).

−−→
dM = 0 pour tout chemin fermé C1 (dans le domaine où on a le champ de gradients).

Reste en suspens : comment reconnaitre si on a un champ de gradients ? Voici :
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42.6.3 Forme différentielle fermée ; cas d’un domaine étoilé :

1. Condition nécessaire (C.N.) Si ω = P (x, y, z)dx+Q.dy+R.dz est une forme différentielle exacte C1,

avec potentiel U , C2 le Théorème de Schwarz à U(M) ⇒ (∗) ∂P

∂y
=
∂Q

∂x
;
∂P

∂z
=
∂R

∂x
;
∂Q

∂z
=
∂R

∂y
.

Définition Forme diff. exacte C1 ⇒ relations (∗), cas où l’on dit ici : forme différentielle fermée.

Ayant vu le rotationnel (rappelé ci-dessous)
−→
rot(
−→
V (M)) =

−→∇∧−→V (M) : (∗)⇔ −→rot(−→V (M)) =
−→
0

2. Théorème (de Poincaré ; admis) : Condition nécessaire et suffisante C.N.S.

La C.N. est une C.N.S. sur un domaine étoilé : D est étoilé / K ∈ D si ∀ M ∈ D, [KM ] ⊂ D.

Un ensemble convexe est étoilé/chacun de ses points. Dessin d’un domaine étoilé mais non convexe ?

Si domaine étoilé
−→
V (M), C1 Champ de gradiants [f. d. exacte] ⇐⇒ −→rot(−→V (M)) =

−→
0 [f.d. fermée]

3. Exemples

• On a vu :
1

2

∮
−y.dx+ x.dy = Aire(D) 6= 0 : non exacte. Non fermée :

∂P

∂y
=
−1

2
6= ∂Q

∂x
=

+1

2
.

• Soit la forme différentielle notée ω : ω =
−y.dx+ x.dy

x2 + y2
sur R2\O(0, 0) : qui est fermée (calcul) !

Mais cet exemple classique montre que R2\O(0, 0) n’est pas étoilé car elle n’est pas

exacte : si Γ désigne le cercle trigonométrique x = cos(t), y = sin(t), t ∈ [0, 2.π],

∮

Γ
ω = 2.π 6= 0.

Exercice Soit ω = xdy − ydx. Trouver f : R→ R telle que f(x).ω soit fermée ; puis une primitive

de
ω

x2
, soit U telle que dU =

ω

x2
. Résoudre ainsi l’équation différentielle xy′ − y = Arctan(x).

Solution. Exprimant
∂

∂y
[f(x).y] =

∂

∂x
[f(x).x] on a f(x) =

k

x2
; donc

1

x2
(xdy − ydx) = dU ,

forme différentielle exacte sur R2\R−, étoilé.
∂U

∂x
=
−y
x2
,
∂U

∂y
=

1

x
donnent U =

y

x
+ C. Puis

Eq. diff ⇐⇒ dU = Arctan(x)/x2 .dx ... On sait finir ! (parties et fraction impaire : t = x2)

42.6.4 Formule de Stockes, généralisant Green-Riemann (mémorisation !) :

1. Divergence. Rotationnel. On reprend M



x
y
z


 7−→



P (x, y, z)
Q(x, y, z)
R(x, y, z)


 ; la matrice A =



P ′
x P ′

y P ′
z

Q′
x Q′

y Q′
z

R′
x R′

y R′
z




dite "jacobienne" est la matrice de df(M), linéaire. Sa trace est : div(
−→
V (M)) = P ′

x +Q′
y +R′

z.

Moyen mémo-technique : Opérateur Nabla
−→∇ : (

∂

∂x
,
∂

∂y
,
∂

∂z
). Alors div(

−→
V (M)) =

−→∇ �
−→
V (M).

Et
−→
rot(
−→
V (M)) =

−→∇ ∧−→V (M) Composantes ? (d’où : Forme diff. fermée ⇐⇒ −→rot(−→V (M)) =
−→
0 ).

2. Formule de Stockes. Soit un contour fermé orienté Γ limitant une surface (même non plane) S, de
normale −→n (M) unitaire orientée selon Γ, sur laquelle le champ est C1. Avec l’élément d’aire dA, plus

généralement :

∮ −→
V (M) �

−−→
dM =

∫ ∫

S

−→
rot(
−→
V (M)) �

−→n (M).dA. (On dit "le flux du rotationnel")

42.6.5 Formule d’Ostrogradski et potentiel vecteur : pour champ magnétique

On dit que
−→
V (M) dérive du potentiel vecteur

−→
A (M) si

−→
V (M) =

−→
rot
−→
A (M).

(
Comment savoir
si c’est le cas ?

)

Comme
−→
rot(
−−−→
grad f(M)) =

−→
0 , si

−→
A (M) est un potentiel vecteur,

−→
A (M) +

−−−→
grad f(M) en est un autre.

Et : div(
−→
rot
−→
A (M)) = 0, donne une C.N. qui est une C.N.S. si domaine étoilé : div(

−→
V (M)) = 0.

Plus généralement, V étant limité par la surface fermée ⊗ :

∫ ∫
⊗
−→
V �
−→n dA =

∫ ∫ ∫

V
div(
−→
V (M)).dv.
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M+ Exercices: Intégration des fonctions de plusieurs variables PTSI

1. Aires planes en cartésiennes. Cours et Cycloïde x = a[t− sin(t)]; y = a[1− cos(t)] (Arche 3a2).

Astroïde x = acos3(t); y = asin3(t) (
3πa2

8
). Folium de Descartes x =

3a.t

1 + t3
; y =

3at2

1 + t3
: idem

pour boucle et partie limitée par l’asymptote ! (
3a2

2
). Boucle de strophoïde droite x = a

1− t2
1 + t2

;

y = a
t(1− t2)
1 + t2

; (
4− π

2
a2). Aire du bicorne x = sin(t); y =

cos2(t)

2− cos(t) ; (Trouver (
16√
3
− 9)π vérifié

par Maple). Aire commune aux ellipses
x2

a2
+
y2

b2
= 1 et

x2

b2
+
y2

a2
= 1 (4.a.b.Arcsin

b√
a2 + b2

) !

2. Aires planes en polaires. Trèfle ρ = a.cos(2.θ) ? Lemniscate ρ = a.
√
cos(2.θ) ? [Trouver

π.a2

2
; a2].

3. Volume de la sphère par plusieurs méthodes. [Vu en cours, mais à revoir absolument !]

4. Volume de l’onglet cylindrique −R 6 x 6 R; 0 6 y 6

√
R2 − x2; 0 6 z 6 hy/R. (V = 2h.R2/3).

5. Volume intérieur à x2 + y2 + z2 = a2 et au cône de révolution z2 = x2 + y2, z > 0. (π(2−
√

2)a3/3)

6. Calculer I =

∫ ∫ ∫
z2.dxdydz sur : x2 + y2 + z2

6 a2 par couches et par piles. (I = 4.π.a5/15)

7. Forme différentielle exacte. Vérifier que ω = xdy − ydx n’est pas "fermée". Trouver f : R → R

telle que f(x).ω soit exacte sur un domaine à préciser ; puis trouver une primitive de
ω

x2
, soit une

fonction U telle que dU =
ω

x2
. Résoudre ainsi l’équation différentielle xy′ − y = Arctan(x).

8. Idem. Calculer

∫
y2dx− x2dy sur le segment ; puis sur l’arc de cercle : A(1, 0);B(0, 1). Conclure.

9.
−→
V (M) =

1

x2 + y2 + z2
(y,−x, 0) dérive-t-il du potentiel vecteur

−→
A (M) = (0, 0,

ln(x2 + y2 + z2)

2
) ?

10. (*) Soit une surface passant par O, de plan tangent z = 0. On la coupe par deux plans perpendicu-
laires, contenant Oz. Soit R1 et R2 les 2 rayons de courbure des deux courbes découpées. Montrer
que 1/R1 + 1/R2 = cte quand les plans varient. Déjà voir le cas des paraboloïdes z = αx2 + βy2.

Cas général : △f(x, y) =
∂2f

∂x2
+
∂2f

∂y2
est indépendant de la base o.n.d. choisie : laplacien.

11. (*) Calculer div(
−−−→
grad U) = △U ; et ensuite

−−−→
grad (div(

−→
V ))−−→rot(−→rot(−→V )) = △−→V .

12. (*) Si U = f(x, y) = g(ρ, θ), vérifier que △U =
∂2U

∂ρ2
+

1

ρ2

∂2U

∂θ2
+

1

ρ

∂U

∂θ
. (laplacien en polaires)

13. (*) Trouver f : R2 → R de la forme f(x, y) = u(x).v(y) , u, v, C2, de laplacien nul.

(Trouver u”v+v”u = 0 ; donc u”(x)/u(x) = −v”(y)/v(y) donc constant ; puis u” = C.u ; v” = −C.v)



Chapitre 43

Appendice : Groupes, Anneaux, Corps

43.1 Groupes

43.1.1 Définition

Soit G 6= ∅ muni d’une opération interne notée ∗, c’est-à-dire x ∈ G, y ∈ G =⇒ x ∗ y ∈ G :
(on dit "loi de composition interne " : l.c.i. car au départ, c’était la composition), est un groupe si

1) ∗ est associative (x ∗ y) ∗ z = x ∗ (y ∗ z),
2) posssède un neutre e : e ∗ x = x ∗ e = x,

3) et un symétrique pour chaque élément x ∗ x′ = x′ ∗ x = e.
Enfin, si de plus ∗ est commutative, on dit groupe commutatif ou abélien.

Remarques

– L’opération "−" non interne dans N. "−" est interne dans Z mais non associative.
– (N,+) n’est pas un groupe. (R, �) non plus.

43.1.2 Propriétés

1) Pour une loi interne, s’il y a un neutre, il est unique.
2) Si la loi est associative et si x a un symétrique (ou inverse), il est unique.

3) Le symétrique de x ∗ y est (x ∗ y)−1 = y−1 ∗ x−1. Enfin dans un groupe tout élément
4) est simplifiable à gauche : a ∗ x = a ∗ y =⇒ x = y [on dit régulier à gauche] ; et à droite.

Démonstration
1) e ∗ e′ = e ou e′. ( et e indépendant de x)
2) x′ ∗ x ∗ x” = x′ ou x” en associant. Dorénavant noté x−1

3) Si u = x ∗ y, résoudre u ∗ z = e, trouver z = y−1 ∗ x−1 et vérifier que z ∗ u = e.
4) "Composer" à gauche par a−1.
Remarques

– Avec une loi notée "+" la propriété 3) devient : −(x+ y) = −y−x. Mais on réserve cette notation "+"
("0" pour le neutre) pour un groupe abélien, en général.

– On note aussi la loi "�" ce que nous ferons : x � y, maintenant.

43.1.3 Exemples

1. (Z,+) est un groupe abélien.

2. (U, �) [ensemble des complexes de module 1] est un groupe abélien.

3. (Un, �) est un groupe cyclique à n éléments. [Un = {1, ω, ω2...ωn−1}.]
Donc ∀n ∈ N∗, on a au moins un groupe d’ordre n [de cardinal n] à savoir le groupe cyclique Un.

291
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4. (Q,+) (R,+) (C,+) (R∗,.) (R+∗,.) ... sont des groupes abéliens.

5. F(I,R), avec I=[0,1] par exemple, est un groupe abélien pour +
Remarque : Et pour o ?
Le neutre serait Id donc aller de E dans E ; et f bijective pour l’inverse ; c’est l’exemple suivant :

6.
L’ensemble des bijections de E 6= ∅ dans E est un groupe pour o, appélé groupe symétrique,

noté SE . Ses éléments sont appelés permutations. Et on sait : | E |= n⇒| SE |= n! .

Note
Quand E = {1, 2, ..., n}, on note SE = Sn. Par exemple les 6 éléments de S3 sont : Id ; (1 2) qui

est la transposition





1 7→ 2
2 7→ 1
3 7→ 3

, (1 3), (2 3) de même ; (1 2 3) qui est le cycle





1 7→ 2
2 7→ 3
3 7→ 1

, et le cycle

inverse (1 3 2)=(1 2 3)−1. On peut voir géométriquement ce groupe comme le groupe des isométries
planes conservant un triangle équilatéral de sommet 1,2,3. (transposition=sym⊥/ droite)

Un groupe non abélien ? Justement (S3, o) (en fait tout groupe de cardinal 6 5 est abélien)

Voir : (1 2)o(1 3)=(1 3 2) 6= (1 3)o(1 2)=(1 2 3).

43.1.4 Intérêt des groupes

1. Théorème Dans un groupe, l’équation a � x = b possède une et une seule solution x = a−1
� b.

Démonstration
L’équation a � x = b entraine a−1

� a � x = a−1
� b ou x = a−1

� b. (associativité, neutre, inverse)
Inversement x = a−1

� b donne a � x = a � a−1
� b = b. Donc a � x = b⇐⇒ x = a−1

� b.

2. Deux exemples
1) Dans R, l’équation a+ x = b en a une et une seule : (R,+) groupe.
Par contre a � x = b n’a pas toujours de solution ; (R, .) non groupe à cause de 0.

2) Dans P(E), l’équation A ∪X = B n’a pas de solution si A 6⊂ B ; donc (P(E),∪) : non groupe.
Pourtant ∪ est interne, associative, (même commutative), ∅ est neutre : c’est que certains éléments
n’ont pas de symétrique ! (seul ∅, le neutre, possède un symétrique).
Par contre
(P(E),∆) est un groupe abélien, où ∆ est la différence symétrique [A∆B = (A\B) ∪ (B\A)].
(pour l’associativité, faire un "diagramme de Venn" de (A∆B)∆C et A∆(B∆C) ; neutre ∅, chaque
élément est son symétrique.)
Donc l’équation A∆X = B a une et une seule solution : X = A−1∆B et même A−1 = A ici.

43.1.5 Sous-groupes

1. Définition
On dit que H est un sous-groupe de (G, �) si H ⊂ G et si H est un sous-groupe
pour la "loi induite" dans H par G, ce qui suppose qu’elle est interne dans H.

Remarque
Soit e le neutre de G et ǫ le neutre de H. A-t-on e = ǫ ?
Oui car e.ǫ = ǫ = ǫ.ǫ donc (en simplifiant, ce qui est permis dans un groupe) e = ǫ.

En pratique Si H est un candidat à être un sous-groupe, on vérifie H 6= ∅ en vérifiant e ∈ H.

2. Caractérisations pour H ⊂ G (Equivalences)

H ⊂ G : H sous-gr. de G⇔





H 6= ∅
∀x, y ∈ H,x � y ∈ H
∀x ∈ H,x−1 ∈ H

⇔
{

H 6= ∅ et:

∀x, y ∈ H,x � y−1(ou x−1
� y) ∈ H.
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Utilisations des caractérisations (Démonstration en exercice. Analogue au ch. E.v.)
1) Montrons que n.Z est un sous-groupe de (Z,+) pour n ∈ N.

Avec (1) : 0 ∈ n.Z ; puis x = n.q, y = n.q′ =⇒ x+ y = n(q + q′) ; et enfin −x = n.(−q).

2) Montrons que C([a, b],R) est un groupe pour +.
On montre que c’est un sous-groupe d’un groupe connu ! par exemple de F([a, b],R).
Avec (2) : La fonction O est continue ; puis si f , g sont continues, f − g est continue. Fini.

43.2 Morphismes de groupes

43.2.1 Définitions

Divers cas

Soit (G, �) et (G′, ∗) deux groupes ; f : G→ G′ est un :
homomorphisme de groupes si f(x � y) = f(x) ∗ f(y), ∀x, y ∈ G ;

isomorphisme si, de plus, f est bijectif ;
endomorphisme si f est un homomorphisme de (G, �) dans (G, �);

automorphisme si f est un endomorphisme bijectif.

43.2.2 Exemples

1) f : n ∈ (Z,+) 7−→ 2n ∈ (Q∗, �) est un homomorphisme injectif, non surjectif ! (3; 6 6∈ Im(f).)

2) Si a ∈ (G, �) groupe. n ∈ (Z,+) 7−→ an ∈ (G, �) homomorphisme. non injectif si G fini !

3) x ∈ (R,+) 7−→ ex ∈ (R+∗, .) est un isomorphisme de réciproque ln (fondamental).

4) θ ∈ (R,+) 7−→ ei.θ ∈ (U, �) est un homorphisme surjectif, non injectif (fondamental).

5) Les groupes S4 et le groupe des isométries du carré sont-ils isomorphes (c’est-à-dire les mêmes aux
notations près) ? Non : il y a seulement 8 isométries du carré, tandis que | S4 |= 4! = 24.

6) Les groupes U6 et S3 sont-ils isomorphes ? Non : l’un est abélien, pas l’autre.

43.2.3 Propriétés

Soit f un homomorphisme de groupes. Alors 1) f(e) = e′ ; f(x−1) = [f(x)]−1 ;

2) f(G) encore noté Im(f) est un sous-groupe de G′ et f surjective ⇐⇒ f(G) = G′

3) Et Ker(f) = {x ∈ G : f(x) = e′}, appelé noyau de f , est un sous-groupe de G et

f injective ⇐⇒ Ker(f) = {e}.
Démonstration
1) x � e = x entraine f(x) ∗ f(e) = f(x) = f(x) ∗ e′ et on peut simplifier dans un groupe.
Puis x � x−1 = e entraine f(x) ∗ f(x−1) = f(e) = e′ = f(x) ∗ [f(x)]−1 et idem.

2) Im(f) sous-groupe avec une caractérisation : contient f(e) = e′ ; puis si f(x), f(x′) sont dans f(G),
f(x) ∗ f(x′) = f(x � x′) aussi ; et [f(x)]−1 = f(x−1) est aussi dans f(G). Equivalence claire.

3) 1 Ker(f) sous groupe de G avec une caractérisation. Equivalence à bien voir : Pour =⇒ : évident.

Pour ⇐= : Supposons f(x) = f(x′). Ceci équivaut à f(x) ∗ [f(x′)]−1 = e′ ou f(x) ∗ f(x′−1
) = e′

ou f(x � x′−1
) = e′ soit à x � x′−1 ∈ Ker(f). L’hypothèse dit alors que x � x′−1

= e soit : x = x′.

Dans l’exemple ci-dessus θ ∈ (R,+) 7−→ ei.θ ∈ (U, �), le noyau est le sous-groupe 2.π.Z de (R,+).

1 En allemand, "Kern" veut dire "noyau" (coeur ?) Voir aussi en breton : "Keranna" ...
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43.3 Anneaux et corps

43.3.1 Anneaux : 2 lois internes reliées entre elles

1. Définition
(A,+, �) est un anneau si : 1) (A,+) est un groupe abélien : neutre noté 0 ;

2) � est associative et possède un neutre noté 1 ; et enfin
3) � est distributive/+ à droite et à gauche a � (b+ c) = ab+ ac et (a+ b) � c = ac+ bc

Remarques 2

– La commutativité de + résulte des autres axiomes [développer (1 + 1) � (x+ y)]
– Si � est commutative, on dit anneau commutatif.

2. Exemples

1) (Z,+, �) est un anneau commutatif 2) De même R[x], C[x], Q[x] anneaux de polynômes

3) F(I,R) où I = [0, 1] par exemple est un anneau pour + et � (des fonctions). Sera revu après.

4) Un anneau non commutatif ? Plus tard, pendant plusieurs chapitres.

5) Bien voir la question suivante : Et si on prenait (F(R,R),+, o) ?
- On sait que (F(R,R),+) est un groupe abélien.
- Aussi : o interne, associative et Id neutre.
- Lien : (f + g)oh = foh+ goh d’après la définition de +, car (f + g)[h(x)] = f [h(x)] + g[h(x)].
Reste fo(g + h) = fog + goh ? Pas toujours vrai ! sin(x2 + x3) 6= sin(x2) + sin(x3) à cause de sin.

3. Propriétés

Dans tout anneau, on a : 0 � x = x � 0 = 0 où 0 est le neutre de +
(−x) � y = x � (−y) = −(x � y), où −x désigne le symétrique de x pour +

(−x) � (−y) = x � y ; et deux relations essentielles, si a et b commutent :

(a+ b)n =

n∑

k=0

Ckna
n−kbk; an − bn = (a− b)(

n−1∑

k=0

an−1−kbk) = (

n−1∑

k=0

an−1−kbk).(a− b)

Démonstration
1) (0 + a).x = a.x d’où 0.x+ a.x = 0 + a.x donc en simplifiant pour +, 0.x = 0 ; de même x.0 = 0.
2) [x+(−x)].y = 0 d’où x.y+(−x).y = x.y+[−(x.y)] et simplifier pour + ; de même x.(−y) = −(x.y)
3) x.y et (−x).(−y) sont tous deux symétriques pour + de (−x).y, donc égaux. Puis attention !
4) Egalités. Si a.b 6= ba, (a+b)2 = (a+b).(a+b) = a2+a.b+b.a+b2 ; (a+b).(a−b) = a2−a.b+b.a−b2 !

Si a.b = b.a on développe par double distributivité aussi. Rappel : (a3−b3) = (a−b).(a2+a.b+b2).

Exemples importants b = 1, neutre pour la deuxième loi, commute avec tout élément. D’où :

(1 + a)n =

n∑

k=0

(
n
k

)
ak ; 1− an = (1− a)(

n−1∑

k=0

ak) = (

n−1∑

k=0

ak).(1 − a).
{

Et, dans ce contexte,

a0 = 1, même si a = 0.

43.3.2 Anneau intègre

1. Diviseurs de 0
Dans tout anneau (x = 0 ou y = 0)⇒ x � y = 0. Mais (grave ennui) la réciproque peut être fausse !

Exemple d’anneau où il existe a � b = 0 avec cependant a 6= 0, b 6= 0, appelés "diviseurs de 0".

Soit A = F([0, 1],R) ; et a l’application :

{
nulle sur [0, 1/2]; affine
sur [1/2,1], valant 1 en 1 ;

b :

{
valant 1 en 0, affine sur
[0,1/2], nulle sur [1/2,1].

Le neutre pour + est ici l’application nulle O. On a a 6= O, b 6= O mais a � b = O. Dessin ?

2 C.A.N.S.A.D. et N. (C.A.N.S. pour +) A. et N. (pour �) D.(lien �/+). En espagnol, descansarse =
se reposer mais ici c’est le contraire et c’est un impératif ! (l’ ancienne définition était seulement : CANSAD !)
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2. Définition
Un anneau est dit "intègre" si on a l’implication a � b = 0⇒ a = 0 ou b = 0.

Intérêt : a � x = a � y, a 6= 0⇒ x = y. Idem : x � b = y � b, b 6= 0⇒ x = y (facile).

Exemples : 1) (Z,+, �) est un anneau intègre. 2) De même R[x], C[x], Q[x] anneaux intègres.
3) F([0, 1],R) commutatif non intègre. 4) Nous verrons un anneau ni intègre ni commutatif.

3. Exercice important Si, pour un certain n ∈ N∗, on a an = 0 avec a 6= 0, on dit que a est nilpotent.

Alors : a nilpotent =⇒ 1− a inversible pour � et d’inverse : (1 + a+ a2 + ...+ an−1).

Voir les formules précédentes. Attention : Si a nilpotent, ce n’est pas a qui est inversible !

43.3.3 Corps

1. Définition Un corps (K,+, �) est un anneau avec (K∗, �) groupe ; donc ∀x ∈ K∗, x inversible pour �

Exemples usuels

Q,R,C; R(x),C(x),K(x) : corps de fractions rationnelles On passe de R[x] à R(x) comme de Z à Q

2. Propriété Un corps est (en particulier) un anneau intègre.

Démonstration
Soit a � b = 0. Si a ∈ K∗, a est inversible, d’où a−1

� a � b = a−1
� 0 = 0 ; c’est donc que b = 0.

Sous-anneaux ; morphismes d’anneaux ; sous corps ? Hors sujet sauf : R sous-corps de C ; Q de R.

Notes en compléments. 3

3

– Un thème d’algèbre générale : la preuve par 9.

Question intéressante qui concerne : 9.Z (les multiples de 9) et une relation d’équivalence ; la compatibilité de celle-ci avec
l’addition et la multiplication ; enfin le système décimal. Voici :

1. Congruence modulo 9, dans Z : soit la relation aRb si a− b ∈ 9.Z (c’est-à-dire multiple de 9).
On lit : "a congru à b modulo 9", et on note a ≡ b(9). Elle est réflexive (clair), symétrique (aussi) et transitive
[aRb, bRc =⇒ aRc ; car a− b = 9.k1, b− c = 9k2 =⇒ a− c = 9(k1 + k2)] ; donc une relation d’équivalence qui conduit
à la partition de Z, en 9 parties :
0̂=classe de 0=nombres congrus à 0 modulo 9= {−9, 0, 9, 18, ...}
1̂=classe de 1=nombres congrus à 1 modulo 9= {−8, 1, 10, 19, ...}
...
8̂=classe de 8=nombres congrus à 8 modulo 9= {−1, 8, 17, ...}.

2. Compatibilité avec + et . de cette relation !

Aisément, si aRb et a′Rb′, alors (a+ a′)R(b+ b′) ; et aussi a.a′Rb.b′.
En effet a− b = 9k1, a

′ − b′ = 9k2 =⇒ a.a′ = bb′ + 9k1b
′ + 9k2b+ 9k1.9k2 = bb′ + 9K.

3. Conséquence : Ici intervient aussi le système décimal.

10 ≡ 1(9) (clair) ; donc 102 ≡ 1.1 = 1(9) ; 103 ≡ 1(9) ; et ce n’est pas tout :
1234 = 1.103 + 2.102 + 3.10 + 4 ≡ 1.1 + 2.1 + 3.1 + 4.1(9) ; et on recommence 10 ≡ 1 + 0 = 1(9).

La preuve par 9 : Soit la multiplication : 1234.5678=7006652
On a : 1234 ≡ 10 ≡ 1 + 0 ≡ 1(9) et : 5678 ≡ 5 + 6 + 7 + 8 = 11 + 15 ≡ 1 + 1 + 1 + 5 ≡ 8(9). La réponse doit être congrue à
1.8=8 modulo 9. Or : 7 + 0 + 0 + 6 + 6 + 5 + 2 ≡ 13 + 13 ≡ 1 + 3 + 1 + 3 ≡ 8(9). C’est le cas !
Remarque : Dans le système décimal, la preuve "par 11" est assez simple aussi, car 1234 ≡ 4 − 3 + 2 − 1(11) ≡ 2(11).

– Les carrés magiques.

� A ne pas confondre avec les "carrés latins" de la table d’un groupe (cf. Verso, Exercice).
� Ici, la somme des lignes, colonnes, diagonales est constante. Pas de répétition : Fig. 1 et 2.

La Fig. 2 provient d’un tableau d’Albert Dürer. La Fig. 3 est le célèbre carré de lettres "SATOR"...

donnant : "PATER NOSTER"
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M+ Exercices: Groupes, Anneaux, Corps PTSI

1. Intersection de sous-groupes. Réunion ?

(a) D’abord dans (Z,+). Préciser 2Z ∩ 3Z ; puis 6Z ∩ 8Z. Constat(s) ?
En général, montrer que : Si H1,H2 sont deux sous-groupes de G, H1 ∩H2 aussi.
[Et idem avec (∩Hi)i∈I où I est une "famille" quelconque d’indices].

(b) Que dire, par contre, de 6Z ∪ 8Z ? Y a-t-il un plus petit sous groupe de Z les contenant ?

2. Rappeler la première caractérisation des sous-groupes. Montrer-là. Puis la seconde.

3. Rappeler le cours sur les homomorphismes de groupe (Définitions, Exemples, Propriétés).

(a) Exemple 1 : Que dire de f : z ∈ (C,+) 7−→ z ∈ (C,+) ? Et avec � ? Et z 7−→| z | ?

(b) Exemple 2 : Vérifier que (HT , o) (homothéties-translations) est un groupe (non abélien) ; et
f : ϕ ∈ (HT , o) 7−→rapport(ϕ) ∈ (R∗, �) est un homomorphisme avec Ker(f) = T (abélien) !

4. (*) On peut trouver un autre groupe à 4 éléments distinct de U4 :
Soit (G, o) l’ensemble des isométries du plan affine conservant un rectangle non carré.
Si A,B,C,D est ce rectangle de centre O, I et J milieux de [A,B] et de [B,C], voir que G com-
prend : - l’identité, notée Id, - r0 rotation de centre O d’angle 180 degrés,
- sx symétrie par rapport à OI - sy symétrie par rapport à OJ et ce sont les seules.

Voir qu’on a un groupe et faire la table des gof (carré latin : pas de répétition en lignes, colonnes)

[avec sx : (A,B,C,D) 7−→ (B,A,D,C) ; r0 : (A,B,C,D) 7−→ (C,D,A,B) par exemple]. Trouver
g\f | Id r0 sx sy
Id |Id r0 sx sy (La loi o est interne ici, toujours associative,
r0 |r0 Id sy sx Id est neutre et chaque élément est son symétrique).
sx |sx sy Id r0
sy |sy sx r0 Id Note : (G, o) est appelé "groupe de Klein".

Constater que ce groupe G est aussi abélien ; mais qu’on a une différence de structure avec U4 :
dans G tout élément est son propre inverse fof = Id ; alors que dans U4 : i � i 6= 1 (le neutre) !

5. (*) Sous groupe engendré par un élément.
Vérifier que {an, n ∈ Z} est un sous-groupe de (G, �) ; on l’appelle sous-groupe engendré par a et on
le note < a >. On appelle ordre de < a > son cardinal : |< a >| (comme pour tout sous-groupe).
On appelle aussi ordre de l’élément a ∈ G le plus petit p ∈ N∗, s’il existe, tel que ap = e.
On veut vérifier que c’est la même chose : ordre (a) et ordre (< a >) :
Cas particuliers : G = U et a = i ? Cas G = U et a = ei (on admet π 6∈ Q) ?
En général (G fini ou non), vérifier que : ordre(a)=ordre (< a >). (Donc pas de problème) !

6. Anneaux et corps

(a) Exemples d’anneaux ? Un anneau non intègre : A = F(I,R) où I = [0, 1] ; pourquoi ?

(b) Exemples de corps ? Montrer qu’un corps est (un anneau) intègre.

(c) Montrer que si a est nilpotent (a 6= 0), dans un anneau, 1±a est inversible. a est-il inversible ?

(d) (*) Montrer que Z[i] = {a+ ib, a, b ∈ Z} est un anneau [appelé anneau des entiers de Gauss ;
il possède aussi une division euclidienne et il est très utile en arithmétique].

(e) (*) A = P(E),∆,∩ est un anneau "de Boole", soit : ∀x ∈ A, ”x � x = x” ("idempotent").
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Progression du cours (1 chapitre / semaine)

ch.06 : Toussaint ch.13 : Noël ch.23 ... ou 26 : Pâques ch.30-33 : fin mai-juin.

Lecture du cours Faire des résumés. Refaire les exemples traités. Faire des dessins.

Exemple : médiatrices, hauteurs, bissectrices (intérieures), et aussi médianes concourantes :

Eviter enfin les divers compléments qui ne sont que des thèmes de problème.
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(*) Quelques exercices de Révisions

1. Sur les suites. On admet ici le Théorème de Césaro : Soit (un) une suite à terme réels qui tend

vers L (finie ou infinie). Alors vn =
u1 + u2 + ...+ un

n
tend aussi vers L quand n→ +∞.

(a) Lemme de l’escalier :

On suppose que : an+1 − an tend vers L. En déduire que :
an
n

tend vers L.

(b) Avec ln(αn) :

On suppose que αn > 0 et que
αn+1

αn
tend vers L > 0. Montrer que n

√
αn tend vers L.

En déduire que : n

√(
2n
n

)
−→
n→+∞

4 ; et que : n

√
nn

n!
−→
n→+∞

e.

2. Des intégrales avec des changements de variables.

(a) Soit f définie continue sur R. Pour x 6= 0, vérifier que :
1

x

∫ x

0
f(t)dt =

∫ 1

0
f(x.u).du.

(b) Soit Ia =

∫ a

1/a

Arctan(x)

x
.dx, a > 0. En posant t =

1

x
, montrer que : Ia =

π

2
.ln(a).

(c) Soit I =

∫ π/4

0
ln(1 + tan(x)).dx. Avec t =

π

4
− x, vérifier que I =

π

4
.ln(2)− I. Valeur de I ?

Soit J =

∫ 1

0

ln(1 + x)

1 + x2
dx. (On se ramère à l’intégrale I précédente) Montrer que : I = J .

Soit K =

∫ 1

0

Arctan(x)

1 + x
.dx. vérifier que K =

π

4
.ln(2)− J . Conclure que I = J = K.

3. Sur les matrices.

(a) – Vérifier par division euclidienne que : X3 + 2.X2 + 2.X = (X2 +X + 1)(X + 1)− 1.

– On suppose que la matrice carrée A vérifie A3 + 2.A2 + 2.A = O.
Déduire que (A2 +A+ I)(A+ I) = I. Conclusion sur A2 +A+ I ?

(b) On cherche les matrices M telles que M3 =

(
8 0
0 −1

)
= A. Montrer que M.A = A.M .

En déduire que M est forcément diagonale. Prouver qu’il y a une et une seule solution.

4. Divers développements limités.

(a) Au point 0, vérifier que : ln(e2x + 2.ex + 3) = ln(6) +
2

3
x+ x.ǫ(x).

(b) Au point 0, vérifier que : ch(ln(ch(x))) = 1 +
1

8
x4 + x4.ǫ(x).

(c) Au point 1, en posant x = 1 + h, vérifier que : ln(1 + x+ x2) = ln(3) +
4

3
h+

1

9
h2 + h2.ǫ(h).

(d) Soit f(x) =
ex − 1− 2x

3
. Montrer qu’elle est bijective au voisinage de x = 0 et que f−1

y possède un DL2 valant : f−1(y) = y − y2

6
+ y2.ǫ(y).

(e) Montrer que : xn+1 + xn− 1 = 0 possède une unique racine positive xn ; et 1− xn ∼
n→+∞

ln(2)

n
.

(f) Pour : f(x) =
ln(x)

2− x , trouver, pour k ∈ [[0, 3]], f (k)(1). (Réponse : 0 ; 1 ; 1 ; 5 ; par DL !)



300 TABLE DES MATIÈRES

5. Quelques problèmes de dénombrements.

(a) Soit une partie donnée A d’un ensemble E. On suppose que | A |= p 6 | E |= n.

Nombre de parties X telles que A ⊂ X ? (Dire : X ⊂ A ; donc 2n−p cas).

(b) Nombre de parties X telles que X ∩A = ∅ ? (Idem : c’est X ⊂ A).

(c) Nombre de parties X telles que X ∪A = E ? (2p car c’est X ⊂ A).

(d) Nombre de coupes (X,Y ) avec X ⊂ Y ? (3n avec le Binôme de Newton !)

(e) Nombre de coupes (X,Y ) avec X ∩ Y = ∅ ? (Idem car c’est : X ⊂ Y !)

(f) Nombre de coupes (X,Y ) avec X ∪ Y = E ? (Idem car c’est : X ∩ Y = ∅.)
(g) Nombre d’applications strictement croissantes de [[1, p]] dans [[1, n]] ? p 6 n. (

(
n
p

)
.)

(h) (*) Nombre d’applications croissantes de [[1, p]] dans [[1, n]] ? (Ind. f est une telle appl.

⇔ g(k) = f(k) + k − 1 est strictement croisante de [[1, p]] dans [[1, n + p− 1]] !)

En note : une "lemniscate de Bernoulli" (symbole de l’infini), une astroïde (de la trigo-

nométrie) et deux "cardioïdes" (la petite est dite "enveloppe" des normales à la grande) :
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0
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1

x
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0,5

1
0

0,5

-1

0-0,5-1

-0,5

21,50,5

1

-1

0

0,5

0 1

et géométrie projective (cube à 3 points de fuite ; "Annonciation" ; et village du Chazelet, la Meije) :

.


