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‘Exercices d’introduction‘ (corrigés aprés)

1. Simplifier la somme : ! 142+ 3+ ... + 100

2. Simplifier aussi : 2 1+2+2%2+...42%

3. Résoudre l'inéquation : —— <
x

4. Factoriser sur R le polynéome z° —1

5. Factoriser aussi sur R : 2%+ 22 +1

6. Résoudre I’équation : sin(2x — 7/3) = cos(3x + m/3)

7. . Montrer que les médiatrices d’un triangle sont concourantes.

. Déduire que les hauteurs sont concourantes.

8. Soit 2 points A et B situés du méme c6té d’une droite D :

trouver M € D tel que AM + M B soit minimum.3

'Question posée a Gauss, vers 6-7 ans, qui ’occupa peu de temps.
2Probléme célébre : 1 grain en case 1; 2 sur la 2¢; ... 2% sur la 64éme du jeu d’échecs.

3C’est le trajet de la lumiére, selon le principe optique de Fermat ; il contient les lois de Descartes.
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Chapitre 0

Les entiers. Vocabulaire, railsonnements

0.1 Ensemble N=1{0,1,2,...}

0.1.1 Raisonnement par récurrence

Pour montrer une proposition dépendant de I'entier n € N, notée P(n), il suffit de montrer
Déja . que P(0) est vraie [initialisation] et puis :
. si P(n) est vraie, alors P(n + 1) est vraie [hérédité|.

0.1.2 Exemples

n(n+ 1)

—

. Si on initialise & 0, on convient qu'une somme vide est nulle. (Idem, un produit de 0 terme vaut 1).
Puis notons G,, le membre de gauche au rang n, D, celui de droite.

1
. On a de plus : Gn+1:Gn+(n+1)H§ %

1. | A bien savoir et facile: 1+2+...+n=

+(n+1)= ... Dyy1 (aisément !)

En fait il y a une meilleure démonstration : On écrit S=n+(n—1)+...+2+1
d’on par addition : 2.5 = n paquets valant (n + 1) chacun. Fini.

p . n+1
2. | A bien savoir, essentiel : Pour ¢#1, 1+qg+¢ +..+¢" = : ¢ 1 :
s q—

n+1 _ 1

Par récurrence comme ci-dessus. Observer qu'il y a (n + 1) termes dans le menbre de gauche G,.

Autre démonstration : Avec S, =14+¢+¢*>+..+¢" ona:
¢Sy =q+ @+ ... +¢"+¢"". Donc S,(1-¢)=1—-¢""!. Fini.

1) Si ¢ =1, le membre de gauche vaut : n + 1.

2) Un calcul a bien voir : ¢ + q2 +..+¢"=q1+ ...+ q”_l) =q.

1— q(n—l)+1
1—¢q '
3) Exercice : n =2, ¢ = b =1a® =0 = (a—b)(a®>+ab+b?)| |a® + > = (a+b)(a® — ab + b?)
a
3

4) Enfin par exemple : vl 3. (La fraction vaut 1+ z + 22 ; cf. dérivée de f(x) = 2 en 1)

T — r—1

3. | Tout nombre dans N*\{1} admet au moins un diviseur premier

Par récurrence forte. [a bien voir] . Déja, le début est a 2 !
. Ensuite, on suppose le résultat vrai jusqu’au rang n. Alors, soit n + 1 est premier; soit il admet
un diviseur @ avec 1 < a <n -+ 1; alors a admet un diviseur premier p, et p divise n + 1. Fini.

Remarques. 1) Le résultat démontré va étre utilisé juste aprés.

2) On peut montrer que Vn > 2 s’écrit de maniére unique comme produit de facteurs premiers.



0.2 Autres raisonnements

0.2.1 Par I’absurde. Exemple P = {2 3,5,...} ens. des nombres premiers, est infini

Sinon, on aurait P = {p; =2,po = 3,p3 =5,...px} fini; considérons le nombre 1+ 2.3.5...py :

il n’est divisible ni par 2, ni 3, ni 5... ni par py, donc par aucun nombre premier; impossible !

0.2.2 Par Analyse-Synthése : (pour une <)

On examine un sens =- puis autre <=

Exemple. Résoudre (1) v2—x =x. Domaine : z <2.

. Analyse : Si z solution, en élevant au carré, forcément (2) z? =2 — x; forcément x € {1, —2}.

. Synthése : Inversement, en reportant, une seule solution convient =z =1. [(1) &= (2) !|

Autre exemple plus significatif, plus tard :

Toute application R — R s’écrit de facon unique comme somme d’une appl. paire et d’une impaire.

0.2.3 Contraposée : p = ¢ a méme sens que 'implication Non ¢ = Non p, notée
=7 (c’est-a-dire : toutes deux vraies ou toutes deux fausses.)

Exemple 1. p=il fait beau; ¢=je sors [réfléchir a ces 2 implications de méme signification].

Exemple 2. Pour n €N, on a n? pair = n pair.

Il est plus commode de montrer la contraposée, a savoir : si n impair, alors n? impair.

Supposons n impair ou n = 2k +1; alors n? = 4k + 4k + 1 est impair. Terminé.

0.2.4 Par Contre-exemple : (Exemple du contraire)
Un nombre premier est irréductible. Par analogie, on parle de polynéme irréductible.
Un polynome strictement positif sur R est-il forcément irréductible ? non !

Contre-exemple : z'+ 22 +1= (2 +1)? -2 =@ +2+1)@* -z +1).

0.3 Ensemble Z={..—2, -1, 0, 1, 2, ...}

0.3.1 Les deux opérations : + et

Un mot sur chacune des 2 opérations :

2—T7=2+(=7), —7 étant le symétrique de 7. Et la régle des signes pour "."

0.3.2 La notation n.Z

9.7 = {9.k,k € Z}. De méme : 2.Z signifie 'ensemble des entiers relatifs pairs.

0.3.3 La division euclidienne dans Z

1. Théoréme ‘ Soit a € Z,b € Z*. Alors 3!(q,r) (quotient, reste) tels que a = b.g +r avec 0 < r <| b |. ‘

Démonstration laissée en exercice (sur Z, on séme des grains espacés de | b |).
Exemples : 22=73+1 tandis que: —22=(-7).4+6.

2. Définition ‘On dit que b divise a (noté b/a) sia=b=0 ousi b#0etr=0;ce quiest a=bg. ‘
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0.4 Ensembles généraux

0.4.1 Ensemble P(E)= ensemble des parties de F
Exemple. Si F = {a,b, c}, alors P(E) = {0,{a}, {b},{c},{a,b},{a,c},{b,c},{a,b,c = E}} : 8 parties.

| E|=n=|PE) |= 2"

. Sin=0,F = () tandis que P(E) = {0} : ensemble constitué d’une partie, la partie vide !
. Passage au rang n + 1 : Soit E = {x1,x2,...,x,,x}. [l y a les parties ne contenant pas x , au nombre de

2" par hypothése de récurrence a 'ordre n (HR,,) et celles contenant z; mais ici, il y en a autant
="t

En général En effet, par récurrence :

que de celles ne contenant pas x car on leur adjoint exactement x | D’ou 2" 4 2" = 2.2"

0.4.2 Propriétés

(A ou CpA étant le complémentaire de la partie A dans F)

A=B&ACB et BCA
ANB=AUB

et aussl

AUB=ANB

[dém. par double inclusion]
[lois de Morgan|

Associativité de N et aussi  associativité de U

Distributivité de N/U: AN(BUC)=(ANB)U(ANC) etaussi de U/N.

Pour ANB = AU B : . Soit on fait un dessin en position générale appelé "diagramme de Wenn"
. Soit par double inclusion : si x est dans la partie Gauche, montrer qu’il est dans la Droite; et vice-versa.

On définit A\B par A\B={z:2€ Aet 2 ¢ B} =ANB [différence]

Définitions et AAB par AAB= (A\B)U(B\A) |différence symétrique].

La différence symétrique (correspondant au "ou" exclusif) est associative : le plus simple pour
ceci est de faire un diagramme de Wenn. Et aussi AAB = (AU B)\(A N B) clairement.

0.4.3 Relation d’ordre
1. D’abord produit cartésien de 2 ensembles.
Définition ‘EXF est défini par ExF ={(z,y)/ v € E,y € F}. ‘ Exemple :

Si E = {a,b,c} et F'={1,2} , alors ExF comprend 6 couples (a,1) (a,2) (b,1)(b,2) (¢,1) (c,2).
Au passage : | ExF |=|FE|.|F|

2. Relation
e Une relation R est définie par la donnée d’une partie Gr (comme graphe) de
Définition . . PP
ExF par: siz€ E,y€ F, xRy si (exactement par définition) : (z,y) € Gg.
Ci-dessus :

Si Gr ={(a,2),(b,1),(b,2)} , a n’est pas en relation avec 1; mais a est en relation avec 2.

3. Relation d’ordre

Définition ‘R est une relation d’ordre si elle est réflexive, antisymétrique, transitive. Ici £ = F'. ‘

Ce quiest : Vo € E, zRx; (zRy et yRr)= z =y (antisymétrie); et (zRy et yRz) = zRz.

Deux exemples (de relation R.A.T.)
— Dans R la relation < est une relation d’ordre.

— Dans P(F) la relation C est une relation d’ordre. Par contre ici, on peut en général trouver 2
parties A et B telles que A ¢ B et B ¢ A : on dit que I'ordre est partiel ; dans R il est dit total.
(Une relation d’ordre sert & "ordonner" les éléments d’un ensemble).

0.4.4 Relation d’équivalence

1. Définition ‘R est une relation d’équivalence si elle est : réflexive, symétrique, transitive (R.S.T.) ‘

Symeétrique signifiant : Si xRy alors forcément yRx. Explication de ces axiomes : cf. le théoréme.




Exemple. Soit E 'ensemble des éléves d’une école; et la relation R telle que aRb si a et b ont le
méme age. C’est clairement une relation d’équivalence. Donnons une

En général, (ceci pour une relation d’équivalence notée parfois R.S.T.) on appelle

Définiti . . .
=R Classe de x, notée Z, 'ensemble des éléments en relation avec x : & = {y € E/zRy}

Dans notre exemple, il y aurait la classe des éléves 14ans; celle des éléves de 15ans; etc.
On voit que ces classes forment une "partition" de ’ensemble des éléves : une partition étant une
famille de parties disjointes (non vides) dont la réunion est tout I’ensemble E.

2. Théoréme (C'est un fait général) 4

Se donner une relation d’équivalence (R.S.T.) sur E, ou "une partition" de E, c’est pareil car
Les classes d’équivalence forment toujours une partition de I’ensemble FE.

3. Un exemple classique et important : les congruences dans Z (en lien avec 'arithmétique)
La relation dans Z : xRy si z —y multiple de 9 (z —y € 9.Z) est R.S.T. (Clest facile).
Il y a9 classes d’équivalence : {9k}, {9k + 1}, ..., {9k + 8} qui forment bien une partition de Z.

0.5 Exercices corrigés

0.5.1 Meédiatrices d’un triangle concourantes. Hauteurs concourantes
1. Médiatrices : On a M € Médiat[A, B] <= MA = MB. Puis : O € Médiat|A, B| et [B,C]
= OA =0B, 0B =0C; donc OA=0C dou O € Médiat[A,C]; centre du cercle circonscrit !

2. Hauteurs : Faire directement les hauteurs est difficile. On le déduit des médiatrices concourantes,

car en tragant par chaque sommet les paralléles aux cotés opposés, on s’apercoit que les
hauteurs du triangle initial sont les médiatrices d’un nouveau triangle ! Donc concourantes.

0.5.2 Bissectrices (intérieures et extérieures) concourantes

1. Bissectrices intérieures

les bissectrices intérieures sont concourantes en I centre du cercle inscrit. De plus si S est la
surface du triangle, r le rayon du cercle inscrit, p le demi-périmétre 2p=a+b+c: S =p.r.

La démonstration est facile et analogue au cas des médiatrices avec :

I € Biss-int (AB, AC) <= dist(I, AB) = dist(I, AC).
Car si I € Biss-int BAC N Biss-int CBA, alors dist (I, AB)=dist(I, AC)=dist(I, BC'). Ainsi I est
sur la troisiéme bissectrice intérieure. Et avec IAB, IBC, ICA, on a aisément la relation S = p.r.

AB _AB
AC T AC

En effet, tragons la paralléle issue de C' a (A, A1), coupant (A, B) en D. Voyons que AC = AD :
Facile avec des angles "alternes-internes " A1 AC, ACD et "correspondants" BAA,, ADC égaux.

De plus |Si la bissectrice issue de A coupe BC en Ajp, alors:

2. Bissectrices extérieures (Démonstration analogue au cas des bissectrices intérieures)

La bissectrice intérieure de A et les 2 bissectrices extérieures de B et C' sont concourantes
en I centre d'un cercle ex-inscrit de rayon 74; et de méme 2 autres cercles ex-inscrits.

De plus ‘ J et J4 étant les projections orthogonales de I et I4 sur (B,C):CJ =BJy=p—c. ‘
(Pour C'J = BJ4 seul, on peut dire BCI1,4 sur un cercle de centre A*, milieu de BC et de I14 ..)

4 (*) Démonstration facultative : Montrons que 2 classes distinctes sont disjointes par contraposée. Si z € & N ¢, soit
t€g.OnaxzRz, yRz et yRt; donc : xRz et zRy (symétrie) et yRt, d’ot xRt (transitivité), soit : ¢t € &. Ainsi § C & . De
méme (symétrie de ’hypothése) § C & ; soit £ = . Enfin, la réunion des classes disjointes donne E car x € & (réflexivité).
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En effet (difficile !) ‘
. Notons K et L les projections orthogonales de I sur (C, A) et (A, B); et encore :

r=AL=AK,y=BL=BJ,z=CJ=CK. Alorsz+y+z=p,x+y=AB=c,doutz=p—c.
. Notons J4 = proji(I14) sur (B,C);Y = BJs. En prenant 2 tangentes issues de A au cercle
exinscrit,on a: x4+y+Y =x+z24+a—Y ; comme a = y+z,ondéduit : Y = zou BJy = JC =p—c.

3. Les médianes concourantes est une question affine qui ne dépend pas des angles : vue plus tard.

|[Résumé du ch.0)|

1. N : ens. des entiers naturels. Raisonnement par récurrence [noter l'orthographe|. Ex. :

1 1— n+1
1+2+...+n:% 1—|—q+q2+...—|—q":17q Vn € N,n > 2,dp € P divisant n.
- q
sans oublier a® — b = ... provenant de (2) et o +b° =

Pour 1) et 2) il y a une démonstration bien meilleure qu’une récurrence! 3) sert ensuite :

2. Autres raisonnements

1. Raisonnement par I’absurde : P est infini!

2. Raisonnement par Analyse/Synthése. Montrer un sens = ; puis autre <

3. Raisonnement par contraposée. Exemple : n? pair = n pair (utile apreés.)

4. Contre-exemple. z* + 2% +1 factorisable sur R, bien que sans racine réelle.

3. Z : ensemble des entiers relatifs

1. Opérations + et . avec la régle des signes.
2. La notation nZ = {n.q, ¢ € Z}. (2.Z ensemble des nombres pairs.)

3. Surtout la division euclidienne : on la retrouvera pour les polynoémes.

4. Ensembles généraux
1. Ensemble des parties de E. | E |=n =|P(E) |=2".

2. Intersection, réunion, complémentaire : Dém. par double inclusion; propriétés.

3. Relation définies par un "graphe" de ExF. Relation d’ordre : définition, exemples.

4. Relation d’équivalence : méme chose qu’une partition de 'ensemble. (Des exercices corrigés)

Remarques (de logique) :

1) Depuis le début, on a donc beaucoup de "notions premiéres" : déja la langue ! Et des axiomes : ainsi
un énonceé est vrai ou faux (principe du tiers exclus); ou le célébre "postulat d’Euclide" (d’un point
pris hors d’une droite, on peut mener une et une seule paralléle a la droite).

2) Autre donnée : le programme ! cette nouvelle année scolaire du 3éme millénaire aprés Jésus-Christ.?
Pour connaitre année au calendrier musulman, multiplier I’année par 0,97 (rapport de ’année lunaire
a 'année solaire grégorienne) et ajouter 622 : pourquoi 622 ?  Et qu’en est-il du calendrier juif ?

(D’autres calendriers encore; par ex. chinois ...)

®En 1800, Gauss —l'un des plus grands mathématiciens de tous les temps— calcula par algorithme la date de Paques ...



M-+ Exercices: Ensembles N,7Z. Raisonnements. PTSI

1 1 . .
(a) On pose up = 1,uy = 1+I’ Upy1 = 1—|—u— ; calculer ui3 & la calculatrice. Limite 7

n

1)k
(b) Pour w, = Z (ki)l , calculer uyg a la calculatrice.  [On verra la limite au ch.28.]

0<k<n

(a) Simplifier la somme (preuve) : S, =1+3+5+ ...+ (2n+1).
(b) Montrer que : 12 + 22 4 ... + n? _nn+ 1)6(2n +1) (par récurrence, lére méthode).

(c) (*) 2¢ méthode. Veérifier que (1 + h)® =1+ 3.h + 3.h* + 13, puis faire la somme des cas
ot h=1,2,..n. En déduire une forme simplifiée de : So(n) =12 + 22 + ... + n%
n%(n+1)>2
4

(d) Montrer par récurrence sur n que : 13 +23 + ... 4 n3 = noté¢  Sz(n).

. Sur un échiquier de 64 cases, on pose un grain de blé & la 1ére et on double & chaque case.

Nombre total de grains? (*) Nombre de milliers d’années de productions mondiales nécessaires ?

. (a) et (b): Montrer les deux équivalences :
(ANB=ANCet AUB=AUC)< B=C; AUu(BNC)=(AUuB)NC < AcCC.
(c) Résoudre I'équation AUX = B dans P(E). [Ind. SiA¢Z B ... siAC B ...|P(A)| solutions.]

. Concernant la définition de relation :

(a) Si Card(E) = n, combien peut-on définir de relations sur E ?  (*) de relations réflexives 7

(b) Si E =R montrer que xRy si sin(x) = sin(y) est une relation d’équivalence ; classe de 7/6 7

Indication sur (a)l) ExFE a n? éléments; d’autre part, il y a autant de relations sur E que de
parties de ExXFE (les graphes possibles). Cela donne 2"*) relations. Attention 2("°) #(2m)% = 227,

. (*) Soit ug =0, ug =1, upt2 = Up+1 + up. Montrer que u, =2n—1. (Donc u, - + 00).
n—-+oo

[Ind. par réc. n > 2= wu, >n—1; départ : deux indicesn =2, n =3, etsin >2,2n—1 > n+1]

. Constructions géométriques :
(a) A et B étant du méme coté de la droite D, trouver M € D tel que AM + M B soit minimum.
Indications : Existence de M 7 Unicité? Construction si un et un seul trajet ?
. La clé est de considérer le point A" symétrique orthogonal de A par rapport a D.
« A noter qu’il s’agit d’une trajectoire de lumiére : angle d’incidence = angle de réflexion.

(b) Idem, mais cette fois A et B sont de part et d’autre d’une riviére limitée par D et D" paralléles
et traversée perpendiculairement. Indication : La clé est cette fois de translater la riviére ...
(c) Etant donnés 2 droites D et D’ et 2 points A et B | trouver M € D et M’ € D' tels que
A, B, M, M’ soit un parallélogramme. Discuter. [La clé est de considérer une translation]
(d) Etant donné un point A et 2 droites D et D, trouver M € D et M’ € D’ tels que AM M’ soit
équilatéral. Discuter. [La clé est de considérer ici une rotation d’angle 60°]
(e) Etant donné un triangle A, B, C trouver M € (A, B); N € (A,C); P,Q € (B, C) tels que
M N PQ soit carré. (On peut supposer B et C aigus). [Cette fois, homothétie de centre A !|




Chapitre 1

Les nombres réels. Equat. et inéquations

1.1 Ensemble Q des rationnels

1.1.1 Q@Q, avec les opérations +, .

@:{%,aGZ,bGN*}. ona rr'eQ=r+recQetrr cQ.

33 1
Exemples : 0,33 = 100 0) 0,333... = 3 0) 0,999...=1=1,000... € Q (cf. apres)
(Ainsi certains nombres ont deux développements décimaux)

: dmet un dével t décimal
Montrer que = € Q < { z admet un développement décima

périodique a partir d’un certain rang.

Preuve sur des exemples (pour une bonne compréhension) :

= x = 22/7 a un développement décimal périodique de période de longueur au plus 6. C’est obligatoire ;

pourquoi sans calcul?  (Car les restes sont dans {0, ...6} : répétition !)
<z =13,0519171917... rationnel car : z = 13,05 4+ 10™2y ou 10000y = 1917 +y ! donc y € Q, z € Q.
(On peut achever le calcul et trouver une fraction représentative; sauf erreur %57157)

1.1.2 On montre que v2 ¢ Q

a
Par Pabsurde, supposons V2 = — fraction irréductible. On a : a® = 2.b% donc a? est pair; cela entraine a

b

pair (cf. contraposée). Posant alors a = 2k, k entier, on arrive a b%2 = 2k?; donc aussi b pair : impossible.

et donc : V2 a donc un développement décimal non périodique, méme a partir d’un certain rang.

Les réel On va considérer 'ensemble R des nombres réels : nombres ayant au moins un
es réels :

développement décimal périodique ou non, méme a partir d’un certain rang : V2 eR.

Soit 7 € Q. Montrer : s ¢ Q = r+s¢ Q. (Donc v2—1¢ Q)

(Contraposée : Ona r+s€Q=s=(r+s)—recQ par difféerence!)

1.1.3 Avec des racines cubiques : a = \3/ 9+4. V5 + \3/ 9—4.v5 €N

On suppose connu que (u 4 v)% = u3 + 3u?v + 3uv? + v ou bien : (u+v)% = v + v3 + uv(u + v)

et que Vo3 = Ya.3/B. Alors, en élevant au cube, a (notation : @ = u + v) est solution de
23 =184 3.2; mais 2° — 3.2 — 18 = (z — 3)(2* + \.x +6), avec A =3 aisément.

D’ou un trinéme avec A < 0; donc 3 est la seule racine réelle et, par suite, forcément : a = 3.
) ) )




10 CHAPITRE 1. LES NOMBRES REELS. EQUAT. ET INEQUATIONS

1.2 Ensemble R des nombres réels

1.2.1 R,+,. Vocabulaire non a savoir

1. R a été défini comme ’ensemble des nombres ayant au moins une écriture décimale.

2. 2 opérations reliées

+ est Commutative z+y=y+x
Associative (z+y)+z=z+ (y+2)
0 est Neutre pour +
Enfin tout élément a un symétrique pour +

+ est interne dans R (z,y e R =z +y € R), et

[Pour le moment, on dit que (R, +) est un "groupe" commutatif (ou abélien).]

Commutative
. est interne, et Associative avec de plus :
1 est Neutre pour .

Les deux opérations + et . sont reliées par la Distributivité : a.(b+ ¢) = a.b+ a.c.

[On résume ici en disant, pour le moment : "anneau commutatif" (. commutative)].

‘Mais on a mieux‘ (R,+,.) est un "corps" commutatif car, en plus "d’anneau" :

Tout élément non nul est inversible pour la multiplication : "."

Remarques 1) (Q,+,.) est aussi un corps commutatif. Comment le distinguer de R? aprés

2) (C,+,.) est aussi un corps commutatif. Voici de suite une distinction entre R et C :

3. Rest "un corps ordonné" : " <" est une relation d’ordre (ch.0) compatible
avec +et.par A>20: <y = z4+x<z+y et: <y, A>20 = lx <Ay

Alors que sur C, pas d’ordre compatible avec les opérations. Dire "z > 0” est une FAUTE.

(On a lordre lexicographique —du dictionnaire— sur C; mais non compatible avec les opérations).

1.2.2 Définitions capitales

Soit A C R. On dit que A est majorée (par M € R) si Vo € A, x < M ; M est un majorant.
1. M est dit le maximum de A side plus M € A; et analogue pour minorant et minimum.
Enfin  est la borne supérieure de A, notée sup(A), si [ est le plus petit majorant de A.

Exemples
1) A = N n’est pas majorée; on note sup(A) = +oo.
2) A=[0,7]: 7 est un majorant; 7 aussi. Pas de maximum, ici ! sup(A) =n ¢ A.
3) A={1/n,n € N*} est majorée par 1; qui est le maximum. Et :
A est minorée par 0; mais pas de minimum : inf(A) =0 ¢ A (inf est le plus grand minorant).

2. Propriété qui distingue R de Q, donc fondamentale (dite de "la borne supérieure") (ceci est lié a

la définition de R) : ‘ Toute partie non vide, majorée de R admet une borne supérieure dans R. ‘

Ceci est faux pour Q : Si B = {r € Q tels que r? < 2}, sup(B) = v/2 : n’existe pas dans Q.

Conséquence : ‘Toute partie non vide, minorée, posséde une borne inférieure dans R. ‘

(Par symétrie /O, la borne inférieure étant le plus grand minorant.)
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1.2.3 La droite numérique

1.

2.

On représente R par une droite orientée munie d’une unité ; nombres et points se correspondent.

Valeur absolue, définition. | X |[=X st X >0 et |[X|=—-X si X<0. [4|=]|-4]|=4

‘Exemple o jl1=2z|=2x—-1, st x>1/2; 1-2x, sinon.‘

Noter que : |z —x9| <r & z€lxg—r,z9p+7[ car |z —a|=distance(z,a).
Propriétés ||z +y|<|z|+|y|. Dou: |[|z|—|yl|| <lz+y|<|z|[+]y]
Démonstration
1) Le plus simple est d’élever au carré (équivalence dans RY) et zy <|x|.|y]|

2) A RETENIR (ce sera pareil sur C) :
Ona: z=(z+y)+(-y); dou [z|<[z+y|+|(-y)| donc [z]|-[y[<[z+yl;
et on permutte ensuite x et y. Fini.
3) Remarque. En échangeant y en —y : [z —lyl| <lz—yl<|z|+]y]

. Approximation par des rationnels.

Propriété ‘Entre 2 réels a < b, il y a toujours un rationnel dans |a,b[; donc une infinité. ‘

Démonstration. Il suffit de traiter le cas 0 < a < b (sinon, on s’y rameéne aisément).

On peut trouver n € N tel que 1/n < b —a: on fixe un tel n. [L’idée est de "semer" des nombres

k

—, k € N sur la droite] On considére alors I'ensemble FINI { k& : — < b} ; soit p son maximum ;
n

alors p/n convient : il reste a voir que p/n > a; laissé en exercice avec 1/n < b — a.

Remarques

1) Etant donné un réel x, il existe donc une suite de rationnels (méme croissante) qui tend vers .
2) On prend parfois des rationnels particuliers : les décimaux {k/10", k € Z, n € N}.

3) Dans Ja,b[, a < b, on a toujours aussi un irrationnel. 7 €la — v'2,b — v2[NQ : 7+ v/2 convient !

Graphede zw— |22 —1]: ~ et de x+— E(z):

1.2.4 Partie entiére d’un réel

1.

2.

Définition ‘ E(x) ou [z] désigne l'entier le plus prés a gauche de z. ‘ r=FE(@) +f, 0<f<1.

Exercices 1) Courbe de  +— E(z) [E(x+1)=E(x)+1] 2)dexzw~ E(l/x)siz>0.

1.3 Opérations avec les exposants rationnels

1.3.1 Les étapes pour z",r € Q.

1.

Cas r € N.
2%, 23, .. sont connus. Avec z° =1 ona |2™T" =z ™" = (™) (z.y)" =z y"
_ ) N . . 1
. Casr € Z~. Pour étendre la lére relation, on doit poser = * = — pour x # 0.
x

Alors : (z7H" = (2")™', n € N noté 2™™ et les 3 relations s’étendent (& voir).
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3. /"7
n=2:y=z2<{y>0 e y? =z}, soit y=+=, x>0.
n=3: y=az% o {4’ =z}, soit y=z, zek
Le cas n pair : comme 1) ; n impair : comme 2).

4. 2”7 On prend z > 0 sinon comparer (—5), [(=5)%]"/2,[(—=5)"/?]? qui n’existe pas sur R.
Ensuite :
lére chose : on s’assure que (zP)Y? = (2P p e Z, ¢ € N* noté 2P/ (1).
2¢éme chose : on s’assure que si p/q = p’/q’ alors 2P/ = 217 pote 2 (2).
Enfin, avec ceci, on vérifie que les trois relations s’étendent. [laissé en exercice]

Démonstrations de 1) et 2). Désignons par G et D les membres de gauche et droite :

1) On a G = 2P par définition et D7 = [(z'/9)P]9 = [(2'/9)9]P = [z]” d’aprés les étapes 1) 2) 3).
Comme G et D sont positifs, ils sont égaux.

2) De méme, on vérifie que G = D et G et D sont positifs : ils sont égaux.

1.3.2 Exemples

1. Attention |Va?2=|z| !

2. Simplifier la quantité : y = \5/ 8.23.V/22=4.  Trouver y = V4d.x, x€R*

1.3.3 Remarque

Et pour un exposant irrationnel : 10V2 7

b _ eb.ln(a)

Réponse : on passe par les In, exp :

a ,a>0.| Noter aussi que In(z?) =2.In|z| sur R*.

1.4 Equations usuelles

1.4.1 Algébriques

1. Définition : ‘Une équation du type P(z) = 0, avec P polynome est dite algébrique.

2. Le second degré : a.z® 4+ b.x +c¢=a(x — 21)(z — z). En développant et en identifiant :

. —b c
La somme des racines de .z’ + bz +c=0 vaut —, et leur produit vaut —.
a a

Cas de 2?2 — 3z —4 = 0. —1 est racine; lautre vaut donc +4, avec le produit.

3. Inversement z; et z9 sont racines de (x — z1)(x — z2) = 0; on note s =21 + 29, p = 21.22; alors

Connaissant la somme s et le produit p de deux nombres, ils sont solution de 2% — s.z + p = 0.

1.4.2 Irrationnelles

1. | Une équation irrationnelle comporte un ou plusieurs radicaux, en général.

2. Exemple. Résoudre vV +1=2x—1. ‘Le domaine est x > —1; il ne faudra pas 'oublier ...

— Ensuite Premiére facon : on procéde par implications. Forcément sur D, x +1 = 2 —2zx+1ou

2> =3z =0; forcément z € {0,3}. Mais on étudie la réciproque ! Solution unique : z = 3.

— Deuxiéme fagon : procéder par équivalences (ce qui exige plus de soin). Vérifier sur D que :
\/x+1:a:—1<:>(a:+1:w2—2x+1 x—l}O). Etc. Méme réponse.
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1.5 Inéquations

1.5.1 Algébriques

1. On peut faire I’étude de la fonction : x +— f(x) (pour savoir signe et racines).

x>0 = f(z)=x+ 1/x >2 par é¢tude de f sur |0, +ool.

2. Pour z — f(z) = ar’ +br+c¢, a, b, ¢ €R, soit on a 2 racines réelles, soit 1, soit 0 :

Le signe du trinéme az? + bz + c, est celui de "a" a ’extérieur des racines.

. Si pas de racines réelles, considérer qu’on est toujours a ’extérieur.

. La courbe représentative est une parabole (tournée vers le haut <= a > 0).

1.5.2 Irrationnelles
1. Attention : a < b 7$a2<b2 mais 0<a<b=a®><b?
Et aussi : a? <b? A a<b mais a2 <b =|a| < |b]
2. Exemple P(z) < Q(z). Résoudre 'inéquation (1) vz +1 < z — 1.

‘Domaine D: x> —1.‘ Puis sur D: x — 1 obligatoirement positif : = > 1.

On peut donc élever au carré; et on a méme une équivalence :

()= ax+l1<a2®—2c+1, 2>1. Dou:a?—3x>0, z>1, 2> —1. Solutions : |3, +oql.

3. Exemple difféerent Q(z) < \/P(z). Résoudre (2) z—1< Vo +1.

‘Domaine D: x>—1. ‘ Mais ensuite, on va ici étudier deux "tiroirs" :
Cas  — 1< 0: on ne peut pas élever au carré; c’est heureusement inutile. [—1, 1] solutions.
Cas: x>1: (2) <= 2®—32<0; donc [I,+00]N[0,3] =[1,3]. Toutes les solutions : [—1,3].

1.5.3 (*) En compléments : deux exercices corrigés

1. Inéquation avec paramétre : discussion.  Résoudre : |z |[< z + a.

. Le domaine de définition de chaque terme est R. Mais il faut déja que x +a > 0, * > —a.
2 2

. Sur [—a, +oo[ , 'inéquation équivaut & z° < 2?2 +2ax+a® oua: —2.ax<da’ Donc:
2 — _
sia <0 (—2a>0) on obtient : z < a_2 = Ici 7(1 < —a. ‘Pas de solution si a < 0
—2a
, a? —a . —a , —a .
Etsia>0 (-2a<0) x> =3 Ici - > —a Solutions : [7,+oo[ sia>0.
—2a

Bien stir I'inéquation a une interprétation géométrique confirmant notre réponse.

2. Résoudre vz + (r+1)=+vx+2 (1) surle Domaine z > 0.

Ona (1) = 22 +22 —1=—2(x+1).v/x (2) en élevant au carré.

et (2) = 2 —622 —8r+1=0 (3) en élevant encore au carré.
Etudiant f(z) = z* — 622 — 8z + 1, on voit que f, décroissante sur [0,2] puis croissante, admet
une racine a sur [0, 1] et une autre b sur [2,3]. A ce stade on sait que (1) a au plus 2 solutions !

. Etudions la réciproque de (2) = (3). Les solutions de (2) sont exactement celles de (3) telles
que z°+22 -1 <0 (car A>=B?= — |A|=—| B). Soit ¢c=+v2—1,0ona f(c) =8—-8.v/2<0
d’ott : ¢ €]a,b]. Pour avoir 2 4 2z — 1 < 0 on doit étre & gauche de ¢; b est donc exclue.

. Etudions la réciproque de (1) = (2). Ici, équivalence car les 2 membres de (1) étant positifs !

En résumé une et une seule solution : la racine a de f(x) qui est dans |0, v2 — 1].
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M-+ Exercices: Les nombres Réels. Equations, Inéquations. PTSI
) . T—/3 .

1. Sachant que 2,7< e <2,8; puis 1, 7<V3 <1,8; enfin 3,1< 7 <3,2 : majorer (positif).
Tout étant positif, pour majorer N/D, on majore N et on minore D. Idem pour majorer a — b.
Autre régle pratique : ‘on ne majore qu’en valeur absolue |; ou alors attention aux signes !

2. (a) Rappeler une factorisation de a®—bv®; Puisde o+

(b) A ne pas confondre avec (a +b)® : développer cette expression.  Cas de (a —b)3 ?
3. (a) Montrer que z = 13,0519171917... est un rationnel & explisciter sous forme de fraction.
(b) Simplifier la quantité y = \5/ 8.23.V22=%. (Trouver 32672757157 et Vdx si x#0)
4. Equations, Inéquations
(a) Résoudre 'inéquation |z —1|+2.|xz+1|< 3|z | selon divers intervalles de R.
(b) (*) Résoudre |z —y |+ |z +y|=4 en dessinant les points solutions dans le plan R?.
[D’abord le cas : z —y >0 et x4y > 0, qui correspond —a voir— & 1/4 de plan|.
(¢) Résoudre les inéquations en z : = +a+2a(x —1) <0; et (d) az® —(a+ 1)z +1>0.
5. Quantificateurs (juste la définition)
(a) Quedirede z€R si: Ve>0, |z|<e?
(b) Soit ACR. Quedirede BeRsi: (Ve € A, x<fetaussi Ve>0, Iz €A : z>F—¢)?
6. Une inégalité
(a) Montrer que: Yo >0 : z+ 1/z > 2
(b) En déduire, pour a;, dans R™, que : (a1 + ag... + an)(1/a1 + 1/ag + ... + 1/a,) > n>.

7. Graphes de :

(a) y = E(x) (partie entiere) (b) (*) y=E(1l/x), >0 (c¢) (*) y==x.E(1/z), x> 0.

8. Bornes supérieures et inférieures des parties suivantes (savoir la définition)

(a) {(=1)"+1/n, n e N}
®) () {la+bV2];a,beZet (a,b) # (0,0}, [Admis : (V2 —1)" = a, + bp.V2, an, b, € Z]
9. Questions diverses sur les réels (*)
(a) Montrer que : 0 < E(2z) —2E(x) <1; et que: E(E(nx)) =E(z) neN".
n
(b) Montrer que le nombre réel : V2 +v3 n’est pas rationnel.
(c) Montrer que : f/? +52+ f/? —5.v/2 est rationnel.
10. (a) Résoudre: (*) |z | < x+a. Discuter.

(b) Résoudre : (*) Vr+ (z+1)=+Va+2




Chapitre 2

axr +b

Le second degré. r — az’ + br + c, — ...
cx + d

2.1 Paraboles

2.1.1 Paraboles d’axe // Oy : z+ ax*+bx+ec, a#0.

1. Parabole que I'on peut construire avec la dérivée

La dérivée s’annule pour z = 5 Avee |a.x? +bx+c=a.(zx —2)(z — 2)| on déduit :
a

— c 21+ 29 -b . . ,
21+ 29=—, z21.20 = — | donc : = — est le milieu des racines (réelles ou non).
a a

2 2a

2. Qu’on peut aussi construire sans la dérivée :

Exemple y = —xz?+ z+ 2, par translation de repére : ‘X =x—x9, Y=y—1yo ! ‘

1 1 1 9
On écrit la "forme canonique" y = —(z? — z — 2) = —[(x — 5)2 -2— Z] =—(z— 5)2 +1
=z— 19
Donc si on pose { )}f _ ;_ ;;i [nouvelle origine Q(i’ Z)]’ ona: Y =—X2 Aisé.

Tracé et vérifications : point <x 0> ;  racines : —1 et (donc) +2.

y=2

2.1.2 z+— +/x = f(x): Demi-parabole d’axe Ox

1. La courbe :

1
(a) On rappelle que (vz) = NG Tracé ci-dessous.
(b) En réalité : y = /z = y? =z, demi-parabole; l'autre moitié : y = —v/z (dessous).

Remarque : Les notations sont parfois y2 = 2pz.

2
1, !
0
o x
‘
0 5
x

2

2. Cas: x+—— £/x, T VT —2, T o +2; T — /—x et T V2 —um.

15
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2.2 Hyperboles

ar +b
2.2.1 Hyperboles équilatéres : y = i , ¢#0, ad — bc # 0.
cr+d
o 2z —1 s "
1. Un cas traité : y = ) sans nécessité de dériver.
x

Divisant 2z —1 par z+1 ona: y=2—

3 { X=z+1 translation de

ac—i—l; Y=y-—-2

/
/

repére ... qui conduit a: Y =-3/X. Tracé : et vérifications ...

(en particulier, les intersections avec les axes !)
ar +b
cx+d’

Hyperbole d’asymptotes paralléles aux axes : donc orthogonales : on dit hyperbole "équilatére".

2. Cas général : y = c#0, ad—bc#0

2.22 Cas: y= w : hyperbole avec asymptote oblique
dr +e
1. Exemple. y = % =—z+1+ x—32 en divisant —2? + 3z = (z — 2)(—z + 1) +2
Sur la deuxiéme expression, la dérivée est facile et ici: 3 = —1 — ﬁ > 0 pour x # 2.
2 asymptotes : ‘x =2 Verticale‘ et ‘y = —x+1: asymptote oblique‘ car

Une droite yp = a.x +b est asymptote a une courbe yo = f(x) siona: yo—yp—0.

Dans le cas d’asymptote oblique, on a: a = lim @(75 0); puis b= lim f(z) — a.z.
r—0o0 I T—00

Enfin si on peut, on cherche & savoir si c’est b™ ou b~ ou si y — (a.z + b) tend vers 0" ou 0.

Dans notre cas y— (—z+1) = +

est, de plus, de signe connu [0" en +00; 0~ en —oo| : courbe

-2

\\
EANAN

au dessus en 400 de ’asymptote ; en dessous en —oo ; passe par O... tangente 7

24
2. Note : Siy = %, d # 0, numérateur # 0, on a: (drx+e).y = az?® + bz + ¢; une "conique"
car : zte
Définition On appelle conique toute courbe d’équation de degré 2 :

Az? + Bxy + Cy? 4+ Dz + Ey + F = 0 en repére orthonormé ou non.

Hors programme | Sauf cas dégénérés, une conique est une parabole, une ellipse ou une hyperbole. ‘

(Cas dégénérés :

0 y2 — —1; point z? +y2 = 0; droite double y2 = 0, 2 droites paralléles y2 = 1 ou sécantes y2 = xz.)
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2.3 Cercles et ellipses :

2.3.1 Casde z+— V1 — 22

1. On obtient la moitié du cercle trigonométrique z% + % = 1. (y = —v/1 — 22 Tlautre moitié)

2. | Plus généralement le cercle de centre C(a,b), de rayon R >0 : (z —a)®>+ (y —b)* = R*.

2.3.2 Cas de 2z — %.\/1 — x2

/ /

1. Définition. L’application M(z,y) — (' =z, ¢y’ = =.y) est appelée dilatation (ou affinité) de

Y,

@ = cos(t) é§ ellipse { ’ :1608(t)

y = sin(t) y= §.sin(t)

N =

1
base Ox, de direction Oy, de rapport 3 cercle {

Par cette affinité, le cercle trigon. (décrit par M) a pour image 'ellipse (décrite par M’) d’équation

)
L 1
y = 3 1—2/2; et revenant aux lettres usuelles (;) on a la courbe image : y = 5@ )

x? 2 L x = a.cos(t)
+ =5 = 1|ou en paramétriques :

2. Note : Une ellipse a pour "équation réduite" y = b.sin(t).

a2

2.4 Quelques problémes du second degré

2.4.1 On pose f(r) = a.z’. Montrer que la tangente en M(x,y) coupe Ox en T(z/2,0)

Solution :  On va mettre comme lettres Mj(zp, a.x%) pour que ce soit plus clair.

Equation de la Tangente |Y — f(x0) = f/(20).(X —x0)| ou Y — a2 = 2.0.20.(X — 0).

T T
Donc YV =0= X =z¢ — 70 = 70 si g # 0 (supposé). D’oul une construction de la tangente.

\

fig 2. et fig.3. pour apreés

2.4.2 Soit f(r) = a.z’. Montrer que la normale en M (z,y) coupe Oy en K tel que
QK = cte, Q = proj, (M,Oy) (si 2 droites L le produit des pentes vaut —1)

1 -1
Equation de la Normale | Y — f(xg) = f’(:L‘o)'(X —xp)|ou Y —azk= 2.a.x0'(X — xp).
1 S 1
X=0=Y-= a.x% + 2o Dou QK = %a indépendant de x( choisi sur la parabole.
. No"

2.4.3 Soit f(z) = a.2’. Trouver c tel qu’on ait : f(b) — f(a) = (b—a)f'(c)
a+b

Trouver ¢ = ce qui donne une propriété géométrique de la parabole d’axe // Oy.
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2.4.4 Trinomes 2% —z —1 (nombre d’or) ; et 22 rr+1 (racines cubiques de 1)

1+V5 1++5
2 LS

1. 22—z — 1 est réductible sur R, de racines ~ 1,618 nombre d’or".

O =p+1| (carz?=x+1) don ¢? ~2 618 [=e=vV14+e=1/1+/1+¢p.]
1

1 1 1
—=p—-1~0,618 (car x=1+—) [=po=1+—=1+
¥ z %)

1
1+

- -1 3
2. 22 + x4+ 1 est irréductible sur R. A = —3 = (Z\/§)2 racinessur C: j et j |j = 5 + zg

Et comme |2% —1=(z —1).(z2 + 2+ 1)| car a®—b> = (a —b)(a® + a.b+1?), les racines de

z?+2+1 veérifient forcément 22 = 1 : racines cubiques de 1 |donc P2=1, 1+j+j*>=0.

1.2.7/3 —i.2.7/3 _ ei.4.7r/3

=j* ou j2=1/4,j=1/j

(Si on connait la notation d’Euler : j = e ,j=ce

car j, j sont de module 1). Finalement : |2% 4+ 24 1= (z — j)(z — j2) sur C.

2

Changeant = en —z, x? — x4 1 est irréductible sur R; 22 —z 4+ 1 = (x + j)(z + j2) sur C.

2.4.5 Cas de paramétre : m.2’>+ (m+1).x+ (m+1) =0
1. Montrer que si m < —1, ou m > %, il n’y a pas de racine en xz. Cas m=—-1 et m= %?
2. Quesi —1 <m <0, il y a 2 racines en x de plus de signes opposés. Cas m =07

. 1 . . . .
3. Quesio<m< 3’ il y a 2 racines en «, de plus : négatives.  Faire un tableau selon m.

Cas: m=-2, -1, —=1/2, 0, 1/4, 1/3, 1, 2; y = f(z) :

2.4.6 Exemple précédent : comment savoir la position de 7o = —1 / aux racines
. . — 1) —v/—3m2 -2 1 - 1) ++v—-3m2 -2 1
1. Dire : =z entre les racines < (m+1) 5 o m <-1< (m+1)+ 5 i m
.m .m

. est non seulement peu commode (c’est clair)

. mais de plus faux si m < 0 vu que la racine & droite est plus petite que celle de gauche !

2. Méthode : Si f(z) = a.z’ + b.x + ¢ = a(z — z1)(x — x2), a.f(xg) = a®.(zg — x1).(zo — x2)

Donc : z( extérieur aux racines <= f(zy) du signe de "a".

Et si pas de racines réelles, z( toujours extérieur, f(zy) toujours du signe de a.
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Quand zx( extérieur, pour savoir quel c6té, comparer zy a la demi-somme —.
a

3. Dans l'exercice : trouver que —1 est toujours extérieur aux racines; et :
N . . 1
—1 est a droite des racines < m 6]0,5].

2 2
2.4.7 (*) Soit l’ellipse d’équation x_2 +L =1 ..
a?  b?

On la coupe par une famille de droite de direction fixe Dy : y = m.x + A (donc paralléles).
177

2. Justifier sans autre calcul quasiment que les milieux des points d’intersection sont alignés.
x/ + .Z'”
2

1. Vérifier qu’a 'intersection on a une équation de degré 2 en x.

. . = < —
=p.A, pfixe. Puis yr =q.\, qfixe. Dou OI col. & u(p,q).)

(Trouver =z =

2.4.8 (**) Inéquation avec paramétre : exercice

Résoudre : z —a < vz +a en discutant selon a.

1. Domaine : x > —a.
Puis on va discuter la position de z par rapport & a; donc de la position de a par rapport a —a;
donc de a par rapport a4 0. D’ou :

2. ‘cas a>0 ou —a< a‘ [—a, a] est solution ; puis sur [a, +0o[ ¢lévons au carré :
on a une inéquation de degré 2 et il faut placer a par rapport aux racines.

Rappel

Sif(x) = px? 4 qu + 7, f(a) est du signe de p pour a extérieur aux racines et de —p, sinon.
Pour a extérieur, le comparer a la demi somme —q/2p, pour savoir s’il est & gauche ou a droite.

Iei f(z)=2?—(2a+4 1)z +a®> —a. Et on doit avoir : = > aN [z, z3)...

On réunit alors les 2 casiers : Solutions [—a,a]U [a,x2] = [—a, x9)

3. lcasa <0 ou a< —a‘ Sur le domaine, chaque membre est positif; on peut élever au carré
et on a une équivalence ! Par contre, il faut placer —a par rapport & des racines éventuelles ...

Solutions a < —1/8 : aucune.

—1/8 < a <0 : entre les deux racines, voila les solutions.

Comme vérification, le cas a = —1/8, une seule solution : Tangence !
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CX+D

Exercices: Quelques problémes du second degré. PTSI

. Tracer la parabole d’équation y = —z> + 2 + 2 sans dériver mais par translation de repére.

Vérifier avec les intersections avec les axes.

2z — 1
. Tracer I’hyperbole d’équation y = z
z+1

sans dériver si possible; et vérifier, idem.

. Résoudre :  (a) V2 —2 > 2 (b) V]z—-3|<x—-1 (c)z—3<V/([1—2x)(z—2)

(d)xz—2<+/|z—8] (¢*) Placer —2 par rapport aux racines de m.z? + (m 4 1).z + 1.
2.2% + 3.z +2 —z2+3.
. Tracer ’hyperbole d’équation : y = % ly = Lf vue en cours.|
x T —

. Soit F(0,p/2) et D: y=—p/2. Lieu de M(z,y) équidistant de F et de D ?

[Trouver : la parabole d’équation : 2% = 2.p.y. (F est le foyer, D la directrice).|

2

. On coupe la parabole y = a.x” par des droites de direction fixe y = m.x + X\. m est donc fixe

Que dire des milieux des points d’intersection obtenus quand A varie ?

. On coupe ’hyperbole y = e par des droites de direction fixe y = m.x + A.
x

Que dire des milieux des points d’intersection ? Note : le repére peut étre ici non orthonormé !

. On coupe ’hyperbole y = @ par une droite D : y = a.xz + b.
x

On note {A, B} les points d’intersection de D et de ’hyperbole et {C, D} les points d’intersection
de D et des asymptotes. ~ Montrer que [A, B] et [C, D] ont méme milieu.

. (*) Théoréme de la puissance d’un point/ un cercle. Soit C(C, R) un cercle et D(A, u') une droite ;

avec ||| = 1. Si W varie en direction et si DNC contient 2 points M, M’, le produit AM.AM’ est
constant et vaut puiss(A/C) = CA%? - R? = d*> — R?, appelé : puissance du point A par rapport a C.

D:AM =\7%. C:CM? = R?. Donc: (CTZH—W)Z — R? donne : )\2+2.)\.(7.CT)4)—|—CT>42—R2 =0,
— - ’ — 1— IRy T~ A2 2 .

car || o] = 1. Vérifier alors : AN = (A w).(NuW) =AM .AM' = CA® — R*. Divers cas de figure
(A sur le cercle, intérieur ou extérieur : dans ce cas-ci, prendre aussi une tangente...) 7




Chapitre 3

Affb, C’ff, Binome. Injections et surjections

3.1 Arrangements, combinaisons

3.1.1 Définitions

Soit un ensemble a n éléments, AfL désigne le nombre de k-uplets rangés (k < n) possibles;
on dit nombre d’arrangements ;

Et C’ﬁ, encore noté <Z> désigne le nombre de parties (non rangées) de k éléments parmi n ;

on dit nombre de combinaisons ou nombre de choix.

Exemple. Soit n =5, k=3; E={a,b,c,d,e}

e Arrangements de 3 éléments parmi 5 : il y a (a, b, ¢) (a,b,d) (a,b,e); donc 3 commengant par (a,b,?)
et si on commence par (a,c,.) ou (a,d,.) ou (a,e,.) cela fait donc 4.3 cas a ce stade [avec les (a, b, .)].

Et comme on peut commencer par b, ¢, d ou e (5 cas équivalents), cela fait Ag = 5.4.3 = 60.

5

e Combinaisons : C’g’ = (3

> =10 car on a exactement les cas : {a,b,c} {a,b,d} {a,b,e} {a,c,d}
{a,c,e} {a,d,e} {b,c,d} {b,c,e} {b,d,e} et {c,d,e}.

Remarques O = <g> =1 (seul choix : la partie vide) et C) = <Z> =1 (la partie pleine).

C’}L = (?) =n C’Tlf = C’g_k ou (Z) = <n i k‘> (Choisir k éléments ensemble, c’est en laisser n—k).

3.1.2 Calcul de AF

|
Ona:| A" =n(n—-1).(n-2)..(n—k+1) = ﬁ en convenant que : n! =n.(n—1)...1 0!'=1.
n—k)!
o . e 3 5.4.32.1
Voir déja que (n+1)! = (n+1).n! pour n > 0. Ci-dessus, cela faisait Az =5.4.3 = 51 = 60.

Démonstration
Supposons F = {1, z9,...,2,}. Comptons les k-uplets (ordonnés, donc) :

On va supposer que x7 est en lére position : il suffira alors de multiplier le résultat par n carily an
cas identiques, & savoir s, ... ,x, pourraient étre en lére position!

A ce stade, (21,7,...) , on a (n — 1) posibilités équivalentes pour le 2¢éme casier car x1 exclus ! On va
donc supposer, de méme, que l'on a (x1,z9,7,...) et on multipliera (& nouveau) par (n — 1) cette fois.

On poursuit jusqu’a arriver & (z1,...,x) : au total n(n —1)...(n — (k — 1)) cas; terminé.

On a donc : ‘Az = n! facons de ranger n éléments parmi n (encore une fois 0! =1). ‘

21
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3.1.3 Calcul de C* (en le reliant a A")

Ak !
Ona Ay =k.Cyj; don Cy=— cequidonne: |Cy= <Z> N k:!.(nn— k)l

Démonstration. Comptons les k-uplets (ordonnés). lére fagon : il y en a AfL; 2¢éme fagon : on choisit les
Cﬁ = <Z> parties a k éléments; et on range chacune d’elles de Aﬁ = k! facons; d’'ou k! . Cﬁ k-uplets.

Forcément AF =Fk!. CF.

. n n
Exemples. Revoir que < k‘) = <n B k:>

n\ s (n\ _n(n-—1)
<1>_n... et en plus Cn—<2>—72

3.1.4 Autre calcul : Triangle de Pascal

Voici comment celd fonctionne :

Y = <8> =1 (lére ligne; ou n = 0)

= <(1)> =1 Ccl = <1> 1 (ligne o n = 1)

C§:<(2)>:1 021:@) 2 022:(;):1

chaque terme (sauf lére ligne; ot n» = 0) étant somme de celui au dessus et dessus a gauche (si personne,
mettre un zéro) ; ou encore le méme triangle avec les valeurs :

(Lere ligne; ou n = 0)
(ligne on n = 1)

— ===
=W N =
S W =
==

—

(5éme ligne!)

Démonstration. On pourrait vérifier cette égalité avec la valeur ci-dessus.
Mais on va faire une autre preuve sans calcul ! Voici : Les parties a k éléments (n > k > 1)

. soit contiennent z : il faut exactement choisir (k — 1) éléments (z; connu) parmi (n — 1)
. soit ne contiennent pas xj : exactement choisir & éléments parmi (n — 1) (hors z; exclus). Fini.

Exercices
1. Calculer C3 = <§> (déja vu) par le triangle de Pascal.

2. Montrer que le produit de n entiers naturels consécutifs est toujours divisible par n!
(en reconnaissant un coefficient binémial dans la fraction).

Remarques

L, Ces divers coefficients permettent des calculs de dénombrements.

n
k
. On va voir aussi d’autres relations importantes sur ces coefficients.

. Les Aﬁ ont permis d’atteindre les C,’i = ( ) fondamentaux comme on va le voir.
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3.2 Le bindme de Newton

3.2.1 Exemples

Ona: (a+0b)?=a?+2a.b+b? et donc : (a —b)? = a® — 2a.b + b
(a+0)° = a® + 3a*b + 3ab® + b* et donc : (a —b)® = a’® — 3a®b + 3ab* — b°
3.2.2 Théoréme
a + b Z ( ) anik.bk = ZCSanikbk a — b Z ( ) a/"*kbk — Z(_l)klc’sanfkbk.

k=0 k=0 k=0 k=0

"t — (a +b)".(a + b).

(a +b), n fois, on aura (pour une raison d’homogénéité)

Démonstration. On peut faire une récurrence (fastidieuse) avec (a + b)

Directement : Dans (a + b)" = (a + b).(a + b)...
que des termes du type a" kP ; combien ?

Dans les n paquets (a+b), il faudra exactement choisir (combinaisons) k paquets ot 'on sélectionne "b" ;

n ll

dans les autres facteurs, on prendra alors "a Ainsi, cela fait donc C’,’i = Z termes.
(Exemple : nombre de termes en a®b dans (a + b)>? choisir b dans le ler ou 2éme ou 3éme facteur).

)3

3.2.3 Relations importantes

n

k

n

=

n

k

On a:

n

k—1 : .
C.-1 ou bien : ( P

[en]

(

n

k

) =2"=|P(E)| st |FE|=n (somme dune ligne)

1+1)" =) Ck=
k=0 k

sin>1:CY—Ch+ 02— ..=0; oubien 8)—(

n>1:C04+C2+ 0+ . =Cly 3+

n

1

)+ ()

L=2""1 ou Z(
J

2

n

2j

=0

)-3(

sinz1

n
2j + 1

donc :

) — 271,— 1

Ck-l—l

Cf—i—CfH—F...—i—Ck il Ou

2.

k<j<p

(

J

k

)=

p+1
E+1

) (somme d’une colonne du triangle ici)

Démonstration
peut se voir par calcul facile; (aussi par raisonnement comme pour le triangle de Pascal)

1)
2) C
3)
)
5) C

1 est aussi le nombre de parties & k éléments ; on retrouve | P(E) |;
Developper (1 —1)™; retenir cette idée qui sera généralisée avec les complexes !

4) conséquence de 3) en tenant compte de 1); ne pas oublier : n > 1;

C’lﬁ:"ll ou : <Il<:> = (li:——il_—11> — (k‘j— | ) pour 1>k avec, sil =k, C'k'|r1 (
En ajoutant ces égalités on a des simplifications "dominos" ou "télescopiques" classiques :

k
k+1> =0

& bien voir !

k+1
C’l

Note On aurait pu faire ici une récurrence sur p; la clé étant aussi un emploi réitéré de la formule du

triangle de Pascal (avec, bien stir, la relation immédiate :

3.2.4 Reésumé a bien savoir.

CF =

k+1
Ck—l—l

=1 ou (

Attention a ne pas confondre :

n

n

six =

kk _ ok 2\ | 7 i S
ZCWL = Z <k> " = (14 x)" | redonne le binéme si x =
k=0 k=0
a"™ =" = (a—b)(a" +a" "t + .+ ad" T ")

QIS o>

)-

GOt

k+1

donnant

=..7
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3.3 Injections. Surjections

3.3.1 Fonctions et applications

1. Définitions
Une fonction f: E — F' est une correspondance (ou une relation de E vers F')
telle que chaque x € E ait au plus une image dans F.

Une application de F dans F est une fonction telle que chaque =z € E ait
une et une seule image dans F.

Exemples
1) & — 1/x est une fonction de R dans R. C’est une application de D = R* dans R. On dit que
D =R* (ouDy) est le domaine de définition de f.

2) z € R — y € R tes que 22 + y? = 1 (cercle trigonométrique : partie de RxR appelée graphe),
n’est pas une fonction (car 1/2 a deux images +v/3/2). (Donc, non application)

3) z—y tel que == y? n’est pas une fonction de R dans R. Idem.

4) E=1{1,2,3,4}; F ={a,b,c}; f:1+ a,1+b,... ne peut étre une fonction.

5) E=1{1,2,3,4}; F ={a,b,c}; f:1—a,2+ a,3 — ¢,4— b est une application.
6) On notera F([a,b],R) I'ensemble des applications de [a, b] dans R.

2. Composition : ‘On définit, quand c’est possible, la composée par gof(x) = g[f(z)]. ‘

Exemple. f: ()— ()% g=1In;: gof(z)=In(z?), fog(z)=In?(z); ce n'est pas pareil !

Propriété : ‘La composition (dés qu'elle existe) est toujours associative. ‘

En effet notons f(z) =y, g(y) = z; alors g[f(x)] = g(y)
- (hog)of(x) = hog[f(x)] = hog(y) = hlg(y)] = h(z) et
- ho(gof)(x) = hlgof(x)] = hlg(f(2))] = hlg(y)] : idem.

Notations. Si A C E, | f(A) désigne la partie de F suivante {f(z),z € A}.
Ainsi, dans l'exemple 5) : f({2,3}) ={a,c} ou sin(R)=[-1,1].

De méme si B C F, on définit | f~1(B) = {z € E: f(z) € B}.| (On n’a pas dit f bijective !)
Ainsi, dans I'exemple 5), f'({a,c}) = {1,2,3} ou sin '({0}) = {k.7,k € Z}.

Avec ces notations, précisons le domaine de gof : Il faut exactement que x € Dy et f(x) € Dy;

donc (4 ne pas savoir ) € Dy et € f1(D,): Dyys=Ds0fHDy).

3. Nombre d’applications de E dans F' si E, F finis :

Notons | E |=p et | F|=n (attention a cette inversion des lettres voulue -cf matrices-)

Théoréme : |11y a exactement n? (ou | F [P applications de E dans F.

(Cest pourquoi, Pensemble des applications de E dans F, noté F(E,F) est aussi notée FE).

Démonstration. Supposons E = {z1,....,xp}; F ={y1,...,yn}
Alors 1 a n images possibles : on fait un choix et on multipliera la réponse par n; xo a aussi n

images possibles; etc. Au total, celd fait exactement nP cas possibles.

Exemple. Nombre de facons de répartir 30 éléves en 3 classes Allemand, Espagnol, Italien ?
On est dans le cas précédent : cela fait 33 possibilités.
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3.3.2 Injections

1. Définition
On suppose déja que f est une application de E dans F' : Tout x de E a une et une seule image.

‘Une application est dite injective (ou injection) si tout élément de F' a au plus un antécédent.

Exemples essentiels a comprendre

l)zeR— z? € R est non injective car y =4 a deux antécédents +2 et —2.

2) Par contre € R — 22 € R est injective !

3)Si E={1,2,3,4}; F={a,b,c}; f:1—a,2+— a,3— c,4+ b, est non injective car y = a
posséde 2 antécédents.

2. En pratique. On a, pour une application f de E dans F':

f injective = [r# 2 = f(z) # f(2), Va, 2 € E] < [f(z) = f(2') = 2 =2].

C’est-a-dire, pour montrer f injective, on montre une implication (ou sa contraposée).

3. Théoréme. Nombre d’injections si F, F' sont finis :

Si E ap éléments et F' en a n; alors : si| E|>| F'|,ily a 0 injection;
si |[E|l=p < |Fl=n, ilya: n(n—1)..(n—p+1)= AP injections.

Démonstration. Supposons E = {z1,...,zp} F={y1,...,yn} et p<n.

Alors x1 a n images possibles : on fait un choix, par ex. y; et on multipliera la réponse par n;

x9 posséde, alors, n — 1 images possibles car y; est interdit ... Et x, aura, pour finir, n — (p — 1)
images possibles. D’otu: n(n—1). ... .(n —p+1) cas.

Remarque. Une injections de {1,2,3} dans {a,b,c,d, e}, cela revient a ranger 3 éléments parmi 5;
parex : 1+ b, 2+ ¢, 3+ a: ou encore (b,c,a) cela fait donc -a nouveau- : 5.4.3 cas !

3.3.3 Surjections

1. Définition
On suppose déja que f est une application de E dans F': Tout z € F a une et une seule image.

‘Une application est dite surjective (surjection) si tout élément de F' a au moins un antécédent.

Exemples essentiels a comprendre

1)z eR— z? € R est non surjective car y = —4 n’a pas d’antécédent.

2) Par contre x € R — 2® € RT est surjective !

3)Si E={1,2,3,4}; F={a,b,c,d}; f:1—a,2— a,3+ c,4 — best non surjective car y = d
ne posséde pas d’antécédent.

2. En pratique. En notant f(F) = {f(z),x € E} on a, pour une application f de F dans F :

‘f surjective < f(E)=F < Vy € F l'équation en x: f(x) =y, a au moins une solution. ‘

Exemples ci-dessus

Dans 1) Ici, on avait f(R) = R" # R : f non surjective. (On dit aussi inclusion stricte C)
Dans 3), on avait f({1,2,3,4}) = {a,b,c} € {a,b,c,d} : f non surjective.

3. Nombre de surjections si F, F' sont finis :
Cette question est plus difficile et ne sera pas utile. Exercice (*) :

.SiEFa p élémentset F' n; alorssi | E| < |F |, ily a0 surjection
si |[El=p > |Fl=n, ona: Sp,=n(Sp—1n+ Sp—1,n-1)-
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3.4 Bijections

3.4.1 Définition

On suppose déja que f est une application de E dans F' : Tout x de E a une et une seule image.

1. ‘Une application est dite bijective (bijection) si tout élément de F' a un et un seul antécédent. ‘

C’est dire f a la fois injective et surjective.

2. En pratique. | f bijective < Vy € F I’équation en x : f(x) =y a une et une seule solution en z.

3

Exemple : z € R — 23 € R bijective; 1’équation 2® = 4 a une et une seule solution : = = V/4.

3.4.2 Existence de la bijection réciproque

1. Théoréme

Si f est bijective de E dans F, on peut définir une application de F dans E, notée f~1, a
savoir y — z, son seul antécédent; celle-ci aussi bijective et f~lof = Idg, fof~!=Idp.

Dém. laissée en exercice. (Idg signifiant x € E — x € E)

2. Exemples Voir sur le méme dessin, les graphes de f et f~!:
1) z € R — 2 € RT est bijective, de bijection réciproque : Vo
)z eR— 23 € R est bijective, de bijection réciproque : v

1

3) f(z) = 2.z — 1 est bijective de R dans R; f~!(z) = 5(3: +1).

)

4) La fonction In est bijective de R™ dans R, de réciproque exp.

3. Note Quand f est seulement une application, on parle de f _1(B), B étant une partie de F' !

3.4.3 Nombre de bijections si F, F' sont finis

Si Eap ¢léements et F' enan; alorssi | E|#| F |, 0 bijection (clair).
1. Théoréme | Si | E |=| F |=n, FINI, on a [f injective] < [f surjective] < [f bijective].
Iy adonc A) =n! bijections possibles.

Démonstration. Si | E |=| F |=n , FINL
e finj. = f surj. : Quand f est injective, il est facile de voir que f est bijective de E sur f(E);
donc ici | E |=| f(E) |=n. Ayant f(E) C F, de méme cardinal FINI, il est é¢gal a F.
e f surj. = f inj. : Si f n’était pas injective, on aurait | f(E) |< | E |=n =| F'|; f ne pourrait
étre surjective ! On a fini. Attention : f peut étre ni injective, ni surjective !
2. Définition
‘Une bijection de E dans E est appelée permutation; Si | E |=n, il y a donc n! permutations. ‘

Exemple : & — 3 bijective de R dans R. Si E = {a,b,c¢} a+ b, b ¢, c— a Dbijective.

3. | Attention | Si E est infini, on peut trouver une application de F dans E :

. injective, non surjective : par exemple n — n + 1 dans N
. et surjective non injective : 0—0 et n>1 —n—1

3.4.4 Autres propriétés

1. Composition :

La composée de 2 injections est injective; la composée de 2 surjections est surjective.
Donc la composée de 2 bijections est bijective.
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Démonstration facile dés qu’on a assimilé les définitions :

1) Soit = # 2’ alors f(x) # f(2') vu que f est inj.; puis g[f(x)] # g[f(2")] vu que g injective.
Donc gof(z) # gof(x') : d’ott gof injective

2) f sujective signifie f(E) = F'; puis g surj. signifie g(F) = G. or, aisément, gof(E) = g[f(F)].
Donc gof(E) = G : c’est gof surjective.

3) Reésulte de 1) et 2).

2. Une réciproque :

Si gof est injective, alors f est injective; si gof est surjective, alors g est surjective.

Démonstration
1) Supposons existence de x1 # x5 avec f(x1) = f(xz2) (f non injective).

Alors clairement  gof(x1) = gof(x2) : gof non inj. [On pouvait éviter la contraposée !|
2) Supposons g non surjective, alors g(F) € G; a fortiori gof(F) C G : gof non surjective.

Conséquence

Une application f: E — E est dite involutive si fof =Id (Id:z+—— x).
Si f est involutive, forcément f est bijective et f~' = f (exemples : symétries).

En effet f sera a la fois injective et surjective car Id est bijective; d’ou f bijective.
Puison a: f~'= flofof = f.

3. Exemples
Trouver des involutions (autre que Id) :
.de R dans R;
. puis de R* dans lui-méme
. puis du plan affine P = R? dans lui-méme.

Solution

ercR—yeR telsque z+y=a; oubien f(z)=a—=x.
e Deméme: z € R* — y e R* telsque z.y=k#0.

e Voici des exemples et contre-exemples :

1) Une translation t de vecteur % dans le plan affine P = R? est une bijection mais non involutive
(f1#f) sauf si W = 0 auquel cas t— = Idp !

2) Les symétries par rapport a un point sont involutives; ou encore :

3) les symétries par rapport a une droite Di, de direction Dy non paralléle & Dy sont involutives;
Un cas particuler est celui des symétries orthogonales.

Facultatif :

4) Une rotation ry4 o de centre A, d’angle ¢, est bijective non involutive sauf si &« = 0 ou 7 (27).
5) Une homothétie hy j de centre A, de rapport k # 0, est bijective non involutive sauf si k = £1.

Dessins 7

Exercice 2

2 En complément :

. Si x ¢ Q, montrer que: 1 —x ¢ Q.

) ) xT € — X
. Déduire que f : { mER\ng—fc

« Dessin de f 7 Soit maintenant : g¢g: 1/2—0; 0+ 1/2; x+ x sinon :

vérifie fof = Id; donc bijective (involutive).

. Justifier que gof est bijective de R dans R; continue en aucun point ! (cf. ch. Continuité)
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CHAPITRE 3. AX, C¥ BINOME. INJECTIONS ET SURJECTIONS

Exercices: A%, C*, binéme. Injections, surjections. PTSI

10.

11.

12.

13.

14.

15.

16.

. . . C oA . (T
. Rappeler les relations du cours au sujet des coefficients binémiaux : Cs encore noté < /<;> .

. Avec f(z) = (1+2)", sunphﬁeerCk Zk < > Zk+1 Zk+1 ( ):B

. Développer l'expression de (a + b)5.

k=0

. Calculer A (précédent) d’une autre fagon (au moins). Pour la suite, mettre les autres notations :

. Avec 202 Z < > Cl = <n N 1), calculer Sp(n) =12+ 2% + ... +n? (3éme méthode).

3

. (Une 4éme) Trouver P(z) = a.z> + b.z? + c.x tel que P(z) — P(z —1) = 2. En déduire Sy(n).

k=p n
(*) Montrer que Z CF.CP=F = CP . (cf. coefficient de 2P dans (1+z)™"™). Valeur de 2(05)2 ?

m+n
k=0 k=0

. (*) On consideére tous les nombres a 6 chiffres sans répétition formés avec 1,2,3,4,5 et 6. Combien

y en a-t-i1?  Quel est le 500¢éme 7 (516243) Le rang de 362145 ? (343¢me) Leur somme ?

. Trouver une application injective non surjective de N dans N; puis surjective non injective.

Trouver une bijection entre N et Z.

Montrer que gof injectif et f surjectif = ¢ injectif. Et gof surjectif et g injectif = f surjectif.

(2n)! < " >1 Améliorati < fl
NS our n =2 1. melioration : Nr—21
w2 S Vamte © NS

(*) Soit n droites du plan en position générale. Nombre de régions obtenues ? [L+CZ2, ]

(*) Montrer que Csg, =

(*) Dans le plan, on considére n points tels que 3 quelconques soient non alignés.
On trace les droites obtenues. Nombre de points nouveaux, au plus, par intersection ? [3.03]

(**) Théoréme de Cantor : Montrer qu’il n’existe pas de bijection de E dans P(E).
(Si f en était une, considérer {x € E:z ¢ f(z)}.)

(**) Tirages avec remises : On tire k boules, avec remise a chaque fois, parmi {by, bo, ..., b, }.

(a) Silordre les boules tirées importe, vérifier qu’il y a n” tirages. Sinon, c’est plus difficile :
(b) K* étant le nombre de tels tirages, calculer K2 et K3. Montrer que K¥ F est le nombre de
solutions entiéres de z1 + z2 + ... + 2, = k (zp=nombre de tirages de by) et vaut cF nak_1 "

. soit par récurrence (¥) sur n +k avec KF=KF 4+ K1,
. soit choisir n — 1 cloisons parmi n — 1 + k objets (cloisons et boules) !




Chapitre 4

Trigonométrie. Equat. et inéquations
trigonométriques

4.1 Equations trigonométriques

4.1.1 Fonctions sin, cos, tan, cot

. . / . . 4 4
1. Graphe de sin et cos  sin’ = cos, cos’' = —sin  [Ceci sera démontré plus tard|

s~ ) AL
i \‘ \d\‘

2. Graphe de tan

] 1
tan(x) = Zj)zgg m-périodique, impaire, de dérivée : tan'(x) = os2(0) =1+ tan*(x)
3. Graphe de cot
o) = L) - L ariodiue, impaire; cof!(z) = —— = — (14 cot(x)
cot(x) = = m-périodique, impaire; cot'(z) = =—
sin(z)  tan(x) P AHe,  HHDAIre; sin?(x) corT

4.1.2 Equations fondamentales

cos(y) = cos(z) <=y =tz + k2.1 (1)
1. Théoréme | sin(y) =sin(z) <= y=c+k2rouy=7m—z+ k27 (2)
tan(y) =tan(z) <= y=c+knm. (3) kE€Z

2. Démonstration (1) et (2) se voient bien avec le cercle trigonométrique (aprés).

(3) Soit on connait la fonction tan ... soit sin(z).cos(y) — sin(y).cos(x) = sin(x — y) [apreés|.

3. Exemple Résoudre sin(2x — w/3) = cos(3z + 7/3)
Solution : On peut ramener un sinus & un cosinus par la formule sin(z) = cos(7/2 — z)! Puis (1).
™ 2.m —7.7
T D x=—+k—,keZ; =——+K2m Kel
rouver T 10 + 5 € 4L, x 6 + T, €

29
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4.2 Trigonométrie circulaire

4.2.1 A connaitre

u AT sin@) =05
s ' cosfe) =0
" tan(8) = AT
o9 9 L sin(z) w
1. Déja cos®(z) + sin“(z) = 1 (Théoréme de Pythagore) et tan(x)= :

cos(x)
sin(a + b) = sin(a).cos(b) + sin(b)cos(a) tan(a) + tan(b)
o tan(a +b) =
. sin(a — b) = sin(a)cos(b) — sin(b)cos(a) . 1 — tan(a)tan(b)
2. Puis ; D’ou
cos(a + b) = cos(a)cos(b) — sin(a)sin(b) tan(a — b) = tan(a) — tan(b)
cos(a — b) = cos(a)cos(b) + sin(a)sin(b) 1 + tan(a)tan(b)
Formules d’addition; qui donnent les formules de duplication :
cos(2a) = 2cos*(a) — 1 = 1 — 2sin*(a) = cos?(a) — sin*(a) ;
3. D’ou . o _ 2.tan(a)
sin(2a) = 2sin(a)cos(a) donc tan(2a) = T tan?(a)
cos?(a) = l—k#s@a); sin?(a) = 1_#8(2@; 1+ cos(z) = 2.00322 ;1 —cos(z) = 2.sinzg
sin(p) + sin(q) = 2 sm(p + q).cos(p _ q)
sin(a + b) + sin(a — b) = 2sin(a)cos(b) ' D % qg. . p 2 q
sin(a + b) — sin(a — b) = 2cos(a)sin(b) sin(p) — sin(q) = 2.cos( ).sin( 5 )
= ou pTq P=q
cos(a + b) + cos(a — b) = 2cos(a)cos(b) cos(p) + cos(q) = 2.cos( ).cos( )
cos(a + b) — cos(a — b) = —2sin(a)sin(b) 2 2
- pPtaq, . p—q
cos(p) — cos(q) = —2.sin( 5 ).sin( 5 )

Que l'on peut retenir par l'ordre choisi et "si co cosicoco — sisi" (Somme «Produit).

5. En fonction de "la tangente de I'arc moitié"

2t 1— ¢ 2t
sin(x) = 72 cos(z) = T3 tan(z) = T fractions rationnelles en ¢t = tcm(g).
tan? 1
6. A ne pas confondre avec : | sin?(z) = #7% cos®(z) = T tan2(@) (moins essentielles).

Les formules d’addition seront prouvées avec le produit scalaire. Les autres en ré-
sultent :
2sin(a)cos(a)

Ainsi : sin(2a) = cos?(a) + sin?(a)

; en simplifiant par cos®(a), on trouve 5)a). Idem pour 6)a).

4.2.2 Remarques

1. Attention : sin®(z) # sin(2z) !

2. Sont essentielles aussi : cos(—=

5 T a) = —sin(a), sin(=

5 + a) = cos(a)...| En particulier :

En repére orthonormé, 2 droites y = mx + p, y = m’z + p’ sont orthogonales <= m.m’' = —1

En effet : m =tan(a) et m' =tan(a+ g)
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4.3 Inéquations trigonométriques
4.3.1 Résoudre : sin(zx) > 1/2

5.
Avec le cercle (fig. 1) : % +2km <z < % + 2k.m; réunion d’une infinité d’intervalles.

4.3.2 Résoudre : cos(2.x) < 1/2

5.
Idem (fig. 2) mais diviser par 2 : % +hkm<z< % + k.m méme k dans chaque membre et k € Z.

4.3.3 Résoudre : sin(z) + cos(z) < 1.

1. Propriété  |a.cos(x) + b.sin(x) s'écrit  /a? + b%.cos(x — )| (Sia=0b=0, évident).

a b
Vaz+ b2 Va® + 12
2. L’exemple devenant : cos(X) < cos(n/4), X =z—n/4 .. (fig.3). A finir.

Sinon : ( ) vérifie X2 +Y? =1, donc s’écrit cos(p), sin(p). Finir !

4.3.4 Résoudre : tan(3.x) <1

cf. graphe de tan. (fig.4) %ﬁ +km<3z< % + k.m et on divise par 3.

BARSVANSS:

4.3.5 (*) Une courbe en paramétrique avec de la trigonomeétrie

z(t) = a.cos?(t)

o) = a.sin®(1) (Astroide fig.5.)

1. Tout est dans le domaine d’étude. F: t € R +— {

F(t+ 2m) = F(t) montre qu'un intervalle de longueur 27 donne tout ; on le centrera plus tard !

Demi-période : F(t+m) = —F(t) un intervalle de longueur 7 suffit en faisant une symétrie /O(0,0).

Puis : z(t + 7/2) = —y(t); y(t + 7/2) = x(t) un intervalle de longueur /2 suffit en faisant une
rotation d’angle /2.

Maintenant, on va changer t en —¢, donc on centre notre intervalle en ¢t = 0 : [—xw/4,7/4]. Ce
changement de ¢ en —t montre que D, = [0,7/4] suffit en faisant de plus la symétrie /Ozx.

Attention pour la courbe : Faire les symétries en sens inverse, a partir du "motif" ¢ € [0, 7/4].

2. Tableau de Variations sur [0,7/4] On prend a > 0.

. )
dM — (z'(t) = —3a.cos*(t)sin(t)
dt — \ y(t) = 3a.sin®(t)cos(t) )
(Ces dérivations seront vues plus tard).

—cos(t)
sin(t)

dM
. Pour £ = 0, point stationnaire A. Tangente ? v est col. & < ) donc col. a 7, cart = 0.

—
aM -
. Pour t = /4, point B : on a OB = g et v colinéaire & < 11 > Enfin : Graphe ?
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M+ Exercices: Equat. Inéquations trigonométriques sur R PTSI

T 0
1. Reprendre les équations trigonométriques fondamentales et résoudre : sin(2x — g) = cos(3x+ g)

7T m s

1-— 2
2. (a) Calculer SZTL(%) avec — =2 " Puisavec: — = M.

et sin’(a) = 5

17
C = -z
12 3 4 12 26
(b) Calculer comme ci-dessus, 2éme fagon, le réel : cos(g).
(c) Condition Nécessaire et Suffisante, en repére orthonormé, pour que 2 droites :

y=mz+p, y=m'z+p soient orthogonales ? Réponse et preuve.
3. Transformer en somme sin(3.z).sin(z) et en produit : sin(3z) + sin(zx).

x
4. Formules donnant sin(x), cos(x) en fonction de ¢t = tang ; puis en fonction de T = tan(zx).

2.t 2 tan?
(Réponse partielle :  sin(z) = H#%/)Q) & ne pas confondre avec :  sin*(x) = 1+t _:L: mg()a:))

k=n
5. Trigonomeétrie facile (mais essentielle). Simplifier le produit : H cos(z/2F).
k=1

6. (*) Soit « €]0, g[ avec tan(2.a) = 2.v/2.  Calculer tan(). Puis sin(a).

7. Trigonométrie dans un triangle : A+ B+C =7
(a) Montrer que : sin(24) + sin(2B) + sin(2C) = 4.sin(A).sin(B).sin(C).
(b) (*) Montrer que : cos*A + cos’B + cos*’C = 1 — 2. cosA. cosB. cosC.
(c) (*) Montrer que : tanA + tanB + tanC = tanA. tanB. tanC.

1
8. Equations trigonométriques. Résoudre : cos(2x) = 3 puis : cos?(z) + cos?(2x) + cos®(3z) = 1

(poser C' = cos(2z).)

9. Inéquations trigonométriques. Résoudre :
(a) cos(2z) > 1/V2; puis  —1/v2 < cos(2x) < —1/2;
(b) (*) enfin cos(z).cos(2x).cos(3z) > 1/4.  (poser C = cos(2x).)

o [ == R[t— sin(t)]
10. (*) { y = R[1 — cos(t)]

(a) Tableau avec t, 2'(t), z(t), v'(t), y(t) ?  Tangente au point "stationnaire" :

dMd (2t _t [sin(t/2)
(b) e <y'(t)> = 2.R.sm§. (cos(t/2)

‘Etude a faire : ‘ Domaine d’étude : se ramener a [0, 7].

) [ce dernier vecteur donnant la tangente]

NN

0 5

Courbe ? (voici une arche de "cycloide") :




Chapitre 5

Complexes : Aspect algébrique et
trigonométrique

5.1 Forme algébrique z = x + 1y

5.1.1 Généralités

1. Définition

Posons i = —1, i ¢ R; on définit alors C = {z =z +iy,z,y € R} tel que :
z=2 e @=dy=y); z+Z=x+2"+ily+y); 27 =x2" —yy +ilxy +2'y).

2. Propriétés. ‘ (C,+,.) est un corps commutatif (comme Q ou R ) ‘ (Vocabulaire : cf. R.)

De plus, on constate que R C C et qu’il s’agit d’une extension des opérations.

Démonstration
1) La loi + s’interpréte comme I’addition vectorielle u (x,y) + v (2',y’) et ainsi
(C,+) groupe abélien est facile. [Revoir le ch. R pour les définitions non exigibles|

2) La loi . est commutative, 1+i.0 est Neutre. Comment voir 'associativité (2.2).2" = 2.(2'.27) ?
— soit on fait un calcul (long ... ) !
— soit on considére R[x|, ensemble des polynomes a coeff. réels, muni des lois usuelles + et "."

En identifiant polynémes et fonctions polynémes ! on sait que (P;.Ps).Ps = Py.(P.P3)

et chaque fois que 'on a "x", il suffit de lui substituer i ... (*)
3) Lien entre les lois : z.(2' +27) = 2.2 + 2.2”7. A ce stade, on a un "anneau commutatif".
1 . . 1 T—1y
Enfin, tout élément non nul est inversible pour . : = si (x,y) # (0,0).

z+iy 2 +y?
3. Remarques

1) La multiplication par un réel : A.z, A € R s’interpréte aisément comme ). .

Pour la multiplication par un complexe : 2/ = a.z voir la section II.

2) L’égalité 2’ = 2+ cte s’interpréte :

— soit comme une translation du plan : 2’ = 2z + 2z

" est’ aussi Y = —.
z—1 X

. N . X=x—
— soit comme un changement de repéres par translation : Z7 =z — 2z ou { % Zj 0
|

A revoir ! [exemple : la courbe d’équation y = 2 +

33
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5.1.2 Conjugaison et module
1. Définition
Z=x—1iy, |z|=+x2+y?=OM généralisant la valeur absolue. | |noter | » |*

I
N
Ny}

Attention : 1) Pas de < dans C.

2) On n’écrit pas /.. d’un complexe, sauf s’il est réel positif.

2. Théoréme sur la conjugaison

z+2 =Z+42; 22 =z2; Z==z| (Facile et laissé).

Remarques :
) 101 . 1 . . :
1) D’ou aussi | (=) = =| (le conjugué de z.— valant le produit des conjugués; et aussi 1.)
2’z z
1
2)Onaaussi |z|=1 & z=-.
z
3. Conséquence sur le module
| 2.2 |=| 2| .| 2| Car: |22 =z 2 =222 =z .| 7|~
Remarques :
, 1 1 z | 2 |
1) Et donc également || - | = —, | = | = :
2 =] 22
Re(2) zZ+z
e(z) = = _ ‘ > _
9 : z 47z =2.Re(2), zréel @ Z =2 et
2) e _RT % ou bien { z—Z=2.4.9m(z) z imag. pur & 7z = —z.
Sm(z) = 5
3) Puis aisément : | Re(z) | < |z] et |Sm(z)| < | z].

4) [Et aussi U= {z/|z|=1} "groupe abélien" pour la multiplication; plus tard.

En effet pour 4) :
Loi interne dans U; puis 1 € U et si z € U, alors 1/z € U : cela suffit.]

5.1.3 Le module comme norme

z | z | est une norme, c’est-a-dire |z |€ RT et encore 3 points :
|z]=0 & 2z=0
VAER: |[Az|=|A]|.]z]|
|2+ | < |z]+17].

1. Théoréme

En effet

Pour 1’ inégalité (qu’entre réels positif) !

Elever chaque membre au carré || u [*= u.

u| puis :
22 +72.7 =2Re(2.2) < 2| Re(z.2)) | < 2. |22 | = 2.|2z|.|Z | Fini
(Bien siir, c’est aussi : || @ + 7’| < .. sion lavait déja prouvé).
2. Conséquence
On en déduit encore | | |z —|2"|| < [z242| < [z]+]7 ]

En effet : Pour 'autre inégalité, c’est comme dans le cas de R, a revoir.




5.2. FORME TRIGONOMETRIQUE Z = p.E*? p=| Z |> 0

5.2 Forme trigonométrique z = p.e"?, p=| 2 |> 0

5.2.1 Définition. Formules d’Euler et opérations

. ‘ Pour z =z + iy # 0, on pose cos(0) =z/ | z |,sin(0) =y/ | z | . Donc z =| z | .[cos(0) + i.sin(0)] ‘

En particulier, tout complexe de module 1 s’écrit : cos(0) + i.sin(6).

ei9 + e—i@
- _ 0 cos(f) = ————
° cos(0) +,Z'S,m(9) o e_w ou ‘par équivalence‘ i0 2 _i0
cos(0) —i.sin(f) = e , e’ —e
sin(f) = —
i
eV =l =1 | et =1 e = (=0 — cif (I'inverse)

Théoréme

et 1 €@H) = 2 ¥ grace aux formules d’addition.

5.2.2 Interprétation de la multiplication dans C

0 i(a+6)

Soit 2’ = a.z. Posons z = p.e"’, a=r.e"*  Alors 2’ =r.p.e .

On retrouve le module du produit; et on voit que les argument (angles) s’ajoutent.

Dessiner de 2 fagons 2’ = (1 +1i).z = z+1i.2 pour z donné.

5.2.3 Formule de Moivre
Théoréme |[On a ()" = €™ n € N. Ou bien : [cos(6) + i.sin(0)]" = cos(n.0) + i.sin(n.6).

En fait vrai méme sin € Z; voir le cas n = —1. Sera utilisé en fin de chapitre.

cos(2.z) + i.sin(2.z) = (cos(z) + ’LSZ’I’L(:E))2 dou: cos(2.x)=.. sin(2x)=..

‘Faire personnellement le cas n = 3 ... ‘

5.2.4 Somme ou différence de ¢*, ¢?

i0 —i.0
7 e’ +e " =2.cos(0)

Ensuite |Pour €' + ¢*%, on met la demi-somme des arguments en facteur

e 4 8 = ¢ilath)/2, <ei(°‘_ﬁ)/2 + ei(_a+ﬁ)/2) = ew.zcos(a _25)

el — etP = cilath)/2 (e"(o‘_ﬁ)/2 — ei(—o”rﬁ)/?) = ewli.sin(a _26)

5.2.5 Exemple sur ce qui précéde

Simplifier la somme : C' = 1+ cos(x) + cos(2x) + ... + cos(nx).

| Méthode & savoir :| Posons Z = 1+ €™ 4 ... +e™®. Alors, avec 1+ ¢+ ... + ¢" connue :

ellntle 1 t(nt1)2)/2 94 sin[(n + 1)z /2] sin[(n + 1)z/2] pina/2

Z = . = , =
e —1 ei-*/2.2i.sin(z/2) sin(x/2)
. . (n+1)z
1)z/2 . .
ou bien Z = sm([s(;a/gi/ ]-[COS(n—;) + Zsm(%] Et donc: C = SZZT%.COSTL—;.

car C est la partie réelle [que 1'on peut avoir par (Z + Z)/2 si nécessaire].

Vérifier sur quelques cas : n =0, n=1; (xz=0 avec sz’n(h)/hh—61 (*))
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5.3 Conséquences algébriques

5.3.1 Equation " =1

L’équation z" = 1 a n racines : eik‘%/", k=0,1,...,n — 1 par exemple, appelées

Théoréme ) = . , o
les n racines niéme de I'unité ; leur ensemble est noté U,, et forme polygone régulier.

Deux exemples (Démonstration au numéro suivant) :
1) 23 =1 possede 3 racines sur C: Us = {1,j =22 j2 =7 ="/3}. etdonc: j°=1;

Iy
g

o
-
Mz

1 —
Z=j=4% 1+j+42=0 (avec 1+ g+ ...q" si Pon veut). Dessin :
J

Attention : sur C, on n’écrit pas v/1 car on ne sait pas laquelle est-ce! On dit une racine cubique ...

2) Posons wy, = k25 ot = w) = 62'7r/5; alors les 5 racines 5éme sont 1,w,w2,w3,w4.
Ona: =1 lw=w=w! (W =1) et l+w+..+w'=0. Faire un dessin.

5.3.2 Equation 2" =a, a#0

L’équation 2z = a posséde n racines sur C, sommets d’un polygone régulier a n cotés.

Théoréme ik /n

1) 23 = 8 : sur R une solution; sur C trois solutions : 2; 2j; 2j° (triangle équilatéral), car (z/2)% = 1.
2) #* = —1; (4 racines : ™4, ¢37/* et les conjuguées) puis (*) factoriser z* +1 sur C et sur R.
(Début : on peut poser x = p.e®  —1=¢e"".. Voir que les racines sont aussi 2 & 2 opposées N

3) A*=B*«~— A=B.uw;,, wpe{l,i, —1, —i}=U,;. Donc 4 cas sur C !

Démonstration du Théoréme :

De plus, siwg =€ et z1 une racine, les racines sont : z;.w, k=0,1,....,n — 1

n

pr=r ) o i _a k2w
0 = a(2.7) ;ou p= /rsur R etH—n—l——n .

2) De plus, si 21 = a, I'équation devient (z/21)" = 1. Donc z/z1 = wy, est une racine niéme de 'unité.

1) Posons z = p.e?,a = r.e'®; alors 2" = a <= {

5.3.3 Le second degré [Un bon exemple suffit]

1. L’équation 2% = A, plutdt notée ici 62 = A.
e Une méthode trigonométrique vient d’étre vue (2 racines opposées : +0 avec 62 = A).

e Voici une méthode algébrique :

2_ 2
22 _ uw v =p (1)
u'—vi=p (1) & 2uv=gq (2)

2uv=a @ 7| i s e )

En effet, faire (1)2 4 (2)?; mais il y a un moyen meilleur, faire | 6% |=| A |. Astuce ! D’ou 4.

Posons d =u+iv et A=p-+igq; 52:A<:>{

2. az’ +bz+c=0,a #0, coefficients complexes.

b A
Comme dans R, avec A =b*> —dac =62 : az’ +bz+c=al(z+ —)* - a2

50 |=a(z —21)(z — 22)

—b+o

—b c
Il y a deux solutions qui sont donc : leur somme vaut z + 2’ = —, leur produit 2z’ = —.
a a

Si coefficients réels, les racines sont réelles ou complexes conjuguées. Car A = —k2 € R™; 6 = +i.k
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3. Rappels
e | Ayant la somme s et le produit p de 2 complexes, ils sont solutions de : x? — s.x+p=0.
) ‘ La demi-somme est le milieu des racines. ‘ (Note. Voici des "formules réduites"
—b' ¢
Siona: az?+2bz+c=0, enposant : A" = (')? — ac, (¢')? = A/, les racines sont : ———)
a

e Dans le cas de coefficients et racines réelles soit f(z) = az?®+bx+c. Pour avoir la position d'un réel

xo par rapport aux racines (si A > 0), on a‘ f(xg) est du signe de a <= x( extérieur aux racines. ‘

S’il est extérieur, on compare zg avec la demi-somme, pour savoir s’il est & gauche ou a droite ...

Résoudre

1) z +2+1=0

2) 22 —241=0

3) 22 =%

4) 2t 4222 +4=0

5) 2% — (5 — 14i)z — 2(5i +12) = 0. Solutions :

1) Racines 1 j;“/— cest-a-dire jet j2 ! et 2P+ a+1=(z—j)(xr—j?).

2) En changeant = en —z: 22 —z+1=(z+j)(z+5%)

3) Attention : ne pas dire qu’il n’y a que 2 racines ! z = p.e’ 9 conduit a ple 26 — p.e_i‘g ; alors

=0; oubien p=1 et 30 =0(2.7r) D’ou 4 racines: {0,1,7,52}. [z =z + i.y possible|
4) Equation "bicarrée" ; on peut poser Z = 2% ...
5)Ici A =25 196 — 140i + 40i + 96 = —75 — 100i = —25(3 + 4i); soit u, v : (u +i.v)2 = 3 + 44,
on trouve £(2+14) donc § = =£5i.(2+14) = £5(—1+ 2i) etc; vérifier par somme et produit.

5.3.4 Théoréme de D’Alembert-Gauss

1. Enoncé (admis)

Tout polynéme de degré n > 1 a coefficients dans C se factorise en produit de polynémes
de degré 1:  P(x)=apx"+a1x" .. .+a, = ap(x-21)(x-22)...(x-25). (%)

Les racines étant distinctes ou confondues : on dit que tout polynéme est scindé sur C.

o1 =z1+t2z2+ ..+ 2,
09 = 21.29 + ... + Zn—12n
2. Formules de Viéte. 03 = 212223 + ... "fonctions symétriques élémentaires" ;

Op — 21.29....2n,

Elles sont liées aux coefficients par | o1 = —ay/ag; 02 = +as/ag; ... o = (—1)*.ax/ag; ...

Démonstration. Conséquence de (%) : développer et identifier !

1) Revoir le cas du second degré ! Casde a.2® +b2? +cz+d ?

2) (*) Soit P(z) = 23 + px 4 ¢. Calculer Sy = 27 + 23 + 22 a l'aide de p et q.
Réponse. SS9 est aussi une fonction symétrique ; mais on ne dit pas "élémentaire".

So = (21 + 22+ z3)2 —2(z122 + 2123 + 2223) donc S = O'% — 209 = 0% — 2p.

3. Remarque. Soit z une racine de P; cest-a-dire : ag.2" + ... + a, = 0.
En conjugant, avec uw+v =u+7 et w.v = .U, on obtient : @g.z" + ... + @, = 0.
Notant alors P(x)= ap.x" +a1.x" ' 4 .. +@,, on en déduit :
e Si z est une racine de P, alors Z est une racine de P et surtout :

e Si P est a coefficients réels (P = P), les racines non réelles sont conjuguées.
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5.3.5 Exemples

1. Factoriser z!+ 2%+ 1 par 3 méthodes.

1) Ayant les racines de 2% 4+ z + 1 (j, j2), on doit résoudre x2 = j. | Astuce : j = j* | donc z = 45>

et pour les 2 derniéres, il suffit de conjuguer. z* + 22 +1=1.(z — j)(z — j2)(z + j)(z + ;%)

2) On peut voir que j est une racine (14 j + j2 = 0); donc j aussi (polynéme a coefficients réels)

et —j, —7 aussi par parité. Méme réponse

3) Autre astuce : 2 + 22 +1= (22 +1)? =22 = (2> + 2+ 1)(2® — 2+ 1) sur R; on sait finir sur C !

2. Sin > 2, vérifier que les n racines de z" —1 =0 ont une somme nulle.

lére fagon : 14w+ .. +w" 1= avecw # 1.
2éme facon : O centre de symétrie du polygone régulier.

3éme facon : les formules de Viete | (o7 = —coeff. de x" ' /coef f. de z™ ...)

3. (*) Résoudre (z+41)" = (z—1)" (Eq) équation polynémiale de degré n — 1 (n — 1 racines).

1 1
= 1 non racine et (Eq) & (z—l— 1)" = 1. Donc . wi (cf. les racines niémes de 1);
z— z—

' wp+1 ekmn(ekT/n 4 1) 2cos(km/n) k.
on effectue : z+ 1= z.w —wy ou z = o1 R (T 1) = Sisin(kn/n) = —i.cot(— - )
avec k=0,1,..n — 1 par exemple. Mais il faut exclure k =0 : n — 1 racines.

Remarques 1) On peut voir aussi que : 2z racine <= —z racine sur I’équation ...
2) Avec le module voir dés le début que les racines sont dans R.i : |z —1|=|z+1 [;
AM = BM ou A(1), B(—1), M(z) donc M sur la médiatrice de [AB] !...
5.4 Conséquences trigonométriques
5.4.1 (*) Calcul de certaines sommes (difficiles)
- ] 1).x/2
1. Calcul de C' :Zcos(a + kx). Commevualafindull.. C= Sm[@ *1)-2/2] .cosla + E]
= sin(x/2) 2
2. Casde C :;Cs.cos(a + kx) :;0 (Z) cos(a+ k.x). Poser Z :;Cs.ei'(ﬁkx ;0 ( ) @(a+ke)

Alors Z = '.(1 + )" = ei“.[eix/2.2.cos(g)]" = 2”.[608(%)]”.6“‘1—’_%).
Chaque égalité a bien voir ! (Utiliser la formule de Moivre, le bindome de Newton, la somme
@ 4 ¢ le rappel ci-dessous...). Et donc: C = 2".003"(%).003(& + %) (vérifié si z = 0).

3. Casde C :<g> + (g) + ... Comment aller de 3 en 3 ? Avec le complexe j !

A+)"=C0+CLj+C24%+C3+CLj+.. [Mettre les nouvelles notations]
(14" =Co+CLj>+Crj+Cp+Chj®+ ...
(14+1)" = C%+Cl+C?+ ... les 3 racines cubiques ! 3C = somme.des.lignes car 1+ j+j2 = 0.

Puis voir que (14 j)" = (14 e2™/3)" = [¢'™/3 2c0s(r/3)]" = /3 (1 + j2)" étant son conjugué

/3 Finir !

et rappel |e® + e = 2.cos(x), € —e " = 2.sin(z)| Aussi: 1+j=—j2=e¢
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5.4.2 Expression de cos"(z), sin"(x) a I’aide de cos(pz), sin(qx): Linéarisation

1. D’abord, il y a opérations linéaires : addition, multiplication par une constante.

2. Exemples

1-—- 2
sin?(z) = % (tres utile pour les primitives !)

1+ cos(2x)

On sait que | cos®(z) 5 ,

3. Méthode :
eix + e—ix eix _ e—ix
On part de| cos(z) = — sin(z) = —; — on éléve a la puissance n ; puis le rappel.
)

. Cas de cos”(x) ?
. Cas de cos®(x).sin*(x) ? On peut mettre de suite des exponentielles partout ! Alors :

(a+b)3; (a—b)* connus ! Cest assez rapide en alignant les termes analogues ...

5.4.3 Expression de cos(nz), sin(nz) a ’aide de cos?(z), sin?(z) ; probléme inverse

1. Exemples

On a |cos(2z) = 2.cos?(z) — 1 = 1 — 2sin?(x) = cos?(z) — sin®(x), sin(2z) = 2sin(x)cos(x)

Donc plusieurs écritures possibles ici, parfois !

2. Méthode : e = cos(x) +isin(z) exponentielle isolée ! e“™% = (¢“*)" ou bien :

‘F. de Moivre cos(n.z) + isin(n.x) = [cos(z) + isin(z)]" ‘ puis parties réelle et imaginaire.

3.tan(z) — tan?(x)
1 — 3.tan?(x)

. Faire le cas n = 3. Trouver : cos(3x); sin(3z); et déduire que tan(3x) =

Réponse en Remarque ci-dessous.
. Et pour sin(3z).sin(5x) ? Transformer un produit en somme : cf Réels et trigonométrie.

Ici : sin(a).sin(b) = _71.[608(61 +b) — cos(a — b)] ...

3. Remarque. cos(2z) = 2cos®(z) —1, cos(3z) = cos3(z) — 3.cos(x).sin?(z) = 4.cos>(z) — 3.cos(x)

Cas de : cos(4x)... alaide de cos(z) seul ( ci-dessous) ?

Sion pose Py(x)=1, Pi(x)=x, Py(x)=2.x%—1, P3(x)=4.x>-3.x, on constate au début

que ‘Pn(cos(:n)) = cos(nx). ‘ Ceci se généralise :

e soit par la formule de Moivre ;
e s0it par récurrence avec : cos[(n + 1)z] + cos[(n — 1)x] = 2.cos(nx).cos(x).
De ceci, on en déduit 'existence de P,. Il reste & voir leur unicité : cf. Polyndmes.

(On dit : Polynémes de Tchébytchev de lére espéce)

Trouver : Py(x) =8 x* =8 x> 4 1. X
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M+ Exercices: Complexes. Aspect algébrique et trigonométrique. PTSI
o . 1T+9)%  (1—d)*
1. Simplifier : 1+i.v3)%; o
implifier (a) (1+i.v3)%; (b) (1—i)3+(1+i)
2. Forme trigonométrique de z; = M, zn=1—1,2= ! ; déduire cos(%). Autre fagon ?
22
1 .51
3. (*) Module et argument de : +cosy —H, kil
1 —cosz —i.sinx
4. Résoudre
(a) 2% =— puis factoriser X* +1 sur C et sur R.
(b) z (5 — 144)z — 2(5i + 12) 0. Somme des racines ?
(c) 22 =1z, puis : (*) 2> =092z (Trouver 7 solutions !)
(d) 24 +2z +4=0; puis : (*) 2% 3022 +289 =0.
(e) 923 + (20 —1)2® — (i + 4)z + 3(2i — 1) = 0 sachant qu’une racine est réelle.
() *) (z+1)"=(2—1)". Commentaires ? (*) Déduire Vp € N* :1<1;[<p cot(2pki 1) = \/2plT
5. Exprimer cos(4zx) en fonction de cosPx,sinfz.  Idem pour sin(4x).sin(x).
6. Linéariser cos’z. Idem pour sin’z.cos’x et sinz.
7. (%) Simpliﬁer

10.

11.

12.

13.

. Montrer qu’une C.N.S. pour que (1

n

chcos (x + ka) —Z< > .cos(x + ka)

k=0 k=0

(b) CO4+C34+C8 +... ? puis CY —C% 4 Ol -
(c) cos(z) + cos(z + a) + cos(x + 2a) + ... + cos(x + na).

I+iz : : :
—)" = a ait une racine réelle est | a |= 1. Préciser-les.
— iz

. (*) Equation de degré 3.

a) Etudier I’équation 234+ pz+q=0, sur C, en posant z = u + v, avec 3.u.v + p = 0.

(
(b) Cas des coefficients (et racines) réels?
(*) Pour n € N* simplifier la somme : S, :Z(—l)k. et 2km/n.

AU A S

: ﬂ+1:0
zZ+1 Z+1 z+1

(*) Résoudre : (

1
(*) Avec Z = o 24 —2(cosa+cosf) 23 +2(1+2cosa.cosf) 2% —2(cosa+cosB)z+1 = 0. a, § € R.

(*) Soit g = 1,90 =0; Tp = Tn—1+ Yn—1, Yn = Yn—1 — Tn—1. Avec x, + iy, , simplifier x,,yp,
n

A, = sz,Bn de méme. [z, géom.; yp = —V2 .sin(nw/4), By = V2 nH.cos((n + D)m/4) —1).
k=0




Chapitre 6

Complexes : Aspect géométrique

6.1 Distances et angles

6.1.1 Distances

— —
Avec | z |=V2Z = |OM| = OM, M d’affixe z, on a||b—a|= AB = |AB||| A et B d’affixes a et b.

6.1.2 Angles

— — — —

On a les relations : | Arg(b—a) = (Ox, AB)(2.7) Arg(b/a) = (OA,OB)(2.7)
En effet
—_— —

pour (1), prendre M tel que OM = AB; pour (2), Arg(b/a) = Arg(b) — Arg(a).

_ _ D — ==,
Conséquence | Arg d=c_ A—>B,C'—l>? (2.7) et | d-c |= C— D'oa Arg A BM,AM (2.7)
—_— b—a b—a AB Z — 2ZB
Remarques : Arg(—Z) = Arg(Z) +n. — Arg(Z) = Arg(Z) : & ne pas confondre.

6.1.3 Alignement. Orthogonalité
e Pour A# B A,B,C alignés <= 3Jk € R/ c—a=k(b—a)

—_— — —C
Plus généralement | AB,CD colinéaires <= 2 eR.
—a
e Pour A # B (A, B)(A,C) orthogonaux <= 3k € R.ii/ c¢—a=k(b—a)
—_— — —C
Plus généralement | AB,CD orthogonaux <= 5 € Ru..
—a

6.1.4 Théoréme du parallélogramme ou de la médiane : exercice

Soit un triangle OAB, I milieu de [A, B], J tel que I milieu de [O, J]; c’est-a-dire que OAJB est un

1
parallélogramme. Alors : [OA% 4+ OB? = 2(0I* + [ A?) = §(AB2 +0J?) et A

(qui sera revu avec le produit scalaire). Formule analogue :
Si OF est d’affixe u, TA est d’affixe v, Dégalité se traduit par ||u+v >+ |u—v [*=2(|u > +|v [}).

Démonstration avec C :
Ona |utv’=(u+v).(wtv)=@wu+v).@+7) =ul>+]|v[*+us+ 70

(& noter que .7 + W.v est réel par différence 1)  Idem: |u—v|?=..  Et faire la somme.

41
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6.1.5 Pentagone régulier i la régle et au compas : exercice

1. Soit ; alors W’ =1, w#1.

Donc w est racine de 14z + 2?4+ 23 +21 =0 (les 4 racines étant w,w2,w3,w4 =w).

2. Cette équation, du type z* + a.2® + b.2? + a.z +1 = 0, est un cas particulier d’équation réciproque.

Pour la résoudre, on pose |y =« + 1/z| (0 n’est pas racine !) alors : y* —2 = 2%+ 1/2%

—1++5
I

Diviser par 3:2, reporter : y2 —24ay+b=0 ou y2 +1y—1=0 dans notre cas : y =

Connaissant y, on peut revenir & x par une équation du second degré. Inutile ici :

2. V5 —1 4. —-1-+/5
5T g (s =—

, , , 2
T =w=e20 oy = 25 4 i 2m/5 2.cos(%) cos(

)

3. Construction : Ayant une droite muni de points O et A tel que OA = 1, on sait construire la per-

5—1 5—1
pendiculaire 8 OA en O; puis ... Vb =112422;: +/5—1; puis \/_2 puis \/_4 et w !

4. Remarque. Soit MyM;MoMsMy ce pentagone régulier My d’affixe 1, My d’affixe w.

My M.
Nous allons voir que 072 st égal au nombre d’or, noté usuellement .
My M,
e Déja, une définition du nombre d’or : ¢ est la racine positive de 2% = z + 1 (pour avoir le
1 5+1
carré, ajouter 1); ou de — =z — 1 (pour avoir I'inverse, retrancher 1 ); c’est-a-dire |p = \/_;_
x
w?—1
e Maintenant, nous devons voir que | 1 |=¢:
; s us m 5+1
Ona: |w+1|=] 6”/5.2.603(3) | = —2.608(4.3) =2.(1- 2.0032(2.3)) = \/72—1_ . Fini.
. 0 m ) ) T T
(Pour relier cos(g) a 003(2.3), trés astucieux de dire cos(g) = —cos(4.g).)
5. Les angles du Pentagone régulier ; et les deux pentagones, convexe et croisé :
Z
A
z 2
I3 36" 7z2° L=z~5 B
i O M (U
C
z"4

On a donc vu que : AC/AB = ¢.
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Complément : ‘Interventions du nombre d’or‘

en architecture/et sculpture : le théatre d’Epidaure (fin du 4éme siécle avant Jésus-Christ). 34 gradins

prés du théatre; 21 ensuite; or 34;;121= 1,6176 ... % =1,619 ...; alors que ¢ =1,618 ...
C’est d’ailleurs comme cela qu’est défini ¢ a savoir un rectangle de cotés x < y tels que si on enléve un
carré (z,x), il reste un rectangle semblable : % = = .

également : les pyramides, le Parthénon, les maitres d’oeuvres, la décoration arabe (Kairouan en
Tunisie ? Dome a Jérusalem), la célébre Pieta de Michel-Ange & Rome (Michel Ange, avec Raphagl
Sanzio et Léonard de Vinci, sont appelés : "les 3 génies de la Renaissance"). Aussi, une chapelle a
Notre Dame de Pitié & Bonson (42)! par exemple. Enfin, un artiste assez récent : Le Corbusier ...

en peinture : Le célébre tableau de Léonard de Vinci, L’ Annonciation. Les peintres : Nicolas Poussin
(Les Bergers d’Arcadie) ; Vélasquez (L’Adoration des Mages ; Saint Antoine abbé et Saint
Paul Ermite); Raphaél : (La Madone du Belvédére).

— /et gravure : Vierge a ’Enfant de Raphaél (tiré du "Que sais-je ?" sur le Nombre d’Or).

Ci-aprés : Le Parthénon. Au sculpteur grec Phidias, qui ’a décoré, on doit la lettre Phi.

e N

v S

Au Déme du Rocher a Jérusalem (aussi 3éme ville "sainte" de I'Islam) :
Dans la décoration en mosaique des murs extérieurs, les Arabes du VIIIéme siécle ont utilisé
le rectangle /5 a I'intérieur du Rectangle dor.

Michel-Ange, La Pieta Léonard de Vinci ¢ ¢

L
Rectangles d’or = %) Spirale d’or dans rectangle d’or Théatre d’Epidaure

— en arithmétique/algebre : ce qui précéde. Et la suite de Fibonnaci (0, 1, 0+1=1, 14+1=2,
1+2=3,24+3=5, ...) [unt2 = Un+1 + Up| en voyant que up4+1/u, s’approche du nombre d’or.

— en géométrie : Le pentagone régulier, ci-dessus. (Difficile/curieux : "I’ensemble de Mandelbrot".)

1

1 1
T

— et analyse : Les "fractions continues" [1,1,1...] =1+ , égale au nombre d’or.
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D’autres illustrations *

Les deux triangles d’or (obtenus a partir du pentagone régulier) :

zd Diwvers triangles d'or

Et encore quelques oeuvres de peintres (ou sculpteurs déja cités) en lien avec le nombre d’or :

— Vélasquez : 'adoration des Mages (Espagne)
— Léonard de Vinci : Sainte Anne, La Vierge et 'Enfant (Ttalie) 2

— . dans la nature : le Nautile (en spirale), le tournesol, la pomme de pin
. en architecture : Gaudi (en particulier La Sagrada Familia, a Barcelone)
. et d’autres tableaux ... la plupart étant aussi des trésors concernant la perspective ! 3

E

1+
2

! Des fractions continues, on déduit que : "¢ = est lirrationnel le plus éloigné des rationnels" (Emile Borel).

2 Léonard de Vinci, qui a mis au point la technique du "sfumato" (= du "clair-obscur") "modéle vaporeux faisant
imperceptiblement passer le colori ou le ton, du clair a ’obscur" : cf. la "Perspective atmosphérique", Jan Van Eyck.

3 Paolo Uccello, Alberti ... au début de la perspective (difficile) ; cf. géométrie projective ...




6.2. TRANFORMATIONS (APPLICATIONS) M(Z) — M'(AZ + B), A # 0 45

6.2 Tranformations (applications) M(z) — M'(az +b),a # 0

6.2.1 Translations M(z) — M'(z' = 2 +b)

1. | La transformation M(z) — M'(z' = z + b) est une translation de vecteur (by,bo) si b = by + ibs.

2. Note. Mais il y a un autre point de vue intéressant et déja signalé : | Z = z — zy | s’interpréte

comme une translation de repére; nouvelle origine (zg, yo) ; ou bien : ‘ X=x—-z0, Y =y—10

6.2.2 Similitude affine directe M(z) +— M'(?' =a.z +b) ot a=r.e"*#0

Si a =1 c’est une translation connue. Si a # 1 une similitude "a centre" soit : la composée

1. | commutative d'une rotation affine d’angle o« = Arg(a) et d’une homothétie de rapport r =| a |,
chacune de centre le seul point fixe. Et la composée de similitudes affines directes en est une.

Démonstration. Plutot, bien expliquer un exemple du cas général a # 1

e L’équation 2’ = 2 (aux points fixes éventuels) ou a.z2+b=2 ou 2(1—a)="> donne une et une
Z=az+b

/
ona: 2z —zyg=a.(z— %
z0=a.20+b 0 ( 0)’

seule solution : z = zg, si @ # 1. Par différence entre {

/ ) . . 2 . 1. < PR
z'— 29 =r.e".(z — 29) | qui s'interpréte comme une similitude a centre. Et cas a =1 déja vu.

eSif:zr—az+b g:zr— cz+d,ilest facile de voir que gof (# fog en général) est du méme
type gof : z+— a.c.z+ cte. Donc ‘gof Translation <= a.c = 1. ‘ Dessins a faire !

2. Remarque. Une homothétie de centre My, de rapport —2, est une similitude affine directe de

centre My, de rapport +2, d’angle 7. D’ailleurs on a une homothétie ou une translation < a € R*.

°

Q @ x
2 i C p’% a
7 P " R g \: B <
S -~ S " " ~
» ‘;7<{‘:'/cenrre de la rotation B c \
~
-

o
Homothétie = Rotation =9 — Similitude directe

6.2.3 Déplacements M (z) — M'(2 = e"*.2 +b) : cas particulier ot |a | =1

Description : Si a = 0(2.7), M(z) — M'(2' = e**.z +b) est une translation (vue) et
1. si a # 0(2.7) une rotation de centre 'unique point fixe, d’angle a: 2’ — 29 = €'*.(z — 20)
Et : la composée de 2 déplacements est un déplacement (ou "isométrie affine positive").

Démonstration

Ci-dessus. |Sia #1:2 — 2y = e (2 — 2) | interprété comme une rotation. Cas a = 1 connu.

2. Remarques. Exercices

1) La composée de 2 rotations affines planes est un déplacement : rotation ou translation !
2) Exemple. f:2 =e"%24+b; g:2 =e " 24d; gof: 2 =e ("2 +b)+d=..
fog # gof en général | et chacune est une translation.
3) Si b =0, on dit rotation de centre O. On dira aussi : "rotation vectorielle" d’angle «.
2+ 2
2

4) La symeétrie par rapport a My est une isométrie affine directe facile : rot(My, ) = 2.

2

5) 2/ = —j.z — j° : rotation d’angle %ﬁ, decentre My: 2/ =z=2=1. [Et 2 —1=—j.(2—1)

6) (*) Exercice. Montrer qu'une "Condition nécessaire et suffisante" pour que A(a), B(b),C(c)
forment un triangle équilatéral direct est que a + bj + ¢j2 = 0.

(On écrit : Z—_a: ™3 = 42 car C se déduit de B par la rotation de centre A, d’angle /3

et on effectue; on peut trouver aussi ¢+ aj + bj? = 0) ...
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6.3 Au sujet de M(z) — M'(a.z+b),a # 0

6.3.1 Symeétries orthogonales par rapport & une droite affine

1. Théoréme. L’expression de la symétrie orthogonale / Oz est : 2/ =Z. Plus généralement :

!
P 262204

Z est la sym. orthogonale par rapport a la droite d’angle polaire a, y = z.tan(a).

Démonstration

Posons z = p.e®

. 2/ = p.e?; la symétrie par rapport a la droite voulue est telle que 8 + ¢ = 2.a;

(faire un dessin !) donc ¢ =2a —0; doile 2’ annoncé.

Faire attention a I’exposant 2.« et non pas « dans I’exponentielle ! Exemples :

. a !
2 =e"™Z est la symétrie orthogonale / & la droite d’angle polaire 5 Y= x.tan(g) !

La symétrie orthogonale/Oy : 2’ = " Z=—-% Et 2 =1iZ: symétrie orthogonale/y = x.

2. Par translation d’axes : (*)

La symeétrie par rapport a la droite D passant par My, d’angle polaire «, est telle que

2 — =€ (z=29) ou 2 —z =N (Z-7).

3. Composition (exercice possible)

Si s et so sont 2 symétries orthogonales par rapport a des droites, ss0s; est :

_ —
si paralléles, une translation de 2H1Ho;  si sécantes en I, une rotation [I,2.Dq, Do].

Démonstration
Cas 1) Si D; = Ox et Dy : y = h. Mémes abscisses et y; +y =0, y2 + y1 = 2h, d’ot y2 = y + 2h.

2.4«

Cas 2) Si D; = Oz et Dy :y = x.tan(a). Alors z1 =Z, 29 = 2tz donc 2 =e z. Fini.

Remarque : La composition est "non interne" dans I’ensemble des symétries orthogonales.

6.3.2 (*) Complément : isométries et similitudes affines indirectes

. . . a1, / _
Hors du cours. Au plus une source d’exercices si le reste est assimilé. Type : 2z’ =a.Z +b.

4 Description géométrique :

1. f:M(z)— M'(e*"*Z+b) (antidéplacements | a |=1). Un antidéplacement est :

e une symétrie orthogonale, si elle a au moins un point fixe Mo ; (forme ci-dessus par différence).

e sinon, une "symétrie-glissée" ; c’est-a-dire la composée commutative sot = tos d’une telle symétrie avec une
translation le long de son axe; de plus cette décomposition est unique.

. Unicité : Si f = sot =tos, fof =tot d’ou t; puis s !

. Existence : Soit 1 : M(z) — M (e““z), t; une translation de direction e*“t™/?) et ¢, : "® ;ona f=tyot108].
11 suffit de voir que 1 s’écrit s20s1, d’aprés la composition ci-dessus ; alors f = t2082081081 = t2082 et ici commutatif
(c’est clair, géométriquement).

2. f:M(2)— M'(aZ+b),a#0. 2 =aZ-+b, dite similitude indirecte est :

e Si|a|=1, on a une isométrie affine négative connue : le cas précédent.

e Si|al|#1, faun et un seul point fixe I. C’est la composée commutative d’une symétrie orthogonale par rapport
& une droite passant par I et d’'une homothétie de centre I, de rapport positif.

En effet, si | a |# 1; une fois le point fixe unique vu (calcul mal commode !), par différence :

2 —z=a.(z—2); donc Z' =a.Z par translation de repére; ou: Z' = r.e"“Z. Fini.




6.4. (*) COMPLEMENT : AU SUJET DE L’INVERSION GEOMETRIQUE

6.4 (*) Complément : au sujet de I'inversion géométrique

6.4.1 Définition :

k
f: M(2)— M'(7=—), k€ R* est définie pour M # O; et est telle que :
Z

O, M, M’ alignés et OM.OM’ =k on lappelle ‘inversion de pole O et de puissance k. ‘
f est bijective de P* (= P\O) dans P* et f~' = f. (=involutive); (souvent k = 1.)

En effet:

k k. e k
1) 2/ = — se traduit par 2’ = EE ou oM =
z

| z |2 OM?
-, —
2) dou O, M, M’ alignés; et OM.OM' = k.

—
OM | noté (x);

Pour f bijective de P* dans P* : fof = Id est clair géométriquement.

/ k.x k.a'
v = r=—-7s
z2 + y2 -1 . e + y/2
Et donc| avec (x) ky et comme f~° = f, on a aussi : k!
/ . .
y = — e —
x2 +y2 Y 33'/2 _|_y/2

Remarque : changer k, c’est simplement faire une homothétie de centre O.

6.4.2 Image d’une droite : Théoréme

Une droite passant par O, privée de O, est globalement invariante.
Une droite D ne passant par O a pour image un cercle passant par O,
privé de O, noté C*. Et donc C* a pour image D !

En effet :
1) est clair;
k.o’

k
2) lére fagon, calcul : v =a#0< a= 22 ou 7'+ y'2 — —2' =0 cercle passant par O.
x Yy a

A
8

Si C est le centre du cercle, on a OC' 1L D.

2¢me fagon géométrique :  Soit A(a,0) et A’ son image. On peut se limiter & k > 0. Alors :

/
OA.OA" = OM.OM’' donne % = OO—;;; les triangles OA'M’ et OMA sont semblables

(par une similitude indirecte); et donc : on a un angle droit en M’, comme en A. Dessin !

3) L’image d’un cercle passant par O est donc connue car fof = Idp+.  Note b

5 . . a1
° Exercice hors cours : Pour I'image d’un cercle ne passant pas par O, on utilise :

le théoréme de "la puissance d’un point par rapport a un cercle" ... (vu plus tard).
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M+ Exercices: Complexes. Aspect géométrique. PTSI
1. Trouver les entiers n € N tels que : (V3 +14)"

10.

11.

12.

13.

. Indiquer une condition nécessaire et suffisante (C.N.S.) pour que :

. Soit u =

. Montrer quesi: |z|=|a|=1 et 1+ z.a#0, alors:

. Vérifier que :

. Soit a, b, c,d réels avec ad — bc = 1. Montrer que, pour cz +d # 0: Im(

z+1
z—1
(a) réel (b) imaginaire pur. [Ici, trouver : z® —3? =1 hyperbole équilatére].

soit :

z+ 21

Quel est
(a) Pensemble des points M(z) tels que Arg(u) = g(w) 7 [cercle]

(b) T'ensemble des points M (z) tels que | u |=2 ? [cercle orthogonal au précédent : apreés ||

z+a
1+ z.a

e R.

| Re(z) [ + 1 Sm(2) |
V2

<lz| < | Re(z) |+ | Sm(z)|. (Poser z =z + iy)

. Décrire les transformations

) z 1.2

) 2 —jz = 5%

(¢) z— —2i.z+10 — 5i;
d)

)

(e) z+ j.Z+ j — 1 en observant que My(—1) est invariant.

(a
(b
(

z +—1.Z; (moins connue)

Avec le théoréme du parallélogramme = 2.(Ju > + | v [*) = |u+v |* + |u—v
montrer qu’on obtient I'inégalité suivante :  |u |+ |v| < |u+v ]|+ |u—v].
. - z + abz ,
. Soit a,b complexes distints de module 1 et z € C. Montrer alors que : 2 € Ru..
(1/ —_—
az+b Sm(z)

) =

cz+d |ez+d|*

Figures simples

(a) C.N.S. pour que A(a), B(b),C(c), D(d) dans cet ordre, forment un parallélogramme 7
(b) (*) C.N.S. pour que A(z),B(z%),C(z*) forment un triangle équilatéral direct ?

Quel est 'ensemble des points M (z) tels que A(1), M (z) et P(iz) soient alignés ? |[cercle].

(*) Soit a, b, ¢ réels tels que e + e + ¢ = 0. Montrer que € 4 ¢ 4 ¢2i¢ = .

[Indication : trouver {e’® e e“} = {e', e, j2¢1} ]

(*) Hors cours. Soit U'inversion de pole O, de puissance 1 : Image d’une droite (2 cas) ?

d’un cercle (2 cas) 7 [(*) Utiliser le théoréme de la puissance d'un point/cercle : plus tard.]




Chapitre 7

(énéralités sur les fonctions R dans R

7.1 Introduction

7.1.1 Recherche de symétries
1. T'> 0 est une période de f si:Va € Dgey, f(x +T) = f(z).

Exemple f(z) = cos(w.z — ¢) a une plus petite période : |T = 2.

€13

2. f est paire si son domaine est symétrique par rapport & x = 0 et f(—x) = f(x) tout le temps.
x = a est axe de symétrie de f sur (a —a,a+ ) <= f(a+h) = f(a—h),Yh € [0, ).
3. f est impaire si son domaine est symétrique par rapport & x = 0 et f(—x) = —f(x) tout le temps.

Si f définie sur (a — a,a + @) : A(Z) centre de symétrie < flath) —; fla—h) =b,
Vh € [0,a). Quis’écrit:x =a+h, a—h=2a—2x; donc f(z)+ f(2a—x) = 2b(= cte),Vr € Dgcs.

7.1.2 Domaine de définition. Domaine d’étude

Rappel : Une fonction f: E — F' est une correspondance (ou relation) telle que chaque x € E ait au
plus une image dans F.
Exemples (Et bien voir certains exercices)

1. f: x+— 1/x est une fonction de R — R. C’est une application du domaine de définition

Dgey = R* dans R.  Son domaine d’étude serait Degyqe =]0, +00[ avec I'imparité.

2. f: x> [sin(:p)]cos(w). On connait a" si r € Q, a > 0 en général. Mais si r € QQ, on passe par
b= ebn(@) 4> 0.| Donc f(z) = es@nlsin(@)] gin(z) > 0. f est 2.7 périodique.

leln:|a

Aussi, on peut choisir un domaine d’étude  Deyge = [—m, 7|5 alors Dger N Degyge =|0, 7]

7.1.3 Quelques définitions. Et opérations

1. On dit que f est majorée (par M € R) si f(x) < M tout le temps (M est un majorant);

minorée (par m € R) si f(z) > m tout le temps; et bornée si majorée et minorée.

On a: ‘f bornée <=| f | bornée‘ (car f bornée par m et M =>| f | majorée maz(| m |, M).
Si f(x) =2z sur [2,3[, max(f) n'existe pas;  mais sup(f) = 6.

2. On note F(I,R) ’ensemble des applications de I dans R (I, intervalle en général).
On définit f+gpar (f+9)(z) = f(z)+g(z); (f-9)(x) = f(z).9(x); f<gpar f(z) < g(x),Vr € L.

Composition vue : toujours associative (quand elle est définie). [Va2=|z |; In(z?) =2In|z|.
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CHAPITRE 7. GENERALITES SUR LES FONCTIONS R DANS R

7.2 Limite en un point z; (généralités)

7.2.1 Hypothéses

1. Si zg € R, on supposera que f est définie au moins sur un intervalle |zg — o, 29 + af,a > 0.

Si g = +o0, on supposera f définie au moins sur un certain |A, +o00[, A > 0.

. | En résumé, on dira que f est définie sur un voisinage de oy (mais xy excepté, parfois). ‘

7.2.2 Définition de la limite

1. Cas xg,! finis :

On dit que f(z) tend vers | quand z tend vers xg et on note lim f(x) =1 ou
T—T0

plus souvent f(z) — 1 si:Ve>0,3a. >0/ |z —x |< ac =] f(z) —1|<e¢
T—T(

Cela signifie que toute contrainte | f(x) — 1 |< €, € > 0 (ou encore f(x) €|l —¢€,l + €[) est réalisée
deés que z est suffisamment prés de z, proximité (x €]zg— ae, o+ a.[) qui dépend du € > 0 choisi !

Cas ¢ fini, [ infinie : | f(z) — +o00si: VB >0,3ap >0/ |z — ¢ |< ap = f(z) > B

T—x0

Cas xg infini, [ finie : | f(z) — Isi: Ve> 0,34,/ 2> A= | f(z)—1]| <e¢

T——+00

Cas x¢ et [infinis:|f(z) — +o00si:VB > 0,345 / x> Ap = f(z) > B.

T——+00

Remarques
. Analogue en —oo. Faire des dessins (surtout le ler cas) !
. Avec les voisinages, les définitions sont unifiées.

2. Propriété. |Une application a au plus une limite en xg (unicité de la limite). ‘ En exercice.

7.2.3 En pratique

Propriété | Si f a une limite & gauche I, et & droite Iy : f(z) — 1 & {

1. Limite & droite, limite & gauche.

Exemples. Dessins : en z =2, z+— E(z). En 7/27, tan tend vers +o00; en 7r/2+, vers —oo.

Définition | On dit que f(z) — I, si on impose de plus x < zg ; analogue pour limite & droite 4.
T—r0— —_—

lg=1q(=1) et si f(zo)
existe : g = lg = f(xo).

T—To

En exercice.

. Remarques

e Lorsque xp € R, on peut poser ‘ r=x9+ h,h — O‘; non pas * = h+ xg, dans ce contexte !
Et h = (z —xz¢) est "Vinfiniment petit de référence". En £oo, cest h=1/x.

e Si f est bornée au voisinage de zo et si g(x) — 0, alors f(x).g(x) — 0 (facile)
T—T0 T—T0

) 1
Snle) o, a(sind) —o
X T—+00 Tr~ x—0

. Cas essentiels de limite

l
e Dans la suite, on va utiliser |in(z) 0 +00; n(z) — 0| (cf. ch. Fonctions élémentaires)
T—+00 Tr x—+oo
f(z) — f(zo) f(zo+h) — f(xo)

e it si f dérivable en 2y € R, — f'(x¢) ou bien — (o).

T — xg T—x0 h h—0
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7.2.4 Théorémes généraux

1. Somme, produit

Soit f,9,f + g, f-g, S définies au voisinage de xg; si f(z) — 1, g(x) — m, alors :
T—T( T—T(

(f+g)(x) — I +m sauf 00 — co (indéterminé); A f(z) — AL
oo I
00

Y 0 .

oo

(f.9)(x) — l.m sauf 0.00 (indéterminé); Z(z) — — sauf
g m

Sur le dernier cas /0 :

On dit que g(z) — 07, si de plus il existe un voisinage de g sur lequel de plus : g(z) > 0.
T—T0

, (1>0)
0+

7 7

0+

n

Dans ce cas, sil >0, n’est pas indéterminé mais vaut :

Vrai aussi pour les limites & gauche et a droite.
. Démonstration en exercice.

. Signalons I'équivalence [f(z) — ] < [Pour toute suite définie (uy) : up — o = f(uy) — ]
T—T0

Equivalence a voir; elle raméne (si 'on veut) la preuve au cas des suites.

2. Composition

Sif(x) — 1, g(ac)—;m et si gof est définie au voisinage de xg, alors : gof — m.
T—XQ xr—

T—x0
In(1+h)
Nous verrons que ———= In|1 + sin(x
Exemple h h—0 donc : M — 1.
et sin(z) — 0 ici évident sin(z) z—0
r—
Démonstration en exercice. [Note. Si f=g: 2 € R* —— 0, alors Dy, =0 ||

7.2.5 Inégalités

1. Théoréme : Prolongement des inégalités (larges) par passage a la limite

Sif(x) —1, glz) — met si f<g au voisinage de xy, alorsona: [ <m.
T—x0 T—x0

2. Théoréme : d’encadrement ou des gendarmes
Sif(x) —1, g(z)—let si f<h<g auvoisinage de xp, alors : h a une limite qui vaut .
T—x0 T—x0

. Ce dernier théoréme donne ’existence de la limite ! . Démonstrations en exercice.

Montrons que sin’ = cos. |Et cos(z) = sin(z + m/2) la dérivée de cos en résulteral.
in(h h)—1
smh( ) + sin(wo).icos( h) .

1
Cherchons :  lim E.[sz’n(wo + h) — sin(xp)] = }Lir% cos(xg).

—0

Pour h > 0 petit, soit : M(cos(h), sin(h)), A(1,0), P(cos(h),0), Q(0,sin(h)), T(1,tan(h)).

Ona PM < Arc(AM) ou sin(h) < h (carlongueur de l'arc : cte.h; cercle total : 1.2m = cte = 1).
Et Aire(OAM  curviligne) < Aire(OAT); (AireOAM = Cte.h, Cte =1/2) d’ou 1/2.h < 1/2.tan(h).

sin(h)

5 < 1. Ceci est vrai méme si h < 0, petit en valeur absolue, par parité.

Donc cos(h) <

D’ou par encadrement sinth) _, 1| (d’ailleurs clair). On déduit L=costh) 1
h h—0 h? h—0 2
1 — cos(h) 1 — cos®(h) sin?(h) . .9, h
En effet : = = b : 1—- h) =2 =) ...
— 2 Lt costh)h2  [Ltcosh) iz = 202reR cos(h) = 2sin”(3)
Dot : 1= C;S(h) _1- ZOQS(h).h — %.O =0. Qui montre donc que sin’(xg) = cos(xo).
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M-+ Exercices: Généralités sur les fonctions: R — R PTSI

1. Composition : On définit, si c’est possible, la composée des applications par ‘ gof(x) = g[f(x)]. ‘

Vérifier que la composition est associative. Cas ot gof # fog en se limitant & f, g affines 7

x

7  Posséde-t-elle un centre de symétrie 7

2. (a) Quel est le domaine de : f(z) =In |
-z

(b) Mémes questions pour les fonctions :  g(z) = In ﬁ (et : h(z)=In| 1 i_i l.)

2 2
T x5 =2 . . o
3. | Graphes|: f(z)= P g(x) = 271 sin, cos, tan, cot, |sin| (mw-périodique)

h(z) = %H (impaire, inj. non surj. R — R); i(z) = 2> — 2 (impaire, surj. non inj. R — R)
x - Sut)
1 1 1
*) j(=z) = e/ ; k(z)=x+sin(z); l(z)=sin(=); xz— E(=); z—x.E(-).
x x x
4. Une fonction a bien voir. Tracer le graphe de : f(x) =—|1—a |+ |22+ 2| [petite échelle].

. sin(x) ) 1 ) . An(x) .. sin(h) .. cos(h)—1
] i 0 el ) ) oy 21

6. (a) z€R—yeR tels que z° + y? = 1 (cercle trigonométrique : partie de RxR appelée

graphe) n’est pas une une fonction : pourquoi ?  Que dire sinon ?

(b) Idem : z+—y tel que =z = y? est-elle une fonction de R dans R ?  Graphe ?

7. Notations Si A C FE, on définit | f(A) comme la partie de F' suivante {f(x),z € A}.
De méme, si B C F, on définit | f~1(B) = {z € E: f(z) € B}| f application.
(a) Préciser sin(R). Préciser  sin~!({0}).

)

(b) Pour f(ac):wQ—l, préciser f(R1) et f_l({O}).
)
)

(c) Cason f#Idg et fof=1Idg 7 (Selimiter a f(x)=a.x+0b.)
(d) (*) Montrer en général que le domaine de gof vaut : Dgyop = Dy N f~H(Dy).

1
8. Monotonie : Pourquoi est-il faux de dire que ”x — — décroissante sur R*"? Que dire a la place?
x

9. Pour f, g croissantes, lequel est-il faux parmi : (a) f 4+ g est croissante (b) —f décroissante

(c) f.g croissante (d) Si f est de signe strictement constant, 1/f décroissante ?

10. Si f et g sont monotones et que gof existe, montrer que gof est monotone avec la régle des signes.




Chapitre 8

Calcul de limite des fonctions R dans R

8.1 Comparaison des fonctions

8.1.1 f négligeable devant g noté: f << g, (xr — z9)

f est "négligeable" par rapport & g (ou infiniment petite ou g infiniment grande par
1. Définition

rapport a f) si£—>0 ou |2| — +00. On note f =o0(g) ou f << g (z — x0).

gx—>:r:0 f T—ITQ
Remarques :
1) Si on ne peut pas écrire le rapport, on dit  f(z) = g(z).e(x), €e(z) — 0.
T—xo
2) Quand =z — 0o, z? <<z  Mais quand z — 0, 2° << 2%

3) Si on a seulement f bornée, on note f = O(g) : notations de Landau.
g

2. Théoréme |Quand = — +o00, 1 << In’(z) << 2% << a*, (>0, a>0, a>1.

. Pour cela, on dit : "l’exponentielle I’emporte sur la puissance".

. Et :  "la puissance 'emporte sur le logarithme".

Démonstration Sur des exemples pour mieux comprendre !

l 1000
1) Montrons : y = (@) — 0.
x T——+00
In(z 100017 (2:1/1000 In(t
On a : y = [:El/(loo)o]l(]()() — [ :El/(looo )]1000 — cte.( t( ))10007 avec t — xl/lOOO

In(t
et on est ramené & la limite fondamentale ¥ en —+o00.

l,lOOO
2) Montrons : y = 1017 x_)—+>000.
l
Ona: In(y)=1000.In(z) — 2.In(1,01) = x.[looo.@ —In(1,01)]; [..] — —In(1,01) < 0
l,lOOO

donc In(y) — —oo, et y=

s [Remoranes]

1017 aroc)

1) In en 0T, esten lien avec In en +oo car: In(1/t) = —In(t). Ainsi:|z.In(x) — 0"
z—0
(Poser x =1/t, t — +oo. Puis In(t)/t ...)
1
2) De méme exp en —oo est en lien avec exp en +oo car: exp(—t) = .
exp(t)
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8.1.2 f équivalente a g, quand (z — )

f est équivalente a g, noté : f ~ g,si f—g<<gou f(z)— g(z) = g(x).e(x) ou
T—x0

f(x) = g(x).[1 + e(x)],e(x) — 0| ce qui signifie chaque fois qu’on peut diviser par g
1. Définition o

f~ g i —1.| Attention : ce n’est pas la différence qui tend vers 0 !
T—x0 gxz—2x0

Ainsi

22% — 1022 4 12z N 223 la différence tend vers —oo !
T— =00

22% — 1022 4 12z ~012x; le but des équivalents est de simplifier.
Tr—

223 — 102? + 12z ~14 (la fonction constante 4) !
r—

223 — 1022 + 122 = 2.2(z — 2)(x — 3) ~, 4(x —2) : & bien voir !
r—

2. Equivalents fondamentaux, Théoréme

x? —h?
Ona: sin(x) ~x; tan(x) ~x; 1—cos(z) ~ T ou bien : cos(h) =1 ~ —
z—0 z—0 x—0 2 h—0 2 P
In(l+x) ~, % ou In(u) wl(u —1); -1 ~ (1+x)* -1 ~ (afixe) vV1I+ax—1 ~05
Démonstration
t ] 1 t —tan(0
1) et 3) vus. 2) Ecrire an(z) = S’L?’L(ﬂ?)‘ ou bien an(z) = tan(0) — tan’(0) = 1
x x  cos(x) x—0 z—0

4) 5) 6) Idem : w — f'(z0); et par exemple [(1+2)*" =a.(1+2)*" & voir.
— Xy T—T(

3. Propriétés
1) La relation f ~ g est une relation R.S.T. (relation d’équivalence, cf. ch 0)
Tr—T0

2) Si f ~ g, il existe un voisinage de x( sur lequel f et g ont méme signe.
Tr—T0

En particulier, elles sont nulles simultanément. (Car f(z) = g(z).[1 + €(z)], e(z) — 0.
Tr—T0
3)Si f ~ g etsi g(x) —1, alors f aussi.
r—xo T—x0
4) 11 y a compatibilité des équivalents avec le produit : f1 ~ g1, fo ~ g2 = fi.fa ~ g1.92 et
r—x0 T—T0 T—x0

le quotient, mais pas avec la somme (cf. aprés) Un résultat | sig<< f, f+g ~ f.
T—xT0
5)Si f ~ g etsi f>0, alors \/f ~ /9. (En exercice).
T—T0 T

—X0

4. Trois fautes a éviter

1) I n’y a que la fonction f identiquement nulle au voisinage de zy qui est équivalente a 0.

Comme ce n’est jamais le cas en pratique, dire : "f ~ 0" est une FAUTE.

T—x0
De méme dire : "f ~ oo " est un NON SENS.
r—x0
2) SOMME d’équivalents. Un cas ou c’est faux : x + z? ~E T T +3.23 (ridicule, mais
r— r—

c’est juste); par contre z? ~ 3.23 est faux.

xz—0

3) In et exp d’équivalents : x4+ 1 ~ =z, mais ¢“T1 non équivalent a e” : le rapport vaut e !

r——+00
Et: 14+z~1-2% mais: In(1+z) ~ 2, tandisque: In(1—2%) ~ —a8 !
x—0 x—0 x—0
D’ailleurs, on dirait : 1+ Nol !
Tr—

5. Remarque de rédaction (pour la pratique) |Si [ #0, oo, ona: f(z)—1 < f(x) ~ L

T—To T—To
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8.2 Exercices corrigés

8.2.1 Avec <<
1
1. Montrer qu’en 0, In'%(z) << - (Dans f(z) = z.In'%(z) poser t=1/xz.)

T

2. Montrer qu'en —oco, €* << (Dans f(z) = z'?.e%, poser t = —z.)

2123
3. (Facultatif) Trouver en +o0, f, g: 1 << g(z) << In’(z) << 2% << a® << f(z), a,3>0,a > 1.

(Par exemple f(z) =z et g(x)=In(in(z)); il fallait y penser !)

8.2.2 Avec les équivalents

1. Donner un équivalent en 0 de In(1+ sin(z)). En déduire lim In(x).ln(1 + sin(x)).

Tr—

Non pas : 1+ sin(z) Nol + 2 (somme d’équivalents) puis In(1+ sin(z)) Noln(l + )
E— r— r—

(2¢me faute : In d’équivalents) [qui donnerait un résultat juste avec (n(1l+ ) ~. |
r—

Mais : In(1+ sin(x)) ~ sin(z) (avec h = sin(x) — 0) et donc In(1+ sin(zx)) ~,

Tr—

On en déduit par produit :  f(z) = In(z).In(1 + sin(z)) NO:E.ln(:E) et ici, on a une forme

indéterminée connue (et & savoir) qui a pour limite 0; donc lir% f(z) existe et vaut 0.
T —

2. Equivalent de f(z) =In(x) —In(2) au point 2. (Bien str :  In(z) ~, In(2).)
2+h h h -2
lére fagon. Avec z =2+ h (donc h — 0), In(z) —In(2) =in —g =In(1+ §)h~0§ = 5

2¢éme fagon. Beaucoup d’équivalents ont été trouvé par la dérivée en un point. Ici, si on veut :

In2 +h) —In(2) — In/(2) = 1 Donc @2+ h) = n2) 1 et |In(x) —In(2) ~ - 2.
h h—0 2 h h—02 z—2 2

3. Equivalent en 0 de 2* —1 ? Onal: 22 —1=¢""® _1 ~ 2iIn(2) !

z—0

4. (*) Equivalent en g de sin(x)+cos(zx)—1=y ? Avec x = g +h ona y=cos(h)—sin(h)—1

h? 0
ttention : ) Dire:1— h) ~ — <<sin(h) ~h d ~ —h=—(x—-).
(attention : somme !) Dire cos(h) o sin( )h—>0 onc y -~ (x 2)
5. (*) Equivalent quand =z — 400 de tan 2m- ?
4.x+3

Attention : la fraction tend vers — = g (donc lui est équivalente) mais "tan” n’existe pas en g !

2.m. ) 1
Notons () = TT Alors tan() = sin() ~ !

4o +3 cos() z—+oo cos()
Et comme () tend vers z, une fagon facile est de dire :  cos() = sin (z — ()> ~ (E — ())

2 2 z——400 \ 2
2.m. 3. 3. 8

Or: Z— ()= T T T il Finalement : f(z) —.T

2 2 4z+3 2(dz+3) vt 8.3
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8.2.3 Divers

:E—l7

im !
z—1 " —1

. : 0
Forme indéterminée —.

1
Posons x =1+ h, h — 0; alors n fixé, (1+h)" —1 ~ n.h dou la limite existe et vaut —.
n

1 f(x)— f(1) B

Plus simple : = '(1)...
Plus simple - =— = =—— = — '(1)
. 1 e . 1
2. lim (14-)* 7 [puis faire de méme : lim (1 — —)* 7]
T—00 T T—00 T

Forme indéterminée 1°°.

1 1 1
(14+-)*= emn(1+3) - Avec les équivalents fondamentaux, l'exposant : z.In(l1+—) ~ z.—, tend
x x'z—o0 1z

1
vers 1. Par continuité de ’exponentielle en 1, la limite cherchée existe et vaut | lim (1 + —)* =e.
T—00 T

3. In(x + 1)m f\jrooln(a:) ?  Aussi une question de limite si 'on veut : le rapport tend-il vers 1 ?

De plus, bien dire z+1 et non pas 1+ z en linfini...

1
On a: $+1=$-<1+1>; dott In(z +1) = In(x) +In(1+ —);
x

1
or: In(l+ ;) <<1<<lin(z) ! donc [In(zx+1) ~ In(x).

Tr——+00

4. lim T+ Ve —+z ?

T—+00
Forme indéterminée 4+00 — 0o ; ils sont de plus équivalents, car vz <<z = = + /7 ~ x
T— 100
2
: g°(z) — o NG N
uis g(x) = \/x++Vxr ~ z. Alors f(zx) = g(z) — Vo = = = —. On

sait que N ~ +/x; on pense que D ~ 2.y/x. Pour contourner cette somme d’équivalents, on
xr - r—+00

NIVE
DING

Autre solution : Mettre +/r en facteur et utiliser (1+h)* —1,si h — 0 !

écrit

1
: qui raméne & une somme de LIMITES ! Bref, la limite cherchée existe et vaut 3

5. (%) lim [F L) o
z—0 1—=x
En 0" forme indéterminée déja ...
1 1 1
Ona f(z) = e L] puis exposant ~ —.n[..] ~ —.([...]—1),carin(u) ~ (u—1). Ainsi:
z—0 T z—0 X u—1

I'exposant tend vers 2. Par continuité de 1’exponentielle en 2, la limite cherchée existe et vaut e2.

6. Complément : Un cas o la somme d’équivalents est permise (ne pas savoir) :

Si f(x) ~ 0T g(x) :Ob.az etsi a+b#0, alors: f(z)+ g(x) :0(6L +b).x car:
f(x) +9(x) f(z) g(x) a b

on fait le rapport = + ; il tend vers

=1.
(a+0b).x (a+b).x (a+b)x a+b+a—|—b
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8.3 Questions théoriques

8.3.1 Continuité en z; € R

Si g est finie, et si f est définie en xg, la limite ne peut étre que f(xq) si elle existe (facile).

Exemple Voir la fonction caractéristique de la partie {0}, notée Loy : {

Soit la limite existe et vaut f(xg) : c’est la définition de la continuité en xg.

D { Soit la limite n’existe pas : voir 'exemple suivant (zg = 0 : cf. exercice).
onc

z =0 1;

in?
240 0. Dessin 7

8.3.2 Cas ou f est continue sur |a, +o0]

Cela veut dire que f est continue en chaque point (cf. ch. Continuité).

Donc en chaque point xg tel que a < zg < +oo (a est fini ou —o0), f a une limite : f(xg).

Mais attention : on ne dit pas, ici, que f posséde une limite en +o00; ni en a™ !

1) & — sin(z) est continue sur R, mais ne posséde pas de limite en 400 !

2) Soit f(x) = sin(1/x), x > 0. Valeurs out f(z) =0, ot f(x) =1,.. Dessin? Sans limite en 0.

8.3.3 Théoréme de la limite monotone

o7

. Cas f est croissante sur |0, +oo[ : f a forcément une limite en +co. Et L finie <= f est majorée.

. Cas ou f croissante sur (a,b) [intervalle fermé ou ouvert en a et b] et a < zy < b. Alors f posséde

en xo une limite [, a gauche et [; & droire avec: [, < f(zo) <lg .

De méme f posséde une limite a droite en a et & gauche en b. Idem si décroissante.

Démonstration (*) en complément : Pour la limite & gauche en zg :

Soit lg = sup{f(z), + < xo}; onabiensir: Vz <z, f(zr)<l,  D’autre part :
sie>0; Jec:a<c<uwzgtel que f(c) > Iy — € par définition du sup (sinon l; — e majorant).
Et comme f croissante : c¢<ax <xg = lg—€e < f(x) <lg; ceci suffit.

1) Comme In est croissante, sur |0, +oo], Pexistence d’une limite en +o0o est certaine !

2) Donner une fonction définie sur ]0, +o0o[ croissante non continue; une fonction non monotone ?

3) Fonction définie sur R ayant une limite & droite ou & gauche en aucun point.
Donc ni monotone ! ni continue !

z€eQr—1;

& Q+— 0.

(On utilise le résultat qu’entre 2 réels distincts, il y a toujours un rationnel et un irrationnel.)

Ainsi : la fonction caratéristique de la partie Q, notée 1q : { Dessin ?

8.3.4 Quelques propriétés

Si f a une limite FINIE en zq, alors f est bornée au voisinage de xg. ‘ En effet :

Soit € =1 > 0 : possible. Il existe V, voisinage de ¢ : x € V = f(z) €]l — 1,1+ 1[; bornée !

Si f(z) — 1 > 0, en se limitant a [ finie : 3V, voisinage de xy tel que : = € V = f(x)

T—To

- 1 .
En particulier, non seulement — existe sur V, mais encore elle est bornée : 0 < = <

f f

Démonstration (Si on avait [ = 400, dire : f > 1sur V' 1) [Ceci sert a certaines preuves.|

l l
Soit € =1/2 > 0. Alors, 3V, voisinage de x¢ tel que sur V, f(z) €]l — 3 I+ 5[ ce qui termine.
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M-+ Exercices: Limites des fonctions: R — R PTSI
1. ‘Calculer les limites suivantes‘
30 2Y o e 3
(x° + x%).sin(x) en0: 1 sm(aj)7 en /2 v en0:
(1 —cos(x)).(1 — exp(x)) (/2 — x)? tan(z) — sin(x)
1 —
sz’n(%—w).tcm(%c), en w/4; %, en 7/3; Va2 -2z —1—z, en +o0;
1 1 1
In(z).In[l + tan(z)], en 0; %/sm(;), en +00; sin(;).tan%, en +00;
rT—1 1 ] —

(cos(ac))l/xQ, en0; sgz?n(ﬂx)’ enl; wE(;), en0; sm(;s#’ en 0 : plus tard.
2. ‘Donner un équivalent de‘

(a) In(3+h) en0; puis In(3+h)—In(3) [c’est In au voisinage de 3|; (b) sinlin(14+x)], en0;

(c) e —e, en 0; (d) [In(1 + z)/In(z))*"@®) | en +o0; (e) tan[rx/(2z + 1)], en %oo.
3. (*) Autres limites : Rappel | si f'(zo) # 0, alors f(z) — f(z0) ~ f'(z0).(x — 1) ; faux sinon.

———. en0; w2.[el/x - el/(”l)], en +o0; 1,_ sin(z) + cos(x)’ en m/2;

a® — b* sin(z) + cos(x) — 1

a_ T - _ 4
(Difficiles) ra , en a; sin(mz) — cos(rz/ ), en 2 .
T —a 27 — g2
4. Quelques fonctions : (a) Faire le graphe de f(z) = x + cos(z) (b) g(z) = z.cos(x)
(¢*) Montrer que z — sin(x?) est non périodique (avec ses racines par exemple).
5. (*) Soit f définie croissante sur |0, +oo[, telle que z+— @ soit décroissante.
Montrer que f est continue en chaque point. [Théoréme de la limite monotone].

6. (*) Autre cas ou la somme d’équivalents est possible |Ne pas savoir; on verra les DL au ch.30].

Si fl(x)x:xogl(x)a f2($)x_§“x092($)7 g1 =20, g2 >0, alors:

(fr+ fz)(ﬂf)x: (91 + g2)(z).

o




Chapitre 9

Continuité des fonctions R dans R

9.1 Généralités

9.1.1 Continuité en un point

Définition : | f est dite continue en xg, si f est définie en 2y (= o€ R) et f(z)— f(x0).

T—x()
Remarques
1) Soit f(z) = Sm;j(a:)’ x#0. Ona f(x)— 0
On pose f( ) = ; j:g; z70 on dit qu’on a ‘ effectué un prolongement par continuité de f en 0. ‘
e

2) La fonction = — E(z) (partle entiére) n’est pas continue en 0; continue a droite, mais pas a gauche.

9.1.2 Continuité sur un intervalle |

Attention : x — E(z) (partie entiére) n’est pas continue en chaque point de [0,1] car non continue en 0.
Mais sa restriction a I = [0, 1] notée E|g | est, elle, continue en chaque point de [0,1].

Définition :| f est "continue sur un intervalle I" si sa restriction f,; est continue en chaque point de I.

Exemples 1) Si f est continue sur [a,b] et [b, |, alors elle est continue sur [a, ¢].

. 1 .
2) La fonction  — — est continue sur R*.
T

9.1.3 Opérations sur les fonctions continues

f,g continue en xg = f 4 g aussi; A.f aussi;

1. Opérati linéaires. Produit tient . . .
pérations linéaires. Produit , quotien f.g aussi; etsi g(zo) £0, f/g aussi

Démonstration de 4) en complément (*)

1
Il suffit de voir pour —. Or, si g(zg) # 0, g est non nulle dans un voisinage V' de xg, et méme
| 1/g| vy est bornée par |2/g(xg)| (cf. f(x) —1# 0 au ch. Limites).
T—T0

1 1 g(w) — g(wo) < 2. | g(z) — g(zo) |

9@ gl | gl glan) ()
Or, Ve > 0, 3 un voisinage V' de g sur lequel | g(x) — g(xo) |< e.g(x0)/2.

Donc : |

Sur VNV’ on a, en conséquence, | — — |<e; ce quitermine.
g(x)  gl(wo)

Exemples

Les fonctions polynémes x — P(z) sont continues sur R.  Les fractions rationnelles
x +— P(x)/Q(zx) sont continues sur leur domaine (1a ou le dénominateur est non nul).

59
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2. Composée ‘La composée de fonctions continues est continue‘ (conséquence des limites).

‘ Deux exemples ‘

1) & — y/z étant continue sur RT . soit voir aprés : Fonction réciproque.

. soit directement : 0 <z, vy = | Vy— vz | < V]y—=z|.

Dot x+— 1+ 22 est continue sur R par composition.

2) De méme, comme z —| z | est continue sur R :  Donc si f continue, alors | f | aussi. *

Ensuite 3 théorémes fondamentaux ADMIS :

9.2 Théoréme des valeurs intermédiaires

9.2.1 1ler énoncé

Soit f continue sur un intervalle I; a,b € I. Toute valeur y entre (intermédiaire) f(a) et f(b)
est atteinte pour au moins un z entre a et b: Yy € [f(a), f(D)], 3z € [a,b] tel que f(z)=y.

ADMIS. [la dém. utilise la propriété de la borne sup; on prend : z = sup{t tel que f(t) < y}.|

9.2.2 Exemples essentiels

1. Si f est continue sur [a,b] et si f(a).f(b) <0, alors f s’annule au moins une fois sur |a, b[.
2. Tout polynome de degré impair a coeflicients réels, s’annule au moins une fois sur R.
En effet si P(z) = ag.z®®™ + ...,ag # 0, Pla
JA>0:2>2 A= P(x) > 1, et négatci? si  suffisamment "proche de —o0” ; donc :
dB<0:2<B= P(z) <—1; enfin toute application polynémiale est continue sur R.

3. Si f est continue de [a,b] dans |a, b, alors 3l € [a,b] tel que f(I) =1 (I=point fixe de f). Dessin ?
En effet, g(z) = f(x) — x est continue comme f; et vérifie g(a) > 0, g(b) < 0; donc g s’annule !

est positif pour x suffisamment "proche de +00” :

4. ‘ Conséquence ‘ du Théoréme des valeurs intermédiaires. Si f continue sur [a, b] ; et si de plus f est
strictement monotone, alors Yy € [f(a), f(b)], 3! (unicité en plus) = € [a,b] : f(z) =y. (Clair).

9.2.3 2éme énoncé

1. Définition pour commencer : une partie C (de R ou de R2...) est dite convexe si :
C=0ousiVA,B € C, le segment [A, B] est inclus dans C.

Exemples de partie convexe de R? : intérieur d’une ellipse; de partie non convexe de R? : R* !
Propriété : Les parties convexes de R sont exactement les intervalles [laissé en exercice].

2. Autre rappel : Ayant une application f: E — F, on appelle Im(f) (image de f) {f(x),z € E}.
Par exemple, I'image de R par la fonction sin est exactement : Im(f) = f(R) = [-1,1].

3. Le théoréeme dit donc que tout point entre f(a) et f(b), est dans Im(f), donc que I'm(f) est une
partie convexe de R. Ainsi|L’image d'un intervalle par une application continue est un intervalle. ‘

tgt|f-
| T
Note en complément (*) : Pour f,g données, on vérifie que F+a—1f—g] ;

et inf(f,g)
(utile & certaines démonstrations). En effet, prendre x tel que f(x) > g(x); puis z ou f(x) < g(x).
f,g continues = | f — g | continue; puis sup(f,g) et inf(f,g) continues !

Cas particulier. On définit :

f* opar ff(x) = sup[f(x),0] = maz[f(z),0] et f par f(x) = —inf[f(z),0] = —min[f(z),0].

(Voir le cas f(:z:):x+:c2 sur R; dessiner f, f+, ) Voir aussi que :
_ +_ 1
ff>0, f~>0; f =sup[-f(x),0]; surtout : { |f|_:‘7jr++]i car f 12(|f|+f)
f=r= ;r=50r1-0).
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9.3 Continuité sur un segment

9.3.1 Théoréme des bornes atteintes

Enoncé : | Toute application continue sur un segment est bornée et atteint ses bornes.

ADMIS.
Donc m = inf(f)qs est FINI; et 3z1 € [a,0] : m = f(z1). Idem pour M = supjqy(f) = f(z2).

Voir, par divers dessins, que les hypothéses sont utiles :
1) f(x) =1/z sur |0,1];  2) g(z) = 1/x sur [1,+o0[;  3) h(z) = 1/x sur ]0,1] et h(0) = 0.

9.3.2 En combinant les 2 théorémes précédents

Conséquence : ‘ L’image d’un segment, par une application continue, est un segment. ‘

En effet : f([a,b]) C [m =inf(f) = f(z1), M = sup(f) = f(x2)].

Inclusion inverse : Toute valeur entre f(x1) et f(x2) est dans f([a,b]) par le théoréme des valeurs

intermédiaires. A bien comprendre.

9.4 Continuité de la bijection réciproque

9.4.1 Rappels sur injection, surjection

Déja, on part d’une application f de E dans F'. On note f(F) = {f(x),z € E}.
1) f est surjective de E dans f(E), par définition de f(E) ! Et :

2) Si E est une partie de R et ' =R, on a clairement : f strictement monotone = f injective.

3) Pour f bijective de E sur F' (quelconques ici), on peut définir une application de F' (et non pas P(F))

dans E, notée f~! : y — son unique antécédent z ; elle est aussi bijective et f~lof = Idg, fof ' = Idp.

9.4.2 Théoréme de la bijection

définie sur un intervalle I f(I) est un intervalle
Soit f une application : strictement monotone alors : f est bijective de I sur f(I)
et continue; et f~! est continue: f(I) — I

Démonstration
f(I) intervalle : connu;

f surjective de I sur f(I) ! et injective car strictement monotone; donc bijective.

Est ADMIS : f~! continue. Ici on voulait (en plus de la bijectivité) que f et f ~1 soient continues !

‘ Deux exemples ‘
1) f:xz € RT — z? € RT vérifie les hypothéses; cela donne f1(...) = /- continue sur RT. Dessin?
2) f:x € R 2% € R vérifie les hypothéses; cela donne f71(...) = /. continue sur R ! Dessin?

9.4.3 Arcsin (cf. dessins plus loin)

f = sin/ [—7/2,7/2) Vérifie les hypothéses du théoréme. Sa réciproque est, par définition, I"application
Arcsin.
Donc : y= f(z) = sin(z), = € [-7/2,7/2] <= x = Aresin(y) = f*(y), y € [-1,1].

Dessin de = = Aresin(y) 7 déja fait : le méme que celui de y = sin(z),z € [—7/2,7/2] !

‘Dessin de y = Aresin(zx) ? ‘ on met x variable de f~1; symétrique /(y = z) de celui de f.

Attention | 1) Arcsin est la fonction inverse (on préfere dire "réciproque") de sin (_r 2 r/2) pour la
1

composition et non pour la multiplication. Ainsi Arcsin(x) # — @ !
[ SN\
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2) On a sin(Arcsin(z)) = = sur [—1, 1] c’est-a-dire tout le temps. Par contre Arcsin(sin(z)) ==z

que sur [—m/2,7/2]; alors que Arcsin(sin(r)) est définie sur R : cf. exercices corrigés.

9.4.4 Arccos

f=cos/ 0,7 vérifie les hypothéses du théoréeme. Dessin 7

Sa réciproque est Arccos. Arccos est donc la réciproque de cosinus-restreinte a [0, 7).

Soit : y = f(x) = cos(x), x € [0,7] <= x = Arccos(y) = f~'(y), y € [-1,1].

‘Dessin de y = Arccos(z) ? ‘ (on met z comme variable de f~1; symétrique de celui de f).

Propriété : | Arcsin et Arccos sont définies, continues, sur [—1,1] et Arcsin(z) + Arccos(x) = 5

Démonstration (Autre dém. au chapitre Dérivation)
Si a = Arcsin(z), b = Arccos(x), sin(Arcsin(zx)) = z,Vo € [-1,1]; cos(Arccos(z)) = x,Vx € [-1,1];
et : sin(b) = +4/1 —cos?(b) car b= Arccos(...) € [0,7]; de méme cos(a) = ++/1 — sin?(a);

donc : sin(a+b) = 2® + (1 — 2?) = 1. Comme a + b € [—7/2,3.7/2], forcément a + b= 7/2.

9.4.5 Arctan

Arctan est la fonction réciproque de tan/] — /2, w/2[. Dessin ?
Remarques :  tan(Arctan(z)) = z tout le temps, c’est-a-dire sur R;

alors que : g(x) = Arctan(tan(x)) = x que sur |—n/2,7/2[; ailleurs ? w-périodique !

Arctan est donc définie, continue sur R ; impaire, strictement croissante.

Propriété : Et Arctan(x) 4+ Arctan(l/z) = e.g, e=usign(z):+1lsiz>0,—1siz<0.

Démonstration

La relation : soit G' le membre de gauche. tan(G) = T | n’existe pas; donc G(z) = g + ky.mr.

D’autre part : 2 >0=0< G <7 et z+—— G(x) impaire. Terminé.

9.4.6 Arccot

Arccot est la fonction réciproque de cot/]0,w[. Dessin ?

s
Propriété | Arccot est définie, continue sur R, strictement décroissante et Arctan(z) + Arccot(z) = 3

Démonstration (Autre dém. au chapitre Dérivation)

La relation : soit G le membre de gauche. On a : tan(Arccot(x)) = m = %

n’existe pas; d’ot G(x) = g +kg.m. Voici une autre finale plutdét que d’encadrer :

T1-1
x +— G(x) est continue sur R; dou z+— k; = (G(:L’)— g) /7 aussi et & valeurs dans Z : donc k;

Donc tan(G)

est constant sur R, par le Théoréme des valeurs intermédiaires ! et z=0=— kg =0.

Notes en compléments 2

2 1) Un exercice assez facile. Soit f définie sur un intervalle I ; strictement monotone ; telle que f(I) soit un intervalle :
montrer que f est continue (avec le théoréme de la limite monotone).

2) Les 3 théorémes fondamentaux n’ont pas été démontrés (*).

3) Un autre énoncé : (*) Si f est bijective; continue; sur un intervalle I; alors f est strictement monotone.
(Et donc f~' est continue. Contre-exemple si non intervalle : f(—=1) =0 f(z) =1/z, z >0). |[(z,y) — f) = (=)
y—x

continue sur le demi plan "connexe" z < y; donc I'image est connexe et inclue dans R* ]
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sinus__et_sinus_restreint_[-Pi/2,Pi/2] _en_vue_de_son_inverse

2
]
cosinus__et__cosinus_restreint_[0,Pi]_en_vue_de_son_inverse
2_
/’-\
r T T IO T T T T T T T T T T l/l
2 ( 4
i X
1
2

puis : Arcsin(sin(z)) et : Arccos(cos

AT~w L
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tangente__et__tangente_restreinte_[-Pi/2,Pi/2]_en_vue_de_son_inverse

cotangente__et__cotangente_restreinte_(0, Pi)_en_vue_de_son_i nverse

Dessiner aussi :  — /z sur RT (et () — ()? sur RT)

Et encore dessiner : 2 +—— /z sur R | (et idem : observer la sym/(y = x)!...)
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9.5 Exercices corrigés

9.5.1 Simplifier sin(Arctan(z))

tan(a)

V1+tan2(a)
Avec a = Arctan(x) prendre "+" car cos(a) >0 donc sin et tan de méme signe !
x

V1+a?

D’abord : tan(Arctan(z)) = x tout le temps (= sur R). Et: sin(a) ==+

Dou:  sin(Arctan(z)) =

9.5.2 Montrer que Arccos(x)+ Arccos(—z) =

Notons f(xz) = Arccos(x), qui est définie, continue sur [—1, 1].
1) Le résultat a prouver M = g signifie exactement que (0, g) est centre de symétrie
pour le graphe de f. Résulte de la symétrie du graphe de cos /(g 1] (a prouver !) : 1lére solution.

2) Autre solution : 0 < G = f(x) + f(—x) < 2.7 (pourquoi?) puis.. sin(G)=0, donc G =7.

2

9.5.3 Simplifier f(z) =ArccosT——

1—12 .
e cos(2a), si t=tan(a).
Aussi, on pose z = tan(a), a €] —7n/2,7/2[ (= a= Arctan(x).)

On se rappelle que

On a alors : y = Arccos(cos(2a)); mais ceci ne vaut 2a que si 2a € [0, 7], c’est-a-dire que si x > 0.

Donc si >0, f(z)=2.Arctan(z); et sizx <0, ona: fpaire! D'ou f(x)=2.| Arctan(z) |.

9.5.4 Préciser Arcsin(sin(x)) et sin(Arcsin(x))

Arcsin est la réciproque : non de sin; mais de sin;_r/2 /2. D’ou

1) sin(Arcsin(z)) = = tout le temps, soit sur [—1,1]. Tandis que

2) Arcsin(sin(x)) est définie sur R, mais Arcsin(sin(x)) =z que sur [_TW, g] ;  ailleurs 7

x +— g(x) = Arcsin(sin(x)) est 2.7 périodique. Et sur [%, 3%], posons x =mw+h, h € [_TW, %]
Alors : Arcsin(sin(m + h)) = Arcsin(—sin(h)) = —Arcsin(sin(h)) = —h ! (pourquoi ?) = —x.
Donc, pour = € [g, TW], g(x) =7 —x. On finit aisément. Faire le dessin complet (de g sur R) !

De méme, en plus facile :  Arccos(cos(z)) puis Arctan(tan(x))...

9.5.5 Trouver f continue sur R : f(z+y) = f(z)+ f(y), équation de Cauchy

1) On voit que f(x) = a.x convient ; on va voir que ce sont les seules.
2) Soit donc f telle que f(z +y) = f(x) + f(y); on note f(1) =a. Alors:

. lére étape : Avec y =0, aisément f(0) = 0; puis pour n € N, f(x1+ ... +x,) = f(x1) + ... + f(zpn);
en particulier f(n) =a.n pourn € N.

. 2éme : Avec y = —x, on a aisément f impaire et donc f(n) = a.n est vraie aussi sur Z~.

. 3éme : Calcul de f(1/q), ¢ e N*. Ona q¢.f(1/q)=f(1/¢)+ ..+ f(1/q) = f(1/q+...+1/q) = f(1) !
Donc q.f(1/q) =a. ou f(1/q)=a.l/q. Puis: f(p/q) ?
Si peN* p.f(1/q) =a.p/q etsi p€Z , imparité de f. A ce stade : f(r) =a.r,Vr € Q.

. 4éme : Cas x € R\Q. C’est ici qu’on utilise la continuiteé.
Il existe une suite de rationnels convergeant vers z (prendre r, dans |z — 1/n,z[.) f(ry) = a.ry, :
tend vers a.x d’une part; et tend vers f(x) car f continue ! Par unicité de la limite : f(z) = a.z.
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M-+ Exercices: Continuité des fonctions R — R PTSI

1. Trouver f continue en aucun point avec | f | continue sur R. (Modifier 1g.)

2. Continuité (et dessins !) de :
(a) f(x) = E(x)+ +/z — E(z), E étant la partie entiére. (Noter que f(xz +1) = f(z) + 1.)
(b) g(z) = E(x)+ E(2—1z); (ici voir que : g(z + 1) = g(x) puis étude soigneuse sur [0,1].)

(¢) h(z) =eV ** . domaines (avec parité) ? graphe 7 peut-on la prolonger par continuité en 0 ?

w

. Rappeler avec précision le cours :

(a) Le théoréeme des valeurs intermédiaires. Utilisations ?

(b) Le théoréme concernant la continuité sur un segment. Dessin 7

(¢) Le théoréme usuel assurant la bijectivité de f avec : f et f~1 continues. Exemples ?

W

. Soit f définie sur [a, b] telle que Yz, f(x) > 0. Donc inf(f) > 0.
(a) Peut-on affirmer ici que : inf(f) >0 ?

(b) Méme question si f est continue ?

5. (a) Préciser les fonctions : cos(Arccos(z)) et Arccos(cos(z)).
(b) Idem avec sin(Arcsin(z)) et Arcsin(sin(z)) (moins facile).
(c) Puis tan(Arctan(z)) et Arctan(tan(z)) (facile ici).

(@)

. Simplifier  f(x) = Arcsin a l'aide de la trigonométrie.

14 22

7. On cherche f continue de R dans R / f(x +y) = f(x) + f(y) pour toutes valeurs :

(a) Donner des exemples. Maintenant, on étudie le cas général et on note f(1) =a :
(b) Calculer f(0). Puis f(n),n € N. (*) Puissin € Z. Puis f(1/q). Enfin f(r)sir € Q.
(c¢) (*) Conclusion ? Remarque : la continuité en 0 suffisait pour conclure !

8. Avec des fonctions rationnelles ?
(a) Vérifier que z €] — 1, 1[— z/(1 — 2?) € R est bijective, croissante, rationnelle donc continue.
(b) (*) Mais qu'il est impossible de trouver f bijective croissante rationnelle de R sur | — 1, 1].
(c) Vérifier que  — x/(1+ | z |) est impaire, bijective, croissante, continue de R dans | —1,1].
[Au ch. Dérivation, on améliorera I’exemple par une application dérivable a tout ordre].

9. (a) f continue [a,b] — [a,b] a au moins un point fixe; id est [=i.e.=c’est-a-dire| [ tel que f(I) = I.

(b) (*) Méme conclusion & démontrer avec " f croissante" au lieu de " f continue".

10. Soit f:x2€Qr—2x et 2 €R\Q+—1— 2.
(a) Vérifier que fof = Id sur R et donc f bijective; puis que f est continue en un seul point.

(b) (*) Trouver g bijective de R dans R continue nulle part (plusieurs idées possibles).
[Ainsi : continuité et bijectivité n’ont rien a voir ! En pratique, on souhaite f bijective
avec de plus f et f~! continues; d’ou le théoréme usuel.|




Chapitre 10

Dérivation des fonct. de R dans R: calculs

10.1 Dérivation en un point

10.1.1 Généralités

f est dite dérivable en xq, si f est définie en z¢; (= o€ R) et
1. Définition | f(x) — f(zo)
T — X0

a une limite FINIE, quand x — x¢, notée f'(xo).

fwo +h) — f(x0)

Ou bien, en posant : = = xg+ h, Y " f (o).
x)— f(x
2. Interprétation géométrique. M est le coefficient directeur de (My, M). Quand z — z,
Tr — X

on a, a la limite, le coefficient directeur de la tangente en My : | y — f(xo) = f'(x0).(z — x0).

Si de plus le repére est orthonormé, f'(zg) = tan(a)=pente de la tangente; la pente de la normale

-1 -1
est tan(a+7/2) = Fan(a) ; Iéquation de la normale est donc : |y — f(xg) = Fla) (x — ).
Remarques
. Si M a une limite INFINIE, la fonction n’est pas dérivable; on a une tangente //Oy.
T — T _—

. Une droite passant par My, non paralléle & Oy a pour équation y — yo = k.(x — x¢) .

—_——

f(t) = f(to) _ MM
t—to _ t—to
temps tg. Le vecteur vitesse est alors © =wv.T, T unitaire orientant la tangente a la courbe.

3. Pour une courbe de R®, si AM = f (1), ; donc f’(to)=vitesse algébrique au

10.1.2 Propriété

1. On a : |Toute application dérivable en x( est continue en xy. Réciproque fausse. ‘

f(@) = f(zo)
Tr — X
Bien observer ce changement d’écriture ! c’est un "développement limité" :

f(z) = f(zo) + (x —20) f'(w0) + (x — z0).€(x), E(x)xj;oo- A-t-on : f(w)xjx;f(xo) 7 clair !

Démonstration. On a : f dérivable en zy <= = f'(zo) +e(x) avec e(z) — 0.
T—x0

2. Réciproque fausse :

f(z) =| x| est continue sur R, mais non dérivable en 0 : dérivées a droite et & gauche distinctes !
f(z) =+x ou f(x)=+/|z | non dérivables en 0, mais continues. Dessins ? (arcs de parabole)

67
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10.2 Opérations

10.2.1 Théorémes généraux

x +— u(z),r — v(z) dérivables = w+v aussi; A.w aussi; w.wv aussi avec
L. u u w'v —uv’ | En exercice.

) = 2 et, 1a ob ’ 1 — i: (=) =
(uv) =u'.v+wuov et,laou v(z) ne s’annule pas, , aussi (v) 2
2. Conséquences
A voir: (z")Y =nz""! mémesinecZ ! [1/v(z)] = =V (z) /v?(z).
1 _
. (tan(z)) = —5— = 1 + tan®(x) et (cot(z)) = —5— = —[1 + cot?(z)].

cos?(x) sin?(x)

10.2.2 Composition

Notations nouvelles : Si f dérivable en xy et g en f(x(), alors gof est dérivable en z( et
(gof) (x0) = ¢'[f(w0)].f'(x0). Ou bien autres notations : (cp[u(x)])/ = ¢/ (u(x)).u ().
Démonstration en compléments.

2. Conséquence

e Dérivées de : cos®(x); €@ cos(e®); In[l+tan®(x)] ? (cosg(x))/ = 3.cos%(z). (—sin(z))
/

e Aussi |[in]|u(z)|] = Y (ac) (En prenant x tel que u(x) > 0; puis z tel que u(z) < 0)

3. Remarque (*). Un exemple de fonction dérivable sur R sans que f’ soit continue (c’est rare !)

Soit f(z) = #2.sin(1/x) sizx#0 et f(0)=0. Alors:

. Pour z # 0, f est dérivable par composition et f'(x) = 2z.sin(1/z) — cos(1/x).
o @) S
z—0

Mais f’ n’est pas continue en 0 car f'(z) - 0 quand x — 0 : f’ n’a pas de limite en 0.

= w.sin(l/x)j)o; donc f/(0) existe et vaut f'(0) = 0. Ainsi f existe sur R.

10.3 Dérivation de la bijection réciproque

10.3.1 Enoncé (preuve en compléments)

Soit f continue; strictement monotone; sur un intervalle I. Si de plus : f/(x¢)
bore 1
1. Théoréme existe et f'(xg) # 0, alors f~! est dérivable en yo = f(x0) et (f 1) (v0) = Flza)
o
Interprétation : Dessin de f: () — () etde f 1= Ve ! Vo (4)=1/4.

2. Nouvelle écriture, nouvel énoncé. Si maintenant z variable de f=1, y = f _1(3:) : x et y permutés.

Alors : si f est dérivable (donc continue), sur un intervalle I, avec f' > O ou f' <O
(donc strict. monotone) on a : f bijective de I sur f(I), f~' est dérivable sur J; et

(FY(x)=1/f'(y) =1/f'[f )] | f(y), non pas [f(y)] : on ne saurait si on dérive /z ou /y !

10.3.2 Exemples (de réciproque)

1. Ainsi ({z) = (/Y Lo (car
n

! ...) sur R* si n impair; sur |0, +o0[ si n pair.

T

(Rappelons bien le cas (y/x)’

~1 pour r € Q.

Et a partir du cas général |(2") =r.z

_ 1 )
2.7’
2. Si on sait que [n'(z) = 1/x alors on déduit que : |exp'(z) = exp(x). En exercice.

., agQ. Dérivée de 2* 7 27

De ceci, on en déduit aussi que :  (2%) = [e*™®)]) =
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1
V1—22

3. | Arcsin est continue sur [—1, 1], dérivable sur | — 1,1 et Aresin’(z) =

En effet

Notons y = Arcsin(z) ou x = sin(y),y € [-7/2,+m/2]. sin’ ne s’annule pas sur | — 7/2, +m/2].

Donc Arcsin dérivable sur | — 1, 1] et Arcsin’(x) = 1/sin’(y) = 1/cos(y); mais

y = Arcsin(z) €] — /2, +m/2[; donc cos(y) > 0. cos(y) =+ /1 —sin?(y) = /1 —22. Fini.
-1

V1—a?

4. | Arccos est continue sur [—1,1], dérivable sur | — 1,1 et Arccos’(z) =

En exercice.

Conséquence
Si f(z) = Aresin(z) + Arccos(x); f est donc dérivable sur | — 1,1 et f' = O. Nous verrons
que ceci entraine f constante sur | — 1, 1]. Par continuité, f constante sur le segment [—1, 1]

et on retrouve : Arcsin(x) + Arccos(x) = g sur [—1,1].

1
1422

5. | Arctan est dérivable sur R et Arctan’(x) =

En exercice.
Arctan est donc une fonction compliquée a dérivée facile : rationnelle, définie sur R !

En déduire
1 1

[Arctan(=)] =0 sur R* 7 On retrouve que Arctan(z)+ Arctan(—) =7 cf. ch. précédent.
x

x
-1
6. | Arccot est dérivable sur R et Arctan’(r) = ——.
1+ a2
En exercice.
Conséquence
f(z) = Arctan(z) + Arccot(z) est donc dérivable sur R et f' = O. Nous verrons que ceci
entraine f constante (comme dit). On retrouve que : Arctan(z) + Arccot(x) = g
Deux démonstrations en compléments (*) Note ! Note 2

! Dérivée de gof :

gof(x) — gof(zo) _ gof(x) — gof(xzo) f(z)— flzo)
T — To fl@) = f(ro) =~ z—z0
mais f peut s’annuler une infinité de fois si * — xo comme pour xQSin(l/:c) vers 0.

On aurait envie d’écrire :

Aussi on écrit les "développements limités"
(1) f(z) = f(zo) = (z — o) [f (o) + e1(2)], €1 () — O
T—xz(
(2) 9(y) — 9(yo) = (¥ — yo)[g (o) + e2(y)], e2 ()= 0. On remplace yo par f(zo), y par f(z).
Il ne se pose plus qu’une question , a cause de €2 : a~t-on f(z) — f(z0)?
T—x(

La réponse est oui, car f dérivable en xo = continue en xo.

2 Dérivablité de f' :
D’abord, f -t désigne l'inverse pour la composition (usuellement) et non pas pour la multiplication.
Ainsi : In~' =exp (réciproque) mais ce n'est pas : & — 1/In(z) !

Ensuite, si on savait f~' dérivable, il suffirait de dériver f[ffl(x)] =z, Vzed sift:J—1.
Mais nous devons montrer la dérivabilité de £~

fH@) = Nxo) gy —wo

z — 2o fy) = flyo)
Quand on fait tendre x vers zo, on a besoin de savoir que y tend vers yo ; donc on a besoin de savoir que f ~! est continue.
Ceci est assuré par les hypothéses : f définie sur un intervalle/ strictement monotone/ continue/ [ceci assure lexistence et
la continuité de fﬁl] ; de plus f'(yo) existe et est non nul; etc.

: -1
Prenons z comme variable de f~ .
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M-+ Exercices: Dérivation des fonct. R — R, calculs PTSI

1. (a) Rappeler les dérivées de :  Arcsin, Arccos, Arctan, et Arccot.

1
(b) Prouver 3 relations entre Arcsin(x), Arccos(x), Arctan(x), Arctan(;) et Arccot(z).

B T S V2, 2", sin(z)*@) | Arctan(z?), sin(Arctan(1/z))

2. Dérivées de : cos(e , ,

)

Arccos(\/1 — x2), aprés avoir ici indiqué les domaines (de définition, continuité, dérivabilité).

3. Soit f dérivable sur R. Montrer que :
(a) f paire = f'impaire. f impaire == f’ paire.
(b) f périodique = f’ périodique. (*) Examiner les réciproques.

4. Par des tableaux de variations, montrer que

x> x> 2P
(a) x — ET <sin(z) st x>0 let sin(z) <z — 3 + — Ak idem si = > 0.]
(b) Si neN, n >3, eR; 2"+ pr+q=0 posséde au plus 3 racines réelles.

(On admet - cf. chapitre suivant -
[f dérivable sur [a,b], ' > 0, nulle quun nombre fini de fois| = f croissante strictement.)

2
5. Idem Montrer que, sur [0, g], ona: —.x<sin(r) <.
T
72 k
6. Montrer pour x > 0 que : x — 5 <In(l+4+z) < z. En déduire hm Sp ot S, = Zln 1 —1— 5)-
k=1
7. (*) Etudier la dérivabilité de
(a) f(x) = cos(v/z) et de
(b) g(x) = x%.sin(1/z) si x # 0, g(0) =0.
8. Etudier : f(x) = %, g(z) = % (trouver ¢'(z) = f(z), f'(z)=g(x).)
. . 1 l+z N .y 1
9. Etudier la fonction : f(z) = §.ln | T | (elle est impaire, de dérivée T2 )
10. (*) Mont (ln | tan2 |)/ L Id (l | ¢ <ac + 7T> |)/ !
: ontrer que =) = : em n(z+— = .
d 2 sin(x) niran g Ty cos(x)
11. (*) Etudier la fonction f(z) =in(x+ V14 22) (impaire, de dérivée =
T4+

12. (*) Etudier la fonction f(z) =In|xz+ 22 —1| (impaire, de dérivée )

3’6
—_

x p—
13. (*) Soit f une fonction dérivable en 0, avec f(0) = 0. [On peut noter : a = f(0).]

k
Soit S, = Z f(ﬁ) Montrer que la suite (S),) posséde une limite finie si n — +o0.
k=1




Chapitre 11

Dérivation des fonct. de R — R: théorémes

11.1 Théorémes fondamentaux

11.1.1 Lemme(=propriété auxiliaire) : Dérivée en un extremum local.

On dit que f présente un maximum local en xg si f est définie sur |xg — a, xg + [, a >0,
et f(x) < f(zo) sur cet intervalle  (idem minimum local) .
Si f présente un extrémum local en zy et est dérivable en zg alors : f/(z) = 0.

Démonstration Faire un dessin !

fwo +h) — f(x0)
h

Comme les inégalités largent se prolongent en passant a la limite (par Théoréme) f'(zg) > 0.

f(zo+h) = f(z0)

Le taux d’accroisement est >0 si h <0, dans le cas d'un maximum local.

De méme est <O sih>0; ainsi f/(z9) <0 en faisant h — 07 (| h |< ).

En résumé, forcément f'(zo) = 0.

11.1.2 Théoréme de Rolle

Soit f continue sur [a,b], dérivable sur ]a,b[, a # b; avec f(a) = f(b). Alors Jc €)a,b[: f'(c) =0

Démonstration Faire un dessin !

On sait que f, continue sur un segment a des bornes M = sup fiq et m = inf fi, ;) atteintes.

Sim = M, f est constante; résultat acquis.

Sim < M, M ou m est atteint hors des bords a,b car f(a) = f(b); par exemple : M = f(c),c €]a, b|.
Alors M, qui est le maximum absolu, est aussi local. Le lemme termine.

11.1.3 Théoréme des accroissements finis [ou de "la pente moyenne"|

Soit f continue sur [a, b], dérivable sur ]a,b[, a # b. Alors, 3¢ €)a, b[: f(b) — f(a) = (b—a).f'(c).

Zﬁ
: Autre énoncé : b=a+h; 30 €]0,1[ / f(a+h) — f(a) = h.f'(a + 60.h).

Démonstration. Posons g¢(x) = f(z) — [f(a) + k(b — a)] on k est choisi tel que g(b) = g(a); c’est
f(0) — f(a)

possible en prenant exactement (& voir) k = T, # b ! |En fait, on sait que la droite (A, B)
e . _ f(b) — f(a) " \
a pour équation y = f(a) + k.(x — a) o justement k = bi] Alors g vérifie les hypothéses
—a

du théoréme de Rolle; Je €]a, b tel que ¢'(c) =0: donc f'(c) =k; ce qui termine.
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72 CHAPITRE 11. DERIVATION DES FONCT. DE R — R: THEOREMES

11.1.4 Inégalités des accroissements finis

. Soit my < f' < My sur [a,b]. Alors a < b= mq.(b—a) < f(b) — f(a) < My.(b — a).
. Autre énoncé :  Soit | f'|< k sur [a,b]. Alors: | f(b)— f(a) | <k.|b—a].

Evident & partir de 1’égalité des accroissements finis.

Pourquoi ne se limite-t-on pas a une égalité des Accroissements finis ? Car pour les fonctions

R — R2, on a seulement une inégalité des accroissements finis. (Exemple si : ¢ — €' sur [0, 7])

11.1.5 Exemples
2 a+ b L . .
1. f(z) = a.z® sur [a,b]. On trouve ¢ = — propriété de la parabole si « # 0. Dessin ?
2. f(z) = a/z sur [a,b] C R*. On trouve que ¢ = Vab = Moyenne géométrique de a,b. Dessin ?

3. Soit P € R[z] (polyndme a coefficients réels), de degré n > 1. On dit que P est "scindé" sur R

. N . ” / . . 2
si P posséde n racines réelles. Montrer alors que P’ est aussi "scindé" sur R.

Corrigé :

— Clest le cas de P(z) =5.(x + 2).2.(2x — 1).(z — 2).(x — 4).(z — 5).
Indication : Il suffit de bien connaitre et d’appliquer le Théoréme de Rolle !

— (*) En fait, le résultat est encore vrai si P a des racines multiples comme pour
P(z) =5.(x + 1)*.2.(x — 2)>.(2.2 — 7). En effet, si a est racine de P a 'ordre k > 1 ou si on a
P(x) = (z —a)*.Q(z), alors en dérivant, on voit que a est racine de P’ a l'ordre k — 1. A finir.

11.2 Trois conséquences fondamentales (—du "TAF"—)

11.2.1 Sens de variation des fonctions dérivables

1) Si f'>0 (et existe !) sur un intervalle I, alors f croissante (sens large).
2) f'<0sur I = f décroissante. 3) f =0sur I = f constante. De plus :
i

Si ' > 0 et nulle sur aucun sous-intervalle de longueur non nulle, f est strictement croissante.

1. Démonstration
1) Si z < y dans I, le théoréme des accr. finis sur [z, y] (bien voir les hypothéses), donne f(z) < f(y).

2) 11 suffit de considérer —f. 3) Provient de 1) et 2).

A ce stade : Si une fonction g admet des primitives GGy, Gy sur un intervalle : Go — G = cte.

"De plus" :  On sait déja que f est croissante au sens large; et :

§'il existait x < y tel que f(x) = f(y), f serait constante sur [z,y]; f’ nulle sur [z,y]; exclus.

f(z) = 2® est donc strictement croissante sur R.

2. Remarque. La réciproque de 1) 2) 3) est vraie (f étant dérivable) : c’est un prolongement des

inégalités (larges) par passage a la limite. Mais le sens essentiel est celui indiqué.

11.2.2 Théoréme de la limite de la dérivée

Soit f continue sur [a,b], dérivable sur Ja,b],a #b. Si f'(x) a une limite [ quand z — a :
Si [ finie, alors f’(a) existe et vaut [; sil = oo, tangente //Oy en z = a.

Attention : si pas de limite, on ne sait pas ! Faire une étude directe du taux d’accroissement !

1. Démonstration

f(x) — f(a)

f vérifie les hypothéses du théoréme des accr. finis sur [a, 2],z # a; donc —————= = f'(c,),
x

avec ¢ €la,z[. Quand z — a, le taux d’accroissement tend vers [; fini.
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2. ‘ Exercices corrigés ‘

1) Revoir Pexemple f(z) = 22.sin(1/z) si x # 0 et f(0) =0 on f'(0) existe quand méme.

2) Etudier la dérivabilité de ¢ : z — cos(v/x).
cos(v/x) — 1 —x -1

lére solution. g est dérivable sur ]0,+o0o[ par composition; en 07 : ~ —
x z—0 2. z—0 2
Donc ¢'(0) existe aussi et vaut ¢’(0) = —1/2. Ici, nous ne savons pas si ¢’ continue en 0.
—sin(v/x -1
2¢me solution. g est continue sur [0, +00[ (composition) et si z # 0, ¢'(z) = #—67
AT oa—

Le théoréme de la limite de ¢’ s’applique : ¢’(0) existe et ¢’(0) = —1/2. Ici, on a plus travaill¢,

mais on sait en plus que g’ est continue en 0 (donc sur [0, +o0o[) car on a : ¢'() _— g (0).
T—

3) Pourquoi le théoréme de la limite de la dérivée est-il aussi appelé théoréme du

prolongement C! ? Bien revoir le cas de =+ cos(v/z), C* sur [0, 4ocl.

11.2.3 (*) Fonctions lipschitziennes de rapport k

On dit que f est k-lipschitzienne sur un intervalle I si : Vz,y € I,| f(y) — f(x) [< k. |y — z |
1) Une telle appplication est continue |[si y — =z, f(y) — f(z); réciproque fausse]
2) mais pas forcément dérivable [car z ——| x | est 1-lipschitzienne cf. ch. R]

3) Par contre, si f dérivable,  ( f k-lipschitzienne ) <= | f’ | bornée par k

Démonstration
1) Réciproque? x — 2 continue, mais non lipschitzienne sur R [f’ non bornée, avec 3).]

2) On a vu que x| x| est 1-lipschitzienne | lz|— 1y |‘ <|xz—y| etnon dérivable en 0.

x) — f(z
3) = : Si pour z # xg, | Jl@) = f(xo) |< k, par passage a la limite, on obtient | f'(zo) |< k.
T — X0
<= Avec f dér. sur I, donc continue, le théoréme des accroissements finis donne, si z # y :

de€lz,yl: | fly)—f@)|=ly—z]|.]f(c)| < k.|y—=x]| Cqfd (ce qu'il fallait démontrer)

1. (Exercices) Veérifier que x +—— a.x + b est lipschtitzienne de rapport |a |.

2. On dit que que f est contractante si f est lipschtitzienne de rapport (0 <) k£ < 1.
Dans quel cas « — a.x + b est-elle "contractante" 7  (Bien str "ssi" |a|< 1.)

3. o+ x + e " est-elle contractante sur RT ? (Justifier qu’on aurait : sup | f'| < k< 1.)

4. Que dire de v/z sur |0, +oo[ ? (non lipschitz.) sur [1,4+o00[ ? (la, contractante : k = 1/2).

11.3 Deérivées successives

11.3.1 Définitions. Notations : f© = f; f) = 5 f®) dérivée kiéme

f est dite de classe C* si f*) existe et est continue (CY si f continue). C* si f est CP,Vp € N.

Exemples

1. Les fonctions polynoémes, exp, sin, cos sont de classe C°.

1 \™ —1)".n!
est COO sur son domaine et < ) — &

1
2. La foncti ti 11 =
a fonction rationnelle f(a:) x+a T+ a (T + (JI)”+1

m]’ =[(x+a)" =-k(@x+a) 1 |

Par récurrence en dérivant [
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11.3.2 Formule de Leibnitz

n n
, , k) (K n k) (k
u, v de classe C" = w.v aussi, et: (uwv)™ = E CE k) k) — < ).u<” k) ),

A /
Récurrence sur n; avec (u.v) = ..
Exemple

(22 4 1)%.cos(x)]V = 2z + 1)2.[cos(2)]T + C[(22 4 1)) [cos(2)]©) + C2[(22 + 1)) [cos(z)]®)

avec [cos(x)]P) = cos(x +pg); (22 4+ 1)) =2.2x +1).2; CL=7 et C? :G) = ;—'(15: 21.

11.3.3 Composition

Ona: |[(f:IT—JC" g:J—RC") = gof C".

n = 0: connu.
n =1:on sait (gof)'(x) = ¢'(f(x)).f (x); il reste a voir (gof) continue : d’aprés son expression !
1

n = 2: ... La formule générale est difficile : formule de Faa Di Bruno.

11.3.4 Fonction réciproque C* ?
1
Dans les hypothéses ot £~ dérivable (a revoir), on sait que : (f~}/(z) = ————

f'(f=Hx))

Donc : |Si de plus f est O, alors f~! sera C'! par composition, d’aprés son expression.

11.4 Fonctions convexes

11.4.1 Parties convexes (PSI)

1. Rappel : une partie C de R? est dite convexe si elle est vide ou : M, N € C = [MN] cCC.
Dessiner une partie convexe et une partie non convexe !

T—a

—_ =p€l0,1]] <= z=(1-pP)a+ S

Avec a=1—-3¢€]0,1], on écrit : x=a.a+ (1 —a).b. Voir Note 2

2. Cas d’un segment [a,b],a # b, de R : z € [a,b] <

11.4.2 Définition. Interprétation (PSI)

[ est dite convexe sur I si Va,b € I(interv.),Va € [0,1] : f(a.a+ (1 — «).b) < a.f(a) + (1 —a).f(D)

Dessin : Pour o = %; placer A(a, f(a)); B(b, f(b)); == %a—i— gb; et y= %f(a) + gf(b) sur Oy ;

A, B, N(z,y) sont alignés | enfin: f(z)<y= éf(a) + ;f(b) ' Donc (avec les cordes) :

‘f est convexe sur I/ <= Tout arc est situé sous toute corde de la courbe.‘

'Né a Alessandria (Ttalie) le 9 mars 1825, dernier de 12 enfants et orphelin de mére & 9 ans, Francesco Faa di Bruno entra
en 1840 a I’Académie militaire de Turin et devint officier d’état-major en 1846. L’armée ’envoya & Paris pour poursuivre
des études de physique et de mathématiques avec Cauchy. De retour en Italie, deux ans plus tard, il abandonna la carriére
militaire et continua ses études & Turin, ou il se distingua comme professeur et chercheur. Ami de Don Bosco et influencé
par son exemple, il se consacra au bien spirituel des jeunes travailleuses et fonda de nombreuses ceuvres pour la protection et
la promotion de la femme, parmi lesquelles la Congrégation des Petites Soeurs de Notre-Dame du Suffrage. Ordonné prétre
sur le tard en 1876, il mourut & Turin le 27 mars 1888. Seul mathématicien béatifié (le 25.09.1988 par Saint Jean-Paul II).

2Barycentre ou principe de la balance romaine : En a, poids a > 0; en b, poids 1 —a > 0; « point d’égalité des moments

(zr—a)a=0b-—2).(1—a). Dou: a=k((b—=z), 1 —a=k(x —a) ainsi que: k= en ajoutant ! Dessin ?

b—a
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Remarques 1) x+— | x| est convexe sur R (non dérivable en 0).

2) On a aisément : f convexe < le "surgraphe" {(z,y),y > f(x)} est une partie convexe de RZ.

11.4.3 Reésultats énoncés : PSI

1. Caractérisation avec les pentes

: f convexe sur I, intervalle < Vg € I,p(z) =

) = f(zo)

T — X0

est croissante sur I — {xg}

Conséquence. Avec le théoréme de la limite monotone : Si f convexe sur (a,b) et z¢ €]a, b,

alors f est dérivable a droite et & gauche en zg ! donc C° sur a,b[ !

2. Pour f dérivable, reconnaitre une fonction convexe

Si de plus f est dérivable sur Ja,b[, alors : f convexe < f’ croissante;
donc si f” existe, ona: fconvexe < f7 >0 (cest la pratique !)

3. Pour f dérivable, caractérisation avec les tangentes

Si f est dérivable sur |a,b[ : f convexe < Tout arc est au dessus de toute tangente.

11.4.4 Exemples (par étude de fonctions en PT)

1. ‘Vx €ER, e >1+ a;‘ (convexité de exp). On en déduit en changeant = en —uz :

VreR, e >1—x; doncpour z <1 pardivision: 14z <e” < 1 Dessin 7
-z
2. z+——In(1+ x) = f(x) est concave, c’est-a-dire —f est convexe dessinde f 7
Donc ‘ln(l +z) <z pour z > —1‘ ou bien ‘ln(:p) <z —1 pour x> 0.‘

3. sin est concave sur [0,7/2] (dérivée seconde : —sin < O); dessin ?

2. 2.
Donc |Vz € [0,7/2] =7 <sin(z) <z| y= =T tant la corde 0(0,0) B(g,l).
i 7r

tan est convexe sur [0,7/2[; dessin 7 Donc |z <tan(z) sur [0,7/2]

11.4.5 Inégalités de convexité en complément (PSI)

Par récurrence, l'inégalité de base Va,b € I,Va € [0,1], f(a.a + (1 — a).b) < a.f(a) + (1 — a).f(b)

se généralise ainsi : inégalité de Jensen

ap=20,a1+...+a, =1, fconvexe sur I, ax € [ = f(ag.a1 + ... + an.an) < aq.f(ar) + ... + an.f(an) ‘

1
Exemples 1) z — 22 est convexe sur R. Prenons aj, = . alors : (a1+ag+...+a,)* < n.[ad+ad+...+d2).
Inégalité vue au ch. Espaces vectoriels euclidiens, cas particulier d’inégalité de "Cauchy-Schwartz".

2) Avec la concavité du In (< convexité de —In) on obtient :

a1 +az+ ...+ an
n

Pour ay, ...a,, €]0,400], on a : Moy-géométrique= {/aj.as....a, < =Moy-arithmétique

ay+ ... +ap

Car In( -

) = l.[ln(al)—l—...—l—ln(an)] = In[(ay.az....a,)"/™]. Et exponentielle de chaque membre.
n
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M-+ Exercices: Dérivation des fonct. R — R, théorémes PTSI

1. Rappeler le Théoréme de Rolle, le Théoréme des accroissements finis et des conséquences.

2. Calculer la dérivée niéme de

1 1 a b
t td tantes tell : = .
(a) e en trouvant deux constantes telles que pe o i + P

(b) cos(z).sin*(z) [linéariser |. (Bt cos'®) (z) = cos(x + p.w/2).)

1
3. Avec le théoréme des accroissements finis, montrer, pour n > 0 : o <lInn+1)—In(n) < —.
n n

2

4. Graphe de f(x) = x.Arctan(m)—@. [En +oo, voir que f(x) :L;—ln(x)—1+e(x), e(x) - 0.]
[Note. Avec | f'(z) | =| Arctan(z) | < g, fest g-lipschitzienne; et avec f” > O, f est convexe.|

5. (*) Soit f deux fois dérivable sur [a — h,a + h], h > 0. Montrer que :
Je€la—h,a+h[ tel que f(a+h)+ f(a—h) —2.f(a) = R2f"(c).
[Considérer : g(z) = f(a+z) + f(a —x) — 2.f(a) — k.z®, k choisi tel que g(h) = 0].

6. Un raccord C®. Soit f telle que f(z) =0 si <0 et f(z)=e /" siz>0. Dessin ?

(a) Montrer que f est C' sur R. [f C° ? f C': théoréme de la limite de la dérivée.|

(b) (*) Puis voir f™ () :ZnT(f)'e_l/m’ ou P, est un polynéme a ne pas explisciter et f C™]

7. (*) Soit  Py(z) = ([2* — 1]”)(n). Montrer que P, posséde n racines réelles distinctes.

(Il suffit de montrer : P scindé sur R = P’ scindé sur R comme vu aprés le Théoréme de Rolle).

8. (*) Soit f C sur [a,b], dérivable sur Ja,b| telle que f(a) = f(b) =0, avec [a,b] C RT*.
Montrer que : e €]a, b tel que la tangente en (¢, f(c)) passe par O(0,0). [Considérer f(x)/x|

9. A partir de la concavité du In, montrer que :
1+ x2+ ..+ Ty

(a) (* pour PSI) Pour z; >0: /x1.x9...0, < "

Mb) *) Si 0<a<l,u>0,v>0: w2 < au+(l—a)w.

En déduire pour = >0, y > 0, p, ¢ positifs tels que % + é =1: .y < %D + y?:'
1 1
10. (*) Soit f C*° sur ]0, 4o0]. Montrer que Vn € N*, [t"_l.f(;)](n) = (—1)”.t_n_1.f(")(¥).
Cas de [z" Vin(z)]™ 7 de [z" Lin(1 4 z))™ 7 de [z LeY*]™  (formule

d’Halphen) ? Application : Dérivée d’ordre n de g(x) —el/® 7




Chapitre 12

Les fonctions élémentaires

12.1 Fonctions log, exp

12.1.1 Fonction In [John Napier, en France "Neper". Grégoire de Saint Vincent ...]
1. Deux rappels

b
e Soit f une fonction C° sur un segment [a,b]; alors : / f(z)dz existe (aire).

e Soit f continue sur I, un intervalle et a,x € I. Alors (bien voir les lettres) F(z) = / f(t)dt

est une primitive de f : |F dérivable et F' = f ou F'(z) = f(x).

Ou bien, pour f continue, intégrale = primitive. Cf. chapitre Intégrales.

2. Définition Bien voir les lettres aussi comme modéle

1 1
In(x) = / % est définie pour x > 0; In(1) =0; In'(x) = —; donc In strictement croissante.
1 T

3. Théorémes fondamentaux
‘ln(a.b) =In(a) + In(b), sia > 0,b > 0. D’ou In(l/a) = —In(a) et In(a”) = r.in(a) pour r € Q. ‘

1
Démonstration (On utilise In'(x) = = !)
x
a 1

e Soit g(x) = In(ax) — In(z); alors g est dérivable par composition et ¢'(z) = — — — = 0.
ar x
Donc : g = Cte=g(1) =lIn(a); ou In(azx) =In(a)+In(z) sur ]0,+ool.
e Puis, faire b = —; qui donne In(a™') = —In(a).
a

e Enfin ici, on va procéder par étapes :

pour 7 =n € N, cela vient de la formule fondamentale.

pour r = —n € Z7, on a In(a™") = In[(a™) "] = —In(a™) = —n.In(a).

1

pour ¢ € N*, ¢.ln(a"/?) = In(a) donc In(a'/?) = ;.ln(a). Enfin In(a?/9) = p.in(a/?) = g.ln(a).

4. Prouvons les limites | In(x) — +o00. D’ouln(x) — —oo.  Puis: — 0.
T——+00 z—0t r xT—+00
Démonstration :

e Comme [n est croissante (strictement méme), elle a forcément une limite finie ou infinie 1 > 0,
six — +oo. Or In(2z) =In(2) + In(x); par passage a la limite [ =In(2)+ 1 : donc | = 4o0.

e Déduction avec : In(x) = —In(1/x).
e Puis (*), avec un peu de calcul intégral (faire un dessin). Sur [1,2 > 1] : v/t < t, donc % < %;
I I l 2.
donc ln(ac):/ @g ﬂ:2.[\/5—1]. Ainsi: 221 = 0< n(z) < Ve
1t 1 Vi x x

l
n(z) — 0 sedit : In admet "une branche parabolique de direction (asymptotique) Oz".

Tr xT—+o0

7
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‘ Dessin et Remarques ‘

1
. (1+—-)" — e (Trés important et a bien savoir).
n° n—+oo

. In(e) =1 ou e=2,71828 ... La tangente en (e, 1) passe par O.

Comparaison en +oo avec x' connue n(z) 0
. : — 0.
b \/E r——+00
An(1+ h)hNOh In(u) Nl(u —1)  (cf. dérivée en 29 = 1)
/ /
. Enfin la dérivée (In | u(z)|) = Z((j:)) Primitives de Z((j)) cn | u(x) | +C.

12.1.2 Fonction exp = In~!

1. Définition
In est C¥ strict. croissante, surjective ]0, +o0o[—] — 00, +00[. La réciproque exp est donc C°.
De plus, In est dérivable et Vo > 0, In/(z) > 0; donc exp est dérivable et on a : exp’ = exp.

Voir chapitres précédents !

2. Propriétés fondamentales
‘ewp(oz + ) = exp(a).exp(f); exp(—a)=1/exp(a); [exp(a)]” = exp(r.a)) ceci pour 1 € Q. ‘

Il suffit de prendre le In (tout est donc ramené au In).

Notation nouvelle (conséquence)

On a donc [exp(1)]” = exp(r) ou bien e" = exp(r) mais seulement pour r € Q.

On note e” = exp(x) pour x € R : Clest une définition si x € R\Q.

3. Limites (Prendre le In)

X
e* — +oo; don e — 0. — —— 400 : Branche "parabolique" de direction (asympt.) Oy.
r——+00 Tr— —00 €T x——+0oo

‘ Dessin et Remarques ‘

. La tangente en (1,e) & exp passe par O.
A A
LS — n>| A= (1+%)>0]
n n—-+00 n

. On a l'équivalent : e —1 ot h.

. Comparaison avec " connue : e” /wloo — +4o0.
r——400

4. Question. (e®)" =e™ si reQ. A-t-on ()’ =e*?, BeR ? Rép. o’ pas encore défini !

12.1.3 Autres fonctions exponentielles

1. Définition

Pour généraliser ()" = e™®

. en posant ¢® = a, a = In(a), on définit : o = 7M@)

Ainsi on définit : |a” = ™™ 2R, a>0; ou bien : [n(a”) = z.In(a).

2. Théorémes. On peut alors répondre a la question précédente et méme (en exercices) :

€T
Pour z, y€R,a>0: oY =da"d%; o * =1/a"; a®¥ = (a")¥; (ab)® = a®.b"; (%)m = Z_f”'

(a®) = In(a).a®. D’ou, sia # 1, x — a” bijective de R dans ]0, +o0o[, de réciproque dérivable.

3. Dessin et Remarque

. 1 _ . .
Faire les cas : 2%; (=) =e™"; 1%, On aura 3 formes indéterminées : 00?; 0% 1.
e
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Les logarithmes et les exponentielles :

12.1.4 Autres fonctions log

1. Définition

log, est la réciproque de exp, donca >0, a# 1 et: log,(x) =

Car : y = loge(z) & a¥ =z = V™) = 2 & y.in(a) = In(x).

2. Rappel et remarque. Soit P = R? le plan affine.

/
b
e L’application de R? dans R? fi,: M <§> — M’ <§,> telleque: 2’ ==z, ¢y =~y =ky
a

b
est appelée dilatation (ou affinité) de base Oz de direction Oy, de rapport k = —.
a

[Vue au sujet de lellipse].  Elle est bijective (k # 0) et de réciproque fy .

1
e Voir que l'on passe de la courbe du In a celle de log, par une telle dilatation de raport k = Infa)
3. Dessins
1
Cas a =107 (ci-dessus) Cas a = - ?
Notes (peu importantes) :
logg(a) = 1.
In(x) 1
l = ; t d 2o =—.
og10(®) = pigys et done: logiole) = g

On a une certaine relation de Chasles : log,(c) = loga(b).logy(c).
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12.1.5 Fonctions puissances : y = 2% a ¢ Q

1. SiagQ,
2. Exemple : y = 2V2

(Si @ € Q : connu sans In)

. Prolongement continu en z =0 (car f(z) — 0). On note encore f
€T —

— f(0
. Dérivée? siz > 0, trouver (z%) = a.z®"! et fonction prolongée dérivable en 0 car f(x)ig()
"L' J—
tend vers 0 si z — 0 (et méme C'([0,+oc[) avec le Théoréme de la limite de la dérivée).

. Branche infinie ? 2 0 + 00 :  branche "parabolique " de direction (asympt.) Oy.
xTr x—-+oo

0+
Graphe : 0 2

12.1.6 (*) Equations fonctionnelles usuelles (compléments)

1. Les applications C° de R dans R / f(z +y) = f(x) + f(y) [équation de Cauchy| sont f(z) = a.x.
Vu en exercice. On en déduit :

2. Les applications C° de R dans R* / f(z +y) = f(z).f(y) sont f(z) =a”,a>0ou f = O.
3. Les applications C° de |0, +oo dans R / f(x.y) = f(z) + f(y) sont f(x) = k.In(z).

4. Les applications C° de |0, +o00[ dans R / f(z.y) = f(z).f(y) sont f(z) = 2% ou f = O.

12.2 Fonctions circulaires et circulaires réciproques

12.2.1 Voir chapitres précédents

2 relations vues :

Aresin(x) + Arccos(z) = — sur [—1,1].

ol 3

et Arctan(x) + Arccot(z

~—

= E, sur R.
2

12.2.2 Sia.b=1, Arctan(a) + Arctan(l/a) = £7/2 avec +1 sia >0, —1 si a < 0.

En exercice : Pour ab # 1, Arctan(a)+ Arctan(b) = Arctanla +

b
b+/<;.7r, k=-1, Oou 1.

Solution :

b
G étant le membre de gauche, tan(G) = 1(1 i ; car tan(Arctan(z)) = x tout le temps sur R.
—a

b -3. 3.
A ce stade, G = Arctan 1a i A + k.m; mais par encadrement facile : il <km< 2T Fini.
—a
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Un cas particulier (laissé en exercice)

Sia>0, b>0, alors : Arctan(a) — Arctan(b) = Arctan 1a+— ;
a

[un cas ou k = 0.

12.2.3 Symbole ¢?

On définit e* = "t par ‘ez = e".[cos(y) + isin(y)] ‘

Alors (a voir)

Z1F22 _ o%1 22

.« € (&

. et %(e“'t) = a.e“", méme si a € C, t réel (utilisé avec les primitives).

12.3 Fonctions hyperboliques

12.3.1 Théoréme de décomposition

Toute application de R dans R s’écrit d’une et d’une seule fagcon comme somme :
d’une application paire et d’une application impaire.

On peut réfléchir au cas (facile) ot f(z) =3 — o + 22 — 2 + 327,

Démonstration
1) Analyse et unicité :
Si on a une écriture f(x) = p(z) +i(z) (1) [notations claires|, forcément f(—z) = p(z) —i(x) (2);
flo) ¥ fCa) oy fla) = f(oa)

d : =
onc : p(x) 5 5

2) Syntheése et existence :
fl@) + f(=2) f(z) = f(=2)

pour f donnée, choisissons les seuls candidats : p(z) = ————=; i(zr) = ————=;

vérifions qu'ils conviennent : f(z) = p(z) + i(x) [oui]; p est paire [oui]; 7 est impaire [oui]. Fini.

12.3.2 ch, sh cosinus et sinus hyperbolique

L ,—& L _ ,—&
1. Définitions | ch(z) = % sh(x) = % ch(x) étant donc la partie paire de e”; sh(x)
la partie impaire de e*. Ou: |e” = ch(x) + sh(x); e * = ch(z) — sh(z)| par équivalence.
Aussi a noter : | e + e ¥ = 2.ch(x); e’ —e ¥ =2.sh(x)
2. Etude

. D’abord ¢”.¢”* =1 donne | ch?(z) — sh?*(z) = 1.| Puis |ch/ = +sh; sh' = +ch.

. Donc sh est croissante (strictement, sur R, car ch > 0; mais on étudie pour = > 0 parité).
el‘
. sh(z) ~ x (dérivée en 0) et sh(z) ~ —. D’ou sh ... Puis :
z—0 z—+o0 2
eZE

. ch croissante sur RT car sh > 0 sur RT; vade 14 +oo; ch(z) ~ D’ou ch ...

z—+o0 2

3. Remarques a bien voir

. Non seulement ch(x) ~ sh(z), mais encore ch(z) — sh(x) — 0. [ch(x) — sh(x) = e~ 7]
2

. En fait : ch(z) — 1 No% ; en multipliant haut et bas par ch(z) +1 (...) par exemple.
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4. Dessin de ch, sh et © — €*/2.

sinus et cosinus hyperboliques avec x — €%/2;
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puis tangente et cotangente hyperboliques :

12.3.3 th, coth

1. Définition
h T _ T 2z __ 1 1
th(z) = Zhgg = zl‘ n Z_x = Z% 1 impaire, C*°(R); coth(x) = ) impaire, définie et C°°(R*)
2. Dérivées
1
th!(x) = Clhz( p =1—th*(z) donc |th(z)|< 1;
coth'(z) = ST2(D) = —[coth?(z) —1] donc | coth(z) |> 1.
3. Courbes (ci-dessus)
R th(z) th(z) — 1 —2
emarques z) ~ L. x o e

Ce qui suit est Hors programme.

(En exercice)

12.3.4 Trigonomeétrie hyperbolique

—(ath) — e=0 et ona:

ath — o0 b ot e

1) En plus des définitions et de

ch®(z) — sh*(z) = 1| avec e
sh(a + b) = sh(a).ch(b) + sh(b)ch(a) th(a) + th(b)
ha—b) = sh(a)ch(b) — shb)eh(a) . ) POT= TG00
(b) + sh(a)sh(b) th(a —b) = th(a) — th(b)
h(a — b) = ch(a)ch(b) — sh(a)sh(b) 1 —th(a)th(b)

, ( (a)
2) Hors progr. (bis) 4 p 0 4 1) = ch(a)ch
( (a)ch

(Formules d’addition.)
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3) Dot : { ¢

h(2a) = 2ch*(a) — 1 = 1 + 2sh*(a) = ch?(a) + sh*(a)

sh(2a) = 2sh(a)ch(a) et donc th(2a)

en particulier

4) Et
ch(a +b) —ch(a —b)

ch*(a) = %; sh2(a) = % (Duplication)
h(a +b) + sh(a — b) = 2sh(a)ch(b) She)+shia) = Q'Sh(i ; Z)Ch(z ; Z)
K i S IS BN
= F2sh()sh(?) ch(p) — ch(q) = —i—2.sh(p2+ q).sh(p2; q)

Que l'on peut retenir par l'ordre choisi avec "si co co si co co + si si" (pour Somme «>Produit).

5) En posant : , on a sh(zx), ch(x), th(x) fraction rationnelle en ¢ :

t—1/t 2 -1

ot 1/t P41

Ct=1/t -1

th(z)

Sttt 241

(A cause de cela, les relations a 'aide de th(z/2) moins utiles; juste en exercice

sh(zx) = 5 TR ch(x) 5 T
2t 1+t2 t

. . x
5 fractions rationnelles en ¢t = th(E))

6) Signalons enfin (et a ne pas confondre avec ce qui précéde)

th?(z)

sh(x) = = th?(z)

Démonstration Les formules d’addition sont vues.

ch?*(x) =

I
1 —th?(x)

sh?(a)

Par exemple : sh?(a)

(cf. Dérivée de th...).

Toutes les autres en résultent!

et en divisant par ch?(a), on trouve la lére de 6).

~ ch%(a) — sh?(a)

Attention : sin(x + g) = cos(z) ne se généralise pas ici ! (et sh?(z) # sh(2zx) !)

12.3.5 Exercices et remarques

2

ch(x) — 1x:0?.

on en re-déduit :

1. On a ou on vérifie que : ch(x) — 1= —|—2.sh2(g) :

2. Ensuite : A-t-on I'analogue de la formule de Moivre ?

Oui ! ()" =¢€" ! ou ‘ [ch(z) + sh(z)]" = ch(nz) + sh(nz) et parité (rappelée apreés) ‘

3. Exercice corrigé

. Simplifier C' = Z ch(kz).

n

Analogue a E cos(kx) pour revoir la trigonométrie circulaire !

k=0 k=0
. Solution
- F F(-
Posons F = Z ¢* | C sera la partie paire de F(z) ou bien C = w si besoin.
k=0
(nthe _ 1 e +D)2/2 9 sh[(n 4+ 1)z/2]  sh[(n+1)z/2]. . n
e e sh[(n x s x x n
Ona: F= = = h(— h(—
na v —1 ev/2 2.5h(z/2) shw) G+ shi)]
Donc: C = Wch(n—;) Voir quelques vérifications (n =0, n =1, x =0).

4. Resterait les hyperboliques réciproques Argsh, Argch, Argth, ...
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Exercices: Fonctions élémentaires PTSI

10.

- (a)

. Inégalités. Prouver z + % <tan(z) <z +

. (*) Soit z = ln[tan(%—l—

. Fonction In et exp : lim (1—1—5)" ? Définition de a®, a >0 ? loge(z), a >0, a#17?
n

n—oo

. (*) Simplifier, grace a de la trigonométrie ici, qui évite de dériver :

(a) Arccos(1 — 2x%) (b) Aresin(2z.4/1 — 22?)

2x
(C) Arctan(m

1+ tan(x)

) (d) Représenter : Arct(m[m

). [Voir : tan(%+:n)]

: th'(z)  [=1/ ch*(z) ou 1—th*(z); donc |th(z)|<1] coth'(z) idem.

k() o, | o @)V 1
mEIJIrloo m] (b) Equivalent de In[ch(z)] en 400 (c*) gcll)nél+ I th(1/7)] ?

3 23
25

sur [0,1]. Et

1 f$2 < Arctan(x) sur [0,400].

- . cte o : : :
. (*) Dériver et trouver chaque fois ——; en déduire des relations entre les 3 fonctions suivantes !

ch(z)’
Arctan(e®) Arctan[sh(z)] Arctan (th(z/2)) Note : th = sh/ch; ch(2a) = ch*(a) + sh”(a).

dt
ch(t)

F. inverse : & = arcgd(f) = gd~ ' (8) = Argth(sin(0)) = %.ln

[E. de Gunderman : 6 = gd(zx) = / = Arctan(sh(z)) = 2.Arctan(th(§)) = 2Arctan(em)—g = Arcsin(th(z));
0
1+ sin(0)

1 — sin(0)

= ln(tan(% + g)) = Argsh(tan(9)). Ex 9]

-1
Y _Arctan®

1
= Arctan—
r+1 T 2.x

27

(*) Montrer I'égalité :  Arctan pour z > 0.

. Interprétation géométrique de t dans ch(t), sh(t). Tracer la courbe d’¢q. 22 — y* = 1 en repére o.n.

(*) Soit A(1,0) M(x = ch(t),y = sh(t)), t > 0. Montrer que ¢t =2.Airealgébrique(OAM )curviligne //Cercle.

), 2€R, 6e—, 2] Do "t fonction de Gund
, T , 7,5 [D’ou xf/ m, onction inverse de Gunderman.|

Montrer que : sin(0) = th(z); dz/df =1/cos(0) = ch(x); ta(;z(H) = sh(x); tan(6/2) = th(z/2).

[Intervient dans les "loxodromies" de la sphére : si ¢ =longitude, § = OX,OM =latitude et si, avec g — V azimut,
dé
cos(0).dy

cartes de Mercator : Oz = ¢, Oy = gd71(9), les loxodromies sont des droites ! Longueur =

V_= cte =angle(trajectoire,méridien), loxodromie, tan(V) =

: ‘ (¢ — o).tan(V) = gd~*(6). ‘Ainsi7 dans les
m.R
y

0<0<

ol

2.sin(V)’

1 1 1 1 1 1 1
(*) Montrer : % = 4.Arctang - Arctan2—39 = Arctan§ + Arctang + Arctang = Arctan§ + Arctang...

(La 1ére formule est de John Machin 1680-1752, qui obtint 100 décimales pour 7 ;
la 2éme 1844 Johan Dase : 205 décimales; puis William Shanks 1812-1882 : > 500
puis Fergusson avec calculette, en 1947; puis les ordinateurs ...)
Note : Arctan(z) est bien connu si | z |< 1, surtout si « proche de 0 (Spé).




Chapitre 13

Equations différentielles (ordre 1 et 2)

13.1 Généralités

13.1.1 Equations du ler ordre

1. La forme théorique est (1) 3 = f(z,y) ou f:I xR —R.
Elle admet pour solution toute fonction ¢ dérivable sur J C I telle que ¢'(z) = f[z, ¢(z)].

1
Exemple trés simple : ¢/ = = pour x > 0, donne : y = In(z)+ \.
x

2. Probléme de Cauchy : Existence et unicité de solution "maximale" de (1) vérifiant les conditions
initiales (xg,yo), soit telles que p(xg) = yo.

Ainsi : soit (2) xy’ — 2y =0. La forme (1) est 3 = i ; donc ennuis attendus pour z = 0.
x
Trog = 0

y 1>. [Et une infinité passant par <$0 - 0>, cf. 1L
0 pr—

D’ailleurs, pas de solution passant par < Yo = 0
0 prm—

3. Compléments :

. Une solution est un couple (J, ). La courbe : = € J,y = ¢(x) est dite "courbe intégrale".

. Comparaison de solutions : (Ji,¢1) < (J2,p2) si J; C Jo et 2.5, = P1-

. Soit ¢ dérivable telle que ¢'(z) = flx, o(z)] avec f continue (fonction de deux variables). Alors,
par composition, le membre de droite est continue; donc ¢’ sera continue : ¢ C*.

. On ne sait pas résoudre les équations compliquées. Aussi on considére {(z,y)/f(z,y) = k} appelé
isocline Ij : lieu des points ou les courbes intégrales ont une pente (inclinaison) k. cf. II.

13.1.2 Equation du 2éme ordre

1. La forme théorique est (1) y” = f(z,y,y'), f:IxR* = R.

/
2. Posons Y = <5,>, Y = <5,,> Voyons qu’en théorie, on peut se ramener au ler ordre :

/ /
Yy Yy / N . L,
Ona: ()&= (°, )= <Y =g(x,Y) ou g est une autre fonction (compliquée) !
(1) <y ) <f($7y7y,)> g(@,Y) o g (compliquée)

/
o v\ (0 1 y 0 . )
Exemple : y" + 9y +y = sin(z) < <y”> = <_1 _1> . <y/> + <sm(x)> (avec le produit matri

.. (a b u\ _ [(av+bv o _ (0 -1 (0
ciel : <c d>'<v>_ <cu+dv>) ou: Y+ AY =B avec A= <1 1) et B_<sin(x)>'

Pour cela, on dit que cette équation différentielle est linéaire a coefficients constants (vue au III).

3. Retenons : les conditions initiales sont (x,Yy); donc : (zo,yo,Yyp)-

85
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13.2 Résolution d’équations du ler ordre : 2 types §1 et 2

13.2.1 Equations a variables séparées, du type : [(y).y/' = g(z)

1. Si F est une primitive de f, G de g, alors par équivalence : F(y) = G(z) + .

Démonstration. On vérifie que : di[F(y) — G(z)] =0 est vrai car diF(y) =F'(y).y = f(y).y.
x

x
d
Retenir : FEcrire /f(y)y/d:n :/g(aj).d:n y = ﬁ, donc : /f(y)dy :/g(:n).daj
A noter : /cos(gc).d:v = sin(x) + A, /cos(t).dt = sin(t) + A, /cos(y).dy = sin(y) + A
1
Exemple : |cos(y).y = ———= < sin(y) = Arcsin(z) + X. Ne jamais oublier les constantes !

V1—2?

2. Eq. "incomplétes" en y : (ler cas particulier) 3’ = g(z). Tout revient & une primitive de g.

Ainsi : 3 =14 tan®(z) a pour solutionS y = tan(z) + \.

3. Eq. "incomplétes" en z : (2éme cas particulier) f(y).y' = 1.
/

Sur un exemple : ¢ =y?+1. Ici % =1 ou Arctan(y) =x + A.
Yy
dt -1 t+1
Complément : Résoudre y’ =3? — 1, avec /ﬁ = 7'171 | t+—1 |. La rédaction :
.y =1 est une solution (3’ =0); .y =—1 en est une autre.

. Autres solutions, c’est-a-dire on se place sur un intervalle ou (y — 1)(y + 1) ne s’annulle pas; c’est
possible car y continue : en effet, elle est méme dérivable !

/ 1 1 1
lei -7 =1 ou —l |y+ T+ A yro =efe, &:k.e_%,k::I:eKGR*
y?2—1 -1 y—1
k. —2z 1 k. 2z 1
%y_ie + k€ R*. Résumé : y=+1 et y—ukyeR k = 0 redonnant y = —1.
ke 2t —1 k.e2x

Remarque. On signalera, autre complément, les équations du type 7 = h(—) [se ramenant
—_— x

aux variables séparées| ; mais les cas fondamentaux sont les équations linéaires vues maintenant.

13.2.2 Equations linéaires : a(z)y’ + b(x)y = ¢(x), = a(x),b(x),c(x) continues

1. Définitions. a(x)y’ + b(z)y = c(z) est dite "équation avec second membre" notée EASM
a(z)y +b(z)y = 0 : "équation sans second membre" notée ESSM ou "équation homogéne associée"
C’est ici homogeéne en ¥,y c’est-a-dire, si on multiplie y et ¢/ par A quelconque, rien de changg.

Exemples

.y +2y =2 est une éq. linéaire "a coeff. constants" pour ESSM.

.y 4+ 2y =€ idem; seul le second membre a changé. (On la verra)

. 2y — 2y = 0 est une éq. linéaire sans second membre, mais coeff. non constants.

. zyy + y? = 322 non linéaire | Mais si Y = y?, linéaire en Y : g.Y/ +Y =322

/ . o, . N . . . . BN
.y = sin(z.y) non linéaire, non a variables séparées ... Infaisable de maniére exacte 7

2. Théoréme pour ESSM a(z)y’ + b(z)y = 0.

—b(x)

Sur un intervalle ot a(x) ne s’annulle pas, ESSM ' =—==%.y a pour solution y(z) = k.e

a(z)

—f (@) g

Joa(x)

/ étant une primitive. On dit que les solutions forment une droite vectorielle (v = k., w # 0).
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Démonstration On peut faire un calcul (y = O; puis 3’ /y = —b(x)/a(z) ...) avec des primitives,
cependant les In posent un souci puisque, pour ' + 2y = e'*, les solutions vont : R — C. Voici :

J By b(z), [ ¥dar _ a@)y +b(2)y X
[y(z).e =1l (@) +y(@)- 2y e =@

~ b(x)
d'on: ESSM < y(m).e‘l «@ % =k, k arbitraire.  Fini.

/ b(m)

1
(Note : On a donc multiplié ESSM par ——.e: a(e) . ceci est appelé "un facteur intégrant".)

a(z)’

3. Exemple : Résoudre 2y’ — 2y = 0 | une primitive de f(z) = 1/z étant F(z) =in |z |.

pour x >0, y= K.2?
pour z < 0, y= L.z?

Pour z £ 0, y = k.e 2/ T = k(e = ko2 | Précisemment | {

En complément : Probléme de Cauchy : Solutions passant par (1,1)?

Avec la condition initiale, on a une et une seule solution sur ]0, +o00[, y = z2. Sur [0, +00], idem.

Mais ici, infinité de solutions sur R, y = 2% pour > 0, y = l.z? pour = < 0 : une famille de
courbes C; (I =0 par exemple...). En effet raccord dérivable en 0 et équation satisfaite !

Isoclines (pour voir) In:y=0; L:y=x/2; Iy:y=x; I_1:y=—x/2 ..

4. Théoréme pour EASM a(z)y + b(z)y = c(z).

EASM a toujours des solutions : elles sont somme d’une solution particuliére de EASM et de
"la sol. générale" de ESSM. On peut utiliser la méthode de ’variation de la constante’ ci-aprés.

On dit que les solutions forment une droite affine (OM = OA+k. v, v # 0 ou M = A+ k. )
dirigée par la droite vectorielle des solutions de ESSM.

[ b))
Démonstration. On a vu que :  y(z) = k.e Ja@® st 1a sol. générale de ESSM.

_ [ b))
On pose y(x) = k(z).e / a(l‘)'dx, k(x) fonction inconnue pour EASM | (Méthode de Lagrange).

).[K (x) — blz) k(z)].e + b(x).k(x).e =c(x). Quisécrit (simplification) :

Alors EASM : a(z @)’
) 4 _ @) g ) g
K (x) = E ; ] e k(x) = ko(z) + k (primitive) ; y(z) = ko(z)e Jaw - e atwm
a 27 A — .
du type: OM = OA+ k. u, k arbitraire, comme annoncé.

13.2.3 Meéthodes pour EASM donc : linéaires (ler ordre)
1. Exemples simples (cf. II1.)

)y +2y=2 (xx) 3 +2y = e'® (xxx) oy + 2y = e 2
Chacune a méme ESSM de solutions y = k.e™>* (a bien voir).
() Pour EASM, cherchons ‘une solution "a vue" : ‘ posons y = ax + b; on dérive, on reporte :

y =x/2 —1/4 convient. D’oil les solutions : y(x) = /2 — 1/4 + ke 2*.

. 23 2 .
(xx) Pour EASM avec y = a.e'” ; possible si a = TZ Donc : y(z) = Tlem + ke 2"
(+#%) Pour EASM y = a.e"** ne peut convenir (on a vu que : 3y’ + 2y =0, ESSM).
Essayons y(z) = e *®(ax 4+ b) : (cf. II1: a.y” + by + cy = e™®.P(x).)
Convient avec a = 1, b quelconque. Donc : y(z) = (z 4+ K)e 2.
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2. Théoréme de superposition des solutions de EASM

i ,—ix
Soit 'équation (Eq) y' + 2y = sin(z). ESSM vue. Pour EASM, on écrit sin(x) = S 5 'e et
)
utilisons le

Si y1(z) est solution de a(x)y’ + b(z)y = c1(x); y2(z) sol. de a(z)y’ + b(z)y = ca(x)

Théoréme alors : A\yi(z) + p.y2(z) est solution de  a(x)y’ + b(x)y = A\.ci(x) + p.co(x).

Vérification facile.

Utilisation .
(#%) oy + 2y = € [déja vue| a pour solution particuliére :  y;(z) = 2= Yeir. Puis
Y + 2y = e~ a pour solution (en changeant i en —i) ya(z) = 2 ; Z.e_m = y1(z). Donc
Y+ 2y = % doit avoir pour solution M = Qm(y1(z)) = —cos(a) ;231’71(95)
Vérifié ! D’ou les solutions de (Eq) : y(z) = —cos(x) ;—281'71(3:) + ke,

3. Exemple d’utilisation de la "variation de la constante"
T

AR
ESSM : y = k.cos(x) aisément avec le résultat connu.
EASM : Posons y(x) = k(x).cos(z); arriver a k'(z) =2.2; k(z) =2+ \ Dou: y(z)=..

y cos(x) + y.sin(z) = 2.x.cos*(x), sur | —

4. Remarque complémentaire

. Pour I’équation différentielle non linéaire définie sur R : 3/ =% 41, y(0) = 0, a variable séparée,

onavu: y(x)=tan(x), x €] — g, g[ :de fagon imprévisible, apparait une barriére en x = g !

. Ceci n’a pas lieu pour une équation linéaire : Sur un intervalle I ou a(x) ne s’annulle pas (et est
continue), les solutions sont définies sur I entier. Et le probléme de Cauchy a une unique solution

(un et un seul k telle que y(zo) = yo) car y(x) = po(x) + k.e" : bien voir comment intervient la
constante [le schéma M = A+ k. W] ! (EASM et ESSM n’a de sens que pour une éq. linéaire.)

13.2.4 (*) En complément : équation différentielle ¢’ = h(y)
i
On dit que cette équation est "homogeére en x,y" car si on multiple x,y par A, rien de changé.
2 ¥)2
Exemple : % + (x2 —axy)y =0 qui devient 3 = _y ou y = y(r_)
z(y —x) 2-1

car x = 0 exclus (si droite verticale, ¥’ n’existe pas); ¥y = x non solution .
Méthode :

On pose t = Y nouvelle variable, sans oublier des cas éventuels ol t = tg constant. L’exemple :
x

.y = tg.x,y =ty donne t%aj2° —|—:E2(1 —1t0)to = 0; donc si ¢ # 0, tg = 0 et donc une droite solution y = O.

d dt dt
. Sinon y =t.x, iy = & _ t +x.— (et — = — dérivation des fonctions réciproques). Donc :
dx dx dv  dr
t2x2+w2(1—t)(t+xﬁ):0'siw;éO 2+ (1 -1 (t—i—wﬁ):o ou encore t—i—(l—t)xﬂzo ou
p 'dxd ’ ’ ’ “dx . dr
r t—1 .. x [t—1 T, _ € _ + _
?—T.dt.Dou/x—/ " Jdt ln\k]—t In|t].. x(t)—K.t,y(t)—K.e (et y = 0).

Ainsi on est donc ramené a des variables "séparées" ; on aura x = x(t); puis y = t.z(t) soit : les courbes

intégrales (homothétiques) en paramétriques. Ici ne pas oublier, aussi, la droite y = O. Finir.
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13.3 Résolution d’équations du 2éme ordre

13.3.1 Remarques

1. Il y a beaucoup d’équations différentielles du ler ordre que l’on ne sait pas résoudre.

Donc bien davantage ici !
Quelques cas connus [incomplétes en y ou en x, par exemple y”.y = y'2 : hors programme].
2. Méme les équations linéaires : a(x)y” + b(z)y’ + c(x)y = d(z) posent de graves problémes.

e En théorie, on peut donner quelques résultats : 2 constantes qui intervenant de maniére connue.

e Fn pratique, cas fondamental de Sup : Eq. diff. linéaires & coefficients constants et second membre

du type exponentielle-polynéme : |a.y” + b.y/ + c.y = e™*.P(x) | a,b,c,m € C (donc les sinus ...)

13.3.2 ESSM a coefficients constants a.y” +b.y +cy =03 a,b,c € C,a # 0

Pour ESSM & coefficients constants, on forme : a.r? + b.r 4+ ¢ =0 (x) "l'équation

1. Théoréme caractéristique" : si A # 0, y(x) = k.e"* + 1", siA=0, y(z)=e"%(kax+1).

Une démonstration : Poser y(z) = e"*.z(z) et reporter ...

.Ona r=j j2; doulessolutions y(z)= k.e/" + Led’®.

. A noter : une solution est dérivable 2 fois, par définition. Donc :
Méme si on ne savait pas résoudre I’équation, on serait siir que les solutions seraient C'*°.

En effet : y” = —y' — y dit que, le membre de droite étant dérivable, le membre de gauche aussi !
Et: y(s) = —y” —y'; on recommence pour y(4)... sans fin !

2. Cas des coefficients réels (comme dans 'exemple).
. S A >0, rien de changé (les ou la racine sont réelles)

. Si A <0, 2 racines non réelles conjuguées a £ 3. Ici ‘ y(x) = e**.[A.cos(Bx) + B.sin(fz)] ‘

A, B ctes (choisies réelles si 'on veut des solutions réelles). Car e/*% = cos(f.x) + i.sin(3.z)...

—1+iV3 V3 V3 )

Exemple précédent : j = 5 ; donc y(z) = ez <A.cos(7w) + B'Sm(Tw)

Remarques

1) Rappel : Acos(wt) + Bsin(wt) = C.cos(wt — ¢), avec C' =/ A? + B? : toujours 2 constantes.

2) On montre que pour les équations linéaires sans second membre méme & coefficients non constants
[a(x),b(z), c(x) continues sur I et a(z) ne s’annulant pas|, on a  y(z) = k.y1(z) + L.y2(z)
analogue & % = k. + 1.7 avec W, v non colinéaires.
On dit que les solutions de ESSM forment un plan vectoriel.

13.3.3 EASM ay’ + by’ + cy = d(x)

1. Théoréme (Comment interviennent les constantes, ici). On montre que :

Pour 'équation différentielle linéaire a(z)y” + b(z)y’ + c(z)y = d(x), d aussi continue sur I,

EASM a au moins une solution ¢g. Et la sol. générale de EASM est somme de ¢ sol. part.

de EASM et de la sol. générale de ESSM : y(z) = po(x) + k.y1(z) + l.y2(z), analogue a
M = A+ kW +17. "Les sol. forment un plan affine associé¢ au plan vect. des sol. de ESSM".

2. Théoréme de superposition pour I'équat. diff. linéaire a(x)y” + b(z)y + c(z)y = A\.d(z) + p.0(x)

Exactement comme vu pour le ler ordre. Utilisé largement ensuite.
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3. Cas particulier a.y” + b.y/ + c.y = e™*.P(x), m € C, m = 0 permis !
ESSM connue, ici (coeff. constants).

EASM : On cherche une sol. particuliére de la méme forme y(z) = €™*.Q(x) Q(x) polyndme.

C’est possible avec : d°(Q) = d°(P) si m non racine de I’équation caractéristique ;

Théoréme d°(Q) = d°(P) + 1 si m racine simple et d°(Q) = d°(P) + 2 si m racine double.

Démonstration. Poser : y(z) = ¢™*.z(x) et reporter.

13.3.4 Exemples (EDL a coeff. constants ...)

1.y’ —y = 4z%e”.
ESSM. I’éq. car. est 72 — 1 = 0 de racine +1 (non pas 72 — 7 !); sol. de ESSM y(z) = ke” + le™.
EASM. m = 1, donc racine simple de 1’éq. car. Une sol. part. est y(z) = e®(a.z® + f.22 +v.2 + ).
Dériver 2 fois, reporter : « = 2/3, § = —1, v = 1, 6 arb. D’ou les solutions de EASM :
y(z) =e*(2/3.2% —2® + 2+ K) + l.e™® (exactement 2 constantes).

2.y — 6y + 9y = 4e” — 16>
ESSM a pour sol. y(x) = ¢3*(kx + 1) car 3 racine double de 1’équation caractéristique (r — 3)2 = 0.
EASM : Soit (1) y” — 6y’ + 9y = 4e”. Cherchons une sol. part. y(r) = e*.a. Aisé, trouver a = 1.
Soit (2) y” — 6y’ + 9y = 16.€3%[= P(z)e™] : m = 3 est racine double de I'éq. caract. d’ot sol. part.
2 9a.2® + 98.2 + 9
y(z) = 3% (ax’+fz+7);y = > (30"96 +30.z + 37) Yy = ( +6a.z 438 7) voir la disposition, d’ou :

+2a.x + B + 6i.x2z 34

9a.x2 + 98.¢ + 9v

3z 3z +12a.2 + 68 + 2«
16.e™ =e€ —18a.z? — 188.2 — 185
—12a.z — 63

+9a12 + 98z + 9v

: (ﬁayzargb > . Solutions de EASM y(z) = e®+¢e3*(—8z2+ Kz +L).

3. ¥y +y = sin(x). ‘ '
Pour ESSM, I’éq. car. est 7241 = 0 de racine £i. Donc y(z) = k.e" +l.e”"* = Acos(x) + Bsin(z).
Pour EASM, considérons (1) y” +y =¢€"":

Elle a donc une sol. part. du type yi(z) = € (a.z+ (). En fait a = _71, (3 arbitraire, choisi nul ici.

Puis (2) 4" +y = ¢ ™ : a pour sol. part. y;(z) = e_ix.(%) (changeant i en —i). Superposition :

ix _ ,—iT _ _
EASM 3" +y="—"— a pour sol. part. M x.cos(x)
21 % )
y” +y = sin(z) a pour solutions y(z) = Los(x) + Acos(z) + Bsin(z). Veérifié |

= Qm(y1(z)) = . Ainsi

1+ ch(2z)

1 + k.eV2® + e~ V22,

4. y” — 2y = sh*(x) [Cas ot m = 0; superposition|. Sol. : y(z)

6x —5 —3a2?
5. y" + 3y +2y =6.x.5h(z). Solutions : y(r) = $12 €%+ ( -

+3z+ K)e @ 4 Le 2,

6. vy’ — 2.y =e™ |Aussi une équation du ler ordreen Y =y  !|
ESSM : solution[s] y(z) = k.e** +1. EASM : selon les cas m = 0 (possible!) m = 2 et m ¢ {0,2}...

13.3.5 Résumé

e Redisons que les éq. diff. les plus importantes sont les linéaires |ler ordre a(z)y’ + b(x)y = c(x)

Sy GOl . .
connues : ESSM y = k.e | ayd= ; EASM : une solution a vue ou variation de la constante.

e [2¢me ordre du type ay” + by’ + cy = ™. P(x).| ESSM avec éq. caractéristique : 2 constantes !

EASM : on cherche une solution de type analogue au membre de droite : voir la valeur de m ...
. (*) 'y a des équations diff. linéaires du deuxiéme ordre & coefficients constants : xy” —y =0 !
. (*) Enfin, il y a aussi des équation linéaires : v =v®+z, v’ =y P+ ..
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13.4 (*) Applications des équations différentielles

13.4.1 Le probléme y' =y, y(0) =1 a pour solution exp sur R

13.4.2 Courbes telles que OP = 2.0T, P = proj, (M,Oz), T =Tangenten Ox

M <§>, P <"g>, T <x _Oy/y) : car la tangente : Y — y(z) = ¢y/(2).(X —2) et T : faire Y = 0.

D’ou I'éq. diff. 2y’ — 2y =0 déja vue | Solutions : Paraboles de sommet O : y = k.z? ...

13.4.3 (*) Complément : Trajectoires orthogonales aux (C,) : 2* + y* — 2u.y = 0

1) (C,) est la famille de cercles tangents en O a Ox. Equation différentielle dont sont solutions les (C),) :
2 4,2 2 4,2

rty u)’: 0 ou 2zy+ (y> -2y =0 (x): (CL).

2

Isoler la constante =2u et on dérive : (

2) On cherche maintenant s'’il existe I' telle qu'en M € I'NC,, yf.ylcu = —1. Donc yf- =Y ou bien :

2

-1 . .
2uy.y —y? = —=x (xx) pour T'. [Régle : remplacer 3 par m dans (x)]. On sait résoudre cette équation

car linéaire en Y = y2. On trouve I'y : 22 +y? — 2\.z = 0; les cercles tangents en O a Oy |

(Parabole+Chainette)

13.4.4 (*) Complément : Surface d’un liquide en rotation uniforme autour de Oz

On fait une coupe dans le plan zOz (y = 0). L’élément dm de liquide a la surface est en équilibre sous

son poids dm.g, la force centrifuge dm.w?®.x (x > 0) et la réaction R.
. . d d 2 2
On projette sur la tangente (L a la réaction) de pente d—z Alors &£ = w—:c; z=2zy+ ;—xz
T g )

T parabole.

2

La surface s’appelle paraboloide de révolution autour de Oz, d’équation z = zg + g—(:cz +4?). Note !
- g

! ‘ Exercice complémentaire ‘ (*) On cherche la courbe décrite par un cable :

a) Homogéne pesant : dm proportionnel a la petite longueur [4 connaitre ici] notée ds. (Cable électrique).

b) Tel que dm est proportionnel, non pas a la petite longueur ds, mais & dz. (Cas d’un pont suspendu
avec suspensions verticales équidistantes; seul le poids du pont étant considéré).

Solution Soit M (tangente de pente o), M’ (tangente de pente a + da), un arc soumis au poids dm.g et

—
aux tensions (portées par les tangentes )T (s), T' (s + ds). A l’équilibre :
. en projettant sur 'Oz : T(s + ds)cos(a + da) = T(s)cos(a) (1)
. en projettant sur 'Oy : T(s + ds)sin(a + da) = T(s)sin(a) + dm.g (2)

(1) donne T'(s)cos(a) = Cte = Tp.

dm. ) ) dm.
D’ou (2)/(1) donne tan(a + da) — tan(a) = % Avec tan(a) =y', ona: d(y)= Z}g
0 —_— 0
Cas b) dm = p.dx. ‘ On peut voir un tel pont & Vernaison(69) ou & "Lisboa"(Lisbonne, Portugal) ‘
Dans ce cas, on a : ) =19 o y” = cte : Parabole.
dx To
Cas a) dm = u.ds. |Ici, il faut savoir (cf. Longueur des courbes) ou voir que : ds =v/1 + y'%.dx
y77 ﬁ

dm = p.ds donne = K (paramétre fixe). Posons 3y’ = sh(t) alors y” = ch(t).

dx

) : "Chainette".

Ve

D’ou ﬁ:l; y/:sh(x_xo

dx a a

1 T — To

y — yo = a.ch(

) avec a =
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M- Exercices: Equations différentielles PTSI

‘Premier ordre. ‘ Les primitives n’étant pas vues, on utilise des primitives faciles ...

1. Equation différentielles linéaires. Résoudre

2. (*) Equations se ramenant aux linéaires. Résoudre

(a) z.y =y +3zy>. [Observer que 0 est solution ; pour les autres, poser z = 1/1

(b) o + y.sin(x) = y>.sin(z). [Idem : poser z = 1/y. Aussi a variables séparées|

(c) ¥ — 2xy + 2xy* = 0. [Comme la précédente]

(d) (2% — ). y =y + y. [Comme la précédente]

(e) (2 —z)y = -y + (2z +1).y — 2z. [y = z solution; les autres : poser z = 1/(y — z)].

3. Equations a variables séparées. Résoudre

(a) y.cos(y) =z. [rép. 2.sin(y) = z* + \]

1 1 1
b) (*) Refaire, a l'aide de = — =
(b) () yy—1) y-1 y

(¢) M)y =(x+y—1):poser Y =z 4y — 1. Solutions définies sur R ?

2b) 2¢) 2d).

Note 2

‘ Deuxiéme ordre. ‘

1. Résoudre :
(a) y* —y =a® —x; (b) y” — 2y’ = sh*(x); (c) ¥” +y +y = 13.cos(2x);
(d)y” +y==x.cos(x); (e)y’ +10y + 25y =4.e";  (f) y” + 2y + 5y = e *.cos(2zx) ;
@) v +y +y=2z+1).sin(x); y=2sin(x)+ (3—2x)cos(x) + e 2 [A.cos \/gx—i-B.sz’n \/gx
(h) (*) Trouver f dérivable sur R telle que : f'(z) = f(—x).

]

2. Un cas de coefficients non constants. Soit (x —1).y” —z.y/ +y = (z — 1)* linéaire :

Voir que y = €* est solution de I’ "ESSM" ; poser ensuite y = e”.z(x) [Changement de fonction]|.

2 (**) Compléments. Equations homogénes en z, y : Type y' = h(%) (i.e. si x et y sont multipliés par A,
léquation est invariante). On pose t = %, nouvelle variable ; mais il peut y avoir quelques solutions ¢t = cte.
Alors, on a une équation différentielle facile entre x et dx/dt; d’ot = = x(t) puis y = t.x(t)

) (*) y® —32° +xy.y = 0.

) (%) 2ey.y’ =" — 2.

) a) et b) sont linéaires en 3!

)

)

(*) y* + (* —ay)y' = 0.
(*) y+z.(y')* = 0. [Trouver y = O et des astroides].

(a
(b
(c
(d
(e




Chapitre 14

Suites de réels (et complexes)

14.1 Généralités (cf. aussi ch.15, 28)

14.1.1 Définitions

1. Une suite de réels est une application de N dans R : 0 ug, 1 — w1, ..., 1 — Uy, ...
On la note (up)neny ou (u,) € F(N,R).

2. On dit que la suite est majorée par M € R si Vn € N : u,, < M ; minorée par m € R de méme.

Et bornée si majorée et minorée (< | u, | majorée : en exercice).

3. Remarques. . Parfois on commence a n =1 (un)n>1 ou bien a ng !
. Ne pas confondre la suite avec 'ensemble des valeurs prises par la suite [(—1)"),>0 # {—1,1}]

. Pour une suite & termes complexes, on peut poser : wu, = a, + ib, = pn.ew”.

14.1.2 Premiers exemples essentiels

1. (uy,) arithmétique < Vn € N : w41 = u,, + 7 [rel. de récurrence| < u,, = ug + n.r [rel. explicite].

Uy + Un

La somme |S, =ug+uj + ... +u, = (n+1) : chaque terme valant %QU" en moyenne.

2. (uy) géométrique de raison q < Vn € N : upqq = up.q [rel. de réc.| < u, = ug.q" [rel. explicite].

Et la somme cumulée vaut ‘ Sp =ug+up + ... +up =up[l + ¢+ ... +¢"] qui est bien connue ... ‘

3. Les suites monotones ont une place & part, avec le théoréme de la limite monotone; cf. IV.

(*) [upn=1+1/2+...41/n ~ In(n) a voir; Un, 221/162 — 7%/6 Euler; a voir.]
n n——+00

o k=1

14.1.3 Cas des suites arithmético-géométriques

. Soit la suite : w41 =a.u, +b;a,b€C. 2cas:sia#1,alors 3!1l:[l=al+b
Théoréme ) . ] . .
— | etupr1—Il=alu,—1): v, =u,—1 géométrique; sia=1, (u,) arithmétique.
Démonstration. Sia # 1: [ est appelé point fixe de f(x) = ax +b. (I :Tba .) Puis différence :

n = Q.Un b .
(u ZH: ;lu+2_ ) = Upr1 —l=a.(up —1); vy =u, —1 géom. |u, —1=a"(up—1).

U1 =3aun —4, ug=T. 1=3—d= =2 (“3“:3312‘"_;4) = Unt1 — 2 = 3.(up — 2)

Uy —2=3"(up—2). [u,=53"4+2Yn>0.| (up ~ 53")

n—-4oo

141 141
24l = ;_Z.zn +1—4, zpdonné. Ici z, —2= (%)".(zo —2) (car [ =2 encore.)

Dessin ? cf. 2/ =a.z +b. Limite (valant 2) indépendante de zy car (1/v2)" — 0.

n—-+o0o

93
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14.2 Limites des suites réelles

14.2.1 Définitions

1. Suites convergentes. Méme définition que Limite finie ici de f(z), quand x — +o0 :

(uy) est dite convergente si elle a une limite finie I, quand n — 400, notée wuy, - l
n—-+0oo

cequiest: VYe>0, IN.eN/ Vn: n>N,. = |u, —1|<e

Exemples :

(=n"

n
. La suite de terme général u,, = (—1)" n’a pas de limite : divergente.

. La suite u,, =

tend vers 0, pour n — 400, donc convergente.

. La suite u,, = v/n tend vers +oo , pour n — +o00, donc divergente.

2. Cas [ infini |u,, — +o00si:VB >0, 3N/ n > Ngp = u, > B.

n—-+00

soit n’a pas de limite comme (—1)"
soit posséde une limite infinie.

Et une suite divergente : {

3. Deux propriétés

Une suite posséde au plus une limite. (Unicité de la limite). En exercice.

«|Si (uy) a une limite FINIE en +oo, alors (uy,) est bornée. Mais (—1)" bornée divergente !‘

En effet :
Soit € =1 > 0 : possible. AN € Ntel que n > N = u,, €|l—1,14+1[; et {up,n < N} aussi borné par
mq et M car ensemble FINI. Au total, suite bornée par m = inf(l—1,my) et M = sup(l+ 1, M).

14.2.2 Sous-suite

Une sous-suite de (uy ), [ou suite extraite| est une suite (Un, )k : Ung, Mnys oo Uny s ---

1. Définiti . : :
CHIIMON | 4 vec ny < ng < ... < ng < ... Autre notation (U¢(k))k avec ¢ strictement croissante.

Exemples. Pour u,, = (—1)" : sous-suite des indices pairs (ug,); et des indices impairs (ugp41);
(ugp) et (ugp+1) sont stationnaires, donc convergentes (vers 1 et —1); mais (u,) divergente !

2. Propriété |Si uy, — [(fini ou non, ici), il en est de méme de toute sous-suite. En exercice.
n—-roo
3. Une réciproque |Si ug, — | et wugpte1 — I, alors w, — L. En exercice.
n—-+o0o n—-+o0o n—-—+00

Exercice corrigé (Alés) : Si (uap), (u2nt1), (usn) convergent, il en est de méme de (uy,).

En effet désignons par I, I’, I” les limites (finies ici). La sous-suite (ug,) converge vers [ et [” !
(pourquoi ?) donc [ =1". De méme (ugy+3) vers !’ et I”. Donc [ =1"=1": (u,) convergente !

14.2.3 Théorémes généraux : somme, produit

Si w, — I, v, — m, alors: u,+v, — l+m sauf 400 — co (indéterminé)
n—-4o0o n—-—+o0o
1. Ona: L . Up, l 0 oo I
Aty — Ay upv, — Im sauf 0.00 (indéterminé); — — —  sauf —.—, —.
Up, m 0o’ 0

2. En exercice.
Sur le dernier cas [/0 : On dit que v, — 0" si, de plus, pour n assez grand : v, > 0.

n—-+00
1 24 (-1
indé ing - M — " .
o non indéterminé : oF +00 [Note " N

0" sans étre décroissante !]
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14.2.4 Inégalités

1. Théoréme : Prolongement des inégalités (larges) par passage a la limite

Siu, — [, v, — m et siu, < v, pour n assez grand, alors : [ < m.| En exercice.
n—-—+o0o n—-+00

2. Théoréme : d’encadrement ou des gendarmes

Siu, — [, v, — [etsiu, <w, < v, au voisinage de +00, alors : w, a une limite : [.

n—-—+00 n—-+0o0o
En exercice. Celui-ci donne l'existence de la limite !
3. Exemples
e |Sig>1, alors ¢" - + 00.| De fagon élémentaire : =({1+h)">nh, h>0 fixé..
n—-+0oo
o |Si —1<gq<1,alors ¢" n:mo [Cas ¢ #0: |q|nn_)+oo—|—oo...]
: : 1., 1 < .
e | Mais attention (1+—)" — e; et (1——)" — —. [Connus, a bien revoir.|
n°- n—+oo n° n—tooe
o u, = Yn - 1. Avec le In. [C’est possible sans le In : n = (1+ hy)".]
Ty n n - 1
. <S5, € ——— T, = ———— : du ch. Intégrales !
Z\/nQ—l—k: VnZ+n " n2+1] (# T kzzlx/m 2 )

14.2.5 Un cas essentiel

. Soit a;, € R telle qu’il existe 0 < k < 1 avec Vn > ng, api1 < k.o, Alors oy — 0
1. Enoncé . o n—-+00
. Sion avait dit : 0 < apy1 < @y, la conclusion serait-elle stire 7 NON !

2. Démonstration
2) Signifie seulement que «,, > 0 est strictement décroissante : peut partir de 3 et décroitre a 2!

1) Voir que, par effet de cumul : 0 < o, < k" ™., pour n > ng; puis faire n — +oo.

3. Si on peut, on essaiera d’avoir | u,+1 — 1 |< k. |u, —1]|, avec 0 < k <1, kfixe pour n = ng.

(Si c’est le cas, il y a contraction dans le rapport au moins k)

14.3 Comparaison des suites

14.3.1 (u,) négligeable devant (v,) noté u, << v,, (n — +00)

1. Définition

(uy) est dite négligeable par rapport a (v,,) ou infiniment petite ou (v,) infiniment grande par

. Un
rapport & (uy,) si — — Oou| —| — +00;noté u, = o(v,) ou u, << v, (n — +00).
Vp, N—+00 Uy N—+00
Remarques
1) Si on ne peut pas écrire le rapport, on dit : u, = v,.€(n) = vy.€,, oU €(n) =€, - 0.
n—roo

u
2) Si on a seulement —- bornée, on note u, = O(v,) : notations de Landau.
Un

2. Théoréme | Sin — +oo: 1<< Znﬁ(n) <<n¥<<a"<<nl<<n, >0, a>0, a>1.

On dit : "I’exponentielle 'emporte sur la puissance. Et la puissance I’emporte sur le logarithme.

Démonstration
. a’ . .
Vu sauf les deux derniéres. Pour —» soit ng = E(2a) [partie entiére]; donc ng+ 1 > 2a; alors
n!
a.a.a...q a.a...a  a...a a....a 1 n! 1

1.23..m  1.2. ..ng (ng+1)..n e (ng+1)..n e Sn=no erniére : T <
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14.3.2 (u,) équivalente a (v,), quand (n — +00)

(uy) est dite équivalente & (vy,), nOté wy, ~  Vp, Sl Uy — Vy << Uy OU Uy — Uy, = Up.€p
n—-4oo

ou |uUp = vp.[1 + €], enn:mo, ce qui signifie chaque fois qu’on peut diviser par v,

1. Définition

)
Up ~ Up <= — — 1.| Attention : ce n’est pas la différence qui tend vers 0 !

n—-+0o00 Vp, n—+00
Ainsi
2n® —10n? ~ 2n3. Le but des équivalents étant de simplifier. (Différence de limite infinie ici)
n—rzoo
2. Equivalents fondamentaux [Rappel; et aussi Arcsin(x) ~7 -
' —z? x?
sin(z) ~ sh(z) ~ tan(z) ~ th(z) ~ Arctan(z) ~ x 0s(x)—1 ~ ——  ch(z)—1 ~ —
erL(lL)I_)Ob L(L)I_)O CUL(‘L)I_“J z(x)x_)o rc CllL(‘L)x_)(J.L cos(x) adr: ch(x) o
In(l4+z) ~ = ou In(u) ~ (u—1) ef—1n~ x (I1+2)*—1~ oz (afixe;casa==7)
T— u—1 z—0 z—0 2

3. Propriétés [Rappel|
1) La relation wu,, ~LUn est une relation R.S.T. (relation d’équivalence)
n—-r+oo
2) Siu, ~ wv,,ilexisteun N tel que: n > N = u, et v, ont méme signe.
n [e.e]

En particulier, elles sont nulles simultanément. (Penser & u, = v,.[1 4+ €,], €, — 0)
n—-400
3)Si up, ~ w, etsi v, — [, alors u, aussi.
n—-+o0o n—-+o0o
4) 11 y a compatibilité des équivalents avec le produit, u, ~ v, Tp ~ Y = Up-Tp, ~ Un.Yn
n—-+o0o n—-—+00 n—-+00

et le quotient, mais pas avec la somme(cf. aprés).  Un résultat : si v, << Up,Up + Uy ~ Up.
n——+o00
5)Si up ~ v, etsi u, >0, alors: Ju, ~ /o,
n—-—+o0o n——+o0o

4. Trois fautes a éviter [Rappel]
1) Il n’y a que la suite (u,) identiquement nulle & partir d’un certain rang, qui est équivalente a

(0)n>0. Comme ce n’est jamais le cas en pratique, dire "u,, ~ O" est une FAUTE.

n—-—+00
De méme dire "u,, ~ oo0" est un NON SENS.
n—-—+00
2) SOMME d’équivalents :
n4+n ~ n? —n? ~ —n’+n (ridicule, mais vrai); par contre n ~ Vn est faux.
n—-roo

n—-+o0o n—-+o0o

3) In et exp d’équivalents.
Ona:n+1 ~ n; mais ¢! non équivalent a e : le rapport vaut e !

n—-—+00

Et: 14+1/n ~ 1—1/n%; mais:In(1+1/n) ~ 1/n, In(1—1/n?) ~ —1/n?!
n—-+o0o n——+o00 n——+;infty

[D’ailleurs, on dirait : 1+4+1/n ~ 1]

n—-+00
5. Remarque de rédaction
Si 1#0, 00, ona: u, — | < u, ~ I Utile en pratique.
E— n——+00 n——+00

14.3.3 Exercices [Revoir le cas des fonctions|

1. In(n+1) ~ In(n)? [Analogue : Si wy, N T + 0o, on peut prendre les In.]
1
2. Etudier lil}_l [ch(—)]"z. [In(u,) = n®.In(ch(1/n)) ~ n?.[ch(1/n) — 1] 0 1/2 ..
n—-+0oo n n—-roo n—-+0oo
3. lim n++vn—+n? [Bien vue au ch. Limites. Sait-on la refaire ?|

n—-+00
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14.4 Reésultats théoriques fondamentaux

14.4.1 Suites monotones

Soit (u,) croissante (sens large). Alors (uy,) a toujours une limite [ en +00. 2 cas :

Théoréme ) . . . C o
Si majorée par M, alors [ < M ; sinon majorée, [ = +00. Analogue si décroissante.

Exemple : 5, = E = est croissante. Pour la majorer, voici une comparaison avec une intégrale :

1 Foat L1 b

Pourk>2onaﬁ</k oz (Dessin). Donc 14 — +32 1+/ /+ +/n—1t_2
" dt —1 1

:1—1—/1 t—2:1+[7]?:2—ﬁ < 2. D'ou S, converge vers | < [(*) :% Euler].

14.4.2 Suites adjacentes

Définition |(u,), (v,) sont adjacentes si: (u,) croissante, (vy,) décroissante et v, — uy, - 0.
n—-+0oo

Ne pas confondre avec le Théoréme ‘DGUX suites adjacentes sont convergentes vers la méme limite.

Démonstration : Forcément (uy,) a une limite [ > —oo, car croissante. Idem (v,) a une limite m < 4o0.
Et, par passage a la limite dans la derniére hypothése, m — 1 = 0. Il en résulte que [ =m FINIE.

On a donc aussi les encadrements : Vp, g : wu, <1 < vg.

14.4.3 Exemples

n

1
1. Classique : Les suites u, = il et v, =uy + —n > 1 sont adjacentes. (vp4+1 — v, < 0).
k=0
D’ou la convergence de (uy,) et un encadrement de la limite [qui sera vue plus tard e = 2, 718...]
_ap+by
. . . Ant1 = 92 ) ) 2a,,.by,
2. Deux suites imbriquées : 2 1 1 avec 0 < by < ag. Bien voir b,11 =
_ 4= Gn + b,
bn+1 a by,
, . . , . . o (an - bn)2 .
A chaque étape, on a des termes > 0 : les suites sont définies. Puis ap11—bp1=—"-—"—2>20:
2(an + by)
—a

Vn > 1,b, < a, |car pour ag et by, on peut permutter|. Puis, pourn > 1: ap1—a, =
et bn+1/bn > 1

0< an+1 — bn-‘rl <

: (@n)n>1 décroissante et (by)p>1 croissante.  Puis : [a voir]

Qp — bn . N a; — bl

conduisant & 0 < a, — b, < T
Variante 1 : (a,)n>1 déc., minorée par 0, converge vers [; et b, = 2a,41 — an — L.
——+00

Variante 2 : (ay)n>1 déc., minorée par 0, converge vers [ ; (b, )n>1 croiss., majorée par aj, converge

vers m. Puis passage aux limites dans 2.a,+1 = a, + b, : 2.0 =1+ m (finies) donc I =m

on observe ici que apy1.bp41 = ap.by = ... = ag.by. Donc 2= ag.bp et [l =+/ag.by !

1 1.1 1
[Remarque : Moy-arithm. a?—l—b > Moy-géom.Va.b > Moy-harm. h telle que 7= 5(— +-).
a

n > 1: Adjacentes.

3. Méthode de "dichotomie" : division en deux
Soit une racine r dans [a, b] ; on divise le segment en 2 [longueur (b — a)/2| et on garde le nouveau
segment contenant r. On recommence : on obtient des "segments emboités" de longueur (b—a)/2",
de bords gauches a,, et droits b,, formant 2 suites adjacentes : elles convergent vers r.

Note finale [analogue aux fonctions| Si uy, - [ >0, en se limitant a [ finie, IN : n > N = u,, > 3"
n—-1+0oo

1 . . 2
D’ou, non seulement (—),>n existe, mais encore est bornée : 0 < — < T [Pour des preuves.|
Un Unp
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M+ Exercices: Suites a termes réels (et complexes) PTSI

1. Indiquer les limites éventuelles des suites :
n

g 1 1 a b 1
Sp = g_:l PACES) <w(ac+ R + iy 1) (b) Sp = g: o2 P encadrement

(c*) Montrer que : z" +x —3 =0 a une unique racine u,, €]1,2[, n > 1. Etude de (u,) avec :

n.In(u,) = In(3 — uy,); ou bien (u,) monotone en comparant f,(z) =2z"+x—3 a fot1(z).

n n—2
1 2 1
(d*) u, = E oF (up, =2+ - + E —.) (€*) (un) + (vn), si (uy) converge et (vy,) diverge ?
k=0 "™ k=2 ~"

2. Suite a termes complexes |u, = 2" | et | S, =1+ z+ 22 +...2".| Ne pas confondre !

(a) Pour la suite (uy) : que se passe-t-ilsi |z |<1 7 Puissi |z [>1 7
(b) Puis quelques cas ot | z |=17 [cas z = ¢, on admet que 7 ¢ Q|. Ainsi | 2" — 0zl
n—-+0o0o
¢) Montrer que : |z |< 1= (S,,) converge et préciser sa limite. (Clest S = 1 .
q ge et p —
d) Reéciproque : Montrer que si (S,,) converge, alors : S, — Sp,—1 = 2" — 0. Conclusion ?
proq q ge, N
n—-+0oo

, 1 AT 1 . e

3. Soit |u, = Z o On a vu qu’elle était adjacente avec v, = up + — Inais non utilisé au (a).
k=0
1

(a) Vérifier, pour k£ > 1 ) < T Déduire que u, < 3 puis la convergence de (u,) vers .
(b) (*) Si on supposait : [ = g € Q, déduire de : uy <1 <w,; [a justifier], une contradiction.
(c) (*) Avec : Upp1 —Up <1 —Uup <V — Uy, PUiS: vy I Upi1 < vp — 1 < vy — Upy3, déduire
l—up, W T et v, — 1 o AT
4. On étudie Sn:1+%+%—|—...+%, n 2= 1.

(a) Montrer que D,, = Sy, — S, > 1/2. Déduire que S, 7 + 0o. On cherche un équivalent :
n—-—+0oo

(b) Montrer, avec le théoréme des accroissements finis, que : %_‘_1 <lIn(k+1)—In(k) < % (%)
Déduire que : S, > In(n+1) > In(n) et que S, <lIn(n)+1. Conclure que S, ~ In(n).
n—-+0oo
(c) On pose u, = Sy, —In(n) et v, =S, —In(n+1). Déduire des inégalités (x) qu’elles sont adja-
centes, puis convergent vers v €]1 — In(2), 1] appelée constante d’Euler et valant v = 0,577...
On écrit donc ‘ Sp =1In(n) + v+ €n. ‘ En déduire la limite de (D,,). (D, revue au ch. 28)

b
5. Soit les suites ag > 0,bg > 0 et apy1 = %, ntl = V Gn.by. Montrer qu’elles sont adjacentes.
[La limite "Moyenne arithmético-géométrique de ag, by", liée & une intégrale "elliptique" (Gauss™*).|
1 L Sn
6. Montrer que : S, =1+ \/§+ A+ — < 1+/ =1+2(yv/n—1). Limitede — ?
n
(*) Autre méthode pour — : Théoréme de Césaro (u, — 1) = v, = e e ST l.
n n—-+o0o n n——+00

[Puis avec u, = (—1)" vérifier que la réciproque du théoréme de Césaro est fausse|.




Chapitre 15

Suites w1 = f(un) et up 90 = a.upyq + buy

15.1 Suites u,11 = f(u,) : Limites finies éventuelles

15.1.1 Dessins

. . . " . ug =0
e Soit la suite arithmético-géométrique : 0 ’
Unp+1 = 2’LLn +1
Dessiner les deux courbes : y = f(z) =2.2x+1, y=ux; puis : wuq, ug, uz... ler dessin.
e Puis ensuite ug = —2 : 2° dessin. ‘D’Oﬁ : ne pas confondre fonction croissante et suite croissante !

/

Uy = -1 N
e Idem avec : —Up,
Un+1 =

Attention : fonction décroissante R — R ; suite non décroissante

+3
-1

5 )".(up — 1), oul est a préciser.

Rappeler, dans cet exemple, comment on obtient : w, — [ = (

15.1.2 Propriété

Soit la suite ug € I, upy1 = f(uy). On suppose : f(I) C I; I intervalle fermé; f continue sur I.
Alors :  si la suite converge (limite finie), c’est forcément vers une valeur [ telle que f(I) = 1.

Démonstration A plus comprendre que savoir !

e f(I) C I montre que u; = f(ug) € f(I) CI ! etc: lasuite existe et chaque u, reste dans I.
On dit que I est un "intervalle de stabilité".

e Les intervalles fermés sont : (), les segments ; les demi-droites fermées [a, +00[, | — 00, b] ; la droite R.
Utilité : si la suite converge, comme tous les u,, sont dans I, la limite finie [ reste dans [.

e Et donc : f sera continue au point [ € I pour U'instant inconnu. L’hypothése wu,1 = f(u,) donne
que (u,) converge vers [ et aussi vers f(I); l'unicité de la limite impose que [ = f(I).

Remarques
. En général, f est non affine, sinon on a une suite arithmético-géométrique connue !

. Ce qui compte, c’est la pratique des exemples suivants.

99
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15.2 Suites u,11 = f(u,) : Exemples

Unp
15.2.1 wupy1=-——, yp <1
n+1 3_ 2u” 0 x
1. On va dessiner f(x) = 3 m2 qui est connue |[hyperbole équilatére] avec les résultats suivants :

-2z

3 -1 . T . , 1

Deux asymptotes orthogonales : x = 3 ¥Y=5 Puis f(x) ~03) d’ou f(0) =0, f(0) = 3

Tr—

Enfin f(z) =z <= z € {0,1}.

2. Pour la suite (u) :

Cas ug = 1. | la suite est stationnaire, donc convergente vers 1. Puis :

‘CasO<u0<1.‘
(1) f est croissante sur [0,1] et doncsi I =10,1], alors f(I) C [f(0)=0,f(1)=1]C1I:
Ainsi tous les u,, sont dans [
(2) f(z) <z, z€]0,1]. Car g(x) = f(x) — x continue, ne s’annulle pas sur |0, 1], donc garde un

signe constant sur [0, 1] par le Théoréme des Valeurs Intermédiaires ; et ce signe est — [cf. f'(0)]

n. Bt

Conclusion : la suite est alors aisément décroissante | wu, € I = up41 = f(uy) < u
= f(l), soit 1 =0.

minorée par 0, donc convergente vers [ : 0 < I < ug < 1. Par continuité sur I, [
Soit I =] — 00,0] fermé.
(1) f(I) C I car f croissante sur I et f(0) =0. D’ou {u,} € I.

(2) f(z) = =, x € I va étre aussi utile a la conclusion [bien revoir la preuve ci-dessus|.

Conclusion : la suite est alors aisément croissante |  u, € [ = upy1 = f(up) = uy. Et
majorée par 0, donc convergente vers [ < 0. Par continuité sur I, [ = f(I) soit : [ =0.

s [Femwrare]

e Autre méthode dans le dernier cas : une fois vu que tous les u, restent dans | — oo, 0], on avait
| w, | ) ) , | ug | , | uy | 1
=t . |
| Upt1 |< 5 qu termine aussi car | uy, |< g Mieux : | u, |< g1 < 5T |

e Attention : Dans le cas ug €]0,1[, f croissante; mais (u,) est décroissante !

e Complément : (f croissante de I dans I [donc f(I) C I] ) = (uy) monotone.

En effet :
. Si ug < ug, comme on est dans I, f(ug)

b
I

) ou 2; et on continue !

U1
ui) o

S

< 1<u
= Zu

. Si ug = ug, comme on est dans I, f(ug) o ; idem.

=

Uy
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1
14+ u,

1. Dessin : idem sauf qu’on se focalise sur le premier quadrant. f continue, décroissante de 1 & 0

-1++5
2

15.2.2  upyq =

>UO>O-

(exclus). f(x)=z <z = =1~0,618... (nombre d’or moins 1) si x > 0.

Fig1: Fig 2 :

2. Ensuite : Si I =10,1], f(I) C I. Pas str que ug soit dans I | mais pour uq, c’est sir, car

uy € f(RY) C]0,1] C I; = (un)n>1 a valeurs dans [0,1]. (I = [0, +oo[ permis et bon aussi).

Le dessin montre que (u,,) est non monotone. Comment "voir" la convergence vers | =0,618...7

C’est la plus simple quand elle est possible.!  Soit 1= _1+\/5 Note.?

B B 1 1 . _(Un_l)

[signe conforme au dessin|. Puis :

1 —
| upt1 —U|< k. |u,—1] avec k= -—— <1let kfixe. Ceci montre que uy %l:ﬂ.
1+1 n—-4oo 2

On a: f décroissante de I dans I = fof croissante [facile].

Donc (ugy), (u2n+1) monotones [cf. complément p. précédente|. De plus "de sens inverse" :

En effet : si ug < ug < ug... appliquer f qui donne f(ug) = f(uz) > f(uq)... ou: wuy = us > us...
Et si ug > ug > uy... alors f(ug) < f(u2) < f(ug)... oubien: uy < usz < us... Terminé.

Ensuite on va essayer de voir que : wugpy1 — U2y, — 0; ouque: Upy] — U, — 0
n—-4o0o n—-4o0o
1 1 Up — Up—1 . .
= — =— [signe conforme au dessin]|.
14w, 14U (14 up) (1 + up—1)

Puis valeurs absolues et

Ona: upyl — Uy

ou bien u,_1 >1; ou bien u,—1 <1 : ici up = f(up—1) = f(I) =1; donc Dénominateur > 1+ 1.

Do : |upt1 —un |< k. | up—up—1| avec k= T <1 etfixe: c'est gagné !
Conclusion : Par le théoréme sur les suites adjacentes (ugy, ), (u2,+1) convergent donc vers la méme

limite L; d’ou (u,) converge aussi vers L.
—14+V5
TR

Méme début que Solution 2 donnant (ugy)n>1 monotone bornée (dans [0,1]).

Puis variante : Cette sous-suite converge ; et converge forcément vers A point fixe de fof car :

fof continue de [0,1] dans [0,1] et wug(,41) = fof (uan)-

Alors forcément L est point fixe dans [0,1] de f continue. Soit: L =1=

1 —
Or: fof(:n):...:21x et fof(:n):x<:>x:1+\/gsix>0. [Pas d’autre valeur ici! |
x
: —14++5 :
Conclusion : (ug,)n>1 converge vers cette valeur A\ =1 = — Puis (u2n+1) = (f(u2n))
. . —1+5
converge vers f(l) qui vaut [ ! Et donc (uy,) converge aussi vers [ = —

'Pour la suite u, = 1/n, Unt1 = un/(1 +un); tnt1 < kaun, avec k < 1, est impossible car un41/un tend vers 1.

2Pour le moment, ne pas dire que [ >~ 0,618... est la limite; mais dire un candidat pour étre la limite !
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15.2.3 Remarques
1. Fig.1: Cas upt1 = /2 —u2, ug = 2/10 : Attention : (u2y,), (u2,+1) sont ici stationnaires !

X

Et point "répulsif" (voir fof):

/(1) ] >1.| Fig2.

3 8
— le point [ = 1 est ici "répulsif" ! car

2. D 1 = — =
ans le cas up41 r 2u%’ [ 0

3. .Siona: ugel fermé, f(I)C I, (ug) convergente et fof continue, la limite A est point fixe

de fof forcément (comme pour Fig.2).  Car wugpi2 = fof(ugy).

. Et alors, on a trés simplement, avec f C° en A : Ugpt1 = f(ugp)p e “(A).
Parfois f(A) = A, parfois f(A) # X (exercices plus difficiles). (*) Pour finir le cas de Fig.2,
difficile, voir que : f(z) = z & P(z) =0, P(z)=22®+2—3 admettant 2 =1 comme racine
et deux autres complexes conjuguées; tandis que : fof(z) =z < Q(z) =0, Q(z) de degré 5,

divisible par P : fof a, ici, davantage de points fixes que f !

4. On cherche I intervalle (fermé si possible) avec : f(I) C I. Parfois : f non monotone !

15.2.4 Meéthode de Newton pour le calcul approché d’une racine

1. Dessin. Soit ¢ dérivable 2 fois sur [a,b] avec ¢(a).p(b) < 0; ¢’ > O [pour fixer les idées| ¢” > 0.

On cherche & approcher la racine r, de y = ¢(z), a Paide de la tangente

2. Méthode. On prend la tangente en b : y — (b) = ¢'(b)[x —b] et y =0 donne x1 =b— (’D/((l;))
12
On recommence avec x1. D’ou la suite |zg =b; Tptl = xn—z((in)) du type zp41 = f(xn).

Parfois, si on change les signes de ¢’ ou ¢”, on part de l'autre bout a. Vérifier que : f'(r) = 0.

(c’est pour cela que la convergence est trés rapide !)

15.3  upio = aupse1 + by a € CUb € C. (Récurrence linéaire d’ordre 2)

15.3.1 Théoréme

2 _ar—b=0,a,beC: pour Uiy = a.tupp1 + b.u, notée (Ry)

SIA#0, up =a.(r)" + B.(r2)".  SiA=0,u, =a.(rg)" + B.(n.rg) ourg=a/2 (racine double).

Soit "’équation caractéristique" r

Démonstration :

Sera vue avec le langage des "espaces vectoriels". On calcule «, 8 & I'aide des conditions initiales.
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15.3.2 Exemples

1. Suite de Fibonacci : up19 = Upt1 + Un; ugp =0, ug = 1. Clest la suite (0;1;1;2;3;5;8; 13;...)

On applique le Théoréme avec calcul des racines de ’équation caractéristique.

1 1 5} 1—-+5
On trouve : u, = ﬁ[gpn —"] ou p= +2\/7, D= 2\/7. Attention : u, est entier !
n u n
D’ou : Un ™~ —i’jg; donc : Z:ln_)—>+oo ¢ [nombre d’or|.  Note : u, — —i’jg n_)—>+000 !
U 3n —2
2. Suite Upi2 = Upg1 — Zn; up =1, ug = 2. On trouve ici u, = o1

U
3. Suite upio = Upt1 — Zn +3; up =1, ug =4. Cette fois, on n’a pas la relation Ry.

6 + 5n

Posons u,, = v, + p; on essaie de se ramener & Ry [Indication| ... Trouver : wu, =12 — o1

Révisions :

A
. Limite de la suite : (14 =)", X fixé 7 (Clest e*.)
n

. Les suites arithmétiques, géométriques et arithmético-géométriques sont connues.

n
. Bien revoir le cas des sommes "télescopiques" : S, = E Uk avec Up = Vpy1 — Uk-
k=1

. (*) Convergence (seule) de la suite : S,, = Z 1/k*? (croissante, majorée par 2)
1<k<n

. (*) Un exemple de suites adjacentes ?

. In transforme un produit en somme !

1) Les "Sommes de Riemann" classiques, assez faciles

’ ‘ A voir, de plus, au ch. Intégrales ‘: { 2) les suites relevant de la formule de Taylor-Lagrange.

. (*) Complément
. . 1 1 1
1. Soit la suite : S, = 1—5 + 3 + (—1)”’1.5, pour n > 1.

Un dessin sur une droite de Sp; So; S3; Sy... suggére que (S2p), (S2p41) sont adjacentes.

Cette idée marche bien et montre la convergence de (S,) vers L 6]5, 1[.

En fait cette suite sera revue au ch. Intégrales en précisant ‘de plus sa limite L = In(2). ‘

2. En exercice non corrigé du ch. précédent on avait parlé de la "Moyenne arithmético-géométrique".
Voici quelque chose d’analogue mais plus facile (méthode des isopérimétres de Nicolas de Cuse) :
. Up + 0
Soit up=a>0; vo=b=a. Et: upy = %; Upt1 = /Un+1-Un-

Alors ug = vg.cos(p) donne wuy = vo.cosz(g); v = vo.cos(g). Donc : uy = vl.cos(g).

Puis v, = vo.cos(g).cos(?i)...(cos(z%) = % e b%@ et suites adjacentes !
1 1

Ceci est lié aux rayons r, = t R, des cercles inscrits et circons-

- 2" sin(m/2m)

. . 1 .
crits d’'un polygone a 2" cotés, de périmétre 2, convergeants vers — : ‘Nlcolas de Cuse. ‘
T

2" tan(m/2m) ¢
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M-+ Exercices: Suites wu, 1 = f(u,) €t uyio = a.tu,i1 + buy,. PTSI

1+ u, .
; € R,  [Guider b .
T a, ug |Guider beaucoup.|

1. Etudier la suite w41 =

2. Etudier la suite up41 = V1 +uy,; up € R, [(*) Discussion selon .|
3. Etudier la suite : wup+1 = V2 —uy; ug € R. [(*) Discussion selon uyg.]

4. Que dire de (uy,), (vn) réelles si u2 + u,.v, +v2 — 0 7 [Hors série; intéressant !]
n—-—+00
5. Suite de Fibonacci : Uupy2 = tpt1 + un; ug =0, up = 1. Explisciter u,,. lim  wpyq/u, 7
n—-—+00

6. Suite telle que up10 = 3upy1 — 2u, + 7.
(a) Poser u,, = v, + p pour se ramener a Ry [vy+2 = a.vp11 + b.vy,]. Voir que ce n’est pas possible.
(b) Poser alors u, = v, +p-+q.n; et seramener & Ry. Conclure que w, = (.2" —Tn+~.

(c) Autre méthode pour la suite (uy,) :
Poser d,, = up4+1 —uy, et voir que (d,,) est arithmético-géométrique [connue].
Avec u, —ug=dy+di + ...+ d,_1, conclure.

7. (*) Suit =—"— up<2.
(*) Suite un41 w—2 U
(a) Représentation graphique de f(z) = v 5
"B J—
1
(b) Montrer que Vn >0, u, <2.  Puis montrer que n >3 = u, € [—1, §]
Trouver alors k < 1 (fixe) tel que | up41 [< k. | uy, | et conclure.
(c) Autre méthode : On pose v, = tn
Up — 3

Montrer que (v,) est géométrique. Exprimer u, a l'aide de v,. Conclure.

1 2 3 1
8. (*) Etudier la suite u,+1 = g(un +—), up = 3 [Indications : voir que 1 — V2 = — (u, — V2)?

Unp, - 2Un,
— V2
mais ce n'est pas obligatoire; on a : 0 < u, — V2 < (ug + \/5)(M

ug + V2

Babylone ou mieux de Héron d’Alexandrie). On peut reconnaitre aussi une méthode de Newton

)21 (algorithme de

pour ¢(z) = 2> — 2. Et v, = — permet 'encadrement de /2 avec wu,; suites rationnelles !|
n




Chapitre 16

Géométrie du plan R?

16.1 Plan affine P = R?. Plan vectoriel associé

16.1.1 Points, Vecteurs

1. On considére, R? étant ensemble des couples de réels :

e soit R? = P comme ensemble de points; on dit ici : plan affine P. (1,2) sera un point A.

e soit R? = II comme ensemble des vecteurs associés [bien voir la notation choisie| : on dit alors
—
. .. .. —
plan vectoriel II associé au plan affine P. (2,1) sera ici un vecteur © = AB, dans ce contexte.
— —
u + v
—
AU

‘Opérations linéaires ( sur les vecteurs dans II ) ‘ il y en a deux : {

, o, . —_— —
La donnée de deux vecteurs non colinéaires est une base (', ;') de II.

La donnée d’une origine (un point O) et d’une base de II est un repére de P : (O, 7", 7).

‘Llen entre P et H‘ Soit A€ P;alors M € P& AM eI (notation de Grassman : M = A + AM)
Et on peut changer de point-origine avec la relation de Chésles : AM = E BM.

2. La droite (affine) dans P muni du repére (O, 7, 7).

. C — - Lo EY- —
La droite D (A(xg,yo) dirigée par © # 0) est définie par M € D < [N e R: AM = \.u | ou
—xz9=A. . T—x )
JAeR: { T @ en parameétriques; | et par 0 _ Y% en cartésiennes, avec la :
y—yo=ApB — B
Convention : Quand on a, dans R, b_ % = ... avec au moins un dénominateur non nul :
@

si un dén. est nul, le numérateur correspondant aussi! (en effet, le rapport existe dans R, noté \)

Une équation cartésienne de droite est : ax + by = ¢, (a,b) # (0,0).
Théoréme | On obtient des droites paralléles en changeant seulement c. En particulier :
ax + by = 0 est aussi appelée droite vectorielle A dirigeant D et u (—b,a) € A.

16.1.2 Exemple :

— —
1. Avec le repére oblique : (A, AB, AC), montrer que les médianes sont concourantes.

2. Solution. Om a : A(0,0), B(1,0),C(0,1) puis [calcul] AA":x—y=0; BB :x+2y=1 car
/ SV Py -1 _y=0
Me(B,B)&3INeR:BM =ABB ou z—1=X(0—1), y—0=A(1/2—-0); =

1 T 12
CC':2x+y=1: passent toutes trois par G(1/3,1/3). On dit que le systéme des 3 équations & 2
—_ 1 —_—
inconnues est compatible. Vérifier, de plus, que A'G = =.A’A : les médianes se coupent au 1/3

de chacune d’elles & partir de la base. Meilleure démonstration & venir avec les barycentres !

105
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. : . . ax +by =c (a,b) # (0,0)
: L’intersection de 2 droites est un cas de systéme 2x2 { da+ by =c (d.b) £ (0,0)

Les droites sont : sécantes ou paralléles (distinctes ou non).

Et : D et D' paralléles <= A et A’ confondues (droites vectorielles directrices) < <_b> , (_1,7 )

vecteurs colinéaires (ou bien : composantes proportionnelles) < ab’ —a’b = 0.

16.1.3 Systéme linéaire carré 2x2

rz+2y=>5

— 4
3z + 4y = 6 v

Tirons = de (1), reportons dans (2) : y =

1. Méthode de substitution. Soit { g

On vérifie (réciproque) !

. o . . 2.y =
2. Méthode de combinaisons Linéaires de Lignes. Soit T2y =5 3.L1—Lo: 2.y=3.5—6;
3x+4y==6
9
y=3 2.L1 — Ly : x = —4. Réciproque a voir !

) "o . " sen 1 . ax+by=c

3. Méthode des "déterminants" 2x2 : Déja, diverses notations : , , ,

a.x+by=c

.. a b c — O ,

On écrit : . o +y. y) =\ ou ‘T U +y v = w.‘ (Note : dans Iespace
vectoriel R?, les composantes des vecteurs étant toujours écrites en colonnes. Si @ =a7 +d' 7
alors v = <3,> . Si en lignes, c’est pour un gain de place).  Par calcul, on trouve :

777
ct — b ac —d'c
Si ab' —a'b# 0, il y a une et une seule solution : z = , Y= : D’ou :
abl — a'b ab —a’b
Définition
a b " o . 3 a b , ,
On note A = J la "matrice" du systéme et dét(A) =D = J vlT abl —a'beR le
. . . b
"déterminant" associé; on note aussi D, = CC, | = cb’ — bc’ obtenu en remplacant la

colonne des z par le 2éme membre et D, = = ac —d'c: celle des y par le 2éme membre.

a C
!/ /
a c

Théoréme

D D
Si D #£ 0, le systéme, dit "de Cramer" a une et une seule solution : = = ﬁ Y= Fy

Sinon on regarde (soit pas de solution, soit une infinité : a voir.)

mx+y=1

4. Exemple avec les déterminants{ 9 Ona: D=m?—-1; donc
T+my=m
2 3 2
m—m —m m’—1 m*+m-+1
Si +1 t 1 le soluti = = = =
e Sim # £1, un et un seul couple solution =z T m+1,y R o

e Si m =1, il ne reste qu'une équation z +y = 1 : infinité de couples solutions ;
droite affine z +y =1 (plutdt : 2 droites affines confondues)

e Si m = —1, pas de solution : géométriquement, intersection dans R? espace affine, de 2 droites
strictement paralléles (—z+y=1; z—y=1).

5. Equation de droite affine dans R? (& nouveau) [2¢me < ci-dessous : & voir]

Siw # 6, équation de D(A, W) : M €D & A—>M,ﬂ> colinéaires < dét (m, w) =0

T—T) o L—%o _Y—Yo

=0 & = ui a été déja vu pour la droite affine dans R
Y=y B a B ! ! b
6. Note : on verra [ch.23] que 5’ bb, = det(s, 5,)72, = ‘Aire.parallélogramme.OACBO.‘

OA OB
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16.2 Barycentres

16.2.1 Théoréme-Définition

. (A1 As.. A . . .
Soit (al a2 a") n points "massiques" (ou pondérés), c’est-a-dire o € R. Alors

S " o OAy,
chk # 0, 3G tel que au choix (1) Zozk.GAk =0 ou (2) m,OTJ = M
k=1 k=1 D k=1 Ok

Cet unique point G est appelé barycentre des points pondérés (ou massiques).

. . - — g . . . .
Démonstration Soit M +—— Z ap.MA, =V (M), appelée fonction vectorielle de Leibniz.
k=1

Ona: MA,=MO+ OA; dou 1_/)(M) = T_/(O)—i—[z ozk].]w—d. Donc :

k=1

n —
Si Zak =0, V(M) est un vecteur constant; donc soit il est toujours nul, soit jamais nul.
k=1

Si arZ0: V(G)=0(1) = OG = ———
Z; k ( ) ( ) E:k:lak
1

Si A # 0, on peut remplacer les oy par A.ag. Ainsi, si Zak;& 0, A= Zni
k=1 %k

k=1

(2) et ceci a lieu pour un et un seul point G.

raméne au cas de coefficients de somme 1.

16.2.2 Cas essentiel n =2 : 2 points ! Dessins ?

A B 2. AA +3.AB A B A B
1. Barycentre de <2 3>? O:Aéﬁ:%m de ( >? de< >?

A -
2. Cas général : a+ 3 #0. G baryc. (4,a) et (B,f) < g:B = —ﬁ Donc
@
. G entre A et B <= «a et § de méme signe.

. Et G plus prés du point le plus "lourd" en valeurs absolues !

3. 1) Si on impose a4+ 3 =1, G entre A et B <= « € [0, 1].

MA
2) Pour A # B, I’équation en M sur (A, B) : i k, k donné, a au plus une solution en M.

— —
(En effet si k #1, MA—k.MB = 0 : clest un barycentre; si k =1, pas de solution : M est
a linfini géométriquement). Cette remarque, trés simple, est trés utile en géométrie.

16.2.3 Théoréme d’associativité

p n
Soit p<n et Z ar # 0, Z ap # 0.  Pour le calcul de G, on peut remplacer les
k=1 k=1
p premiers points par leur barycentre partiel, a condition de 'affecter de la masse partielle.

P
Démonstration Soit Gy le barycentre partiel; on I'affecte du coefficient : ~ = Z ag ;
k=1
soit G’ le barycentre de (Go,7), (Ap+1, agt1)-..(An, ay) ; alors avec (1) ou (2) :

[Z ar].GG' = v.GGy + ag11.GAg1 + ... + a,GA, et avec GGy, on a donc GG' = 0 !
k=1
Meédianes concourantes en l’isobarycentre : remplacer A et B par C’ milieu,

... les médianes passent donc toutes par G'; de plus situé au 1/3 a partir du pied des médianes.
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16.3 Le plan vectoriel euclidien (produit scalaire sur les vecteurs)

16.3.1 Angles et normes de vecteurs

1. Définition du produit scalaire.

Etant donné 2 vecteurs, on définit le produit scalaire par : | u . v = | u|.||7].cos(a).

(Sionveut: uw.v = ﬂ . O—B> = 0A.0Q = OB.OP ou @ est la projection orthogonale de A
sur la droite (O, B); P celle de B sur (0, A)). Donc: |[|@|?=7.u; |¥|=Vu.u.

Remarques

<V | (On peut avoir w. v < 0 !)

1) On a donc l’inégalité Cauchy-Schwartz | |

p—y
U
2) W et v sont orthogonaux <= u.v = 0. Et 0 est le seul vecteur orthogonal a lui-méme.

2. Propriétés (Démonstration en exercice)

Un p.s. est une ‘forme bilinéaire symétrique, définie, positive‘ c’est-a-dire :

1)Ona W.7 €R: on dit pour ceci "forme".

2) La linéarité par rapport au ler vecteur : (a. w1 +bus). v =a.(uW1.v) +b.(Uz. V)
Et aussi par rapport au 2éme vecteur : forme "bilinéaire".

) W.v=".u forme bilinéaire "symétrique".
AV U eE=R*: W.uW >0 : "positive".

—
5 Enfin W.u =0=u =0 : définie".

3. | Norme de vecteurs| w — || || est une "norme", ce qui est ||| € R* et 3 autres axiomes

D |T|=0=T=0

2) N7 =| A .|| 7| pour A réel.

3) Enfin I’inégalité triangulaire, appelée ici de Minkowski : | |u + V|| < ||| + || 7]

Démonstration

1) est vu. 2) vu aussi car : (A\.W) . (A\W) = (W . W); ete.

3) Calcul essentiel : |7 + 7|*= (W +0) . (W +0)=W. W +W.0+0 .4 + 0.0, par
bilinéarité ; d’ott par symétrie :  ||u + V|2 = |jul®* + 27U . 0 + |||

Puis: w .7 < | 4.7 |<||W].]|[7] ce quitermine.

Remarque : on peut étudier les cas d’égalité dans Cauchy-Schwartz et Minkowski :

. L’inégalité de (C-S) est une égalité si et seulement si u, v sont colinéaires.
. L’inégalité de (M) est une égalité <= 7, ¥ colinéaires de méme sens (car de plus . v > 0.)

16.3.2 Théorémes géométriques

1. | Théoréme de Pythagore généralisé ou d’Al-Khashi : |7 + 0 |> = | @ || + 27 . v + || 7)°

Démonstration vue ci-dessus. Interprétation :

- - ) _ , 2 _ DA2 | A2 ,
Soit un triangle A, B,C; BC = a, etc; alors (BA+ AC)* = BA* + AC* +2BA. AC,

ou la relation des cosinus : |a? = b* + ¢ — 2bc.cos(A)| car cos(m — A) = —cos(A).

2. | Théoréme de la médiane ou du parallélogramme || 7 + 0|2 + |u — ¥ |2 = 2.[| ¥ ||> + || V|*].

Car |w —7|*=|u|>—2% .7 + ||7]*. Interprétation vue au chapitre C et Géométrie.
3. Remarques :  La norme a l'aide du p.s.: |W||=V@.u ou |[Z|> =7.7.

1
Le p.s. 4 'aide de la norme : 4w .7 = 5(\\7 + 22 = 1Z)? = |7)).
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16.3.3 Bases orthonormeées : Intéréts.

1. ler intérét des bases orthonormées (7. 7 =0et |7 || = | 7| = 1) : le produit scalaire est facile.
Soit: W =ax7+y. 7, v=2TT+y.7J; alors :
U =22 (T 0) 4+ (2y +2'y). (7. 7) +yy'.(7.77) par bilinéarité.
Ainsi : dans une base quelconque, le produit scalaire est compliqué.

Mais | 7,7 orthonormée = w .7 =za' +yy'; etdonc ||W||=VW.uw =22+

2. 2éme intérét : de méme, les composantes sont faciles.

Ecrivons : w4 =27 +y7 ; alors: W.1 =x; U.] =y
Et donc |en base orthonormée, on a l'égalité : o = (u . 7). 7 + (u . 7). 7
Remarque importante en pratique :
— —
Si @, b est une base seulement orthogonale (donc Si @, b non nuls en particulier), on a
— — — 7 - —
. b\ 7 - U a
o :<%>.m <|1|;T> V| Eneffet W=\ 0¥ =TT =0T T) A=
a b a

3. Démonstration des formules d’addition en trigonométrie circulaire :

Soit  u (cos(a),sin(a) et W (cos(B),sin(3) en base orthonormée.
L'angle (v, @) vaut a— 3, donc w . v = l.1.cos(a — 8) = cos(a).cos(3) + sin(a).sin(B).

D’ou cos(a — 3) = cos(a).cos(B) + sin(a).sin(B). Puis cos(a+f); sin(a+p) = cos[(g —a)—p].

16.4 Le plan affine euclidien

16.4.1 Distance, Angle, Repére orthonormé

e Soit le plan affine P : les points du plan; on munit le plan vectoriel associé II (les
1. Définition

vecteurs) d'un produit scalaire qui donne angles et distances : §(A, B) = HA—B>||

Il y a 3 cas d’égalité des triangles ABC, A'B'C’ (égalité au sens isométrique) :

— 1 coté égal et les 2 angles adjacents (par exemple AB = A'B’ et A= 1/4\’, B=D1.
— 2 cotés égaux ainsi que l'angle entre ces cotés (par exemple A = A’ | AC = A'C' et AB = A'B’)
— enfin les 3 c6tés homologues égaux deux a deux.

2. La droite en repére orthonormé.
e On sait que, dans (0,7, ), la droite D a pour équation : M € D <= ax+by = ¢, (a,b) # (0,0);
— - .
et que w(—b,a) # 0 en est un vecteur directeur;

ou encore que A, ax + by =0, est la droite vectorielle associée (ou directrice) : uw € A.

7 (a,b) est orthogonal A AouD: ax+by=c et:
_ Jazy by — ¢

N

e Ein repére orthonormé, de plus

pour un point My(x1,y1) € P, §(My,D)

Démonstration. Déja 7 . w = 0.
1) Puis, pour M7 quelconque, notons Hj sa projection orthogonale sur D; on a :

(1) H M, = 7  dou: AM;. 7 =H M .7 =\||7|* (car AH; L 7). Et:
2) Si f(M) = ax+by—c, enrepére orthonormé YA€ D VM : AM .7 = ar+by —c= f(M)

r — X

Y=Y
-, . . . — > —

car azg+ byp = c¢. |Qui ré-entraine, si on voulait, que W L D car M € D<= AM 1 7|

Dot A\ avec (2) Hi\M;. 7 =\||7|*> =ax +by —c et 6= |H M| =X .|7|:

. L. - a
En effet, avec notations évidentes AM .71 = ( )a( b ) =a(r—x0)+bly—yo) =ax+by—c
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— | ax1 + by —c | . ———  ar1+by—c W
(M, D) = |[HML|| =| M| 7] = (Méme : FH, M, — Ly
17 Vaz+ 02 |7

Remarque. Si on choisit : 7' (cos(a), sin(«)) unitaire, I’équation est dite "normale" ou encore

. . . . g — — . .
"équation d’Euler" de la droite D :  z.cos(a) +y.sin(a) =d et OHy=d.n, || =1 ici.

N . . . A2 N2 N2
3. Le cercle en repére orthonormé. Bien voir que |[CM|" = (z —a)* + (y — b)" !

M € Cercle (C(a,b), Rayon R) <= CM? =R? < (z—a)’+ (y—b)?=R?

Equation :
Zquation e 2?4 y2 —2ax —2by+c=0 avec c= a® +b* — Rz, donc M'

Remarque : Le cercle passe par O si et seulement si ¢ = 0.

16.4.2 Cercle : Théoréme de ’angle inscrit

Soit C un cercle; A # B € C. VM € C situé du méme coté de (A, B)
1. Version élémentaire I'angle AM B est constant et vaut 1/2.(AOB—opposé & M). Donc :
si IV est sur le cercle de lautre coté de (A, B) : M + N= 1 angle plat.

Démonstration en exercice. |[Commencer par le cas M, O, B alignés|

VM eC: (mvm) = 1/2-(0—)14,0—3)) =0(mw) ("Arc capable"). Et

Version "angles orientés" AN SN
A, B, M, N sont (cocycliques ou alignés) < M A, MB = NA, NB(r)

A compléter

(Version "angles orienté¢s", en complément : L’angle de 2 droites, en M, est défini modulo 7 ;
langle de 2 vecteurs, en O, modulo 2.7 ; tout est donc correct avec le coefficient 1/2.)

2. Une utilisation : Relation des sinus dans un triangle.

Sma( y = Smb( B = Smc( ) = ;—[j;: 2R | S=aire du triangle; R=rayon du cercle circonscrit.

En effet, que 'angle en A soit aigu ou obtus (faire des figures), on a toujours que 'aire vaut :
S =1/2.ac.sin(B); donc aussi: S =1/2.ac.sin(B) =1/2.ab.sin(C) = 1/2.bc.sin(A).
Pour le moment, le théoréme précédent est non utilisé; puis avec le cercle circonscrit de centre O :
Soit B’ : O—>B' = —O—1>4; alors B'=B ou 7—B; donc sin(B) = sm(/B\’) = % Fini.
(Complément : Les 4 cercles ABC, ABH, ACH, BCH ont méme rayon.)

16.4.3 Complément sur le cercle : Théoréme de la puissance d’un point

Soit C(C, R) un cercle et D(A, ) une droite; on supose ||| = 1. Quand W varie en
1. Enoncé| direction et que D N C contient 2 points M, M’ : le produit AM.AM’ est constant et
vaut puiss(A/C) = CA?> — R*> = d? — R? : "puissance du point A par rapport a C".
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Démonstration (par calcul vectoriel, sans repére !)
AN — ANF2 2 A AN2 2 :

Pour D: AM =Xu. Pour C: CM*=R*. Donc (CA+ AM)* = R* qui donne avec

— —
la ligne ci-dessus : A 4 2.\.(w .CA) + CA? = R* =0 car on choisit ||| = 1.

: . / — 1—> RV T ~A2 2 ‘s

Le produit des racines vaut AN = (A W) (Nw) =AM . AM' = CA* — R*. Fini | 3 cas:

1) A sur le cercle < puiss(A/C) = 0. 2) A intérieur < puiss(A/C) < 0. Dessins 7

'K vvvvvvv / d

NS

Avec ici une tangente AT au cercle, on retrouve aisément AT? = d? — R? (Pythagore).

2. Utilisation : Ensemble des points du plan M : ]\]\j—g =k, A# B, k>0, courbe notée C
On obtient si k = 1 la médiatrice de [A, B] et si k # 1 un cercle centré sur la droite (4, B).

(*) Et ces cercles (d’Apollonius) sont orthogonaux a tout cercle I' passant par A et B

3) A extérieur au cercle < puiss(A/C) > 0. Dessin a compléter ?

Démonstration (k # 1 sinon clair; A et B points communs du dessin)
— —
1) On écrit, par équivalence : MA? — k> MB*=0 ou (MA+kMB).(MA—kMB)=0.
—_— —
Soit I le baryc. de (A, 1)(B,+k) et Jde (A,1)(B,—k); k> 0). Alors (1+k).MI = MA+k.MB,
— — PRI —_ — —_— —
(1-k)MJ=MA—-kMB. Doa MI.MJ =0, MI L MJ : M décrit le cercle de diamétre [I.J].

Cercles_d'Appolonius_orthogonaux_aux_cercles_bleus
41

34

2_

2) (*) Complément . Pour l'orthogonalité, on va aussi utiliser la division harmonique D.H. :

IA JA MA

. On avait TB-JB - MB "~ k |ce qui, au passage, montrait que I et J étaient les pieds des
bissectrices de AM B : 5 = 55 (1) : on dit que A, B,I,J sont en division harmonique.

. Ce qui entraine la relation de Newton : |Si Q est milieu de [I,.J], QI* = QJ* = QA.QB| (2).
En effet, écrire TA = IQ + QA, etc, pour passer de (1) a (2).

. Soit maintenant un cercle I' passant par A et B : On sait que QA.QB est la puissance de €2 par
rapport & I'; ici, Q est donc extérieur (puiss > 0) et si T est un point d’une tangente a I passant
par Q, puiss(Q/T') = QT? et c’est aussi QI avec (2). Ceci indique que Cj, et T’ sont orthogonaux !
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M-+ Exercices: Plan affine/affine euclidien. PTSI
1. (a) ‘Médianes d’un triangle concourantes :| a revoir avec les barycentres.
(b) Barycentres : Tracer l'isobarycentre de 4 points en les associant 2 et 2; puis 3 et 1.
Lire la figure dans ’espace avec un tétraédre A, B, C, D et trouver 7 droites concourantes !
2. ‘La droite en repére orthonormé.| Equation de la droite D L 7 (3,2), passant par A(—1,2) ?
Distance de O(0,0) a cette droite ?  Equation de sa perpendiculaire passant par B(3,4) ?
3. Coniques : (a) Equation du cercle passant par O, I(1,0), J(0,1) 7 Puis reconnaitre les courbes
2 _ _22% 4 32 227 43242 o
(b)y" ==z (c)y= | (d) y T [divisions en (c), (d)].
4. Le plan affine P (les points) ou bien le plan vectoriel associée II (les vecteurs) est dit
"euclidien" si on a un produit scalaire (@ . v') : forme bi-linéaire symétrique, définie, positive.
(a) Développer ||[w + ¥ ||* (nom du résultat) ? Théoréme de la médiane ? Utilité de bases o.n. ?
(b) Triangles : Rappeler la relation des cosinus dans le triangle.  Puis celle des sinus.
(c) Rappeler l'inégalité de Cauchy-Schwartz; et l'inégalité de Minkowski (inég. triangulaire).
Que donne 'inég. de (C-S) pour U(i) 7(2) ?  Prouver cette inégalité autrement.
. < TA B a —a
5. (a) Choix d’un repére o.n: Quel est {M : MA.MB = k‘} [avec A (0> ;B ( 0 )] ?
(b) Méme exercice sans repére, avec MA = MO + 0—1)4, MB idem, O milieu de [A, B
6. Repére o.n ... : pour & ={M: MA=2MB}; Ey, E3={M: MA*>+ MB? =k}.
7. Angles : Pour une étoile croisée quelconque ABC' DFE A que vaut la somme des 5 angles au sommet 7

. Cercles : (a) Veérifier que : C1(A1, R1) NCy(As, R2) #0 < | Ry — Ry | < AjAs < Ry + Rs.

(b) Montrer, avec le théoréme de 1’angle inscrit, que le symétrique de l'orthocentre H par
rapport aux cotés d'un triangle, est situé sur le cercle circonscrit.

(c) (*) Soit A, B,C : AB =3;AC = 4; BC =5. Avec G = Bar((A,—5),(B,4),(C,3)), quel est
Iensemble C = {M : —5MA?* + 4MB? + 3MC? =12} ? [Vérifier que (B, C) : tangente & C.]

. (*) Barycentres. Soit M un point quelconque du plan P : A, B,C. [Avec AM = \AB + MA—C>']

(a) Montrer que M est forcément barycentre de A, B, C' avec des coefficienst a, 3, judicieux.

(b) Montrer qu’on peut choisir & = Aire(M BC') etc. [Se limiter & M intérieur au triangle

(o, B, ¥=0) iciet pour la suite et voir que : «/AireMBC = [3/AireM AC'|

) o e - P Q R
(c) I étant le centre du cercle inscrit & PQR, déduire que I = Bar ( QR PR P Q) [PQ longueur]
(d) En déduire le centre de gravité d’un fil triangulaire homogéne ABC' pesant.

(e) Cas de la plaque triangulaire homogéne 7 [La découper en lamelles paralléles a (B, C)].




Chapitre 17

Transformations du plan

17.1 Homothéties affines et translations (sans repére ici)

17.1.1 Composition

R JE—
f: M+ M estune translation si MM = AA" = cte; et

1. Définition N —
une homothétie de centre I de rapport k #0,si IM' = k.IM.

Soient f, g des homothéties affines (rapport ki, ko) ou translations (rapport 1).
2. Théoréme | Alors gof est siki.ko #1 une homothétie affine de centre I'unique point fixe;
si k1.ko =1 une translation. Et la composée est non commutative en général.

Une démonstration est possible avec les complexes : z +— ki.z +b, 2+ ko.z+d, ki, ko € R".

Ex. 2 = —2.2 + 3 4 6i : homothétie de rapport —2 (simil. aff. directe, rapport 2, angle 7, centre : point fixe).

17.1.2 Théoréme de Thalés

Soient 2 droites Dy, Dy distinctes et 3 droites D, D', D" ; avec D # D’ paralléles
AA> BB’
A4 BB
La démonstration peut utiliser une translation si Dy, Dy paralléles, ou une homothétie si sécantes
1A”  IB”  A'B”
TA 1B AB
2. Dans R3, 2 droites affines sont en général non coplanaires : ni paralléles ni sécantes !

1. Enoncé P ,
coupant les 2 précédentes en A, B; A", B’. Alors: D”//D" <—

en I. Dans ce dernier cas : [On peut aussi utiliser une projection affine|.

17.1.3 En complément

Médianes concourantes avec les homothéties affines. !

! Notes :

1. Ona |A# Bet A’ # B’ donnés : [3f hom. aff. ou transl. A+ A’ B+ B'] <= A'B'//AB.

Démonstration (=) : est connu.
(<=) : Le plus simple est de voir qu’il y a une et une seule similitude directe 2’ = a..z+ 3 telle que A +— A’, B — B’ :
! / !
= b —a
faire le calcul avec ce systéme de 2 équations & 2 inconnues suivantes { Z(Z ig Z, et trouver : a = A #0
= —a

Cette similitude est : une translation ou une homothétie (ensemble noté H-7) < a € R* (facile).

Et c’est justement notre hypothése !

2. Exercice : Médianes concourantes avec les homothéties.
Soit A’, B',C’ milieux de BC, CA, AB; G intersectionde AA" et BB’'. Par le théoréme de Thalés, on sait que
—
A'B' = —1/2.A—B>; soit donc hg,_1/> '’homothétie : h(A) = A',h(B) = B'.
Montrons que A(C) = C"; on ne le sait pas ici!
iy e
Notons h(C) = C*; alors A'C* = —1/2.AC; ceci entraine aisément C’ = C* et termine.

113
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17.2 Ecriture vectorielle et matricielle de systémes linéaires

17.2.1 Systémes 2x2

Le systéme suivant s’écrit sous forme vectorielle : { a?jig,z;icc, ou . <Z,> + . (5,) = <C,>

z. % +y. v =w dans le plan vectoriel II = R?.

Et sous forme matricielle, ce produit s’effectuant Lignes par Colonnes (CL, l?’) ) (‘T) = ( a-r T b;y) :
a Y a.x+b.y
a b T c —
<a, b,) ( ) = () ou

Y

17.2.2 Cas d’un systéme de Cramer (rappel)

a b

(Sol. unique) « det(A) =| , .| #0;

a b b
L
OA OB

-
y blzdet(s, b)% = | Aire.parallé¢logramme.OACBO. |

17.3 Ecriture vectorielle et matricielle de transformations usuelles

17.3.1 Des exemples

— Py — P 7 —
1. Translation de vecteur @ : M —— M’ avec MM' =4 ou OM' =OM + 4 ; dans le plan
! ! 1 0 T «
affine P(O, 7, 7) : <az> = <az> + <a> ou : Translation <az> = < . +

L. :1;0 * i , . ~
2. Homothétie affine de centre I <y > de rapport k € R* : | IM" = k.IM.| Avec la relation de Chéasles
0

— N —
ceci implique : (non équivalence |) OM' = k.OM + cte avec cte =00’ | (faire M = O).

_— N
Propriété | Inversement M ~— M’ : OM' = kOM + @, k # 0 est une homothétie ou une translation.

— Démonstration. En effet : Si k =1 une translation (évident et ci-dessus).
— — —
— Sik#1: On cherche un point fixe I : O = k.Ol + OO0’; on en a un (et un seul ici) !

— 1 —_— - — —_— —

(O = T % OO')  Par différence, on retrouve : OM'—OI = k(O OI) ou IM/ = k.IM.
k L (@
0 g

M—
x T Q@ z

D’ou : ( ,> =k. ( > + ( > Homothétie affine ou Translation ( ,>
y Y B y

Remarque : on a ici le cas particulier des symétries points : k= —1.

3. Autre démonstration du Théoréme pour composée d’homothéties-translations valable méme dans & = R® :

. Une caractérisation (pourquoi les met-on ensemble) ? On a :

_— RN —_—
omothétie affine ou translation) < : =kMN,VM,N & 3k#0: AM = k.m, VM; A fixé.
h h fh 1 Ak #£0: M'N =k.M

Démonstration.
(1) = (2) = (3) faciles, k = 1 si translation, k = rapport d’homothétie sinon.
r a2
Voyons (3) = (1) : Si k=1, arriver 8 MM’ = AA" = cte (Chaésles).
)= A .
Sik 75 1, on cherche un éventuel pomt fixe I (I' = I), on a I'équation équivalente suivante A’ = kAL
ou A At Al =k AI ou (1—k). Al = AA' qu1 a une et une seule solutlon (k #1) en Al

‘Et puis : dlﬁerence‘de AM = &AM et A'T=kAl dou: IM —=kIM: fini !

. Démonstration du théoréme facile avec la premiére équivalence : utiliser tantot =, tantot <.
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3. Cas des similitudes affines directes : |2/ = p.z+¢q, ¢=a+i.8, p=re"¥ eC"

(les lettres a, b, ¢, d € R étant prises, z =z +1i.y = p.ei'e.)
e Rappelons que ces similitudes affines planes directes sont :

—si p=r.e"¥#1, des similitudes & centre : s’écrivant aussi 2’ — 29 = r.e"¥?.(2 — 29) ;

— et sip=1, des translations. Le cas général est donc, pour Similitude affine directe :
/ .

T e a'\ _ (cos(p) —sin(p) x a) a b\ _ (ra rb

Z r.e’T.z+q| ou <y/> T. <sz’n(<p) cos(p) ) \y + 3) T ¢ d re v

e Cas r =1 : déplacements. Rotations affines si e*¥ # 1 Translations.

/ e
Z =Y+ q ou Translation ou rotation affine <x/> = (C?S((‘D) sm(gp)) . (m) + <a>
— Y sin(p)  cos(yp) y B

4. Et la symétrie orthogonale (connue) par rapport a la droite : A (O, U (cos(p), sin(y)) ?

0
= 2 2| o iy = (cos(29) +i.s5in(29)).(x —i.y) : @:) - (Zfﬁg ; jj:Zé(Z?@sg)) ' <§>

17.3.2 Reésumé (préparation aux applications linéaires, ch.20)

T x’ a b T «
1. Ainsi : Une application de la forme : M — M’ < ) = < > . < ) + < ) est

—
dite "affine"; matriciellement : Y =A.X +B. Voir que B =00’

/
2. . L’application o <§> — ?(7) <§,> = <Z Z) . <§> est "’application linéaire associée"

qui, elle, ‘s’applique a un vecteur ; matriciellement : Y = A.X ‘ Exemple :

—

U =O0OM(z) — 7(7), 2/ = (1+1i).z, similitude vectorielle d’angle % de rapport V2.

Dessin de u = O—]\>J quelconque et de 7(7) : M

—

Propriétés des Applications Linéaires | f (7' + 2'2) = ?(?1) + f(T2); ?(A?) = )\7(?)

Car avec les matrices : A.(X; + Xo) =A.X; + A Xy A.(AX)=)\(AX).

3. Lien Application affine f, Application Linéaire 7) :

JE— — —

Avec I'écriture Y = A.X + B, on a pour les points |OM' = 7(0—]%) +00" ou OM'= f(OM).

— —
Deux exemples : (f =Id, f = 2.Id serait mieux 7)

y . . .o, ., R . o . — — .
. L’Application Linéaire associée a une Translation est I’Identité Id: = — . de matrice

[2:<1 0>. Déja vu avec OM':OTJ—Fa——}O'. Car?(OTJ):O—]\j = ?(?):?

01

. L’Appl. Lin. associée a une Homothétie affine est une Hom. vectorielle k.Id :

(k#0, 1) de matrice k.Iy = k. <1 0> = <k 0). Vu avee |OM' = k.OM + 0—07

— —
T — k. x

01 0 k
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17.4 Des exercices corrigés.

17.4.1 Transformations et barycentres

Enoncé :

A B M

! .
1 3 k:) et M’ leur barycentre. Ici k # 0.

Dans le plan affine P, soient les points "pondérés" : <

_—
1. On impose : 1+ 3+ k #0. Justifier que M’ existe; et que AM’' = K.AM + cte.

2. Si B = —1, justifier que M +— M’ est une translation & préciser. Soit ensuite 3 =1, k= —1:

- — — L. . . . — — —
3. Avec AM' = —AM + AB (x) a voir, justifier que 'équation en I : Al = —AI + AB a une et une
—
seule solution; et que IM' = —m . Image d’une droite passant par A 7
Corrigé :
— — —
1.AA+ . AB+ k. AM

.
= K.AM + cte.
1+68+k

, . —
1. M’ existe car 1 + 5+ k # 0 et (origine en A) : AM' =

< s ey I Sy S R ) . 1 =
2. Puissi f=-1, AM' = AM—I—E.BA ou MM'"=cte: M — M" Translation de vecteur E'BA'

— B
(Bien comprendre la relation de Chasles : AM’ — AM = MM')

3. Enfin, si K # 1,0, on a déja vu que AM' = K.AM + cte est une Homothétie affine; on le refait :

. T _— — , — — - — 1 — .
Ici, AM" = —AM + AB; cherchons I tel que I' =1 ou Al = —Al+AB: Al = §'AB solution

unique. Puis par différence des relations : AM' = —AM +AB et Al = —Al+ AB, on obtient

SN N
IM' = —IM. Cest donc, ’homothétie de centre I, de rapport —1, ou bien : une symétrie-point.

Enfin, comme A’ = B, I'image d’une droite passant par A est la droite paralléle passant par B.

17.4.2 Expression matricielle de la symétrie/y = 17

o yty AT EEANE :
1. On a: r =ux, 5 =1: Donc <y/>_<0 —1>.<y>+<2>

/
2. Remarque <:;,> = <(1) _01> . <;> + <(1)> non symétrie car sans point fixe ! (z' =2z +1.)

17.4.3 Expression matricielle de la rotation affine d’angle 7/3 de centre 7(0,1)?

LT3 b G — e,

Le plus simple est de dire : |2/ —i = ei'”/?’.(z —i)| ou 2 =e
z' /2 —V3/2\ (= V3/2

On t - = . )

oo G ()= (e ) G) (1)

17.4.4 Expression matricielle de la proj, affine sur la droite affine y =2+ 17

1. Solution facile. Faire un dessin ! D:—z+y=1 L 7 (-1,1) donc MM' =\ sécrit

¥ —x=-\y —y=X(1); deplus M estsur D: ¢y =2'+1 (2). Un petit calcul donne :

T—y+

e ()40 Q) ()

y+A=x—A+1 dou A=
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~1/2
1/2

o —_— —— - —
sécrit : OM' = f(OM)+O0O" oubien OM —0O0' =0'M"= f(OM).

2. (*) Facultatif, vérifions. O <8> — O ( > :0' €D, 00' L D. Et I'égalité matricielle

. .2 o . : /—; T 77 ’ 3
Ici, si U vecteur unitaire de D, on doit avoir O'M' = (OM . U).U [s’en assurer, dessin.|

=l

—
— OM.u
D'oli, si @ = 7 + 7 non unitaire, U= Il ; on doit donc avoir 7(OM) = (HTH;L)W
U U

T 1
o ()0) oy (2
Comparons (Oj\iiu U= yi <1> = 2 % <1 1> ) <x> : idem !

| ]2 ) 12 +12 1

, —_—
3. (Laissé) : Faire la symétrie orthogonale/D ... Trouver : <z,> = <(1) (1)> . (3:) + < 11>.

17.4.5 Quelques calculs avec les matrices (2,2)

o . . a b a b aa’ +bc  ab’ + bd'
On définit le produit matriciel par <c d) . <c’ d’) = <ca' Ldd o +dd )

. b 10 Y .
1. Si A= <(CI d>’ I, = <0 1>, vérifier que : A.Iy =1, A= A. Puis:
. 1 a 0 1 2 2
2. Si B= , C= , que: B =1, C°=0 e B.C#C.B.
0 -1 0 0 -—
3.Si D= <())\ 0) (diagonale), calculer D? D® D" n>1 |associativité admise].

4. Si E = <0 :i), calculer E2, E3; puis E?2! [E*=1, donc E?"?' = E?|.

17.4.6 (*) Lecture (complément)

1. Le calcul matriciel semble-t-il utile ? Réponse : Le calcul vectoriel est plus concis ;

mais non suffisant parfois. Par contre pour le plan, n’oublions pas les complexes !

2. L’application est parfois non bijective. =~ Comme dans I'exercice 4.4.

lére raison : on ne peut inverser; 2éme : ou bien ni surjective; ni injective :

Un point hors de D : y =1z + 1 n’a pas d’antécédant; un point de D en a une infinité !

3. ‘Pour finir : le programme fera surtout étudier les Applications linéaires (ch 20 s.) ‘

— On préférera les Applications Linéaires de £ dans £ d’écriture matricielle Y = 4,, ,.X
(mais des matrices rectangles ne sont pas exclues ...)

— Par contre, on considérera toutes les projections vectorielles F — E, méme obliques !

De méme, avec les symétries vectorielles, méme obliques.

/ 2 2
4. Note : (i) — (;,) = (;;Ezg IZ%) est non linéaire ou affine (mais plus compliquée) !

Déja a cause de 22 ; de plus : application non définie si z = y = 0 (Inversion géométrique, cf. C).
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M+ Exercices: Transformations du Plan (affine euclidien). PTSI
1. Composition d’ homothéties-translations du plan (On sait que la loi o y est interne).

10.

11.

(a) Soit h ’homothétie de centre I, de rapport 2, k' de centre J, de rapport 1/2. Comparer h'oh
et hoh’ (On sait que chacune est une translation).

(b) Soit h ’'homothétie de centre I, de rapport 2, k' de centre .J, de rapport —1/2. Comparer h'oh
et hoh'. (On sait qu’il s’agit d’une symétrie-point dans chaque cas).
(c) Si h ’homothétie de centre I, de rapport 2; ¢t une translation, a-t-on : t-oh= hot— 7

A B M

Barycentres. Préciser f: M +— M’ =Bar <2 1 1

>. Et ¢: M|—>M':Bar<A B M)

1 -1 2
0
1

. Calcul. Avec 2’ —i = €"™/3(z — i), expression matricielle de la rotation de centre I < ) d’angle g ?

Puis expression matricielle de la transformation inverse (réciproque) 7

Ecriture matricielle et interprétation géométrique de la transformation M (z) — M'(2 = e*"%.z) ?

. Avec I'image de 2 points faciles, trouver le centre C, de h = TR,z 0TAz :ON sait que h = XN

Construction : (Les homothéties supposées de rapport # 1)
—
(a) Si hjoh; = t=, vérifier que U et I.J sont colinéaires. Si hjoh; = hx que I,.J, K sont alignés.

(b) (*) Sur la droite (A, B), A # B, on se donne A’ et B’ avec A’ # B’. Construire le centre de
'homothétie transformant A en A’ et B en B’. (Indication : prendre M hors de la droite !)

Hauteurs concourantes : droite d’Euler (H, G, 0); (*) et cercle d’Euler ou cercle des 9 points.

(a) Soit h I'homothétie de centre G (intersection connue des médianes) de rapport —1/2. Image
— — —

d’une hauteur ? Déduire que les hauteurs sont concourantes et GH = —2GO [OH = 3.0G |

(b) (*) Soit E tel que GO = —2GE. Figure O,G,E,H 7 Avec h et th,1/2 (homothétie), déduire
que les 3 milieux de [A, B] ... de [H, A] ... et les 3 pieds des hauteurs sont cocycliques.

[Prendre h(C) et h'(C) o1 C cercle circonscrit ; et ... le sym. orthogonal de H/ cotés est sur C.]

—_
. (*) Soit I le centre d’une similitude directe plane A — A’; B # A — B’ donnés. Donc 6 = A—B>, A'B'.

Que dire de 'angle I—1>4, TA"? Puis de IB , IB'? Déduire que I est intersection de 2 cercles connus et

quenfin [ est le point autre que (A4, B) N (A’B’). [Sinon, cercles tangents et résultat encore vrai.|

(*) Cercle, angle inscrit et similitude :  Soit CNC' = {4, B}; s la similitude directe (centre A,
Cw— (). Sis(M)= M montrer que M, B, M’ sont alignés. [Soit P = MBNC(C'; O—z>4, OM =
—_— — _— — - _— —_— —
2(BA,BM) =2(BA,BP)=0'A,0'P(2.7r). Dot AM,AO =a = AP,AO"; donc P = M|

(*) Théoréme de Ménélaiis. Avec une projection sur (B,C) pour = et Cours pour <= ,
montrer que : (M € (B,C),N € (C,A),P € (A, B) sont alignés) <= EN:OP:A =1.

Pe (A B): (AM,BN,CP concourantes [en K| ou paralléles) <

SE
|




Chapitre 18

Systémes linéaires. Espaces vectoriels

18.1 Systémes linéaires

18.1.1 Systéme n x p

1. En plus de systéme 2x2, on doit résoudre des systémes 3x3 ou n x p. Exemple :
a+4B3+Ty=0p
Chercher s'il existe «, (8,7 € R 2+ 58+ 8y=4¢q . (Réponse parfoisoui: p=¢qg=r=0;
3a+68+9y=r
parfoisnon : p=1, ¢g=r=0et L1 + L3 — 2.L3)

1171 + a2 + ... + apTy = b1

o . : =b
2. Un systéme linéaire de n lignes, p colonnes (S) s’écrit : 02171 + a22%2 + ... + AgpTp 2

Ap1x1 + An2T2 + ... + AppTp = bn
(a;; étant le terme ligne 4, colonne j)

18.1.2 Reésolution par la méthode du "pivot de Gauss"

1. Opérations élémentaires sur un systéme linéaire.

Il y a 3 opérations élémentaires sur les lignes; aprés, on obtient un systéme équivalent ; voici :

1) Permuter Ligne i et Ligne j; noté L; « L;;
2) Remplacer Ligne i par k. Ligne i, Kk #0; noté L; «— k.L;;

3) Enfin remplacer L; par L; + A\.Lj, j #i; mnoté L; «— L;+ \.L;.
(Voir que 3) aussi est une équivalence : le retour étant L; < L; — X\.L;.)

Note :

Les opérations élémentaires sur les colonnes sont aussi permises; cela modifie juste les inconnues.
a+4B8+Ty=p a+4p3 + Ty =p,

2. L’'exemple: 37 a,8,y€R: ¢ 2a+58+8y=q < 3I?a,B,vER: —38—6y=q—2p
3a+68+9y=r —60—12y=r—3p
a+48+Ty=p
—d7a,0,veR: B+2y = 2r—4q La question devient : A quelles

etenfin 0=r—3p—2¢+4p

conditions (C.N.S.) «, 3, existent-ils dans le systéme équivalent échelonné final ?

Réponse : si et seulement si la derniére ligne est vérifiée (évident) : p—2¢+r =0. Donc :

— si par exemple p=1, ¢ =0, r =0, le systéme n’a pas de solution.

—sip=r=1, ¢ =2, le systéme a une solution; méme une infinité, une lettre arbitraire; ex : c.

119
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r+y—3z=-13 r+y—3z=-13
3. Autre exemple : THy—2z=-8 & Z=5 avec Ly — Ly, L3 —2Ly, Ly — L
_ 2r+y+2=3 —y+72=29 ’ ’
r4+2y—32=95 Y =18
r+y—3z=-13
—y+T72=29 . . N
& L—5 avec Lo < L3 (et si on veut Ly «— Ly + Lo, ... pour avoir un systéme
y =18

totalement échelonné ; mais on voit déja qu’il est impossible)

4. Ecritures vectorielles et matricielles des systémes linéaires

ail a2 a1p
— a1 | — a2 — a2
Dans E =R", notons v = , Vg = ey Up = Pl e
anl an?2 anp
N . .. . _
. Alors le systéme général (S) s’écrit vectoriellement : | ;. V1420 Vo+ ...+ Tp. Vp =

L3 ~ H . 2 N 2 .
On considérera (So) m1.71 + x2.72 + ...+ a:p.Wp = ORn. (ausa appelé systéme ou équation

(vectorielle) sans second membre "ESSM" associée (parfois "systéme homogéne associé").

. On a aussi une écriture matricielle (ci-dessous) et la "matrice augmentée"
ai... aij... a1p X1 bl 1 1 -3 T —13 1 1 -3 | —13

| | 11 -2 = 11 -2 |-8

- B, Z 13 M2 01 3

Upl-.. Gpje.. Qpp Tp bn, 1 2 -3 5 12 -3 |5

18.2 Espaces vectoriels

18.2.1 Définition

E est un espace vectoriel sur K =R ou C (K-e.v.) si F est muni de deux lois : + et .
| interne: W, v eE= U+ v €E et .externe: ANeK W eEE=\u€cFE

telles que : 1) (F,+) soit un groupe abélien |5 axiomes avec loi interne : ci-aprés.|
avec également :  2) Ao (W + V) =AU +A. U A+p). 7 =X.UT+A.7;
Ap) e @ =Au[paw] et 1.% =7w. [donc 5 autres avec loi externe.]

1) Les éléments de E sont appelés "vecteurs" ; et ceux de K = R ou C appelés scalaires.

2) Groupe abélien ou groupe commutatif signifie + est interne et 3 axiomes; et comm. :
. - , : —> —, —, — — —, o
Associative ; avec Neutre (forcément unique 0 + 0= 0" = 0 car 0 et 0’ neutres); tout élément

— L . . . — — —y — >y — . — .
w a un Symétrique (forcément unique u’ + u + ©” = u” = u’') noté —u ; enfin Commutative.

-, = —
T

Montrer qu’on peut simplifier : W +7 =4 + y =

= 7 (en ajoutant T gauche, etc.)

3) Dans (A.p).u le ler . est la multiplication dans K; le 2éme . est I'opération externe.

18.2.2 Propriétés

Ona: AT =0<= (A=0 ou W=20) et (—)\)7:)\(—7)——()\7)
Démonstration 1) 0.7 = 0 car 0+ AN).u =A7 ou 0. + A\ = 0 + AW et on peut simplifier.
— . — — — — . N
A0 =0 car )\(0 +W)=ANU =AU+ 0; etc. de méme.
1 1 1
Inversement Si A% = 0 avec # 0, X est inversible (R ou C), —.(\. %) = ~0 ou (- AU = 0
. A A A
ou 1. =0 ouenfin u=0. [Divers axiomes utilisés. |

2) [-A+ AW =074 = 0, donc ... (-\). " =—-(\u); et lautre analogue.
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18.2.3 Exemples

1. E = R? est un espace vectoriel sur K = R.  Les deux opérations :

z <°””1> L <°””2> 4T (‘”ﬂl ”2> o AT A (“) _ <Ml>
Y1 Y2 Y1+ Y2 Y1 Ay

De méme FE = R? e.v. sur R ‘E = R" est un R espace vectoriel, n > 1, surtout n = 2,n = 3. ‘
Remarque :
Pour n =1, E =Rest un e.v. sur K=R. (On ne met pas de fleche sur les éléments de E : \.x)

2. |EF = {6)} est un e.v. sur R.| C’est le plus petit car tout e.v. contient 6: neutre pour +.

21 + 22 (interne)
Az, A € R (externe)

3. ‘E = Cest un e.v. sur K= R. ‘ Opérations : {

z1 + 22 (interne)
Az, A€ C (externe)

Nous verrons que E = C est un R-e.v. de dimension 2; par contre un C-e.v. de dimension 1.

4. |E=Cest un ev. sur K= C.| Opérations : {

5. ‘f(I,R) ou I =0, 1] par exemple, est un R e.v. ‘ Bien retenir les exemples 1 et 5.

U + v correspond & f +g (sin+ exp par exemple) AU correspond a \.f

Dans ce style

R[x] est un R e.v. (addition P + @ ; loi externe A.P) : e.v. des polynémes a coeff. réels
C[x| est un espace vectoriel sur R; et aussi un e.v. sur C.

De méme R(x) est un R e.v. : e.v. des fractions rationnelles a coeff. réels

6. | F(N,C) ensemble des suites a termes complexes est un C e.v.

.. — — .. . g .« . .
Loi interne « + @ : addition de suites (u,) + (v,) (0 est ici la suite nulle ! )
Loi externe A\.w :  A.(uy) (utile au ch. suivant avec A € C).

18.2.4 Combinaisons linéaires

. — . N o . . .
Soit (u';)ier une famille de vecteurs ot I est ici un ensemble d’indices.
L .. . . o, . — . 212
1. Définition Une combinaison linéaire des (u/;) est un vecteur (ou bien un élément de I'espace
. . . — — . .
vectoriel) s’écrivant A\; w1 + ... + Ap W', pour un nombre fini de coefficients non nuls.

2. Exemples
e Dans E = C espace vectoriel sur R, (R-e.v.), tout complexe est combinaison linéaire de 1 et i :
Vze C, dz, y € R tels que z = x.1 + y.i.

e Dans F = R[x] espace vectoriel sur R, une combinaison linéaire de (x"),en est un polynome:;
[Tandis que 1+x-+x2+ ... sans s’arréter n’est pas un polynome : on dit une série.]

Comme la famille (x"),en permet d’obtenir tout R[x|, par combinaisons linéaires, on dit qu’elle est
"génératrice" ; on s’intéressera aux familles génératrices les plus petites possibles.

n

3. Résumé : les "combinaisons linéaires " combinent les 2 opérations de 'e.v.; elles sont essentielles.

18.3 Sous espaces vectoriels

18.3.1 Définition

Soit Funev.sur K (RouC) et E; CE. Ejestunsouse.v.deE si:
1) + est interne dans E;  2) VA €K, WeEE AU €EE 3) Ej lui-méme espace vectoriel sur K.
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. Remarquons que {6}} et FE sont deux sous espaces de F.

— —
. Un sous e.v. est jamais vide : contient au moins le neutre 0 de £ ! (car 0.% = 0)

18.3.2 Caractérisations pour £, C E

-
E; #0 [en pratique contient 0 .]

Fy sous ev. de F & U, VEE =TU+vVEE &
: ! ! VAEK, W, T EFE : MU+ € E.

Ey #0 [contient 0] {
VAXeK, W eE : \Nu ek

Démonstration de la premiére équivalence. = est clair.

<= : Déja (E1,+) sous-groupe abélien : par ex. 'associativité est vraie dans Ej car vraie dans E ! etc.
Puis, par exemple, 'égalité : A\.(u + 0) =AU + AT est vraie dans F; car vraie dans E ! ...

Utilisations| 1) Montrons que C*([0, 1], R) est un espace vectoriel sur R.

On va montrer que c’est un sous espace d'un espace connu; ici de E = F([0,1],R), avec la premiére :
La fonction nulle est C'°°; puis si f, g sont C°°, f + g aussi; enfin VA € R, A.f est aussi C* de I dans R.

2) Soit Ej et Ey deux sous espaces de E ; montrons que E7 N Ey est un sous espace.

—
Avec la deuxiéme cette fois : 0 € E; N By (dans chacun car sous espaces); donc E; N Ey non vide;
puissi A € K; W, v € By N Eo, \. W + U € Ey; € Fy; (car sous espaces encore; donc :) € Ey N Fs.

Plus généralement si (F;);cr est une famille de sous espaces, NE; est un sous espace.

18.3.3 Exemples de sous espaces vectoriels

1. Dans R" e.v. sur R |si @ # 6), {)\.U, A € R} est un sous e.v. appelé droite vectorielle.

. Preuve avec une caractérisation. .
. En fait cet exemple a lieu dans tout espace E (sur R) oil on peut trouver o # 0.
—
. Dessin : Un point O symbolise le vecteur 0 ; alors R. W est représenté par une droite de vecteurs.

2. Dans R®ev.suwr R |1 ={ W :2.x —3.y+2z=0 est un sous e.v. dit : plan vectoriel.

INEE SO

Remarques

. . . . —> —> P 4 . — — .

. Par caractérisation : si w, v vérifient I’équation, A\. v + v aussi.
) M

. Un sous e.v. contient toujours {6}} donc (..): 2z —3y+2z=4 NON sous e.v. de E = R3;

mais un plan affine de £& = R3, espace affine !

Dans E e.v. sur R, soit (u;);e; une famille (non vide) de vecteurs ; alors
L’ensemble des combinaisons linéaires des (u’;) est un sous e.v. de F;
c’est le plus petit sous espace (pour C) contenant les (u';).

On l'appelle : sous e.v. engendré par les (u;); on le note : Vect(W;)ic;-

3. Théoréme :

Démonstration [en lére lecture, supposer que la famille a 3 vecteurs.]

— — - . . oL — .
1)Ona 0 =0.uwy; donc 0 est combinaison linéaire des u’; (donc ensemble non vide) !
1, 7
Puis si @', ¥ sont comb.lin. des u;, \.@ + ¥y aussi (idem) ! Ainsi, 'ensemble des combinaisons
.o, L. . L. . . . —
linéaires, noté ici V, est un sous espace de E par une caractérisation; et il contient les u’;.

2) Inversement, tout sous e.v. contenant les u’;, doit contenir (cf. déf.) chaque combinaison linéaire
des u; ; donc doit contenir V. Donc c’est facile mais trés important !

Exemple : droite vectorielle avec @ # 0. On la notera maintenant : Vect(W) = {\.U,\ € R}.
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18.4 Exemples traités

18.4.1 1ler exemple : dans R?

1 4 7
) 3 N X 2 o — — =
, Dans R” e.v. sur R, montrer que le sous e.v. engendré par « [ 2], v | 5| w |8
1. Enoncé 3 6 9

— — — : p : A
Vect(w, v, w) =V est un plan vectoriel dont on donnera une équation cartésienne.

. . o, . , . — — —
V _est ’ensemble des combinaisons linéaires ou des vecteurs s’écrivant a v +8v +vyw, a,F,v € R.

On a mis a, 3,7 (au lieu de A, g, v moins simple) ; mais x,y, z n’était pas ici une bonne notation :

x x
2. Résolution Notons: | y | [Z si 'on veut| un vecteur généralde V. Ona 7 [y | €V < ...
z z
x 1 4 7 a+40+ Ty ==x
Ao fyeR: lyl=a. |21 +6. 5] +7. 8] < Ja,B,7veR: 20+ 560+8y =y .
z 3 6 9 3a+68+9y==2

Attention

Ici, ce sont «, 3,v les inconnues, dont on ne veut que ’existence ! Aussi :
on met o, 3, v a gauche. z, y, z jouent le role de parameétres décrivant le sous e.v. V', en entier.

Donc: 7€V < Fa,8,7eER: a U +[B0 +7.0W =7 = ..
a4 4B+ Ty =, a+4f+ Ty =z,

Ja, 8,7y € R : -3 —-6y=y—2z < Ja,B,7vyeR: et ﬁ+27:2x_y
—60—12y=2—3x

et pour finir 0=z — 3z — 2y + 4x
La question est alors : A quelles conditions (C.N.S.) «, 3,7 existent-ils pour que le systéme

équivalent final soit satisfait ? Si et seulement si la derniére ligne est vérifiée (évident). Donc

x
V=ALZ|y|:2—2y+2=05: ‘:17 —2y+2=0 est une équation cartésienne cherchée. ‘
z

st — —> — . N 2 .
3. Remarques . On peut vérifier que u’, v', w satisfont a I’équation de V' !
. Enfin, en sens inverse, ayant une équation de V', comment en trouver un systéme générateur 7

Voici a partirde :  —2y+2=0:

Z r =T

Onaly| €V« y=1y ["3 lettres, 1 équation; |donc 2 degrés | de liberté"| D’ou:
z z=—xT+ 2y
x T 1 0
— E — 77 N ..
yleVelyl=x| 0 |+yl|l] =xa+yb. V=Vect(d, b) : autre systéme générateur.
z z —1 2

18.4.2 2éme exemple : dans R[z] e.v. sur R

Déja, on voit que : R[z] = Vect(1,z,2%, ...,2"%, ...) les ... signifiant k € N (on ne s’arréte pas)

et on note : |Vect(1,z,2%,...,2") = R,[z]| le sous e.v. des polynomes de degré |au plus|n.

Attention | . dO(O) = —oo. Et les polynémes de degré 0 sont les constantes non nulles !

. L’ensemble des polyndémes de degré exactement 2 : non sous e.v. : ne contient pas O ; etc.

_
. De méme, le complémentaire d’un sous e.v. est jamais un sous e.v. : ne contient pas 0.
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18.5 Somme de sous espaces vectoriels

1. Rappel a bien revoir : L’intersection de 2 sous e.v. est un sous e.v. (donc jamais vide).

2. Mais la réunion de 2 sous e.v. n’est pas (en général) un sous e.v. : Dans R? si <

7 <(1)> ;alors: R.7UR.T (ou Vect(7)UVect(7)) nonsousev.car o + J & Vect(7);
-
7

+ 7 € Vect(7); dou 7+ 7 &€ Vect(7)UVect(7). Dessin? On va remédier a ce défaut.

18.5.1 Somme de 2 sous e.v.

On appelle somme de 2 sous e.v. By, FEy, de EF : Ey + Fy = {?1 + T, X € E;}
1. Définition Alors : Fq + F5 est un sous e.v. de E; c’est le plus petit contenant Fq et Ejs.
[On aurait donc pu le noter Vect(E; U Es)]

Démonstration

. L. . . .. —
E1 + Es sous e.v. facile avec une caractérisation ; contient E; (choisir To=0 ) et Ey. Inversement
Tout sous e.v. contenant Ej et Fy doit contenir Fy + Ey (clair si on a assimilé les définitions).

2. Exemple dans E = R?
Soit By = Vect(u) =R.W, u # 0 et = Vect(v) = R. ¥, ¥ non colinéaire & .

Ici By + By = Vect(w) + Vect(V) = Vect( W, 0)={\U +p.T}=1#R> Dessin ?

soit By + E2 ¢ E (comme dans l'exemple)
soit £y + E3 = E (ce que l'on souhaite)

3. En général, il y a 2 cas : {
Définition

L’égalité E = Fy + Es signifie exactement E C Ey 4+ Es (car réciproque évidente), donc que
Tout vecteur 2 de F a au moins une écriture ou décomposition du type =1 + @2, 2; € F;
VZ € E, 3%, € E1, Ty € Fs tels que T =71+ 9. Ondit que E est somme de E; et Fs.

18.5.2 Somme directe

Maintenant on s’intéresse au cas ou tout vecteur de F a au plus une écriture sur Ey, Fs.

—
Notons 0 le vecteur nul de E. Les deux affirmations suivantes sont équivalentes
1) Tout vecteur de E a au plus une écriture sur £y + Fo
— . . . N . — — —
2) 0 a une unique écriture sur Ey + Es, a savoir 0 (€ E) = 0(€ Eq)+ 0 (€ Ey)
Dans ce cas on dit que la somme est directe et on note Fy @& Es au lieu de E; + FEs.

1. Propriété

Démonstration
1) = 2) clair. [Au passage, (2) est 'implication : @1+ To= 0 = 71 = T2 = 0]
2) = 1) Supposons que : ¥ = T1+ To= Y1+ Y2,

Avec 'hypothése 2), on doit montrer que T ; = ;.
On a par différence : 0 = (71 — ¥'1) + (Z2 — ¥2); donc:

—
2. Remarque importante. On a 1’équivalence : | E; et Fy en somme directe <= E1 N Ey = {0 }.

Démonstration . .
— Soit w € BEiNEy;ona 0 =u +(—u), u € Ey,—u € Ey; 'hypothése fournit : @ = 0.
i~ — — — — 5 N ey .
<= Soit 0 =+ Usg, w1 € E1, Wo € Ey. Avec I'hypothése E1 N Ey = { 0 }, nous devons voir
— —
que Wi =u2=0. Or u;=—s, noté T silon veut, est & la fois dans Ey et Fy donc 0!

Exemples .Si @ C Ey N Es, avec ©w # 6), E7 et Ey ne sont pas en somme directe !

. Deux droites vectorielles sont : soit confondues, soit en somme directe !
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3. ‘Question piége | Peut-on trouver 2 sous espaces Fq, Fq avec: FEj+ Eo # F1® Ey?

Réponse :
. Si Eq et Es ne sont pas en somme directe, la notation Ey @ Es est interdite : question insensée;
. Et si B et Fy sont en somme directe, la notation E; @ Ey désigne le méme sous espace que

FEq + E5 : elle est simplement plus précise. Il y a donc toujours égalité ici.

18.5.3 Sous e.v. supplémentaires

Etant donnés 2 sous e.v. Fq et Es, on souhaite que :

(1) au moins

2 . . L — — —
(2) et au plus une écriture (ou décomposition) du type =1+ T2, T; € E;

Tout vecteur = de E ait {

(1) est noté : E = FE; + E» (2) est noté : Ey + Ey = E1 @ Es.
1. Définition
Quand F =FE1+ FEy et Ei+ Ey = E1 & Ey sont vérifiés, on note : E = E1 @ Es.

On dit que : les sous e.v. sont supplémentaires,
ou que : E est somme directe de Fq et Fo,
ou que : Fy est un supplémentaire de E;.

2. Remarques
Ne pas confondre "supplémentaire" avec complémentaire.

. . . . . . —
Le complémentaire d’un sous e.v. est jamais un sous e.v. Pourquoi? [car ne contient pas 0 |.

3. Exemples de sous e.v. supplémentaires

o Aisément |E=FE® {6)} = {6)} @& E| avoir.

1 0 0
eDans E=R3 sill=Vect(7,7);on 7 =|0]| 7T =[1] e A=REk on %=1o],
0 0 1
x T 0
alors C’est I'unique l'écriture : |y | =y ]+ (0
z 0 z

e Généralisation du précédent, dans R? encore, en prenant 2 vecteurs non colinéaires o, v et
Fy = A =R.w, w non située dans le plan vectoriel By = Il = Vect(uw, V).

E=R3=E; & E, \EE Autre supplémentaire EY?

e Soit E = F(R,R) I'espace vectoriel sur K =R connu.

Posons F; = P(R,R); Ey =Z(R,R), sous ensembles des applications paires et impaires.
Alors E; et Ey sont des sous e.v. (facile); et on a vu que ‘f(R, R) =P[R,R) ® Z(R,R). ‘
N et e T — e T

C’est ainsi que : e* = 5 T = ch(z) + sh(z).

e [Aussi: Si E = F(R,C) espace vectoriel sur K =R; alors F = F(R,R)® F(R,i.R) !

Ex.: €% = cos(x) +i.sin(x).]
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M+ Exercices: Systémes linéaires. Espaces vectoriels PTSI
x+y—32z=_—183 3r4+2y+62+t=1
1. Résoudre avec le pivot de Gauss : Ty —Lz= - puis r+y+224+0t=-1

2x4+y+2=3 :

2. Définition de F e.v.? de FEj sous e.v.? et rappel des 2 caractérisations de sous e.v.

w

3

—
— . . o o —
. Dans R?, les vecteurs @, puis b, sont-ils combinaisons linéaires de @,

Re-prouver que : C*°([0,1],R) est un e.v. et que : Ej, F sous e.v. de E = E; N E, aussi.

— — N
v, w ou:

—2 3 5 1 7
=1 7=2],w=|1]:a=|2 ,? =( 0 |? Conclusion sur Vect(w, v, w) ?
5 0 -5 0 —10

1 1
(a) Dans R® donner une équation cartésienne de IT = Vect( (1) : (2) ). Puis un supplémentaire.
1 3
(b) En sens inverse, partant d’une équation de II [z — 2y + z = 0] choisissant les lettres x, z arbi-
traires, donner une autre famille génératrice naturelle & 2 vecteurs. Donner une 3éme famille
génératrice a 3 vecteurs; une 4éme avec une infinité de vecteurs. Laquelle est intéressante 7

(a) Montrer que C°(I,R) est un espace vectoriel sur R, I = [0, 1] [ou plus généralement un intervalle
de longueur # 0 de R| comme sous e.v. d’un espace connu.

(b) Citer un sous e.v. strictement inclus dans C°(I,R) et contenant strictement le sous-e.v. des
applications polynémiales identifi¢ & R[z]. Que dire de Vect(1,z,z%) ?

(a) Indiquer un espace vectoriel contenant les fonctions cos(pz), sin(qx), p € N, ¢ € N*.
Montrer que sz’n?’(x) s’écrit en combinaison linéaire de sin(qz), ¢ =1,2,3.

(plus tard, ch.30) avec les développements limités en x = 0 effectués a 'ordre 3.

(b) (Hors progr.) Idem avec ch?(z) en combinaison linéaire de ch(pz), p =0, 1,2.

avec des équivalents en 400 et, plus tard, avec les développements limités en 0 a 'ordre 2.

. Soient E; des sous e.v. d'un e.v. E. Montrer que :

(a) (E1NEy)+(E1NE3) C EyN(E2+ E3). Cas d’inclusion stricte 7 Si Fy C Eq montrer I'égalité.
(b) E1+ (EaNEs) C(E1+ E2)N (B + E3). Idem et égalité si Ey C Eo.

(¢c) (B CEs; ExNEy=E NE3; Ey+ Ey=EF)+ E3)— Ey = Fjs.

(d) (By C E3; By C Eg; BsNEy={0}; B\ + By = B3 + Ey) = (B = B3, By = Ey).

(e) Enfin: (E1NE)+ (E1NE3)=E N [Ey+ (E1NE3).

(a) Montrer sur un exemple que la réunion de 2 sous e.v. n’est pas, en général, un sous e.v.
(ceci est traité dans le cours).

(b) Si Ej et E3 sont des sous e.v. de E, montrer : (E; U Es sous e.v.) < 'un inclus dans I'autre.




Chapitre 19

Espaces vectoriels de dimension finie

19.1 Bases

19.1.1 Famille génératrice

. — . L, .
La famille de vecteurs (u’;);er est dite génératrice [sous entendu de tout 'espace]
L .. . . . — .
Définition si elle engendre donc tout I’espace, ou bien si : Vect(w;) = E ou encore si :
. L, . . . .. —
Tout vecteur de E a au moins une écriture en combinaison linéaire des ;.

Exemples

1) On convient que ) engendre E = {6)}

2) ‘Un vecteur non nul suffit [on en prend le moins possible| pour engendrer une droite vectorielle.

3) Dans F = C, e.v. sur R, la famille (1,4) est génératrice.

N
4) Dans R3, e.v. sur R, la famille 77, 7, k est génératrice.

5) | Dans R[x|, e.v. des polynémes, la famille infinie (1,x,x?,...) est génératrice.

(Attention : il n’y a qu’un nombre fini de coefficients non nuls dans une combinaison linéaire).

2

6) Dans Ry[x]=Vect(1,x,x?) sous e.v. des polynomes de degré au plus 2, 1,x,x> est une partie (famille

est plus général car permet les répétitions) génératrice. [Exercice : (1,x—1,(x—1)?) en est une autre]

19.1.2 Famille libre

La famille de vecteurs (u;);e; est dite libre si on a 1’implication :
RN e
Définition | M. w1 + ... + /\p.ﬁp = 0= MAN=..=X=0. Cequiest: désque 0 a une écriture

. . e, . — Pl I . - — —_ —_
en combinaison linéaire des u’;, c’est I’écriture banale : 0 = 0. w1 +0. w2 + ... + 0. U ).

On a équivalence entre :
c — L. , — < 9. . .
Propriété 1) 0 admet seulement ’écriture banale précédente sur les u’; ¢’est-a-dire : famille libre
2 . . . ., . —
2) et Tout vecteur de E a au plus une écriture en combinaison linéaire des u';.

Démonstration
2) =>1) est un cas particulier car 0 admet toujours I’écriture banale signalée.
1) =2) : Tout est 1a ! Soit donc T = A\. W1 + ... + /\p.ﬁp = U F o+ ,uq.ﬁq.
Quitte a rajouter des termes nuls, on a: @ = A. U1+ oc. + A\ Wy = (1. U1 + oo + [ U

s - — — . — — —
Par différence : 0 = (A —p1). w1+ ... + (N — ). Uy et aussi 0 =0. w1 +0.wo + ... + 0.0 .
L’hypothése donne donc que A — up = 0, Vk; ce que 'on voulait.

127
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Résumé

— On montre qu’'une famille est "libre" grace au critére technique 1) qui est la définition.
— Mais 2) donne le sens de "famille libre".
— Le contraire de famille génératrice est "famille non génératrice"! de famille libre est "famille liée".

[Le vocabulaire va étre maintenant éclairé : "libre" = sans relation en combinaison linéaire].

Exemples
1) On convient que () est libre.

=
0

2) Pour un vecteur : | (u) libre <= u # [& bien voir].

—_ = . .. . . .
3) Pour deux vecteurs : ‘ uw, v libres <= non colinéaires. ‘ [cas particulier de ’exemple suivant]

4) Pour p > 2 vecteurs :

— — — . ‘. . c . : .
W1, Wa,...u, non libres (ou liés) <= 'un (au moins) est comb. linéaire des autres (au moins un lien.)
Démonstration

<= Clair : si Wi =ag.Wa+ ...+ ap.ﬁp alors 1.W; —as. g — ... — ap.ﬁp = 6) Terminé.
= Sion a (by,...b,) # (0,0,...,0) avec by. U1 + ... + by U, = 6}, supposons par exemple b; # 0; alors
U= ;—(bgﬂ)g + .+ by Wp).  Terminé.

1

La définition dit que (ﬂ)z)ze 1 est libre si toute sous-famille finie est libre.
Ainsi un cas essentiel est : Dans R[x| la famille (x*),k € N est libre.

5) Pour une famille infinie :

19.1.3 Bases

1. Définition

Une famille (u;) de vecteurs de E est une base si elle est libre et génératrice. Ce qui veut dire:
Tout vecteur @ de F a une et une seule écriture en combinaison linéaire des (u;).

2 [Brenie

—
1) E ={0} admet pour base la partie vide : ().

2) Une droite vectorielle A admet pour base n’importe quel vecteur non nul de A.

1 0 0 x
3) Dans F = R ev.swrR: 7 [0],7 |1 ,? 0 | s’appelle "base canonique". Si @ |y |,
0 0 1 z
ona = =x.7 4+y. 7 + z.?. Idem avec R™ e.v. sur R.

4) Dans E =C, e.v. sur K=1R: (1,4) est une base. (i,1) en est une autre. (1,7) en est une
3éme : exercice. [Mais dans E = C, e.v. sur K=C, 1 et i sont liés ! i =4.1 a lire : v = \.U]

5) Dans R[x] e.v. sur R, la famille infinie (1,x,x?,...) est une base. Ecriture du polynéme P sur la

(k)
famille : P(x) = Z P k'(o) x*, n>d°(P): formule de Mac-Laurin pour les polynomes, ch26.

o<k<n
. Car P(z) = ag+ ay.2 4 ... + an.2™; P¥(2) = kl.ay + z(polynome). P*)(0) = kl.ay, : fini.
. On généralise avec les ((X—a)k; k € N) autre base : formule de Taylor pour les polynémes ch26.

3. |Note|. Dans R? on a une base & 3 vecteurs . Dans R[z], une base avec une infinité de vecteurs

.Et C*®([a,b],R) € C%(a,b],R) € F([a,b],R) sont de trés gros e.v. sur R dont on ne connait pas
de base et contiennent en particulier les fonctions polynomiales Rx] et la famille libre (z +— 2™),en
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19.2 Théorémes fondamentaux en dimension finie

19.2.1 Théoréme de la dimension

Définition ‘ Un espace vectoriel F est dit de "dimension finie" s’il posséde une famille génératrice ﬁnie‘

Théoréme

Soit G une famille génératrice finie et £ une famille libre; alors £ est finieet | £| < |G |. D’ou:
Si on a une base & n éléments, toute autre base a n éléments; ce nombre commun est appelé dimg E

Démonstration
1) = 2) La déduction : Soit B une base & n ¢léments et B’ une autre base.
Alors B’ (libre) est finie, de cardinal | B’ | < | B|; puis on permutte les roles !

1) En complément (x) e Par récurrence sur p, on montre le :

Lemme (de I’échange) : Si une famille & p vecteurs génére une famille F a p + 1 vecteurs, alors F est liée.
— —
. Le cas p =0 : cas o () engendre le vecteur de F ; qui est donc 0. Toute famille contenant 0 est liée.
. Passage du cas p — 1 au cas p (les notations étant plus commodes) :
Soit (g1, 93, .-, E;) qui génére 1, ...7p+1 une famille F de cardinal p + 1; montrons que F est liée.
Dans une écriture des u'j en combinaison linéaire des g_;, supposons un coefficient sur g; non nul.
(Si tous les coefficients sont nuls, (g3, g3, ..., g_p>) génére tous les W, ; 'hypothése de récurrence donne
— — ., — — ., . 5 . o, s, .
U1,...up lite; donc Uy,...upt1 liée car une sur-famille d’une famille liée est liée : exercice).
Supposons donc ﬂ)p_,_l = 6191+ 293 + ... + ﬁp.g_;, (1 # 0; alors, par opérations élémentaites, on arrive
N — — — — P v died —_— .2 N 2
a1 UL — M Uptis ey Up — Ap UWpy1 géNErés par (g2, g3, ..., gp) ; donc liés par hypothése de récurrence.
— — — — Y
3 p1, ..y pp non tous nuls : gy (W — MU pp1) + oo F pp(Wp — ApUptr1) = 0.
Si 11 # 0 (par exemple), W1 est combinaison linéaire de s, ...7p+1 ;  ce qui termine le lemme.
e Puis de toute famille de cardinal > | G | +1, on choisit une sous famille & | G | +1 vecteurs, liée grace
au lemme. On finit avec la propriété facile : toute sur-famille d’une famille liée est liée.

Exemples |[Bien savoir les encadrés|
1) {6} est de dimension 0.

2) Définitions : une droite vectorielle est un e.v. de dimension 1; un plan vectoriel de dimension 2.

3) | E = R" est un e.v. sur R de dimension n. | Par exemple E = R%.

4) | E = R[z] est un R-e.v. de dimension infinie, de base (1, z,z2,...).

5) ‘E = Vect(1l,z,...2") noté R, [z] est un e.v. de dimension finie : n + 1. ‘

19.2.2 Théoréme de la base incompléte (= existence d’une base "en dim.finie")

1) Si G est génératrice finie et £ libre (donc | £ | < | G |), alors on peut compléter £ par
On a certains vecteurs de G de facon & obtenir une base de F.
2) En particulier, avec £ = () : De toute famille génératrice finie, on peut extraire une base.

Démonstration
1) =2) est clair (cas particulier).
1) En complément (x).

. - - . — — — L . . — . . .o, g g N
Soit (l1,..., lp) libre et (g1, g2, ..., gq) génératrice. Si g combinaison linéaire de (I1,..., [,), on passe a
— . - . . . . .. sy —>
gz ; sinon, on remplace (I, ..., l,) par (l1,..., l,, g7) libre aussi, aisément. On continue ceci jusqu’'a gg.
On obtient une famille libre qui génére chaque gy, ; donc génératrice de tout I'espace : c’est une base.

Exemple : E = C est un R e.v. de base (1,4) ; donc (1,7) est une autre base...
Par contre £ = C est un e.v. sur K = C de dimension 1 :
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19.3 Conséquences fondamentales

19.3.1 Sur les bases (E de dim. finie, i.e. ayant une famille génératrice finie)

On a: 1) F admet au moins une base et toutes les bases ont méme cardinal : dimgE = n.
2) Toute famille libre a au plus n vecteurs et toute famille libre de n vecteurs est une base.
3) Toute famille gén. a au moins n vecteurs et toute famille gén. de n vecteurs est une base.

Démonstration
— 2) b) Soit £ libre de cardinal n = dimg E. Pour avoir une base, on peut la compléter (Théoréme 2)
forcément par 0 vecteur vu que toutes les bases ont n vecteurs (Théoréme 1).

— 3) b) Soit G génératrice de n = dimg F vecteurs; on peut en extraire une base (Théoréme 2) forcément
en prenant tous les vecteurs vu que toutes les bases ont n vecteurs (Théoréme 1).

19.3.2 Sur les supplémentaires

Soit E de dimension n. Alors : 1) Tout sous e.v. Fj est de dimension finie p avec: 0<p < n.
2) F; admet au moins un supplémentaire et tout supplémentaire est de dimension : n — p.

Démonstration
— 1) Les familles libres de F4 sont libres de E'; donc ont au plus n vecteurs. Soit p leur nombre maximun

de vecteurs et (E), ey E)) une famille libre de E; ; voyons qu’elle est génératrice de E; : Si @ € Fy
= — 5 N — =
ona: (a,1l,..,1,) est liée (par déf. de p). FXg, A1,...Ap non tous nuls : A\g. @ + ... + A\p.l, = 0.

Ao # 0 sinon tous les A nuls ! Alors 7 = —%-()\1-E> + ...+ )\p.z). Fini.
0

—
— 2) Complétons la famille libre des Ij, par certains vecteurs d’une base (e7,...e,) de E, de facon & avoir

IO —
une nouvelle base de E : (I1,...l,, €pt1,...6) par exemple.
Voyons que Fy = Vect(?pH, ...&y) est un sous e.v. (évident) supplémentaire de E; :
- = -

«E=FE +Ey: comme (ly,...l,, ?p_,_l, ...€y) est génératrice de E, tout vecteur 7' de £ a au moins

une écriture en comb. lin. de (11 ,...1p, ?p“, ZZ) goﬁ au moins_)une écriture @ = 1 + T3, T € Ej.
. Somme directe : Soit @ € Ey N Ey. Alors © = Al + ... + Ap-lp = up+1.?p+1 + ...+ fip.ey ; donc :

- I I — — 7 — —5\ 1: — =

0 =X.b+ o+ X0 —pipy1-€pi1 — oo — fp€pn. (I1, .. 1y, €py1,...6p) libre = Xy =0: 2 = 0.

Mais & ce stade, il reste une question : on a trouvé un supplémentaire Fs de dimension n — p.

Un autre supplémentaire EY) aurait-il la méme dimension? Oui : ceci résulte de la propriété :

Avec dim(Ey) dim(FE>) finies (pas forcément F) on a : dim(E; + Fy) < dim(Eq)+ dim (Es).
Et : Si E; et E sont de plus en somme directe, alors : dim(E; @ Ep)=dim(E;)+dim(Es).

Car avec elle : ayant E) @ Fy = Ey @ E) (= E ici) et dimensions finies; on a : dim(Ey)=dim(E}).
Maintenant montrons la propriété :
e En juxtaposant une base (u'1,...u ) de Ej et (U'1,...7 ) de Fs, on a une famille génératrice de
Ey + E5. Donc dim(FEy + E2) < p+q. (Attention : on n’a pas dit ici que Ey + F5 était égal a E.)
e Dans le cas particulier de la somme directe en juxtaposant une base (u'y,...u ) de Ey et (U',... 7 )
de E», on a une base de E; @ Es. "Libres" : si \;. w1 + ...)\p.ﬁp + ,u1.71 + ...+ ,uq.ﬁq = 6: alors

— — g
A1 u'q + /\p Up

-1 = —[,u1.71 + ...+ ,uq.?)q] € F1 N Ey. "En somme directe" donne T =0 ;
puis (u';) libres (7';) libres donne : tous les coefficients nuls; les p + ¢ vecteurs forment une base.

2 sous c.v. en somme directe non supplémentaires ? 2 droites vectorielles distinctes de R?!

19.3.3 Des remarques

1) ‘Si E; est un sous e.v. de E et dim(E;)=dim(F) finie, alors £ = Fj. ‘

Non vrai, en dimension infinie : F; = Vect(l,xz,x4,xﬁ, ...) @ E=TR[x| en est un contre-exemple.
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Preuve en dim. finie : Une base B; de Ej est une partie libre de E de cardinal dim(E;)=dim(F)
finie, donc une base de E, d’aprés une "conséquence fondamentale". Donc E C Vect(B;) = Ej.

2) ‘Les sous e.v. de £ =R sont selon la dimension‘ {?}, les droites vectorielles, les plans vectoriels

et R3 en entier. (Et bien stir : R3=R* @ {6)} = {6} O R3). [Clair avec 1).]

3) La derniére propriété vue se généralise [on ne le démontre pas. cf Exercices (*)] :

Dans un e.v. ¥ de dimension quelconque si F1, o sont des sous e.v. de dim. finie,
E) + E5 aussi et dim(E; + E») = dim(E;) + dim(E2) — dim(E; N Ey) : Formule de Grassman.

Qui contient : dim(Fy + F2) < dim(Fp)+ dim (Fy) et dim(E; @ Eo) = dim(Ep)-+dim(E,).

4) En dim. infinie mais avec une base : R[z] = Vect(z", n € N) = Vect(z??, p € N) @ Vect(z?P™, p e N).

19.4 Utilisation

19.4.1 Exemple dans R! muni de la base canonique

. . 0 0
' -2 =0 0 0
Soit U = { Z cx—2y+2=0}; V={ Z ;(xf_yfj_zt_())}; VVzVect(E> 1 ,7 0 )

" t 0 1

Questions : U sous e.v. 7 dim(U) 7 etV 7 V et W supplémentaires ?  Solution :

x r=2y—=z
1) Au lieu de : "U sous e.v. par caractérisation" écrivons : Z el & Z Z:Z =y.a + zﬁ vt
t t arb

— —
(notations claires) donc U = Vect(@, 3, | ) sous e.v. on a (aussi) une famille gén. & 3 vecteurs !

. — g — — . .
Puis yad +2.0+t.0l =0 = 2y—2=0,y=0,2=0,t=0: libre; donc base de U; dim(U) = 3.

2) De maniére analogue, avec les éq. Ly, Lo — L1 (pivot de Gauss), trouver :
- L = = S o, .
..V =Vect(, o+ 1) sous e.v. et ces 2 vecteurs (5, @ + [ ) non colinéaires : donc dim(V') = 2.

—

RN — = — — ) — = — —
3) Enfin,si w =a.0+b(ad+1)=ck+d 1l €eVNW,onrésout a.8+b(ad+1)—ck—dl =0
...eton trouve : @ = 0. Donc on a VW ; ce sous espace est de dim. 2+2. Forcément V @ W = R?.

19.4.2 Deémonstration du Th. sur les suites : u, o = a.u,11 + b.u,, a € C;b € C* (Ry)

En complément, avec le langage des espaces vectoriels.  En 4 étapes :

1) On sait (ou on voit) que E = F(N,C), ensemble des suites a termes complexes, est un C e.v. On
vérifie aisément que E; ensemble des suites & termes complexes vérifiant (Ry) est un sous e. v. de E.

2) De dimension 2 (en exhibant une base) : Soit (av,) vérifiant Ry de conditions initiales ap = 1,01 = 0;
(6,,) de conditions initiales Gy = 0,41 = 1. Alors, si (u,) vérifiant Ry, on a d’une et d’une seule fagon :
(un) = up.(an) + u1.(Br). (Unicité facile. Existence : bien comprendre 'indice 2 avec Ry ...)

3) On cherche une autre base plus commode avec les suites faciles du type (") vérifiant Ry, r # 0 : on
tombe exactement sur : 72 = a.r+b; d’ousia?+4.b # 0, on a deux suites r1; r4 non proportionnelles
vérifiant Rp : une (autre) base de Ej. Une suite (u,) vérifiant Ry s’écrit donc (uy,) = \.(r7) + p.(r3).

4) Dans le cas ot a® +4.b = 0 en terme d’espace vectoriel, on a un "vecteur" (commode) non nul de Ej,
c’est-a-dire la suite géométrique (z,,) = (ry), mais notre espace est de dimension 2. Heureusement,
on constate que la suite (y,,) = (n.ry) vérifie Ry et n’est pas proportionnelle avec (x,,) [a bien voir :
Yo = 0; y1 = L.ro; yo = 2.72,...] donc autre base et (up) = \.(r]) + p.(n.rf) dans ce cas-la. Fini.

Suites : Upyo = 2Upy1 — Up ! Puis : upyo = 2Upg1 —up +47 [dy = upp1 — up.
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M- Exercices: Espaces vectoriels de dimension finie PTSI

1. Soit : J, I deux ensembles d’indices. [On peut les supposer finis en lére lecture.|
(U;)iey est dite sous-famille de (u';)ier si J C I; celle-ci étant une sur-famille de (';);e..

(a) Que dire d’une sur-famille d’une famille génératrice ? Puis montrer :

(b) Qu'une sous-famille d’une famille libre est libre [ou une sur-famille d’une famille liée est liée].

16} ¥ 1 4 7
2. |Dans E = R3 [dim3]|: soit @ ) b (b e ,E) 21,15 ,7 8 |.
0 0 c 3 6 m

S|

(a) Les vecteurs @, ?, <, d sont-ils libres ? Et ¢, 7 7 Et 7, e, 7 ? (selon m).
(b) Les vecteurs ¢, 7 sont-ils générateurs (de R®)?  Et 7, e, 7 ? (cas m=9, m#9).
(c) Vérifier que : E’,?,? libres < a.b.c#0. [Commencer par <; puis = (*).]

3. | Dans l'espace vectoriel F = R|z] [dim + oo] | (des polynomes identifiés aux fonctions polynomes
y y

(a) L’ensemble des polynémes de degré exactement 2 est-il un sous e.v.? [non! pourquoi ?|
(b) Comment sait-on de suite que R, [z], ensemble des polynomes de degré au plus n € N, est un
sous e.v.? [En écrivant : R,[z] = Vect(1,z,2%, ...,2") || DBase et dimension ?
Si a € R, justifier que ((z — a)*,0 < k < n) est une autre base. |Libre de cardinal : n + 1].
(c) Dans Rz|, montrer que des polynémes Py, P, ...P, non nuls de degrés distincts sont libres.
(d) Dans R[z], soit les polynomes : Qo(z) =1, Q1(z) =z, ..., Qn(z) =z(x —1)..(x —n+1),...
[Rappel : un produit vide vaut 1]. Montrer qu'’ils constituent une base infinie de R[z].

Vérifier que Qn(x+1) — Qn(z) = n.Qn-1(x). ["A(Qn)(x) = n.Qp—1(x) dérivation discréte"|

4. Soit E = C*™(R,R) I'e.v. connu (sur R).
(a) Vérifier que la famille (1, sin, cos, sin?, cos?) n’est pas libre [une relation de liaison].
(b) Montrer que la famille : (1, sin, cos, x +— sin(2z), x +— cos(2x)) est libre. On écrira :
a.l + b.cos(z) + c.sin(x) + d.cos(2x) + e.sin(2x) = O; prendre = =0, 7/2, ®, —7/2;
puis dériver et idem ... jusqu’a trouver tous les coefficients nuls.

(¢) (* Hors "sup" mais facile.) Montrer que la famille (infinie) = +— e, A € R, est libre.
[Limite en co; ou bien dériver et récurrence; ou changer z en x + 1 et récurrence].

5. Si Eq, Ey sous e.v. en somme directe, montrer que :  dim(E; & Es) = dim(E1) + dim(E>) puis :
Si E e.v. de dimension finie : E = Ey @ Fy <= E1 N FEy = {6)} et dim(E) = dim(Ey) 4+ dim(E3)

6. Formule de Grassman| dim(E; + E3) < 400, dim(E) + Ea) = dim(E) + dim(E2) — dim(E; N Es)

(a) Utilisation. dim(E) < 400 : E = E1 @ Ey <= Ey + Ey = E et dim(E) = dim(E1) + dim(E?2)

(b) Démonstration : (*) Vérifier que dim(Ey N Ey) =1 < min(p,q), p = dim(E1), ¢ = dim(E»).
Soit e7,...e, une base de Ey N Ey, complétée par @ 11, ..., @ pour avoir une base de Fq et par
—

=
par b,41,..., by pour avoir une base de Ejy; ce qui fait 7 +p —r+q —r = p+ g — r vecteurs
—
clairement générateurs de FEq + FEo. Montrer qu'ils sont libres. [si 0= Ei7j,k7ie—i>+oéj.a—;‘+ﬁk.bk,
— — = — — —
alors 1 X jvie; +aj.a; = ¥ = —YXpf.bp € E1NEy; donc: o =3%;d.¢. etc]




Chapitre 20

Les applications linéaires : généralités

20.1 Notions fondamentales

20.1.1 Définitions

VU,V EE: f(U+ V)= f(W)+ f(V)
VAEK, Vu € E: fO\U)=\f().

Soit F et F' deux e.v. sur K. f: E — F' est linéaire si {

Aux ch.20-23, on ne parle que d’application linéaire; on note donc f [et non 7 comme au ch. 17].

Remarques 1) On peut condenser ainsi : | VA €K, Y, v € E, f(\U + ) = \.f(w) + f(V).
2) Une application linéaire pourrait étre appelée :

— un "homomorphisme" d’espaces vectoriels : terme non employé. Mais on dit

— "endomorphisme" (sous entendu d’e.v.) si f linéaire de E dans F;

— "isomorphisme" si application linéaire bijective de F dans F';

— et "automorphisme" si f endomorphisme bijectif.

20.1.2 Propriétés

Ona: 1) f(0g)=0F et f(-7)=—f(T)
2) Deplusici: f(E) |ouIm(f)] est un souse.v.de F et f surjective & f(E)=F
3) Ker(f)={7 € E: f(7) = 0—>F} est un sous e.v. de E et [ injective & Ker(f) = {(E)}

— 1) Démonstration facile.

— 2) L’équivalence est évidente. Pour f(FE) sous e.v. de F' : avec une caractérisation (des sous-e.v.)
Déja Op = f(0g) € f(B).  Puis: si §1 € f(B), Y€ f(E) alors 35, 13 € E: g1 = f(71),
Yo =f(T2). Dou: (avecla linéarite) : oy + vo = f(71) + f(T2) = f(T1+ 72) € f(E).

Loi externe : si y € f(E), 37 € Etel que ¥ = f(@); dou Ny =\f(7)=f(\7T) € f(E).

— 3) Ker(f)! sous-e.v. avec une caractérisation. Déja Op € Ker(f). Puissi f(z1) = Op, f(73) = 0p
alors f(z1 +23) = 0p. Enfin, la loi externe : ayant f(7') = (ﬂ:, ona: fANZT)=\f(T)= A.0p = 0p-
L’équivalence : Si f est injective, forcément Ker(f) sous e.v. des antécédants de (ﬁ: est réduit a @

Inversement si f(z7) = f(73), f(z] — 73) = 0r (avec la lin.) et Ker(f) = {O—E>} donne : 7] = 75. Fini.

l

20.1.3 Exemples

1. Soir F =R e.v. sur K = R. |Les applications linéaires de R dans R sont y = f(z) = a.z.

En effet f(z) = a.x convient. Inversement si f linéaire : f(x) = f(x.1) = z.f(1) = z.a forcément.

2. Les applications de E = R? dans F' = R" (en dim. finie) s’écrivant Y = A.X, A étant une matrice
sont linéaires car : A.(X; + X2) = A.X; + A. Xy et A (ANX)=XAX (vérification laissée).

! En allemand, "Kern" veut dire "noyau" (coeur?) Voir aussi en breton : "Keranna" (Ker Anna) ...
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Inversement on montrera qu’il n’y en a pas d’autres (en dim finie, aux ch. suivants). Donc :

Les applications linéaires de £ = R? dans F' = R" sont celles s’écrivant ‘Y = A.X, A matrice. ‘

3. Soit E un e.v. de dimension quelconque; hy: @ € E+—— k.7 € E est linéaire (endomorphisme).

Pour k # 0, elle est bijective (automorphisme), appelée ‘ homothétie vectorielle de rapport k ‘ (on ne

parle pas de point ici; ni de "centre" ; mais f(ﬁ) = ﬁ) Bien siir : h,;l = hy .
A noter que : ‘hk = k:.[d‘ et ‘Vf endomorphisme : fohy = hkof.‘ [car f(kT) = k.f(T)].

4. Soit E = R[z] e.v. de dim infinie sur R; D : ¢ € E +—— ¢’ € E |Dérivation|. D est linéaire; c’est un

‘ endomorphisme surjectif ; non injectif, KerD = Ry[z]| sous e.v. de dim. 1 des applic. constantes. ‘

surjectif car si ¢ € F, on lui trouve un antécédant dans F : une primitive polynoémiale aisément.

Remarques facultatives
1) Si on prend la dérivation de E = C*(RT,R) dans F = C°(RT,R) : ce n'est quune Appl. Lin.,
non endom. ; surjective car toute fonction C° admet des primitives, forcément C'; non injective.

2) Un exemple d’endomorphisme injectif non surjectif ?  P(z) € R[z] — x.P(z) € R[z] : a voir.

5. Soit l'intégration I: ¢ € E =C%[a,b],R) — / ).dz € R. I est linéaire.

Définition ‘Une application linéaire de £ dans K est appelée "forme" linéaire (sur E). ‘

Autre exemple facultatif : ¢ € Rlz] — ¢o®) (z0) € R, 20 € R, fixé.

6. Soit F =C; et laconjugaison f: z€ Cr—ze C. f est-elle linéaire?
On sait que: z+2' =72+ 2. Et Az=\Z: vrai [si]\€R.
pour E e.v. sur R, f est linéaire; mais par contre :
Donc W
pour E e.v. sur C, f est "semi-linéaire" (non linéaire).

20.1.4 Opérations sur les applications linéaires

1. Somme et Multiplication par une constante.
e Si f, g linéaires de E dans F, f + g aussi; A.f aussi; O application nulle F — F aussi. (Facile)
e Conséquence :
Pour A # () et F étant un e.v., il est facile de voir que F(A, F') est un e.v. sur K. Ce qui précede
montre que L(F, F), ensemble des applications linéaires de E dans F', est un sous e.v. de F(E, F).
E est un ler e.v.;  F est un 2éme e.v.; L(E,F) en est un (3éme) e.v.

(mieux compris aux ch. suivants, quand F et F seront de dim. finies p et n).

2. Composition.
e Deméme f:FE — F; g:F — G linéaires = gof linéaire (facile).
e Conséquence : L(E) étant 'ensemble des endomorphismes de F dans E,

on obtient : ‘ (L(E),+,0) est un anneau; celui-ci est non commutatif si dim(E) > 2. ‘

En effet : "Anneau" signifie 2 opérations internes (ici + et o) reliées telles que
1) Pour +, avoir un groupe abélien; c’est le cas car L(E, F') est un e.v.
2) Puis la composition o est interne, associative ; et neutre Id : T T,
3) Lien entre les lois : (f + g)oh = (foh) + (goh) est toujours vrai.
Il reste enfin : fo(g+ h) = (fog) + foh) 7 Cela vient du fait que f est linéaire :

folg +h)(T) = flg(T) + h(T)] = f(& + 7)) [Z] f(U) + f(V) = fog(T) + foh(T).
‘Non commutatif dans F = R2‘ Soit f : <z> — <_xy> [la symétrie/ Vect(7)//Vect(7)] et

g: <:lj> — <i> [symétrie /Vect (1) //Vect (_11>] f et g sont linéaires (matrices) (méme bij. :

automorphismes) mais gof # fog calcul! [En base o.normée gof, fog : Ztours vectoriels ]
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20.2 Du vocabulaire sur groupes et anneaux :

20.2.1 Groupes (généraux)

(on dit "loi de composition interne " : l.c.i. car au départ, c’était la composition), est un groupe si

Soit G # () muni d’une opération interne notée *, c’est-a-dire x € G,y € G = xxy € G :

1) * est associative (x*y)*z =z * (y* 2),
2) posséde un neutre e: exxr=2x*e =z,
3) et si chaque élément a un symétrique : x * ¥ =2'xx=e.
Enfin, si de plus * est commutative, on dit groupe commutatif ou abélien.

Propriétés

1) Pour une loi interne, 8’il y a un neutre, il est unique.
2) Si la loi est associative et si 2 a un symétrique (ou inverse), il est unique.
3) Le symétrique de x *y est (zx* y)_1 =y '%2z7!.  Enfin dans un groupe :
4) tout élément est simplifiable ["régulier"]| & gauche a x x = axy = = = y; et a droite

Démonstration
1) exe =eoued. (eteindépendant de x)

2) 2/
3) Si u = x xy, résoudre u * z = e, trouver z =y~
4) "Composer" a gauche par a™ .

xx*1” = oux” en associant. Dorénavant noté z '

Ly z™t et vérifier que z % u = e.

1 (est surtout cette simplification qui est importante.

1.
2.

Z,+) est un groupe abélien (infini).

(
(U,.) [ensemble des complexes de module 1] est un groupe abélien (infini).
(

U,,.) est un groupe cyclique a n éléments. U, = {1,w,w?. 0" 1} ={zcC: 2" =1}

- (Q,+) (R, 4) (C,+) (R*,.) (RT*,.) (C*,.) ... sont des groupes abéliens.

. I’ensemble des homothéties-translations du plan affine muni de la composition, noté (H7,o0), est

un groupe infini, non abélien. [0 interne (vu) associative (connu) Neutre : Idp et inverses connues|

L’ensemble des bijections de F # () dans E est un groupe pour o, appélé groupe symétrique,
noté Sg. Ses éléments sont appelés permutations. Et on sait : | E |=n =>| Sg |= n!

Note
Quand F ={1,2,...,n}, on note Sp = S,,.  Par exemple les 6 éléments de S3 sont : Id; (1 2) qui

1—2 1—2
est la transposition ¢ 2+— 1 , (1 3), (2 3) de méme; (1 2 3) qui est le cycle ¢ 2+ 3 | et le cycle
3—3 3—1

inverse (1 3 2)=(1 2 3)~%. On peut voir géométriquement ce groupe comme le groupe des isométries
planes conservant un triangle équilatéral de sommet 1,2,3. (transposition=sym | / droite)

Un groupe fini non abélien ? Justement (S3,0) car (1 2)o(1 3)=(132) # (1 3)o(1 2)=(1 2 3).

N
. Quand E est un e.v., on a déja : (E,+) groupe abélien. (neutre noté 0)

‘Homomorphismes de groupes ‘ f: (G,%)— (G',.) ou * et . sont deux opération de groupes,

est un homomorphisme de groupes si ‘f(ac xy) = f(z). f(y). ‘ Im(f) est un sous-groupe de G’.
Ker(f)={z € G: f(z) =€} est un sous-gr. de G et : ‘f inj. <= Ker(f) = {e}.‘

Exemples. 1) x+ ¢e” est un isomorphisme de groupes de (R, +) dans (R™*,.) d’inverse In.

2) ne€ (Z,+)— 2" € (Q™*,.) est un homomorphisme inj., non surjectif : 3 sans antécédant.

3) 6 — €™ est un homomorphisme surjectif de (R, +) dans (U,.); non injectif, de noyau 27Z.
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20.2.2 Anneaux (généraux) : 2 lois internes reliées entre elles

(A,+,.) est un anneau si : 1) (A,+) est un groupe abélien : neutre noté 0;
1. Définition? 2) . |interne| est associative et posséde un neutre noté 1; et enfin
3) . distributive/+ a droite et a gauche a.(b+c¢) =ab+ac; (a+b).c=ac+bec

2. Exemples
1) (Z,+,.) est un anneau commutatif (pour .) 2) R[x|, C[x|, Q[x] anneaux de polynémes
3) Un anneau non commutatif ? (£(FE),+,0), qui sera revu et mieux compris avec les matrices. >
Dans tout anneau, on a : O.z=2.0=0 ou O estle neutre de +
(—z).y=x.(—y)=—(r.y), ou —x désigne le symétrique de x pour +
3. Propriétés (—z). (—y) =z.y; et deux relations essentielles siaetb commutent
(a+0b)" chnkbk a" —b" = (a—b)( Za" Ry = Za" R6R).(a — b)

Démonstration

1) (0+a)x=az dou 0.xr+ax=0+ax donc en simplifiant pour + : 0.z = 0; idem z.0 = 0.
2) [z+ (—2)]y=0 dou z.y+ (—z).y = x.y+[—(z.y)] simplifier pour +; idem z.(—y) = —(z.y)
3) z.y et (—z).(—y) tous deux symétriques pour + de (—x).y : donc égaux. Puis attention !

4) Egalités. Si a.b # ba, (a+b)? = (a+b).(a+b) = a®+a.b+b.a+b*; (a+b).(a—b) = a®—a.b+b.a—b*!
‘Si a.b =b.a, on a les relations usuelles. ‘ Dont ce rappel : (a® — b%) = (a — b).(a® 4 a.b + b?).

‘Exemples importants ‘ b = 1, neutre pour la deuxiéme loi commute avec tout élément. D’ou :

" /n = Et, dans ce contexte
n __ k. _ N _ . ) s
(I1+a) —;<k>a N (1 a)(kz_:a Za (1 —a) {aozl,mémesiazo.

20.2.3 Remarques qui seront revues

1. On a donc un anneau non commutatif (L£(E),+,o0).

‘En dimension finies, cela signifie qu’on peut trouver 2 matrices carrées A, B avec : A.B # B.A. ‘

2. On verra qu'il est aussi "non intégre"

‘En dimension finies, on pourra trouver 2 matrices carrées : A# O, B# 0O avec: A.B=0. ‘

(Dans ce cas, on dit que A et B sont des "diviseurs de O").
Attention : Si A.U = AV ou A(U-V) =0 méme si A # O, on ne peut donc pas dire que U =V

Par contre (Z,+,.) est intégre. Idem R[x|, C[x|, Q[x] intégres. [Tous avec division euclidienne !|

3. On trouvera méme des matrices carrées "nilpotentes" : ‘A # 0 et AP = O, pour un certain p > 1. ‘

4. Un corps est un anneau tel que tout élément autre que 0 (neutre de +) est inversible : R, C, Q...

5. L(F) est a la fois un anneau (pour +,0) et un e.v. (pour +,.) avec A.(gof) = (A.g)of = go(A.f) :
on dit "algebre" (R[x], C[x] aussi). ["Al Djabr", mot de Al Kharezmi, d’ou provient "algorithme".|

> C.A.N.S.A.D. et N. (C.A.N.S. pour +) A. et N. (pour .) D.(lien./+). En espagnol, descansarse =
se reposer ; ici c’est le contraire et c’est un impératif ! (I’ ancienne définition était seulement : CANSAD !)

3 Remarque facultative : (F(R,R),+,0) ? non anneau car : fo(g+ h) = fog + goh est faux parfois !
Ainsi :  sin(z® + 2%) # sin(z?) + sin(z®).
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20.3 Projections et symétries vectorielles en dimension quelconque

Ce sont des exemples essentiels d’endomorphismes. Au départ sont donnés 2 sous e.v. supplémentaires.

20.3.1 Projections vectorielles

Soit donnés 2 sous e.v. supplémentaires | E = E @ FEs. ‘ L’application

p: @ =11 +13 € E=FE ®FEy+—— ] € F est linéaire (endomorphisme), appelée
projection vectorielle sur E; parallelement & Ey; on a E; = Im(p), B2 = Ker(p).
De méme ¢ : & — T est appelée proj. sur Fy parallémement a E; et p + q = Id.

1. Définition

Démonstration

La linéarité de p est facile a vérifier. Et V&' € B, 27 = p(7) +q(Z)ou Id=p+q;|q=Id— p.

Cas particulier : \E=
Sionprend F=FE® {6}} : p=1d; ¢ =0 (endomorphisme nul) qui sont donc des projecteurs.

2. ‘Remarque essentielle : Sous e.v. des vecteurs invariants pour f endomorphisme.

1) Soit f € L(F) (endomorphisme, i.e. linéaire de E dans E);
on peut considérer {7 : f(@)= 2} qui est 'ensemble des vecteurs invariants; c’est aussi

{7 f(7)-7 = ?} ou {7 : (f—1Id)(Z) = ?} ou Ker(f — Id) sous e.v. des vecteurs invariants.

De plus (aisé) ce sous e.v. est inclus dans I'm(f). [Inclusion stricte possible f = 2.Id sur R?]

2) | Pour un projecteur : I'm(p) = Ker(p — Id).| [Réciproque vraie : alors pop = p et Théoréme.|

3) Exercice : Plus généralement, pour f € L(E) on peut considérer {7 : f(7') = \.7T}.
Voir que c’est Ker(f — A.Id), donc sous e.v. Et si A # 0 il est aussi inclus dans Im(f).

3. Le théoréme fondamental.

Rappel : Soit p la projection vectorielle sur £y parallélement & Fs, donc
Alors :  Ey =Im(p) = Ker(p—1d); FE2= Ker(p); de plus:
Réciproque : 1l est surtout remarquable qu’on ait le Théoréme fondamental (réciproque) :
(f € L(E) et fof = f) = f projecteur sur Ker(f —Id) // Ker(f).

Démonstration
de pop =p oude pop(x)=p(T),sip projection : p(7’) dans I'image donc, ici, invariant.

Démonstration du Théoréme réciproque (*) [par analyse-synthése|

1) Ker(f — Id) et Ker(f) sont des sous e.v. Il faut voir ici qu'ils sont supplémentaires.

Cest-a-dire, pour @ € F, trouver une et une seule écriture sur Ker(f — Id) + Ker(f).

. Analyse et unicité :

e
on a une écriture ¥ = 7 + 3 (1), forcément f(7) =7 + 0 (2) car on veut { ;EZE_I% B %1» :
o) =
—

Donc si on a une écriture , ce ne peut étre que celle-ci : 71 = f(7'); 73 = = — f(7).

A ce stade, I'unicité est prouvée ou encore : Ker(f — Id) + Ker(f) = Ker(f — Id) ® Ker(f).
On ne sait pas si ce sous espace vaut F en entier, mais on a donc une idée précise !
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. Synthése et existence :

Pour 7' € E, posons donc : 77 = f(7); 73 = © — f(@). que r1 € Ker(f — Id)

Premiére ligne : clair. Les autres : utiliser I’hypothése en plus : fof = f !

2) Ayant prouvé : E = Ker(f — Id) ® Ker(f), si @ = 7] + 73, aisément f(7') = z7. Fini.

4. ‘Autres remarques : ‘
1) On montre que £(E) non intégre si dim(E) > 2: Dans E=R? si E| = Vect(7) # {6)}
et Fy=Vect(]) # {6)} soit p la projection sur Fy parallélement & Fs ;

alors : p#O;q=1Id—p+# O, pog= 0. (Ici pog=qgop=0O commutent !)
[Noter au passage, pour f Appl. Lin. quelconque : Ker(f) = Ker(—f), Im(—f)=Im(f)].

2) Soit f € L(E,F) : Ker(f) et Im(f) supplémentaires ?
- Sif: E— F,avec F # FE |, question insensée | Car Ker(f) C E, Im(f) C F.

— Si F' = F, f endomorphisme, c’est parfois vrai, parfois faux ! cf. Exercices.

— Pour p projecteur, c’est vrai. Et aussi si f bij. : Ker(f) = {U},Im(f) = E. (f = 2.1d sur R?).

3) Pour un projecteur, en posant p®> =pop, ona p>—p=0; ou p(p—Id) =0 = (p— Id)p.

x?—x=x(x—1)=(x—1)x est dit polynome annulateur de p. [Sp¢|

20.3.2 Symétries vectorielles

Soit donnés 2 sous e.v. supplémentaires | E = Fy & Fs | L’application
$: 7 =11+ T3 € E+— T — T3 € E est linéaire bijective (automorphisme) appelée

sym. vect. par rapport & Fy parall. & Fy. Et : By = Ker(s — Id), Es = Ker(s + I1d).
De méme s’ : @ = 2] + Ty — Ty — 1 appelée sym. par rapport a E, parall. a E.

1. Définition

Démonstration s =p — ¢ : linéaire ! : bijective donc Ker(s) = {6}}, Im(s) =E.

Puis 7 € Ker(s—1d) & s(7¥)=7 & 7T =1 € Fy. Idem pour Es.

/

Avec p, onatout‘ q=Id—p; s+tIld=2pou s(u)+u =2p(u); s =—s; U —s(uw) =2q().

Cas particulier :

Sionprend E =FE® {ﬁ} Ici: s=1d; s = —Id quisont donc des symétries vectorielles.

2. Le théoréme réciproque. | (f € L(FE) et fof = Id) = [ sym. /| Ker(f — Id) // Ker(f + Id).

Démonstration (*)
Soit on fait I’analogue de la précédente. Soit on s’y raméne avec : s+ Id = 2p.

Considérer alors : p=1/2(f + Id) et vérifier : pop=p ... En exercice.

3. Remarque : ‘Plus généralement, toujours si £ = E1 @ Ey ‘

fr: T =71 +73€ Ev T + k23 € E est linéaire, bijective si k # 0 (automorphisme fk_l = f1)
k
appelée dilatation vectorielle de base F7, de direction FEs, de rapport k.  Dessin ?
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20.4 Le groupe linéaire

20.4.1 Deéfinitions

Rappelons qu’on a 3 opérations dans L(F) : +,0, . (externe); et o est non commutative si dimFE > 2.

(1) : f bijective

f € L(E) (linéaire de E — E) est dite inversible si { (2) : f~Uinéaire Mais : (1) = (2) (aisé).

L’ensemble des end. bijectifs (automorphismes) de E constitue un groupe pour o, appelé

Done: groupe linéaire (non abélien si dim(E) > 2), noté GL(E); si E'=K" on le note GL,(K).

20.4.2 Exemples

1. hy: 2 —— k.2 pour k # 0, homothétie vectorielle, est dans GIL(E) (bijective).
D’ailleurs le neutre de GL(FE) est : Id = hy !
2. Soit s la symétrie /E; // Ea, ce qui suppose E = E1 ® Fy. Alors s € GL(E) et s' =s.
3. Par contre si Fy # {6}}, p projection sur Ey // & Es est non inversible |[Ker(p) = Ey # {6}}]

20.4.3 Trois exercices corrigés

I
1. Soit f:R? — R? tel que @ (;) — f(u) = <y/:t_ :jji y) . f endomorphisme ? f bijectif ?

Admettons ici (ch. suivant) :
‘Si f Appl. lin. E — F avec dim(E) = dim(F) finie : f injective < f surjective < f bijectivc.‘

Corrigé

! 1 1
f endomorphisme. f va de R? dans R?; linéaire par écriture matricielle <:;/> = <_1 —m) . <§>

z+y=0

e my=0" Par exemple

/ J—
f injective? Pour trouver Ker(f), on résout : { Z :8 ou {
avec les déterminants 2x2 : .
eSim=#1onaKer(f)={0} donc f injective; d’ou bijective par Théoréme, car dim(R?) finie.

eSim=1Ker(f)={u <:;> :x +y = 0} : droite vectorielle Vect <_11> =Vect(7 — 7)) de R?.

Pour A = (_11 _11> et 7 = (é), 7 = <(1)>, par calcul si l'on veut : f(7') =7 — 7 = f(7):

Donc Im(f) = {f(@), @ € B} = {z.f(W)+y.f(7), z,y € R} = Vect (f(7), f(7)) = Ker(f)!

Ici Im(f) C Ker(f): V@, flf(Z)] = W fof =0 et f #0:|C’est un cas ou f est nil—potent.‘
et I

7
‘ C’est aussi un cas ou Ker(f)

m(f) ne sont pas en somme directe | donc non supplémentaires.

2. Soit : f € L(E), dim(E) quelconque, tel que f2+ f —3.Id=0 (par exemple).

Montrer que f est inversible et préciser son inverse (des deux cotés). [Ecrire : f2 + f = 3.Id ...]

1
Onafo (f+1d) = (f+[d)0f = Id;fest inversible d’inverse f~! = g(f-k[d)!

‘En dim. quelconque, avoir 1’1nverse des 2 cotés. En dim. finie, 1 c6té suffit cf. ch. suivant. ‘

3. Soit : f € L(E), f*"=0, dim(E) quelconque (f # O en général : nilpotent).

Montrer que : Id — f est inversible (des deux cdtés) et préciser son inverse.

(Id— foId+f+ ..+ f" N =Td+ f+..+ " Nolld— f)=1d— f" = Id

dott: (Id— f)™" existe et vaut (Id+ f+..+ f"'). Rem: (Id+ f)™' existe aussi !
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M+ Exercices: Applications linéaires PTSI
1. Dans L(E), vérifier que Ker(f — Id) et Ker(f) sont toujours en somme directe. [# cours : on ne
dit pas, ici, "supplémentaires" !| (Si 7 € Ker(f) N Ker(f —Id), f(7) =7 et f(7) = 6))
2. (Avec f=2.Id dans R?*) montrer que : E = Im(f)® Ker(f) #= f projecteur.
3. En dimension quelconque, si f € L(E,F), g € L(F,G) vérifier : gof = O < Im(f) C Ker(g).
4. Dans E = Rg[x] (a) Vérifier que f : P(x) — P(x+1) est un endomorphisme ; donc aussi A = f—1Id.
a a/
(Ecrirte P(z) = a+b.x + c.a® ou (b dans la base (1, ,x?); chercher 'image | b’ | dans cette
C Cl
base et trouver une écriture matricielle. ~ A: P(x) — P(x +1) — P(x) "dérivation discréte")
(b) Montrer que : Ker(A) =Rg[z] (on peut montrer, avec un degré quelconque, que :
P(zx+1)=P(x) < P(z) =cte.) Et: Im(A)=R;[z] (commencer par une inclusion).
(¢) Vérifier que A3 = O. Puis (Id + A)(Id — A + A?) = (Id — A + A?)(Id + A) = Id. Conclure.
(d) On avait : f=1Id+ A; trouver f~1 d’une autre facon et préciser sa matrice.
5. Dans L(FE), |[dim(FE) quelconque| si gof = fog, vérifier que Ker(f) et Im(f) sont stables par g.
6. Avec le cours bien connu sur les projecteurs. (¥)  [fof = f; f(7T)— 7 € Ker(f)].
(a) Soit f,g € L(E). Montrer : (fog = f et gof = g) < f, g projecteurs de méme noyau.
(b) Pour f,g € L(F). Montrer : (fog =g et gof = f) <= f, g projecteurs de méme image.
(c) Sip, g proj. : p+ q proj. <= poq = qop = O, p — q proj. <= poq = qop = q. Si qop = O,
r = p+ q — poq proj., Ker(r) = Kerpn Kerq, Im(r) = Imp ® Imgq. Si pog = qop, poq proj. ...
7. Soit s symétrie, alors s = Id ou s*—1Id=0O [oubien: x* —1 polynéme annulateur de s|.
(*) Montrer la réciproque a savoir : (f € L(E); fof = Id) = f symétrie vectorielle & préciser.
8. (*) Soit f € L(E,F), ge€ L(F,G); montrer que :
—
Ker(f) = Ker(gof) <= Im(f)NKer(g) = {0r}. Im(g) = Im(gof) <= F = Im(f)+ Ker(g).
9. (*) Dans R[z] soit f: P(x) — Q(z) = / P(t)dt et soit D la dérivation. Veérifier que ce sont
0
des endomorphismes tels que Dof = Id mais foD # Id [donc aucun inversible| !
En général si gof = Id, montrer que Im(fog) = Im(f), Ker(fog) = Ker(g), E = Ker(g)®Im(f).
10. (*) Soit f € L(E) / VT, f(T') = k=7 (ie. T, f(7)lits !) Montrer 3k (fixe) : f(2) =k. 7.

(*) En déduire les automorphismes commutant avec tous les autres (centre du groupe linéaire).




Chapitre 21

Applications linéaires en dimension finie

21.1 Représentation avec des bases

21.1.1 Matrice d’une applications linéaire (en dim. finie)

Soit E de dim. p, de base (ej, ...a,)); et v, ...?p, p vecteurs quelconques de F' :
J!f linéaire telle que f(e;) = v;. On dit qu'une A.L. est déterminée de maniére
unique par 'image d’une base. De plus : f inj. & 7]- libre (néc. dimF > dimFE);
fsurj. & ', gén (née. dimF < dimE); f bij. & @', base (néc. dimF = dimE).

1. Théoréme

Démonstration

— 1) Unicité et existence : Pour @’ = z1.€7 + ... + wp.@), on a la seule possibilité :
f(T)=z1.f(el) + ... + 2p.f(ep) =21. 01+ ..7p. V' p; et on vérifie alors quelle convient.

p
— 2) f inj. = (W) libre : Soit x1.0'1 + ... + 2.V p = 0p ; alors f(z zj.e;) = 0p donc

j=1
p p R
ij.e_f € Ker(f); mais f inj. donne ij.e_f = O puis (e;) libre d’'ott z; = 0. Fini.
=1 j=1
p
f inj. <= (¥;) libre : Soit @’ € Ker(f), @ = ij.e_; car (e;) génératrice.
j=1

P
Alors : 0p = f(7) = Z:Ej.7j; mais (') libres, donc z; =0 et 7 = 0p. Fini.
7j=1

fsurj. = (V') gén : Soit ¥ € F; f surj. donne : 37" € E tel que § = f(7).

P p
Ecrivons alors 7 = E zj.e; car (ej) génératrice : y = f(7) = E z;.v ;. Fini.
j=1 7=1
p
fsurj. <= (V) gén : Soit ¥ € F; () génératrice donne I, : y = E ;. V.
Jj=1
P
— — ., — — -
Posons " = E xj.ej; alors aisément f(2') = y. Fini.
Jj=1

- =
2. Conséquence : définition. Si de plus F' de dimension finie n, de base fi,...fn, voici la matrice

de f dans les bases (¢;) de E et (?Z) de F'; on va de E, dans Fj, ; on a une matrice (n,p) :

—
aij fl
ail ... Qaij... Qaip i -
o A, = ot la | jéme colonne est le vecteur f(e;)|: %% | dans : fa
np =1 - jéme ¢ » est le vecte Ik : ;
(pl oo Gpjeee Gpp =
Qnj f
n

— —
c’est donc le remplissage en colonnes avec les vecteurs : f(?) = 7]- =a1jf1 + ... + anj.fn-

141
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e Maintenant la lecture ou le remplissage en lignes avec les composantes :

P — — — = 3 i . P 1 .
our ¥ ==x1.e1 + ... +Zp.€p, Y =Yy1.f1 + ...+ Yn.-fn, vecteurs toujours notés en colonnes :
T n hn I

aix ... Q1j... Gip
Y = 21 ona Y =f(7)eY =AX |ou Y21 =

apl .- anj... Qnp

G

Lp Yn Yn
avec les tailles : Yj,; = A,,. Xp1;  le produit s’effectuant lignes par colonnes.

P

Démonstration

Laligne 1de ¥ = f(2') = x1.f(e1) + ... + a:p.f(@)) est y1 = x1.a11 + x2.a12 + ... + p.a1p. Etc.

3. Ainsi : quand f va de E, dans F;,, cela donne une matrice A,, : ordre inversé. ~Et surtout :

Les vecteurs colonnes de A : f(€1),..., f(’€,) forment une famille génératrice de Im(f).

Par exemple avec f endomorphisme de matrice A = G i en base (7', 7) :
— Si on cherche Ker(f), on résoud f(7') = 0 ou AX =0 avec X :<§>, O :<8>

— Et Im(f) = Vect(f(7),f(7)) = Vect( (;) (i)): Vect(7 +2.77) de dimension 1.

M;,p(K) désignera ensuite I’ensemble des matrices n lignes, p colonnes a coefficients dans K.

21.1.2 Exemples

0 0
1. f=0de E= R? (base 7,7) —F=R? (base T, 7,?) a pour matrice : Oz = |0 0

0 0 3.2
2. Soit f l'unique A.L. : R? — R? telle que : f(?) =7, f(j) =7 -7, f(}) =7 4+27

. . - 1 1 1
Par définition, sa matrice avec les bases indiquées, est A = < >

0 -1 2
1 00 0
0 1 0 0
3. Id, comme endomorphisme de K", dans toute base a pour matrice I, = [ 0 0 1 0
0 0O 1

4. Remarque : Qu’est-ce qu’une matrice ligne (1 ligne, p colonnes) ?

On doit aller de E,, dans K (e.v. de dim 1 sur K), soit une application linéaire de £ dans K donc :

‘Une matrice ligne est une matrice d’une forme linéaire. ‘

5. Montrer que f : P(x) € Ro[z] — P'(z +1) € Ry[z] est linéaire. Matrice en bases (1,z,z%) et (1,)?

On voit qu’on va de Ryfz| (dim. 3) dans Ry[z| (dim 2); puis f linéaire?

lére facon, par calcul :
Posons P(x) = a + b.x + c.x?; alors P'(x) = b+ 2c.z; I'image est Q(z) = b+ 2¢(x 4+ 1) = a + B.x.

a
Ona <g> - <8 (1) ;) .| b ], remplissage en lignes, ce qui prouve f linéaire et donne sa matrice.
&

2éme facon, méme dans R[z| : Voir que : f(Py + P2) = f(P1) + f(P2) et f(AP)=A\f(P).

Enfin le remplissage en colonnes : la 3iéme est f(x?) soit 2(x +1) =242z ou (;) !
(Lz)
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21.2 Rang d’une application linéaire

21.2.1 Théoréme du rang

Soit f € L(E,F); alors dim(E) = dim[Ker(f)] +rg(f), ou par définition : rg(f) = dim[f(E)].

Deux exemples

1. Le dernier exemple précédent : Pour trouver rg(f) :

° ‘ Soit on cherche une base de I'm(f) : l'image d’une base est génératrice seulement de l’image‘
Car: f(7)=uaz1.f(e1)+ ... + xp.f(ey) décrit Im(f). Dans l'exemple :
Im(f) = Vect[f(1), f(z), f(z®)] = Vect[f(x), f(z*)] ici et ces 2 vecteurs sont libres : rg(f) = 2.
e Soit on cherche le noyau : P'(z+1) =0 <= P' =0 <= P = cte.
Ker(f) = Ro[z] de dimension 1; et donc rg(f) =3—-1=2.

x x
2. Une forme linéaire f: @ |y | e R® — 2z +3y — 2z = (2 3 —1).|y| €R, de matrice (23 —1)
z z

non nulle; donc de rang 1. dim[Ker(f)] = 2 : plan vectoriel de R® d’équation : 2z + 3y — z = 0.

Démonstration du Théoréme
Soit F9 un supplémentaire de Ker(f) dans F (dim. finie) : E = Ker(f) @ Es. Alors :
frEs + B2 — Im(f) est bijective (ci-aprés) d'ott dim[Im(f)] = dim(E2) = dim(E) — dim[Ker(f)].

Injective : si @ € Fy N Ker(f) forcément @ = WE car somme directe. Surjective : Si ¥y € f(E),

37 € BE/Y = f(7); écrivons ¥ =71 + 3 selon E = Ker(f)+Ey: Yy = 6>F+f($_2)) = f(73).

21.2.2 Conséquence : Propriété

f inj. = dimF > dimE (I'image d’une base étant libre)
1. Onsait déja pour f linéaire E — F que { f surj. = dimF < dimFE (I'image d’une base étant gén.)
enfin : f bijective = dimFE = dimF

2. |Inversement, si dimFE = dimF finie, on a: f injective <= f surjective <— f bijective.‘

Démonstration dimE = dimF finie et Im(f) C F :
Avec le th. durang :  f inj. <= dim(F) = rg(f) < dim(F) =rg(f) <= Im(f) = F.

21.2.3 Rang d’une famille finie de vecteurs; et d’'une matrice

Soit ¥'1,... 7", € F. Leur rang de ces p vecteurs est dim[Vect(v;)].

Définitions .
- Et le rang d’une matrice A est le rang des vecteurs colonnes.

Le rang d’'une A.L. est le rang des vecteurs colonnes d'une matrice quelconque
Propriété | représentant f c’est-a-dire, quand on changera de bases dans E et dans F', on aura une
- . / y . : A

autre matrice A" (nouveaux vecteurs colonnes, cf. ch. Matrices), mais de méme rang !

Démonstration
Voir que | Zm(f) = f(E) = Vect[f(e1), f(e2), ..., f(€p)] | : les vecteurs colonnes d'une matrice (image
d’une base) forment une famille génératrice de Im(f). D'ou: rg(f) = dim[f(E)] = dim Vect[f(e;)]
=rg[f(e;)1<j<p) =rg(A); et donc, si f est représenté aussi par A', rg(A) =rg(4’) =rg(f) !

Exemple : rg (; i g) = 1. Donc sionrésoud A.X31 =097 onaura 3 —1=2 lettres arbitraires !
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21.3 Opérations avec les matrices correspondant aux A.L.

21.3.1 Opérations linéaires. Espace vectoriel M,,,(K),n > 1,p > 1

1. I'égalité de 2 matrices : A = B si méme taille (n,p) et Vi,j: a;j = b

N
. . . ~ ., . 2 —
ce qui signifie : mémes A.L. associées, de KP dans K" avec les bases canoniques, notées (ej) (f;).

Puis : A + B=Matrice (f +¢) ce qui donne A, + By, = (A + B)pp de terme général (a;; + bij)
Et : A.A=Matrice (X.f) ce qui donne (X.A)y;, de terme général (X.a;;).

. 1 2 1 2 10 1-A 2
Soit A—<3 4>, alors A—)\.Ig—<3 4>—)\.<0 1)-( 3 4_)\>.

2. Théoréme

Soit E = KP, F = K". Avec les 2 opérations indiquées, M,,,(K) est un e.v. identique & L(E, F).
Et on voit maintenant que chacun est de dimension n.p : dimL(E,, F;,) = dimM,(K) = n.p.

Démonstration
1) On peut vérifier la définition d’e.v.

, . fa b ¢y (1 00 010
2) Le cas My 3(K). Recherche d'une base : <a/ v c’) = a. <() 0 0) + b. <() 0 ()> + ..+

c. <8 8 ?), ce qui donne une famille génératrice a 6 éléments. Notons FEj; = <(1) 8 8) etc.

ils sont libres : faire a.Fq1 + b.Eig + ... + ¢ .Ea3 = O3 qui donne les 6 coefficients nuls. Donc base.
My 3(R) ensemble de toutes les matrices 2,3 est un e.v. sur R de dimension finie 2.3=6.

21.3.2 Produit de matrices, correspondant a la composition

Si App = Matr(f € L(E, F)), By, = Matr(g € L(F,G)), (B.A)n, sera la matrice de

1. Définiti
— gof : E = KP base (ej...e,) — F = K" base (ﬁ)ﬁ) — G = K™base (91...9m)

Théoréme | Le résultat est : Cpp = (B.A)mp = Bimn-Anp, le produit s’effectuant lignes par colonnes

a1k
bir bz ... bin
Car la kiéme colonne de B.A, matrice de gof, est g[f(ex)] : ( ) | %% |. Fini.
bml bm2 bmn

Qnk

b b b ailr a2
Ainsi . 11 12 13 _ (€11 C12 N 1
msijon a : .| a1 age | = ou, par exemple,

ba1 b2z bog C21  C22
az1  as

n
c91 = ba1ai1 + boo.ao1 4 bagz.azi.  On devine que : ¢ = Z bij.ajp, pour 1 <i<m, 1 <k <p.
j=1

2. Conséquences

Les propriétés des A.L. se traduisent donc avec les matrices [bonnes tailles & choisir| :
ho(gof) = (hog)of = C.(B.A) = (C.B).A;
(h+ g)of = (hof) + (gof) = (C + B).A = (C.A) + (B.A);
ho(g + f) = (hog) + (hof) = C.(B+ A) = (C.B) + (C.A);
(A.g)of = go(A\.f) = A.(gof) = (A\.B).A = B.(A\.A) = \.(B.A).

Donc pour les matrices carrées M,,(K) est un anneau (et une algébre) exactement comme L£(K")

3. Deux remarques.

— o Méme si les produits By,.App et Ayp. By sont possibles (<= p = m) et ont de plus méme
taille (p = m = n), on sait qu’il n’y a pas commutativité en général. Notre exemple était :

I <:;> — <—$y> v 9 <;> - (Z) : deux symétries non commutatives. Il se traduit par :



21.3. OPERATIONS AVEC LES MATRICES CORRESPONDANT AUX A.L. 145

A= <(1) _01> , B= <(1) (1)> ; B.A# AB. ‘Remplissage en lignes et en colonnes a VOiI“

— o De méme, au ch. précédent, on avait vu que £(R?) ou My(R) était non intégre et on avait un
exemple de matrice nilpotente. Re-construisons un exemple (dim(E) = dim(Ker(f)) +rg(f)) :

fof =0 <<= VT € E: f[f(7)] = 0 vrai <= Im(f) C Ker(f). ‘Essai dans R? :‘
Si Im(f) = Ker(f) =Vect(7): f(7) = 0 [premiére colonne|; f(7) = k.7 € Im(f), k#0

k=0— Ker(f) =R?%, f=0]. k=1 donne A:(O 1>7Ao ot A2=AA=0 |

00

21.3.3 Matrice inverse

Soit f € L(E,F). On dit que : f est inversible & gauche §'il existe g € L(F, E) tel

1. Notations : que gof = Idgp et f inversible a droite s’il existe h € L(F, E) tel que foh = Idp.

En dim infinie, on peut avoit f inversible d’un co6té seulement : cf. Exemples du ch. précédent.
—
En dimension finie, voir aprés. Quand f inversible, on note A™! = Matr(f_l, fis e_;)

2. Attention :
e On sait que A (ou f et dim. finies) inversible = dimFE = dimF soit A forcément carrée.

e Mais réciproque fausse : O = <8 8) est carrée non inversible ! Idem A = <8 é) qui vérifie

A% = A.A = O avec A # O est non inversible. (Sinon A.A =0 = A71.42 = A71.0, ce qui est
A =0 et n’est pas le cas). On peut aussi dire : les vecteurs colonnes de A sont liés.

Si dimFE = dimF finie, on a : f inversible <= f inv. a gauche <= f inv. a droite.
3. Théoréme Traduction matricielle : Pour A carrée (sinon non inversible),
A,y inversible <= inv. & gauche <= inv. a droite. Calcul : cf. aprés.

Démonstration

e f inversible & gauche = f inversible :

Ayant gof = Idg, on a gof injective; d’ou f inj. [connu| done, avec dimE = dimF finie, bijective.
e f inversible a droite = f inversible :

Ayant foh = Idp, on a foh surjective; d’ou f surjective [idem]|; donc, [idem| bijective.

21.3.4 Transposée d’une matrice

L2 13 7
1. Matrice n,p: Soit A= (3 4 , alors 'A= (2 4 6> .
7T -6/, 7/ 23

Avec de bonnes tailles : {(*A) = A; "(A+B) = "A+'B; "(\.A) = \'A; [faciles]
Et [plus dur] (* Y Bun-Anp) = ((C)pm = (*A)pn-(* B) .-

Propriétés )
Démonstration en compléments (*) 1 (B.A) = (¢ik)mp-

3

n n
t . _ _ _ _ . .
Posons ‘C' = (Vki)pm, alors : g = cip = Z bij.aj, = Zﬁji-akj = Zakj-ﬁji~ Fini.
Jj=1 Jj=1 Jj=1
2. Cas des matrices carrées

Soit A carrée n,n; on dit que A est symétrique si ‘A = A; et antisymétrique si ‘A = —A.

Matrices symétriques et antisymétriques 2x27 Montrer que 'on a deux sous e.v. supplémentaires.

Voir que : § = Vect( <(1) 8) , <(1) (1)> , (8 (1)>), A= Vect((_ol (1)>)7 SNA= {<8 8)} Donc

S+ A=8®A, qui est de dimension : 34+1=4 : c’est My car inclusion et méme dimension finie.

Attention : Oj 3 matrice symétrique, mais non matrice de symétrie et :

0

1 1 . Y . . .
( 1 matrice de symétrie (AZ = [5), mais non symétrique : ne pas confondre !
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Exercices: Applications linéaires en dimension finie PTSI

10.

. Matrices inverses.

. Soit f € L(E) |en dim. finie, montrer : Ker(f) et Im(f) supplém. < Ker(f)NIm(f) = {6)}

Inversion en ligne: Ona Y =AX <= ALY =X, si A inversible.

Inverser une matrice c’est inverser un systéme par le pivot de Gauss par ex.

1 9 1 -1 0 2 4 3
Inverser les matrices <3 4>, 3 5,10 1 11,
0o 0 -2 2 2 -1

1 0 1.1

1
0 1. 1

[en}

OO O
[l =)

1 0
0 111 -
0 1 0 0.. 1

(a) En dimension quelconque, si f € L(FE), vérifier que:  fof = O <= Im(f) C Ker(f).
(b) Soit E de dim. finie n sur K. Montrer : Ker(f) = Im(f) <= [f2=0 et n=2.rg(f)).

3 3 1 2 1 2 . .
. Rang de <3 3>, <3 4>, (2 4> ? D= (dij)o3 et E= ( €ij )3,3 sont-elles inversibles 7

1,02, V14702
(a) Dans R[z]. Vérifier que f : P(z) — P(z + 1) est un endomorphisme ; donc aussi A = f — Id.
(b) Dans F = R3[xz] : Noyau, image et rang de A ? Vérifier que A* = 0. Inverse de Id — A ?
(¢) Puis (avec E = Ra[z]) inverse de f = Id + A? Explisciter les matrices 4x4 de f et de f~°.

st

. Si f, g (et gof) automorphismes, montrer que : (gof) ™t = ftog™t. (BA)™! = A" .B7! [ matr.

(n,m)

Dans My (R), vérifier que f : M ——'M est une symétrie vectorielle; en déduire deux sous e.v.
supplémentaires et préciser les dimensions. [On pourra voir : f € L(M2(R)), fof = Id. etc].

Complément : FEcrire enfin la matrice 4x4 de f dans la base usuelle FE11, Eqo, Eo1, Fos.

: Soit f € L(E,F), E, F de dimensions finies; et ¢ ... (selon les cas)

(a) Montrer que rg(f) < dim(E); — rg(f) <dim(F); () rg(gof) < minlrg(f),rg(g)]
(b) Montrer que rg(f +g) <rg(f) +rg(g);  puis |rg(f) —rg(g) [<rg(f +9) <rg(f) +rglg).
(c) Soit f € L(E) tel que rg(f) = 1. Montrer : 3k € K tel que f2 =k.f (sik #0, %f projecteur).

(a) (*) Soit f € L(E,F), g€ L(F,G); montrer que :
Ker(f) = Ker(gof) < Im(f)N Ker(g) = {(ﬁ:} Im(g) = Im(gof) & F = Im(f)+ Ker(g).
(b) Si f € L(E), dim(E) finie : Ker(f) = Ker(f%) < Im(f) = Im(f*) © E = Ker(f)®Im(f).

(*) Soit F de dim. finie f, g endomorphismes tels que E = Im(f)+ Im(g) = Ker(f) + Ker(g).

Montrer que ces sommes sont directes et f + g inversible.




Chapitre 22

Calcul matriciel

22.1 Diverses matrices pour une application linéaire

22.1.1 Composantes de ’image par une A.L. (rappel)

. s ST — — - e
1. Théoréme |Pour f linéaire : E base (e7,...e5) — F base (f1,...fn) ona y = f(7) &Y = A.X

Déja vu au ch. précédent et utilisé : c’est le remplissage en ligne. A = Matr(f,¢;, fz)

Inversion en ligne: Ona YV =AX < A 'Y =X, si A inversible.
Inverser une matrice c’est inverser un systéme ; par le pivot de Gauss par ex.

2. Conséquence

2 4 x 2 4 3 x 20 + 4y + 3z =
Exemple 01 1 . Y=AX<e Y ]|=101 1 ].|ly]| & Oz+y+z=1
2 2 -1 2 2 2 -1 z 20+ 2y — 2z =2
x 1 3 —-10 -1 2 3 —-10 -1
— ..|ly]l=-.-2 8 2 1.1y . Donc A inversibleet A= == -2 8 2
pivet e 4 o) \» 2 4

Voir les calculs non rédigés

3. Remarque |A inversible (nécessairement carrée) => ‘A inversible et (fA)7!= f(A7").

Démonstration On a donc A carrée et A. A~ =1, = A1 A. En transposant : ‘((A7').fA =1,

donc 'A inversible d’inverse t(A_l). (Rappelons que pour une matrice carrée :

inversible d’un c6té = inversible). Fini. Question. Pourquoi est-ce une équivallence ci-dessus ?

22.1.2 Changement de bases pour un vecteur (donné)
1. Définitions
Soit B(ey, ...a;) et B'(ef’, ...@”) deux bases ; supposons que e’ = pii.€] + p21.€s + ... —|—pp1.@’...

p11
b21

Par définition : | Py, = Pg_p = est appelée matrice de passage de B a B'.

ppl
On met les nouveaux vecteurs colonnes a ’aide des anciens.

Dans R?, soit T = 7_77 T = 7—1—7; nouvelle base (pourquoi?). Ici P = <_11 i)

T7

<l =l

—

- =
Question : peut-on lire & envers : ¢ = I + J 7 NON ! (pas ici).
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2 N : A - : / / /
2. Théoréme |Soit un méme vecteur = de matrice X dans Bet X' dans B'; alors X =PX

CHAPITRE 22. CALCUL MATRICIEL

Résultat nouveau trés important.

Démonstration facultative (*)

Soit f I'endomorphisme de matrice P dans (e;); ona f(e;) =¢; et f bijectif.

P P p
g ey g U 7)) — s
Soit " = E Tj.€j = E xj.ej ; alors f(7) = E Tj.€j .

j=1 j=1 j=1

Mais comme la matrice P de f est connue dans la base B, on ne peut rien faire !

Essayons donc Pautomorphisme f~' de matrice P! dans B.

p
Alors f71(7) = Zx;e_; Z et f~Y(7T) sont connus dans B ! Donc : X' = P~LX.
j=1
. Conséquence.
On a méme : PB—>B” = PB—>B’-PB’—>B”° D’ou (B = B”) : P inversible et PB’—>B = (PB_)B/)_l
Démonstration

On écrit X = P X'; X'=P,X". Donc X = P;.P,X” = Pg_,3».X" et on termine aisément.

Bien retenir cette formule de changement de bases pour les vecteurs :

Remarque : (si on veut)

— — — —
2 4 3 I =214740.j +2.k
On peut inverser A= [0 1 1 | en colonnes... Ici:
2 2 -1

Analogue a ci-dessus (exercice).

22.1.3 Effet d’'un changement de bases sur une A.L.

1. Notations

. Théoréme

Soit f: 7 € E — f(7') € F linéaire.
S — 3 i .
Avec les bases (ej,...ey) et (fl_,>, f"l) on a la matrice A;
Avec les bases (e1’,...e,") et (fi’,..., f'), on a la matrice A’

On note P, et @y les matrices inversibles de changement de bases dans E et dans F'.

Soit 7' de matrice X dans B et X' dans B'; idem pour Y = f(¥) avec Y et Y’
Onsait que: Y =A.X;Y = A" X" (§1) et X=PX' ;Y =0Q.Y' (§2). Donc:
V=Qly=Q'AXx =Q lAPX =AX.

L’ unicité donne : A’ = Q7 'AP et rg(A) =rg(A) =rg(f) (vu).

Apnp, A;Lp représentant la méme A.L. mais dans des bases différentes = A’ = Q' AP
Deux matrices vérifiant une telle relation sont dites équivalentes ; elles ont méme rang

Exemple
Soit f : P(z) € Ryfz] — P'(z + 1) € Ry[z]; dans les bases (1,z,2%) et (1,z), la matrice
1 11

est A = 012 . Prenons les bases [1,(z + 1), (z + 1)*] et [l,2 — 1] alors P = [0 1 2],
0 0 2 00 1

— I -1 .H—1 _ 11 . o 01 6 _1 ) - -
Q= <0 1 > QT = (0 1>, Alors A" = (0 0 2> par Q  .A.P; ‘ou directement .‘le

3éme vecteur colonne par ex :  f((14z)?) = 2(x+2) exprimé en base (1,z—1): 6.1+2.(x—1)
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22.1.4 Conséquences sur le rang

1. Propriétés

D’abord : r =1rg(A,p) < min(n,p); et A inversible <= r =n =p. Ensuite :
Par une opération élémentaire sur les lignes (ou colonnes) d’une matrice, le rang est inchanggé.

Démonstration
1) Onar =dim[Im(f)] < dim(F)=n; r=dim[Im(f)] = dim(E)—dim[Ker(f)] < dim(E) = p.
Et : A inversible = n = p [vu] et aussi r = dim[Im(f)] = dim(F) =n car surjective.

Inversement r =n =p = f surjective de E dans F' de méme dim. finie : f inversible.

2) En compléments : Faisons quelques calculs : sur Az

e Prenons I3 ; remplagons Ligne 3 par Ligne 3+ A.(ligne 1) (L3 «— L3 + A.L1) on obtient :

1 0 0 1 00 ay as ai az
0 1 0); calculons [0 1 O0).[b1 by ]| = by by : le méme effet sur A.
A0 1 A0 1 c1 C c1+Aai ¢+ Aas

Et comme on sait (ch.21) que : rg(A") = rg(Q 1. A.I;) = rg(A), le rang n’a donc pas changé !
Remarque : La matrice & gauche est ici appelée "matrice de transvection".

e Il y a deux autres opérations élémentaires sur les lignes a voir : c’est la méme chose [a faire].
01 0 al ag

1 00 by by | = ..
0 0 1 Cl1 C9
1 0 0 a] ag
0 k£ O by by | = ..
0 0 1 C1 C9

Remarque : La lére matrice & gauche est dite "de transposition" ; la 2éme de "dilatation"

e Et sur les colonnes ? C’est la multiplication "& droite" : Echangeons les colonnes 1 et 2 de I,

ap a2 0 1 az aq
notée C; < Cyona: b by|. (1 0) =|by b | ou AP =A":onaméme effet sur A.
1 € C2 (1

Comme : rg(A") =rg(I5.A.P) = rg(A) |P inversible] le rang n’a toujours pas changé !

2. Remarque (rang de la transposée)

Pour Ap, : Im(A) C K" Im(*A) C KP. Mais : rg(A) = dim[Im(A)] = dim[Im(*A)] = rg(*A) !

Démonstration (*) En effet, prenant une base judicieuse de E = Exs®Ker(f) :
[cf. théoréme du rang] et de F = Im(f) @ Fy : f(U1),..., f(U ), ?7‘4-17 cey
1 0 ... 0 ... 0
01 .. 0 .. 0

— — = —
UlyeeoUpy Vpgl.ery Up
—

b n, on trouve P, Q

inversibles telles que : Q_lAin =J)p=1] 1 ou les 7 premiéres lignes et

0 0 0

[

0 0 .. 0 .. 0
colonnes sont I, (des 0 partout ailleurs) et r =rg(f) =rg9(A) =rg(Jy)np.

Alors : '"PIANQ™Y) =8 (J1)np = (Jr)pn qui est aussi de rang 7; donc : rg(*A) = r.
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22.2 Diverses matrices pour un endomorphisme

22.2.1 Théoréme (Effet d’un changement de Base)

Ici, A est carrée (n,n) et mémes bases & gauche et a droite ; par suite Q = P.

Apn, AL, représentant le méme endomorphisme, mais dans des bases différentes, on a ici
A’ = P71 A.P. Deux matrices A et A’ vérifiant une telle relation sont dites semblables.
Elles ont alors méme rang; méme trace (voir aprés) et méme déterminant (ch. suivant).
Noter enfin : A= P.A P~ et A" = P.(A)".P~' n € N*. [facile mais & bien voir|.

Donc

22.2.2 Exemple

=(br—2y—2)/6
1. Soit f € L(R3) définie par vy = (-2 —2)/2 ; prouver que fof = f; conclusion ?
=(x+2y+72/6
2. Solution
x 1 5 -2 -1 x
1)Ona |y ]|==1-3 0 -3]|.|y]| Puis A% = A : par calcul.| On sait alors que
2 0 1 2 7 z
(f € LR®) et fof = f) = f proj. sur Ker(f — Id)//Ker(f). Ici
—x—2y—2z=0
o Ker(f—1Id): f(Z)-T = 0ouf(T) =T ouAX = XoudX-X=0:..{ —3z—6y—32=0
r+2y+2z=0
C’est le plan vect. IT : z4+2y+2z = 0.  Ou bien c’est Im(f), engendré par: 6.f(7),6f(7), 6f(?)
Retrouver IT (de dim. 2 !) ainsi : I = Vect[6.f(7),6f ? cf. sous.e.v. engendré.
or —2y—2=0 2y+z+72=0
chr(f):f(?)zﬁ)ouAX:O<:>... r+0y+2z=0 <:>{ r+2=0 . Clest
r+2y+72=0 6x +62=0
-1
la droite vect. : A = Vect(¢)=R. ¢ =R. | -3 |. Soit @ = ) 1 , base de II.
1

Conclusion : f est une projection de rang 2 sur II // A.

2) Changement de base ici :
—
Forcément R? =TI @ A (ce qu’on peut voir car A ¢ II). Alors (@, b, ¢) est une nouvelle base.

1 -1 -1 1 00
La matrice de passage est P= [ 0 1 —3|.Oncalcule Plet PLAP=D=[0 1 0

-1 -1 1 000
(le faire). Ceci sans calcul aussi car : f(a@) = a, f(?) = ?, f(e) = 0!

22.2.3 Trace d’une matrice carrée et d’'un endomorphisme

n
1. Par définition : |Pour A, carrée, la trace de A(a; ;) est Tr(A) = Z ai; =Tr(*A

Tr: Mp(K) — K est une forme linéaire, soit : Tr(A+ B) =Tr(A) +Tr(B) et

2. Propriétés : Tr(AA) = \Tr(A); vérifiant de plus : Tr(Bpp.App) = Tr(Anp-Bpn) ! (*)
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Démonstration (*) :  Attention, pour Tr(A + B), chaque matrice est (n,n).
Pour :  Tr(Bpp. Anp) Tr(Anp Byn), mnotons : B.A=C = (ci).

Ona: Tr(BA)= Z Cii = Z Z bijaji; et sous cette derniére forme, on reconnait : Tr(AB) !
i=1 i=1 j=1

3. Conséquence : Trace d’un endomorphisme en dimension finie.
Soit f un endomorphisme représenté par A dans la base B et par P~'.A.P dans B'.

Ona Tr(P Y.A.P)=Tr(A.P.P~') =Tr(A), quiest donc indépendante de la base choisie !

On appelle Tr(f), f endom. en dim. finie, la trace de n’importe qu’elle matrice représentant f.

Question : Que représente Tr(f)? Dans le cas général, ce n’est pas clair.

Exercice : ‘Dans le cas particulier des projecteurs, en dimension finie, Tr(p) = rg(p). ‘ cf. Ex.5.(a).

Vérifions déja sur 'exemple vu, f projecteur : rg(A) =Tr(A) =2 ="Tr(D).

22.3 Matrices carrées d’ordre n : M, (K) [Anneau, méme algébre]

22.3.1 Les 3 opérations (révision)

+ des matrices; . des matrices [loi interne dans M, (K)|; . par une constante de K [loi externe].
On sait que M, (K) est un e.v. sur K de dimension n? (ayant £ = K", dimFE =n); et que, si

dimE > 2, ¢’est un anneau non commutatif, non intégre. Attention (A.B=A.C,A# 0O)# B=C.

22.3.2 DMatrices carrées particuliéres

1. hi: @ — k. @, homothétie vect. de rapport k, si k # 0 a pour matrice dans toute base : k.I,,.

100
2. La sur Veet(7,7) // Vect(?) dans (7,7,?) a pour matrice : (0 1 O).
0 0 O

1 0
Tandis que (O 1 ) est la matrice de la sym. vect. / Vect(7, ) // Vect(?) dans (7, 7, ?)
0 0 -1
M0 o0 Al ox Lk
3 GoitD— |0 A o 0 T = 0 Ao .. x|, D est aPpelée matr-lce dlag,o.nale (carre,e)
T appelée triangulaire supérieure (carrée)
0 0 .. A\ 0 0 ... X\

Calculs & bien voir : Pour les matrices diagonales D.D' = D'.D et DF ke N* facile.

Pour les triangulaires : T, T" triang. sup. = T.T" aussi mais T.17" # T".T en général. Surtout

T inversible < H A £ 0 (et 71 triang.) | : vaut donc aussi pour les matrices diagonales.
k=1
Analogue pour les matrices triangulaires inférieures (‘T triangulaire inférieure).

Démonstration. Bien connaitre le cas des matrices diagonales pour commencer. Ensuite, vérifier que
A a Nod AN N od A a AN L, : )
0 u) \o =10 ! #+ 0 ) \0 u =10 i en général. Equivalences :

n
<) Si H Ak # 0 :résolvant 7w X = O, on a X = O; d’ou T, ) est injective; donc bijective.
k=1
(=) Inversement, si A\, = 0, T1,... 0 sont dans Vect(e_f, ey ?k—l) : (pourquoi 7) donc liés !

L’endomorphisme associé n’est pas bijectif (I'image d’une base non base); 7T non inversible.
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M- Exercices: Calcul matriciel PTSI
b b—a . 12 3 01 1
1.‘Calcu1deM" SoitA:< b b);T:<O b);C: 01 2]; J=(1 0 1].
—amv T 00 1 110
(a) Calculer A puis A", n € N*. (A7 ?)
(b) Calculer T2 T3; puis T", n € N*. [Rappeler 'identité "1 — p" 1 = 7 ]
(c) En écrivant C' = I3 + N [Binome de Newton, N nilpotente commutant avec I|, calculer C'*3.
(d) Calculer J 2 en fonction de I =1I3 et J; en déduire que J est inversible et préciser J 1.
Préciser le reste de la division de x” par x?—x—2. Puis : J". (par "polynéme annulateur".)
T - X . Upt1 = SUn + 20, Uy,
2 ‘Utlhte du calcul de M", M matrice. ‘ Soit (uy), (vp) : et X, = .

. Soit A ={a.A+b.Is, a,b e R}, A= (

(a) Trouver A telle que X, 11 = A.X,,; en déduire que X, = A". Xj.

(b) On va chercher A™ par un changement de base ici.
Notons A = Matr[f,(7,77)], f endomorphisme. Calculer f(72 — ) puis f(27 + 7).
Déduire 3P inversible : P71 AP = D, ot D = diag(1,4) (car ci-dessus f(u) = u,
f(¥)=47.) Conclure que : A=P.D.P~'; A" = P.D".P~!' et achever les calculs.

. Soit A, B carrées telles que A+B+AB = O ; montrer que AB = BA. [Ind. Calculer (I+A)(I+B).]

. Pour A= (_42 _75) préciser C(A) = {M : AuM = M.A}. Montrer que M? = A = M € C(A).
. . . . Base
: (a) Prouver que pour un projecteur, en dimension finie, 7r(p) = rg(p). (ju di&.euse).

(b) Montrer qu’on ne peut pas trouver deux matrices (carrées) A, B telles que AB — BA = I,,.

. Ihet A= <(1) 1) ont méme rang, trace, déterminant ; mais ne sont pas semblables.

Discussion de 1'équation f(7') = ?(*), fEeL(EF) Que dire si v ZIm(f)=f(E)?
On suppose maintenant bel m(f) et soit 77 une solution. Vérifier alors (x) < 2 — 77 € Ker(f).

Donc @ =1+ t, t dans Ker(f), noté "o’ =1 + Ker(f)", énoncé comment ?

ler exemple : Ap,.X,1 = Bp1. Nombre de solutions selon le rang r = rg(A) (quand il y en a).

2¢me exemple : y .? a(z)y + b(z)y. Ici (x) est : f(y) = c(z). Préciser le cadre convenable.

a—b a+b 1 1 -1 1
Montrer que A est un sous e.v. de M2(R). Calculer U?, V2, UV,VU; structure de (A, +,.)7

. Soit A I’ensemble des matrices du type (a +b a- b> ,a, beR; U= <1 1> V= < 1 _1>.

4 7
-2 =5
A% + A —6I = 0, déduire que A est stable par .. Résoudre x? =x dans A ; vérifier que les solutions

). Montrer que A est un sous e.v. de Ma(R). De

autres que O et I forment une base ; déduire que A est un sous-anneau commutatif (!), non intégre.




Chapitre 23

Déterminants 2x2, 3x3, etc.

23.1 Déterminants 2x2

23.1.1 Notations

) [(S) e 2T +yTe=b S AX=Be f(7)=1.

Soit le systéme 2x2 (S) : { J

~ b b b

et : f endomorphisme de matrice A, tout cela dans la base canonique de K? par exemple.

On est en dim. 2 et A est carrée.

e Dot : (¥'1, Vo) libres < générateurs < base < A inversible < f bij. < f injective < f surjective !
e Dans le cas de matrice inversible :

—
le systéme a une solution unique; cela Vb (quel que soit le second membre), & savoir : X = AL B.

23.1.2 Reésolution

a b c b a ¢ N
Posons D = Jd yl= ab —bad; D, = Y cb —b.d, D, = Jd T a.c — c.a’ de méme :
On a A inversible < D # 0, D étant appelé déterminant principal ; dans ce cas on dit
Théoréme . . . D, Dy .
systéme de Cramer, 'unique couple solution est x = o Yy = o Si D =0, on regarde.
Démonstration
1) Voir que D =0+« 7’1, v liés (exercice). De méme formules de Cramer laissées; et cf. III.
— —
Remarquons pour f(?) = b : eSoit b & Im(f) : ce qui équivaut a pas de solution.
. s . . . — LN e — — o
2)SiD=0 e Soit b € Im(f) : au moins une solution zj et alors (linéarité) "z =z + Ker(f)”

dans ce cas, il y a : dimKer(f) =(nombre d’inconnues — rang) lettres arbitraires.

Résoudre { TPV =m ]
r+my=m-+1

On a D =m?—1. Donc pour m # +1, une solution unique (finir les calculs).

Sim =1, le systéme devient { r+y=0 Impossible.
- T+y=2
—r+y=-2

Sim=—-1,ona { <=z — y = 2 Infinité de solutions (une droite affine).

rT—y=2

153
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23.2 Déterminants 3x3

23.2.1 Notations et résultats énoncés

a1l aiz ais a1l a2 ais a11
Soit A = | a1 age ag3 | ;onvaconsidérer dét(A) = (a1 agy aog|.Si U1 | a1 |, V2, U5 analogues,
az1 asz ass a31 asz ass3 a31

exprimés en base B(e71, €3, e3) de E, on dira aussi que c’est : détg(v'1, Vo, U3).

1. dét(A) est un nombre [on dit "forme"]| et |dét(A) # 0 < A inversible < 'y, v, v'3 nouvelle base.

2. Linéarité /lére colonne.
° détg(ﬂ)l + 71, 72, 73) = détg(ﬂ)l, 72, 73) + détg(?)l, 72, ?3) et

o détg(A\ V1, Vg, U'3) = Adétp(T'1, Vo, U'3) Idem / chaque colonne : "forme trilinéaire".

1) détg( W'y + A2, Vo, U'3) = détg(v'1, V2, v'3) +0 [développer le terme & gauche]
Aa Abl \2 |o b

|
Ac Ad c d| -’

2) dét(N.A) = \3.det(A); alors que pour les dét 2x2 :

3. Si on transpose 2 colonnes, on change le signe : forme trilinéaire "alternée" (ou "antisymétrique").

détg(v'e, V'3, v1) = détg(V'1, Vo, U'3) (2 changements de signes.)

4. Développement suivant une colonne de A = (a; ;).
e Supprimons ligne 7, colonne j : il reste un déterminant 2x2, noté D;; appelé mineur relatif a a;;.

e Posons ensuite | A;; = (—1)i+j .Dj; | Ayj est appelé cofacteur de a;;

ail as
a1 @23

Exemple : le cofacteur de agp est (—1)3F2

+ - 4+
. Les signes : [ — + —
+ -+

e Développement/Colonne 2 : dét(A) = aj2.A12 + ag2.Agg + aze.Ass. Idem / autres colonnes.

)\1 0 0 3
1) |* Ay 0|=A1.A2.A3. [Colonne 3| Onretrouve| A (triang.) inversible < H Ak # 0.
* % A3 k=1

aip a2 aig
2) |a21 a2 asg3| = ai11.a22.a33 + a21.032.013 + A31.012.023 — 31.022.013 — G21.012.033 — G11.032.023.
azy az2 asg

C’est la régle de Sarrus : Mais si A contient des lettres, on vise une expression factorisée.

23.2.2 Des exemples

1 4 13 1 0 13 1 0 0 1 0 0 1 00
D=2 5 17/=[2 =3 17|=|2 =3 —9|=(=3).(=1).]2 1 9|=3.]2 1 0/=32=6
3 6 19 3 —6 19 3 —6 —-20 3 2 20 3 2 2
(En faisant Cy «— Cy — 4C} ; puis C3 «— C5 — 13C ; mise en facteurs Cy, Cs; Cy «— C5 — 9C75 ;...)
1 cos(x) cos(2x) 1 cos(x)  2.cos(x).cos(x)
« D= |cos(x) cos(2x) cos(3x)|=|cos(x) cos(2x) 2.cos(2x).cos(x)| (avec C5«— C5+ C1)
cos(2x) cos(3z) cos(4x) cos(2x) cos(3z) 2.cos(3x).cos(x)
Et donc: D=0 (pour tout z € R) car les vecteurs colonnes sont liées.
1 a 2a 1 a—1 2a-1 1 1 1
D=la 1 al=|a 1l—a 0 |=(@—1)2a—-1)la -1 0|=(a—1)(2a—1)(3a+1)
2a 2a 1 2¢ 0 1—2a 2¢ 0 -1

(fin par Sarrus; on aurait pu faire Co — Cy ... L’'important est qu’on sache quand D est non nul).
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23.2.3 Autres résultats

1. |det(*A)=dét(A) Donc
e Le caractére linéaire a lieu sur chaque ligne.
e Egalement le caractére alterné.
e Enfin, on peut développer par rapport & une ligne.

1 a 2a
Dans 'exemple vu, pour D =|a 1 a|: sionremplace L par Ly 4+ Lo + L3 sans
20 2a 1

changer le résultat, on voit que 3a+ 1 se met de suite en facteur.

2. |dét(B.A)=dét(B).dét(A).| (matrices carrées). Donc
e Souvent B.A # A.B; cependant méme déterminant (et méme trace).
e Si A inversible, A. A7t = I, = A7'. A donne dét(A™).dét(A)=1; donc |det(A™Y) =1/dét(A).
e Déterminant d’un endomorphisme en dim finie (2 ou 3) :
On a donc f représenté par A ou par P~'AP selon les bases; or dét(P~'AP)=dét(A). D’ou

Pour f endomorphisme en dim. 2 ou 3, on appelle dét(f) le déterminant de
n’importe quelle matrice représentant f.

Définition

3. Remarques
e Pour A carrée, dét(*A.A) =dét(A)2.
e T'r(B.A) inconnue; dét(A + B) inconnu.

e Si A3 antisymétrique : ‘A= —A = dét(*A) = { ( el)( c)ietetA) donc dét(A)=0.
Mais faux pour les matrices antisymétriques 2x2 : ‘ Oc =2

23.2.4 Déterminant de Van Der Monde

1 a a®
Il s’agit de D =|1 b b*| =V(a,b,c). Ona D = (b—a)(c—a)(c—>b); donc D # 0 < a,b, c distincts.
1 ¢
Démonstration’
1 a a? 1 a a?
1 b+a
D=0 b—a (b—a)bt+a)=0b—-a)lc—a)|0 1 b+a|=(b—a)(c—a) 1 etal™
0 c—a (c—a)(c+a) 0 1 c+a
23.2.5 Généralisation
. Tout se généralise au cas n = dim(FE) > 3, sauf la régle de Sarrus (un dét. 4x4 : 4! = 24 termes).

. Par exemple : pour f endomorphisme (f bijectif) < dét(f) #0 et dét(gof)=dét(g).dét(f).
Ou aussi, dét(A.A) = A".dét(A). Exercices (*) : dét(] i —j [Jnn = (—1)""L(n —1).2"72;

1 2 3 .. n
n 1 2 ... n—1

‘:det(A).det(C); n—-1 n 1 .. n—2 :(_1)71—1'””_1-(”"'1).

b el elo 7

0o C| |0 CI'|0 I 2
2 3 ...n 1
! Autre preuve :
1 a a
Soit D(z) = |1 b b*|: D(x) est un polynéme en x de degré au plus 2, de terme dominant Z a?;
1 =z 2°

Si b = a, déterminant nul : 2 lignes égales.
Si b # a, c’est un polynéme de degré 2, nul en a, b distinctes; donc D(z) = (b — a)(z — a)(x — b).
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23.3 Utilisations

23.3.1 Systéme carré 3x3

ar +by+cz=d
Soit, (5) dr+by+cdz=d . Comme pour les systémes 2x2, on définit : D |[déterminant principal]
a’x+by+c’z=d"
et D, [remplacant Colonne des z par Celle du 2¢ membre|, D,;, D, : idem.

D, D D, .
Alors | D # 0 < A inversible; solution unique x = o Y= 6‘1’, z= o Si D =0, on regarde.

Démonstration des "formules de Cramer": ot 'on voit 'importance de la linéarité.

Déja (S) <= 201 +yva2+203= b Pour z [et analogue pour les autres]
on a: dét(?, 72, 73) :dét($71 + y?z + 2’73, 72, 73) = x.dét(?l, 72, 73) Donc : D, = x.D.
2 +Xly —z=5 r 4y+(1l-—m)z=m+2
Exemples (S1) & A=5)z+3y+7z2=7 (S2) ¢ I+m)x —y +2z = 0
x +3y +2z=4 2z —my +3z=m+2
Pour (S1) D # 0 <= X ¢ {1,6}; si D = 0, pivot de Gauss. Pour (S2), D = m(m — 2)(m + 2).

23.3.2 DMatrice inverse d’une matrice carrée

Matrice
1 1
On a | A inversible < det(A) # 0; dans ce cas A~ = ( transposée ) et dét(A™l) =

det(A) des cofacteurs det(A)
Démonstration
x1 Y1 1 Y1 a2 @13 i
Car: A [z ]| =] =21 = Y2 az ass| = =[y1.A11 + y2.A91 + y3.As1]; xo; x3 idem.
N det(A) D
2 Y3 Y3 az2 ass
Remarques
e Pour une matrice 3x3, ¢a fait 10 déterminants ! (et transposer) ! C’est donc une formule théorique.
-1
a b 1 d —b 1
i matrice 2x2 : = —. . Et A Y= ——  (ad— !
e Si matrice 2x (c d> o <—c a > det(A™Y) (d =102 (ad — be)

23.3.3 Equation d’un plan vectoriel de R® (sur un exemple déja vu avec le Pivot)

1 1 1 1 T
. Lére solution : 2’|y |€ Il =Vect[|1],|2]] & 3a,B: a.|1| +B.[2|=|y]| .. cf ch E.v.
1 3 1 3 z
— —

. 2éme solution chercher (a,b,c) # (0,0,0) : IT ait une équation du type az +by +cz =0 (u, v € II).
1 1 =z
I 2y
1 3 =z
(<) Inversement : ces 3 vecteurs sont donc liés; Ja, 3, non tous nuls : . + 3.7 +~.7 = 0. Alors

T
v # 0 sinon w, v seraient liés : or on a un vrai plan ! Cela termine : @ = —1/v.(a. @ + 5.70).

8

W

= 0. Car (=) 3 vecteurs d’'un plan sont liés < dét. nul.

”
. ‘ 3eme solution‘ 7= (y) cll &

z

‘ Remarques finales ‘

e Orientation d’un e.v. réel de dim 3 : Soit B et B’ deux bases de R3. On a détg(B') # 0. Donc, sur R,
détgB' >0 ou détpB < 0. On dit que B’ a la méme orientation que B; ou bien l'orientation inverse.

e Si B et B sont orthonormées on verra [R? e.v. euclidien| que dét(Pg_ g )= détgB’ = +1. Donc avec
Ps_.p» = Ps_p.Pg_p, si Bet B on. directes, on déduit detg(w, v, w) = detg (uw, v, w). Clest le
"produit mixte", noté Dét(w, v, w) ou [w, v, w] : dét. dans n’importe quelle base o.n.d.! (ch.24) Et
Dét(w, v, w)=[u,v,wW]=(uA7).wW. Dour: 7 €ll<= (W A7).7 =0. Solution 3bis)!
Retenir : Vect(u,v) L W AW, (u,v) libres.
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23.4 (*) Exercices en compléments

23.4.1 Matrices a diagonale dominante (Théoréme d’Hadamard)

n
Soit A = (a;;) une matrice telle que Vi, | ai; | > Z | aij | ; montrer que A est inversible. Corrigé :
i#i; j=1

. L’énoncé dit que sur la ligne i (¢ quelconque) | a;; |> Somme des valeurs absolues (ou modules) des
autres termes (sur C peut-étre).

. b . . . ,
. Pour les matrices 2x2 <CCL d)’ cela donne |a [>|b|; |d[>|c]|; etilestclair que dét(A) # 0.
Mais on ne va pas continuer avec les déterminants, méme pour n = 3 :
n
. Contraposée : si A non inversible, 3\, non tous nuls tels que Z e Vg = 0.
k=1
Soit i tel que | A; |= max | A |> 0. Alors pour cette ligne i :  —\;.a;; = Z M- Qi

k+i; 1<k<n
On divise par A;; on prend les modules; Iinégalité triangulaire conclut.

23.4.2 Polyndémes d’interpolation de Lagrange

Soit ag, ..., an, n+ 1 valeurs distictes de R ou de C noté K.

(x —ag)...(x —ag—_1)(x — ags1)...(x — ay)

(ar — ag)...(ap — ar—1)(ax — ags1)...(ax — ap)
ot le terme manquant en haut est (x — ag) et en bas (ax — ag), pour k variant de 0 & n.

On considére, pour k € [[0, n]], les polynomes Ly (z) =

1. Préciser les valeurs de L;(a;) & I'aide du symbole de Kronecker d;; = 0sii# jet 1sii=j.

n
2. Montrer que l'on a une base de K, [z]. Composantes du polynéme P(x)? Que dire de Z Li(x)?
i=0
3. Pour n =2, K=1R, ag < a1 < ag dessiner Ly, L1, Ly (3 paraboles et q.1).

23.4.3 Autres énoncés

x'zx—ka.z
b)¢ v =(a—1)x+(b—1)y
d=y+bz

I __
1. Noyau et image d’endomorphisme. a) x/ = (1+m)z +3y
y=—x+(1—-m)y

[Pour a) 2 valeurs particuliéres de m a voir. Pour b) cas o, au choix, f bij., dét(f) # 0, rg(f) = 3,
Ker(f) = {ﬁ}, Im(f) = E, A inversible.  Puis : si autres cas (lieu de (a,b) ?) voir rg(f) = 2.]

R N R
2. Rangde: A= 30 2 5 B=11 2 a b | [Op. élémentaires avec ou sans noyau.|
140 7 1 3 2a—-1 ¢

3. Soit f un endomorphisme tel que f* ' £ O, f*=0; n>1. n est dit indice de nilpotence.
Montrer Iexistence de @ tel que @, f(0), ..., f* 1) soit libre. Et donc: n < dim(E).
On prend n = 3 = dimE. Matrice de f dans la base (f2(%), f(w), @) ? Existence d’une telle ap-
plication ? Déduire que pof = fop < ¢ = a.Id+bf+cf?; puis que I'équation p? = f est impossible.

4. Soit f, g endomorphismes tels que fog — gof = Id. Prouver fog" — ¢"of =n.g" ', n € N*.
Rappeler pourquoi est-ce impossible en dimension finie (avec la Trace).

Casde Rlx] g: P(x)—x.P(z) et f: P(x)— P'(x)?
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M- Exercices: Déterminants PTSI
1 a d a b c
1. (a) Factoriser [1 b b® (b) Vérifier |¢ a bl= (a+b+c)(a+bj+ci?)(a+bj%+cj)
1 ¢ ¢ b ¢ a
1 cos(a) sin(a) sin(a; +b1) sin(ar +b2) sin(ay + b3)
2. (a) Factoriser |1 cos(b) sin(b) (b) Soit D =|sin(az 4+ b1) sin(az + b2) sin(az + bs)| :
1 cos(c) sin(c) sin(ag +b1) sin(as + be) sin(as + bs)

Montrer que la colonne j de D s’écrit sin(bj). ¢ +cos(b;).s ; ¢, s fixes: D=0 !

3

r+y—3z=-13 ) - . . o
3. Soit le systéme S0 4y — 22— 8 Calculer le ‘ déterminant ‘pr1n01pal. ‘ Concl‘usmn !
rty+z=3 Que penser d’une résolution par les déterminants ?
1 -1
4. | Equation cartésienne| de Vect | 2 | dans R? ? C’est une question de cours.
q q

5

5. Divers et autres systémes : (a) ‘Montrer que : A nilpotente = dét(A) = 0. ‘

X+y+z=1 r+ay+a’z+a®=0
(b) Résoudre T+ y+z=2A (c) Soit { = +by+b?2+b>=0 avec a,b,c distincts :
THy+Az=\ z4+cy+ctz+3=0

ce dernier : montrer qu’on a une solution unique;

(*) puis sans calculs que : = = —abc, y=ab+ac+bc, z=—(a+b+c) !

P . . . —_ — .
6. | Révisions.| Dans E espace vectoriel de dim. 2, muni d’une base (2", '), trouver la matrice A

de la symétrie vectorielle s par rapport a la droite vectorielle y = —z de direction y =2x 7

Justifier que s(7 — ) =7 — 7 ; calculer de méme (7" +27); en déduire la
matrice A’ de s en base (?) (W =7 — 7, v = 7 +27). Justifier que dans (7, 7’) la matrice

est A= P.A. P!, P a préciser et finir les calculs.  (Et si B proj. sur y = —xz //y =2z ?)

avec la trace; le déterminant ; puis avec A%. Pourquoi a-t-on ici A™! = A? [Usuellement,
on part d’une matrice et on en donne une description géométrique. Ici, c’est 'exercice inverse.]

11 1 1 1 1 a b
7. ‘Calculer M"‘pourA: < 1 O); B=(111); C=(0 1 ¢]| [C=TI4N ici.
B 111 00 1
o b 2 3 2 1 01 2 4 3
8. Inverser : A = <c d> det(A™H)? |4 —2 3); [0 1 1]; [0 1 1 | [celle-ci déja vue].
1 1 1 -1 1 1 2 2 -1

Les déterminants sont facultatifs et souvent médiocres ici.

9. Curiosité : Soit B3y et Agz; dét(BA) et dét(AB) existent; on se demande s'’ils sont égaux !

10
Veérifier que dét(AB) # 0 dans le cas A = <(1) (1) g) ; B=1[0 1]. Calculer dét(BA).
0 0

(*) En général : rappeler pourquoi rg(BA) < min[rg(A),rg(B)] < 2; conséquence sur dét(BA)?




Chapitre 24

Géométrie de 'espace R?

24.1 Espace affine £ = R?; espace vectoriel associé.

24.1.1 Points, Vecteurs [On revient aux points ici !|

R3 étant I'ensemble des triplets de réels. On considére :

e soit R = £ comme ensemble de points ; on dit ici : espace affine £. (1,2,—5) sera un point A.

e soit R® = E comme ensemble des vecteurs associés : on dit alors Pespace vectoriel E associé a
. . —
l'espace affine £. (m, —1,4) sera ici un vecteur ', dans ce contexte !

R
La donnée de trois vecteurs non coplanaires (7', 7, k) est une base de F = R3.

—
La donnée d’une origine (un point O) et d’une base de E est un repére de £ = R? affine : (0, 7,7, k).

|Lien entre £ et E :|Si Ac &;alors M e € & AM € E (Notation de Grassman : M:A—i—M)

— — ——
et on peut changer de point-origine avec la relation de Chéasles : AM = AB + BM.

24.1.2 Le plan affine dans £ muni d’un repére

Le plan affine P(A(zo,yo, 20), dirigée par le plan vectoriel II(w, ¥ vecteurs non colinéaires) est tel que

MeP < AM ¢ Vect(w,v) < I\, peR: AM = \70 + 1.0 | A\, "parameétres" décrivant R.

Un systéme d’équations paramétriques d’un plan affine contient 2 paramétres : peu commode !

On préfére pour le plan une équation cartésienne.

Deux exemples ‘

1. Equation cartésienne du plan P[A(1,0,1); ' (1,1,1), ©'(1,2,3) non colinéaires.|

Atpu=xz—-1 (1)
Raisonner par équivalence. M € P < I\ pueRq A+2.u=y—0 (2) (1) et (2) donnent :
A+3pu=z—1 (3)
pw=y—x+1; A=2r—y—2. En reportant dans (3) trouver : = —2y+ z =2 ou toute

, . . . . —_— — % .
autre équation proportionnelle. Faire aussi avec det(w, v, AM) =0 (idem).

2. Bien voir que 2z —y =1 désigne un PLAN affine // 0z (non pas une droite !)

En cartésiennes, une équation du plan P est du type ax + by + cz = d, (a,b,c) # 0.
Théoréme | On obtient les plans paralléles en ne faisant que varier que le coefficient d. Ainsi :
ax + by + cz = 0 est aussi appelé plan vectoriel II, directeur du plan affine P.

Démonstration générale avec les déterminants (*) : Le plan vectoriel associé [vu] : det(w, v, 7)) = 0.

Le plan affine a pour équation : |det(w, v, AM) =0.| Car AM = A4 + uv = vecteurs liés. Et si

vecteurs liés : aW + b0 + cAM = 6, (a,b,c) # (0,0,0); ,7 libres = c#0 : AM = a. W + 5.7 |

159
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24.1.3 La droite (affine) dans £ muni d’un repére

La droite définie par A(zq,yo, 20), dirigée par u # 0 est telle que | M eD<sdNeR: AM =\

T —x9= A«
0 o . T—To _Y—Y _ Z— 20
ou | IAeR: ¥y — Yo = A0 en paramétriques. En cartésiennes, = = avec
Z—20= A7 a p i
la convention : Quand on a, dans R, P_ % = ... avec au moins un dénominateur non nul :
o

si un dén. est nul, le numérateur correspondant aussi ! (en effet, le rapport existe dans R, noté \).
Comme az + by = ¢, (a,b) # (0,0) est un PLAN affine dans R® (d’ailleurs//Oz aisément !) on a :

Dans R? affine, une droite affine en cartésiennes apparait comme intersection de 2 plans affines
non paralléles; il y a donc 2 équations cartésiennes pour une droite affine de R>.

En paramétriques : 1 paramétre ; en cartésiennes : 2 équations. Droite préférée en paramétriques.

x—1 y—2 =z-3

Ainsi D(A(1,2,3), @(1,~1,1)) |AM = \@| en cart.

r+y=3Ny+z=0>5.

Résumé

1 -1 1

. Dans R?, un plan affine est plus commode en cartésiennes : 1 seule équation.
. Mais une droite affine est plus commode en paramétriques : 1 seul paramétre.

24.2 Espace vectoriel euclidien F = R? : vecteurs et produit scalaire

24.2.1 Angles et normes de vecteurs [on ajoute 'orthogonalité]

1. Définition du produit scalaire.

— —
Soit 2 vecteurs @ = OA, ¥ = OB, on définit le produit scalaire par :

WU = ||7).|7.cos(a) ou a=angle(u,?).| Donc ||¥|*=7.u; |¥W|=VUw.uw
A noter
1) L’inégalité Cauchy-Schwartz : || @ . v |< || |.|7]|.| (¥.? < 0 possible !)

!

2) W et v sont orthogonaux < w.v =0. Et:0 est le seul vecteur orthogonal & lui-méme.

2. Un p.s. est une forme bilinéaire symétrique, définie, positive :

1)Ona u.v €R: ondit ici "forme".
2) Linéarité par rapport au ler vecteur (a. w1 +b.w2)« U = a.(W1. v) +b.(Ua. V)
Et aussi par rapport au 2éme vecteur : forme "bilinéaire".
3) W.v =70 .u : forme bilinéaire "symétrique".
HV T EE=R?*: W.u >0: "positive".
=

5 Enfin W .u =0= u = 0 : définie". [Preuves en exercice (*)]

3. | Norme de vecteurs| @ — ||| est une "norme", c’est dire || 7| € Rt et 3 autres axiomes :

D |T|=0=>T=0 2)|\T|=|\.|7]| si\reel
3) Enfin I’inégalité triangulaire, appelée ici de Minkowski : ||

Démonstration 1) vu. 2) vu aussi car (A7) (A7) = A2.(

3) Calcul essentiel : |7 + 7|2 = (W + 7). (W +V)=7.w +
bilinéarité ; symétrie : |7 + 2|2 = ||Jul|* + 2% . ¥ + | V|?. Puis W.7V <

—
u
—
u

Exercices . L’inégalité de (C-S) est une égalité si et seulement si u, v sont colinéaires.

. L’inégalité de (M) est une égalité < ', v colinéaires de méme sens (car de plus : o . v > 0.)
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24.2.2 Théorémes géométriques

1. | Théoréme de Pythagore généralisé ou d’Al-Khashi : |7 + 7|2 = |7 |* + 2w . 7 + || 7>

Démonstration vue.

Interprétation
- . — 2.9 =79 —9 —_— —
Soit un triangle A, B,C; BC = a, etc; alors (BA+ AC)* = BA*+ AC* +2BA. AC,
ou la relation des cosinus : |a? = b? + ¢? — 2bc.cos(A) | car cos(m — A) = —cos(A).

1
Remarque. Le p.s. 4 l’aide de la norme : u . v = 5(”7 + 72 =) = |7)P).

2. | Théoréme de la médiane ou du parallélogramme |w + 7|2 + |7 — ©|> = 2.[|Z|)* + || 7||*].

Car | -7 =|w|> 27 .7 +||7]> Interprétation vue au chapitre C et Géométrie.

24.2.3 Bases orthonormées a 3 vecteurs, ici

Bien str | 7, 7, & est une base orthonormée si vecteurs orthogonaux et ||7'|| = || 7| = H?H =1

1. ler intérét : le produit scalaire est facile.
= —
Soit W =27 +y. T +z2k, V=27 4+y. T+ k;
Dans une base quelconque, le produit scalaire est compliqué (faire le calcul comme dans Rz).

=

Mais | 7,7, k orthonormée = W .0 =z’ +yy +22/; |W|P =70 .0 =2® +y* + 22
Ainsi || W] = V&2 +y? + 22, connu !
2. 2¢ intérét : de méme, les composantes sont faciles.
— —
Ecrivons o =27 +y 7 + 2k ; alors: UW.71 =z, U.) =y, U.k=2
—_ —

Et donc |en base orthonormée, on a l'égalité u = (uw . 2).7 +(u . 7). 7 +(u . k). k

Remarque importante en pratique :

Si €1, e3, ez est une base seulement orthogonale (donc ey, €3, e3 non nuls en particulier)
— — - — - —
.. — U « €1 — U « €2 — U « €3 —
on a 1C1 u = <_>—2> .e1 + <_>—2> .€2 + <T2> .€3.
[e1]| ez l[e3 ]|

En effet : W = \ej +p.es +v.es done w.ef = A(ef.er) = Ajef|®>. Do A

24.3 Produit vectoriel, produit mixte dans ’e.v. R?

24.3.1 Produit vectoriel dans R? espace vectoriel euclidien orienté

N
"E.v.e. orienté " signifie : 7', J, k, orthonormée, donne I'orientation ("régle du tire-bouchon" usuelle).

On définit w A v comme le vecteur de norme || ||.||V'||. | sin(, V) | [nul si @, v colinéaires]

de direction orthogonale au plan vectoriel (', v'), de sens tel que (w, v, w A v') soit directe.
—
WAV =0 & U,V colindaires (équivalence)
(W1 +U) AT =U1 AT + U AT ; ANU)AT =AU AD)
Propriétés o NN L . R
—_— U AU =—u Av; etdonc linéarité aussi par rapport au 2éme vecteur
— . — =1 . A5 . . .. . . — —
|w AT =||OAANOB| = Aire (géom. ici) du parallélogramme construit sur «, v'.
Démonstration en compléments (*). Bien voir par contre : v AW = —u A V.

Voyons (W1 + W) AV = Uy
—

N
Supposons méme que v = K

!

— = — . . — - . L.
v 4+ W9 AU, le reste étant facile. Cas v # 0 sinon évident.
—
. . . — .
unitaire, car si on prend v = u.K, c’est aisé.
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e i ) . N — — — N — —
Notons I, J, K une autre base orthonormée directe. Posons v = X. I +Y.J4+Z. Ket p =X. I +Y. J.
— — — —. =
Assez aisément : W AK = p AK (méme dir., méme sens, module) ; comme (X. I +Y.J)AK est colinéaire
— —
aY.I — X.J (avec le produit scalaire) et de méme norme (/ X2 + Y?2), on déduit facilement que :
— — — — — o NN — — — — — —
(X.I+YJ)NK=Y.I —X.J. Doncici: “u  Nv=X.IT+Y.J+ZK)NK=Y.1 -X.J
et la linéarité par rapport au ler vecteur (le caractére additif surtout) est alors bien visible !

24.3.2 Conséquence

Avec W =27 +y 7 + z?, V=27 +y T+ 2% dans une base orthonormée directe quelconque, on a
— — — —
donc: WAV =20 AN@ 7T +y T+ E)Fy T AN@ T +Y T k) 2k AT YT k)=

(linéarité par rapport a chaque vecteur) ou bien :

—
— — / NN—> / n—7> / /
UNV =..= W =2y )0 + (22’ —22") 7 + (2 —y2') k.
/
Y o1
J J, ou yz’ — zy’
, z z
x T ,
Que l'on retiendra ainsi : y|l Ay | =] 22 —27 ou ' A1
z 2 ,
T , ,
)| ou zy —yx
Yy oy

Remarques (seule la 1ére est importante) ‘

. L — — o, - = =, — . .
e Attention : Si u’, v" non colinéaires, u, v', ¥ A v est une base, mais pas forcément orthogonale !

L — — . . N .
Par contre si u’, v unitaires et orthogonaux, c’est une nouvelle base o.n.; et méme directe.

e On a encore l'identité de Lagrange : (w . 0)? 4+ (W A V)2 = | 7|27

e Formule du double produit vectoriel @ A (? ANT)=(da . ?)? —(d . ?)? En exercice.

24.3.3 Produit mixte dans R® espace vectoriel euclidien orienté

—
On définit le produit mixte par (@ A @) . w. Donc, en base on.d., si w = 2”7 +y" 7 + 2"k
alors : pm, aussi appelé déterminant des 3 vect. en base 0.n.d., noté au choix Dét(w, v, w) ou
T 33'/ JE”

[0, v, W] vaut : |y o o7 =2y +yda” + 22y’ — 22" —ya'2 — 22y (végle de Sarrus).
/ 9
z Z oz

Remarques et interprétation
e Nous n’avons ici les déterminants qu’en base orthonormée directe (notés Dét au lieu de dét) ;

2
ils sont indépendants de la base o.n.d. choisie! [on ne met plus 7', 7', k dans ce qui suit| car

Dét(w, v, B)T -7 = (W AD).w = [u, v, w] (notation). | Cf. fin ch.23.

)

)

e Avec cette relation, on a aisément :
| produit mixte | =Volume (géométrique ici) du parallélépipéde construit sur U, U, W

Car ||@ A 7||=Aire (vu) et Surf-base.hauteur = Volume du parallélépipéde ...

24.3.4 Propriétés

Les propriétés de Dét(w, v, w) [dét. en base o.n.d.] sont celles des déterminants.

Dét(u, v, w) = —Dét(V, W, w) = +Dét(v, W, w); don (WAT).wW = (U AW). U !
Etc.
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OA =27 +y7; on plonge R

Remarque : déterminants 2x2 en base orthonormée. Soit o =
- _ — —
dans R3 en écrivant @ =27 +y 7 +0.k ; idem avec v =0OB =27 +y' 7 +0.k. Alors:

/
, z xz 0
r X - - . .
L | =l v o=@ AT = (1 11 sin(@, 7). F )« F = [T sin(, ) = Aire.
0 0 1

Un déterminant 2x2 en base orthonormée directe, qu’on peut écrire Dét(U, 7) vaut donc

Dét(w, V') = [|u].||7|.sin(w, V') et représente I’Aire (alg.) du parallélogramme | construit

N . — —> . . . . N . .
a partir des vecteurs u, v"; (c’est un produit mixte dans R? si on veut; mais terme a éviter ici).

24.4 Espace affine (les points ici), euclidien (vu) : £ = R’

24.4.1 Plan affine et sphére en repére orthonormé

1. Distance, Angle, Repére orthonormé.

Soit I’espace affine £ = R? : ensemble des points ; on munit 'espace vectoriel E (les vecteurs
., R . . — — — = / / !
associés) d'un produit scalaire . v = || U|.|V||.cos(a)) = xx’ + yy' + 2z’ en base

—_— —_— —_— —
orthonormée, qui donne angles et distances : §(A, B) = |AB|| =\/ AB?2 =\/(AB . AB).

2. Le plan affine dans & = R? affine euclidien avec repére orthonormé.

o= - . — p .
e Aspect vecteurs : Soit 1 # 0 ; les vecteurs orthogonaux & n' forment un "plan vectoriel"

noté wWL d’équation : | (z,, z) € nteW. M=02a+by+cz=0.

e Aspect points : le plan affine P[A(z0, yo, 20), orthogonal & 7] a pour équation :

MeP& AM 1L 7w < AM .7 =0 quidonne a(x — zg) 4+ b(y — yo) + ¢(z — 20) = 0.

Théoréme

Posant d = axg + byo + cz9, ona P:ax+by+cz=d, n(a,b,c)# 0 étant orthogonal
_ Jaxy + by + ez —d |

Va2 + b2 +c2

au plan. De plus VM; € £ , on a (M, P : ax + by + cz = d)

Le ler point est ci-dessus : plus facile avec un vecteur orthogonal.

Le 2éme (*) : exactement comme dans le cas Géométrie de R?, & relire ici.

— —
. Dans R?, plan affine en cartésiennes : 1 équation 7 .AM =0 ou 7 .0OM = cte

—_—
. Mais la droite affine est plus aisée en paramétriques : 1 paramétre AM = \.w.

. , . = — aaq N
Remarque. On a vu que le plan affine avait pour équation dét(w, v, AM) =0; d’ou en base

orthonormée directe | Dét(w, ', A—>M) =0 ou (WA). AM =0.| Correct : m

Plan orthogonal & 7' (1,1,2), passant par A(1,2,3); distance de I'origine au plan ?

Trouver z+y+22=9 et &=9/V6. Fig.

3. La sphére en repére orthonormé. Au choix :

(z—a)?4+(y—02+(z—-c)?=R?; 22+ + 22 —2ax —2by —2c2 +d=0,a> +b>+ ? —d > 0.
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24.4.2 Problémes d’intersection dans £ = R? affine euclidien

1. Intersection plan affine-plan affine (surtout I’exemple).

— a — '
{ a?xij%i?z_:dd/ avec 1 (l;) £70 ici et |m LP et n (b’) 470 idem.

c

S

~

=
L Si les plans ne sont pas paralléles [< 7, n’ non colinéaires|, I'intersection des
Théoréme =
2 plans affines est une droite affine de & = R®. Droite affine dirigée par @ A n’.
r+y+z=1 N 1 - = [ 2 — ; B =
Exemple. 90— 3y =0 avec m |1] # 0 n [ =3] # 0 et ‘non colinéaire & n'.
. - . i 1 O
3 lettres, 2 équations; en général 1 lettre arbitraire; par ex. x ici: x =z, y=-x, z2=1— -z
T 0 1 T 0 3
quon écrit [M =A+Aw] [y]|=10]|+a | 2/3 ou [y =[(0])+A| 2
z 1 -5/3 z 1 -5

. =1 . .
On dit que { 332; y_—gz —0 est un systéme d’équations cartésiennes ‘peu commode‘ de D et

0
DA|0]|, % | 2 |) une représentation paramétrique| AM = A7 || W =7 A7’
1

2. Intersection plan affine-droite affine (surtout I’exemple).

a

P:ax+ by +vz=d, W(b

_ T =29+ A\«
# 0 en cartésiennes. D : y=1yo+AB Xdécrit R, paramétre.
Z =20+ Ay

Théoréme ‘Si D non paralléle & P ousi @ .n =a.a+b.B+cy#0,alors DNP = 1 point.

2 =142t
Lul2]). Dily=2+2t].
1 z=3+1

1 2
Déja  |D non paralléle & P| car 7 1) U2
1

C

W N =

Exemple. Soit P: z+y+2=1 et D(A(

): 5%# 0. Puis en reportant :
1

1+2t+242t+3+t=1 ou 5.t=-5, t=—1: un unique point d’intersection [

A

o]

Wy P .BM =0.

—_—
[Complément : on peut éviter le choix d’un repére avec D : AM = .

3. Droite affine-droite affine. 2 droites affines sont en général non coplanaires. cf. fin.

4. Complément : Intersections droite ou plan avec la sphére.

e Droite affine-sphére : exactement comme dans le cas de R?, a relire.
. Donc le théoréme de la puissance d’un point se généralise a la sphére.
. Mais pas le théoréme de 'angle inscrit. (Que dit-il ?7)

e Plan affine-sphére. Voyons juste un calcul : Soit la sphére CM? = R*: H la projection
[PRN Tl = 9 . ~T7 T A2 2

orthogonale de C sur P, d’ou le plan : HM . = 0. A lintersection (CH + HM)* =R
donc CH*+2.CH.HM + HM*=R*; ouencore: HM*=R"—CH* e MeP.
Ainsi : |on obtient un cercle de centre H si et seulement si dist(C,P) < R; et () sinon. ‘
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24.4.3 Utilisation du produit vectoriel et du produit mixte (dét 3x3)

1. Equation cartésienne du plan affine P(A, u, v') : revoir

—
Le plan affine avec (%, ') non colinéaires, a pour équation : | M € P < Dét(w, v, AM) = 0.

a o x—wx0 AP
B8 8 y-w|=0 typeaz+by+cz=d, ou |(uWATV).AM =0, on trouve u AV L P,
v Y z—2
—
2. Distance d’un point & une droite dans R? Exercice | 0[M, D(A, W)] = w
u

En effet, observons que la droite est en paramétriques ici :

Soit H; la projection orthogonale de M; sur la droite; M H; est le minimum de distance et

— _ — SN N
”AMl A E)H = ”(AHl —I-HlMl) A E)H = HHlMl A E)H = ”HlMl””WH ; dou 6 = H1M;.

3. Exercice : Condition nécessaire et suffisante (C.N.S.)pour D, D’ coplanaires

Dans R? : | Les deux droites D(A, W) et D'(B,v) sont coplanaires < Dét(A—B), w, V) =0.

Pour = on a 3 vecteurs dans le plan vectoriel associé (a.z + b.y + c.z = 0) : déterminant nul.

Pour <= 2 cas: si uw, v colinéaires, alors droites paralléles, donc coplanaires.

—
si W, v non colinéaires : AB = ctew +ctev ; chaque droite est inclue dans le plan affine (A, ', v")
car B appartient a ce plan ! (son équation est du type a.x + b.y + c.z =d bien str).

(*) Complément qui compléte la C.N.S. Distance de 2 droites en paramétriques dans R?

Si 2 droites D(A, '), D'(B, v') sont non coplanaires, 3 ! A droite perpendi-
culaire commune & ces 2 droites, les coupant en H et K. Le minimum de la
| [4B, W, ¥]|

[ A

Théoréme
distance PQ ; P, (Q décrivant chacune des droites est : HK =§ =

En effet : (*)

— —
W, sont non colinéaires ici, d’ou @, v, w A ¥ base de R®. ([AB, W, v]=Dét (AB,u,7).)
1) Donc P(A, W, o A 0) est un PLAN affine; de méme P'(B, v, W A ¥’). Et une droite est

perpendiculaire commune (en particulier dirigée par @ A ©') si et seulement si elle est dans P
et P'; or ces plans sont non paralléles (pourquoi?) donc sécants selon une droite unique.

2) Puis PQ? = [(PH+KQ)+HK)? = HK*+(PH+KQ)*+0 > HK? et égalité <> PH+KQ = 0
—
qui s’écrit a. W +b.V = 0 et exige a =b=0 (P =H, Q= K) car u, v non colinéaires !
3) Enfin : [AB, W, 7] =[AH + KB+ HK, W, 7] = [HK,w, 7] = [¥, v, HK] =
—
= (W ADV) HK =+|u A9 Et valeurs absolues.

24.4.4 Divers systémes de coordonnées.

1. ‘Cartésiennes : ‘ Pour M (z,vy,z) dans le repére (O, 7,7, ?) Figure ?

2. ‘Cylindriques : ‘ Dans (O, 7", 7’), on prend les coordonnées polaires pour m : (p, ) et ensuite
— — N . N . —
OM = Om+ z. k. Donc M(p,0, z) dans la base : w[cos(0), sin(),0], u1[—sin(@),cos(9),0], k.

Le petit déplacement étant dM (dp, p.df,dz) dans cette base "locale". Fig. 7

3. | Sphériques : | Attention ici, on prend r = OM # p = Om ol m était la projection orthogonale de

M sur Ozy. On prend en général 6 = (Oz,OM), angle variant entre 0 et 7 : co-latitude;

et : ¢ = (Ox,0Om) angle variant de 0 & 2.7 : longitude.
Dans la base "locale" orthonormée (e, e_é,e_(p}), (soit r seul croit, soit ...) le petit déplacement est
—_—
dM (dr,r.df, r.sin(0).de) et le petit volume dr. r.df. r.sin(0).dp. Fig.? [= volume de la sphere !

[ [ [ r2sim@irasao= [ art [" sin@)ao [ ap) = 47 R [3)
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M-+ Exercices: R? affine/ affine euclidien. PTSI
1. Equation de plan affine :

10.

(a) Equation du plan affine P passant par A(1,2,3) dirigé par le plan vectoriel IT : 2z + 3y — z = 0.
(b) Inversement partant de I’équation cartésienne de P : 2z + 3y — z = 5, trouver une représenta-

. L . - — — . .
tion paramétrique du type AM = \. W 4+ u. v, en prenant les lettres x, y arbitraires.

. Autres méthodes dans R?, affine euclidien :

. (a) Dans R?, affine euclidien. Quel est {M . W.OM = k}, k étant donné, (W #£ 0) ?
T£0)7?

(a) Equation du plan affine passant par A(3,2,1), dirigé par I1: ' (1,2,—1), v’ (1,—2,1) [libres]
—
en écrivant I\, pu: AM = AU +p 0 et en éliminant les paramétres \, ju avec les 3 équations.

(b) Trouver une équation du méme plan, en prenant cette fois u A ¥ comme vecteur normal.
—_— —
(c) Puis aussi en écrivant Dét(w, v, AM) = 0. [Pareil, finalement : (u A 0'). AM = 0]

)7

(b) (*) Analogue avec le produit vectoriel. Quel est {M . T AOM = ?}, (

Montrer que Di(x =1+4+t,y=14+2t,2=1—2t) et Do(x =2t,y = —1 +4t,z = 3 — 4t) sont
confondues. Et situées dans le plan affine : P(x =2+ 2v, y=34+u+3v, z=—-1—3u —v).

. Distances. Point-point : 5(M1(:E1,y1,z1),M(:E,y,z)) 7 Et, cours (*) : point-plan, point-droite.

Calcul de distances. Soit D=PNP" ot P:ax+y+z=1, P :2z—3y=0. Calculer §(O,D) :
(a) En donnant une équation paramétrique de D(A, u') en posant y = 2.t et avec la formule vue.
(b) (*) En calculant le minimum de dist?(O, M;) = f(t) quand M; décrit la droite D.

(¢) (*) Enfin en vérifiant que D C Py’ : 2z —3y+ A(z+y+2—1)=0; puisen
trouvant A tel que P’L Py”; et alors en calculant dist(O,P,”) !

Dans un tétraédre régulier A, B, C, D de centre O, calculer cos(O—/i, O—B>) ; cos(IA,IB), I milieu[C'D].

(a) (*) Cours. C.N.S. pour que les droites (A, %) (B,v’) soient coplanaires avec Dét(A—B>, u, ).

r+2y+z=-1 ,
r+y—z=0

(b) (x) Cas ot D est définie par les points A(0,1,1) et P(1,0,1); et D': {

(**) Perpendiculaire commune et distance entre 2 droites non coplanaires dans R :

Cas ou D est définie par les points A(0,1,1) et P(1,0,1); et D’{ 2123;‘_;::—_21 ?

[Réponse : A'(—=3,1,0) et u’'(3,—2,1) par exemple; D” { jjfyizgzzi et 6 =2/V3|.

(**) Des quadrilatéres aux théorémes de Ptolémée. Soit A, B,C, D un quadrilatére convexe :

)

a) Montrer que AB? 4 BC? +CD?+ DA% = AC? + BD? +41.J?, I milicu de [AC] et J de [BD].
)
)

(
(b) En déduire : A, B,C, D parallélogramme < AB? + BC? + CD? + DA% = AC? + BD?.
a?+b% —c? —d?

(¢c) Montrer : A, B,C, D cocycliques = cosB = - AB=a,BC =b,CD = ¢, DA = d.
2(ab + cd)
Déduire : AC* = 2% = (ac + bd)(be + ad) ,y = BD analogue; donc |zy = ac+ bd; T ad + bc.
ab + cd y ab T cd




Chapitre 25

Transformations de 1’espace R?

25.1 Projections et symétries vectorielles orthogonales

25.1.1 Résultat fondamental. Tout est en vectoriel aux I, 11

1. Théoreme de la projection orthogonale dans F = R3 vectoriel

e La projection vectorielle orthogonale sur Vect(w) est telle que |71 = p() :(ﬁC_ZHZ ) .
u
e La projection orthogonale sur Vect(w,v) o L v, (# 6) est [p(7) :(‘T_',”l;).ﬁ + (‘T_',HZ).?.
u v
Dém. Aucas2): p(7)=auw+p.v; et T. U = (p(T)+q(7)). " =p(7). 7 = ol ...
2. Dans I'un ou lautre cas, soit ] cette proj.: @ =z, + T avec z; € By, T3 € Ef
Comme 75 L z1, ona: |Z|? = ||z1]|® + |z2]|*>. Pourquoi ? Dessin ? Donc, pour
s(7) = 7] — 73 symétrie orthogonale par rapport & E1, on a |[s(Z)|| = || Z|| : conserve la norme.
Tandis que pour p = proj., (orthogonale) : ||p()| < |||  [Bien sar Id+ sz =2p/p, ]

25.1.2 Dans R® eve., matrice M de s, sym, /plan II d’équation 2x — 3y + z =0

_
Solution : Avec une base de IIt, de dim. 1 D’abord, si 7, 7', k orthonormée, alors

a 2
w _(b)J_ II:ar+by+2=0.|7 _(—3) base de II*. Si g est la proj.; sur Vect(mw) = I+, par

n
1

C

lgnes, T X =[o) o) = T 52 Lo a () 22 (S 0 ) () =ax
ignes, ¥ : X =(y| —q¢(7)=—=5-n"=—2v—-3y+2). |-3]| == |- -3].ly| =4AX.
2 172 14 1) M2 -3 1) \:
— — — — 1 3 6 —2
Ou bien A par colonnes par ¢(7) ... Puis @ — s(7') =2.¢(7); dou Mng—2A:? 6 -2 3.
-2 3 6

Solution bis : Au lieu de prendre ¢, on prend p = proj.; sur II |bien sir p+ ¢ = Id|.

1 R —4
Trouvons une base orthogonale de II de dim. 2: @ = (1) et b= Ad= (—1) convient.
1 5

(@.a) 5>, (&-0) 5. D’ou B matrice de p; et I3+ M = 2B donne M : laissé].

. —\
[Puis p(7) = = =

167
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Tr(A) =rg(A) =1 (proj.)! M.M =1I3! (*) Tr(M)=+1,dét(M) = —1 (cf. M’ en base
=
@, b, 7). Enfin on voit au Il que "M.M = I3 était attendu, donc ‘M = M~'. Comme M~ ' =M

1
ici, cela explique que ‘M = M ou que M soit symétrique; donc A aussi car A = 5([3 — M).

(Rappel : une symétrie orthogonale conserve la norme de tout vecteur, pas une projection.)

25.2 Isométries vectorielles. Changements de bases o.n.

25.2.1 Deéfinitions. Matrice en base orthonormée

1. Définition

Soit u € L(E) (un endomorphisme). On dit que 1) u conserve la norme si VvV, |u(@)| = |7
2) Et que u conserve le produit scalaire si VZ', ¥ : u(7) . u(y) =7 . 7. C1a1r que 2) = 1).
En fait

Pour u endomorphisme, 1) < 2) et dans ces conditions u est injectif. Donc si on est en
dim. finie, u est bijectif : on dit automorphisme orthogonal ou isométrie vectorielle.

On appelle e.v. "euclidien" : tout e.v. réel, muni d’un produit scalaire, et de dim. finie

En effet

Voyons 1) = 2) : Rappelons une expression du p.s. a I'aide de la norme
— 1 — —
b =5l@+ o = @* = [[b]*).  Done:
1 1
u(@)eu(y) = @) +u()I = (@) = (¥ = 5 lluC@ + G = ()] = [lu(y)]]

1
= (avec 1’hyp0these) =57+ + Y1171 =17 =7y
Bien voir v injectif :
Si 7 € Ker(u), u(@) = 0. Lanorme : lu(Z)|| = |7 = ||6|| =7 =

0 !
2. Théoréme
‘Pour u endomorphisme : wu isométrie vectorielle < u transforme une base o.n. en une base o.n.
Démonstration
= évident car u conserve a la fois la norme et le produit scalaire.
< Soit (ef, ..., &,) une base o.n. et (e7’, ..., a;') son image o.n. par . Montrons alors que u conserve

la norme de tout vecteur de E. Pour = = Zw, e, ona u( Zw, e; car e = u(?{)
n
D’autre part || 7||? = Z:p car (e;) u(Z)|? = Zajf car (¢;')on. Egaux !
i=1
3. Traduction Soit A la matrice de u en base o.n.(ej, ..., e,) :
u isométrie vect. < les vecteurs colonnes de A u(ey), ..., u(e,) sont o.n Ou bien, avec "A.A =
— — — —
ai; agr ... Qpi ai; a2 ... ain u(er)wu(er) wu(er).u(ez) . (e1) »u(en)
— — —
ai; Gy ... ap2 ag1  az ... agn | _ [u(e2).u(er) wu(ez).u(ez) (e2) v u(en)
Alp  G9n o Opn anl Gn2 ... Qpn u(en) wu(er) ulen).u(es) ... u(en).u(e,)

on a l'écriture équivalente : u isométrie vect. & 'A.A =1, : on dit que A est orthogonale.

4. |Résumé. | Soit A la matrice de u en base o.n.(ej7,...,¢,). Alors : (on note A € Q)

u isométrie vectorielle (ou automorphisme orthogonal) : les vecteurs col. sont o.n. < ‘A.A = I,
s!'A=A"' o A'A =1, (ce qui est ‘A orthogonale ) < les vecteurs lignes de A sont o.n.
On peut aussi considérer que A est une matrice de changement de bases orthonormées.

Et: Ac Q= dét(A) = £1 [det(*A) = det(A)]. Réciproque fausse : A :<(2) 172>, f(7)y=27"1
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25.2.2 Isométries vectorielles en dim. 2

En dim. 2 en base o.n. on a exactement 2 types de matrices orthogonales. Dessins ?

A <COSEQ) —sm(a)> dét(A)=+1 : rotation vectorielle d’angle o; et OF abélien

1. Théoréme sin(a)  cos(a)

A <cos§a§ sm(a))) dét(A) = —1 : sym. orth./y = x.tan(%) angle polaire %.

sin(a) —cos(a
a b a4+ c* =1
Démonstration A = (c d> orthogonale & { b?+d*>=1 par Théoréme (ou ‘A.A = I).
ab+cd=0

Posons a = cos(a),c = sin(a); b= cos(f),d = sin(); il reste cos(aw — ) =0.

-
«Sia— f=—+4k2m, cas 1) et vu les colonnes, on reconnait la rotation vectorielle d’angle «.

Sia—p= L + k.2, cas 2). Alors : A = A™! [connu] et YA = A [observé|; donc A.A=1I ou A

matrice d'une symétrie / Ker(A—Iz),//Ker(A+ I2) [Théoréme|. Puis calculs ou remarques :

B — (cos(a/2)\ [ z.cos(a) +y.sin(a) = 1+ cos(a) = 2'0‘?32(0‘/2)
Ker(A—1I)) =Vect I <sin(a/2)> : { r.sin(a) — y.cos(a) =y et { 1 — cos(a) = 2.sin”(a/2)
— —)HQ

sin(a) = 2sin(a/2)cos(a/2)
Et une symétrie conservant la norme est orthogonale : ||z7 — z3|> = ||Z1 + Z3||* = Z1 . 73 = 0.

2. Remarques. Avec C, le calcul précédent est inutile car connu !

avee € aas1): (1) = (i) o) (4) cas 2)

sin(a)  cos(a) Y

e Au 2), en base o.n. directe (?CZ)ZE%;D ) 7), la matrice est D = <(1) _01>, d’ou vérification

de la Trace. Et si P la matrice de passage de (7', 7) & (T, 7) . P71 =P et PT'AP =D.

e Attention. —Id: en dim. 2, diag(—1, —1) isométrie positive; en dim 3 : diag(—1,—1,—1)
isométrie négative ! Idem sur les symétries orthogonales/une droite vectorielle :
en dim 2, c’est une isométrie négative (€ Q5 ), avec le déterminant; mais, par contre :
en dim 3, en base judicieuse, la matrice est D = diag(—1,—1,1) : isométrie positive (& (O);)

25.2.3 Isométries vectorielles en dim. 3

Les isométries vectorielles positives de R? sont toutes des rotations vectorielles

1. Théoréme . . . . _
— | axiales. Les négatives sont plus compliquées ; simplement : u € Q5 & —u € @;‘.

Démonstration : ADMIS, mais expliqué.

e Déja, sauf si uw = Id, (de matrice Is dans toute base), il y a un

axe unique : {7 /u(@) = 7'} | qui est une droite vectorielle Vect(}) ; C’est aussi Ker(u— Id

).
N cos(a) —sin(a) 0
e Ensuite, en base o.n. judicieuse (I, J, K), la matrice serait P"'AP = A’ = | sin(a) cos(a) 0
0 0 1
A vue (cf. Ex.) ou cf.
—

25.2.4 : sign[@,r(7), K].

Angle : forcément Tr(A)=2cos(«) + 1. | Pour sin(«) I'axe étant orienté {

010
2. Dans R? e.v. usuel, décrire 'endomorphisme u de matrice A = (O 0 1) .
1 00
Solution [On utilisera que u(7’) = k, a la fin : 1ére colonne de A.]
. Soit v, U2, U'3 les vecteurs colonnes; il est clair que || 71| = || 72| = || 73] =1 que

V1. Ve =0=01.73= 02703 (ou’Ad.A=1I3). Doncu: isométrie vectorielle par Théoréme.
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. dét(A) = +1 : isométrie positive.!  Donc rotation axiale par un autre Théoréme .

- = — 2.7
Axe|: AX = X conduit & ... VectQ, Q =7 + 7 + k. |Angle|: 2. 1=0,a=+".
conduit & ectQ, 47+ cos(a) + e 3
—

. N R —2m . .
Orientons l'axe par Q; u(?¢') =k : avue a= — ou 10 lignes plus bas : sin(«) du signe de

Det(7,u(7), Q) = [7,u(7), O] =

— =

7, k,Q]<0:idem. (Ici A3=13: A7l = A%2="A)

r—|

25.2.4 Utilisation du produit mixte et du produit vectoriel dans R>

1. Rappel. Soit une base o.n. B de référence et une autre base B’ o.n. directe donc détp(B') = +1.

D’ou pour 3 vecteurs u, v, w, détg(w, v, w) =détg (u, v, w); ce déterminant, indépendant
de la base o.n.d. choisie, est appelé produit mixte et not¢ Dét(w, v, w) ou [u,V,w].
Et on a avec le produit vectoriel : | Dét(w, v, w) = (4 A ). w | ... ¢f. ch. Géométrie de R3.

2. Utilisations
e Dans Ass orthogonale, si v'1, U2 sont les 2 premiers vecteurs o.n. le 3éme est U3 =+01 A vg !

e Soit 7 la rotation d’angle a autour de Vect(w), |&W] =1, & Q/Q. Sid LW, dans Tt

r(d) = cos(a).@ + sin(a). @ Aa (|r(@)| = | a@||). Si @ quelconque: ¥ =a + A&

B
D
9
>

r(Z)=7(@)+\W; GAT = TAT et |[Z,r(T), @] =||&AT|*sin(a) dusigne de sin(a)
car [7,r(7), @) = [@,r(@), D) = [@, a@,r(@)] = (@A) (@) = |TAT | sin(a). | A=7 . @
d’ou 7(7) = cos(a).[7 — (T . W). W]+ sin(a). @ AT + (7. W). W (formule d’Olinde Rodrigues).

N - L, = p ) ) 0 —r gq
3. Etude de f(x') = QA X, Q = |q| en base o.n.directe. f est un end. de matrice [ » 0 —p]|.
" -¢ p 0
Si O + 6}, Ker(f) = Vect(ﬁ), Im(f)= ot

Inversement, ayant une matrice antisymétrique en base o.n.d., on sait donc Uinterpréter 2 |

25.3 Sur les applications affines de £ = R? affine

25.3.1 Deéfinition et expression d’une application affine

Soit £, F deux e.a. associés aux e.v. E.F. f: M € & — M’ € F est dite affine, s’il existe une A.L.,

— - — ——
forcément unique notée f (changement de notation pour les AL) telle que | VO, M : O'M" = f (OM).

Remarque

Au lieu de dire "V O, M...", il est équivalent de dire "VM”, O fixé. En effet :
. —>/ , — —— . 7, — —> e /—>/ — —
Si OM' = f(OM) pour O € € fixé, alors O'I' = f(OI); par difference I'M' = f(IM), VI, M.

Donc | M' = O' + f(OM).| Si & est d’origine O, F dorigine Q, QM = f (OM) + Q0
Théorsme onc =0+ f( ).| Si& est d’origine O, origine €, = f( )+ )

D’otl en dimensions finies p pour £, n pour F, ’écriture matricielle Y = A.X + B.
Démonstration

En dimensions finies : QM' = ylﬁ) + ...+ ynﬁ, de composantes Y (ou encore M " de coordonnées Y); et
—_—
OM = z1€] + ... + zpe, de composantes X (ou M de coordonnées X); f (OM) connu : Anp X;
—
et QO' = B, dans F est aussi connu [c’est-a-dire : composantes du vecteur dans la base (fl,. ,fn)

— —
ou bien ce sont les coordonnées du point O’ dans le repére (; f1,...ynfn)]

1
~ det(A)
Donc Ajj = %asj : ce signe est dét(A). Ci-dessus : a12 = 1; A1 = —(—1) : dét(A4) = +1.

? Exemple (*) Sir rotation, (r—7r"')/2, en base o.n.d. est "endomorphisme 7z — o.sin(f) A T .

1

Remarque en complément (*) Ona A~ = (Aji) ; et de plus ici : A7t = (aji) [on a transposé|

D’ou W.sin(f) obtenu avec la partie antisymétrique (A—"A4)/2 de la matrice A si on veut !
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25.3.2 Homothéties affines et Translations, donc F =&

1. ‘Lien affine-vectoriel. ‘ Appl. Linéaire : | Appl. affine : (Preuve et exemples apreés)

L’appl. Lin. (end.) 7) = Idg de matrice I,,| < f translation (Une translation n’est pas linéaire !)
4
Etsi k ¢{0,1}, f =k.Idg (hom.vect.) | < fhom. affine de rapport k, de centre LE point fixe.

Ainsi 7 = —Id (hom. vect. de rapport —1) | < f symétrie-point.

2. Démonstration

e Y Yy T AR . x 10 x 3
f=Ildg & OM =0M & MM =00" & f Translation. Ex: (y,):(o 1)'(y>+(4>'
. Cas f = k.Id. Soit égalite (1) O'M' = k.OM, F=§&. Ex: (;) _ (2) g) . <Z> + <_21>

— — — — — — —_—
Ona:lfixe s I'=14 (2) Ol =k0OI = 00+0I=k0I < (1-k)OI =00": une
; ; 7 I == sera A Ty ..
et une seule solution si k # 1 [0 = ——0O0']. Différence (1) — (2) : IM' =k.IM. Fini.

1-k

25.3.3 Rappel : Déplacements en dimension 2 : Zs;

1. Théoréme. (Isom. affines positives : déja vu aux ch.C)

— el .
e En base o.n., f € @;‘ pour matrice cgs(a) sin() ou z+— 2 =€“*2. On en déduit ISQ+ :
sin(a)  cos(a)

e| Déplacements : a = 0(27) translation, o # 0(27) rotation affine d’angle « de centre le point fixe.

2. Démonstration Utilisons les complexes, par exemple : 2’ = "%z 4+ Cte. Déja vue :
Cherchons un point fixe éventuel & 2+ 2/ = "2 +b, (b= by +iby € C). 2/ =2 & z(1—€"*) =b.
Sia=0(2m7), 2 =2+0b translation.

Si a # 0(2.7), solution unique zy = €% +b: |2 — 2 =e"(z— 2).| Puis module, argument.

25.3.4 Exercice : Déplacements en dimension 3 : Zs;

— —
On appelle vissage d’axe orienté D (I, K ), d’angle «, de vecteur de translation . K
1. Définition | la composée ici commutative : rot = tor, r étant la rotation autour de D d’angle «

. — —, — .
t la translation de vecteur v.K. Ona|M € D= MM =~.K Dessin 7

—
2. Théoréme | Toute isométrie affine positive de €& = R? est un vissage. cf. Exemple pour o, D, . K.

N X X' cos(a) —sin(a) 0 X e
Car 371, J,K b.on. judicieuse f: M | Y | — M | Y' | = [sin(a) cos(a) O|.|Y |+ |5

Z z' 0 0 1 Z 5

vu le rappel sur f. K est ici un vecteur unitaire de l'axe (orienté) de f. D’ou :
—
Sia=0 (& f =1Id; on s’en apergoit de suite !), f est une translation, éventuellement Zd(E).

!/ .
Sia#0onavuen dim.2: 3Xy, Y/ (ii, B )}SO> = <Zf§§3; ;ZZEL?) . <);/ B )}SO> et on rajoute
— 10 — 10

Z' =7 ++. Clest clair avec un dessin D : [I(Xy, Yp,0), I_()] ; translation : 7}.

x ¥ =y+1 01 0 z 1

3. Décrire, dans E =R3eae. f: M|y|— [y =2z+2|=]0 0 1].[y]|+][2].
z Z=x+3 10 0 z 3
—2

. 7 vu au I1.3 est la rot. vect. d’axe A dirigée par K = %(7 + 7+ ?), d’angle o = Tﬂ

. Donc f vissage. M € D= MM' = ’y.l_f ... [calculs] ... Transl. de vecteur 2(7 + 7 + ?)

— L -1 0
D{ —rty=1 Veérif. Direction de D : { rty=0 ou ( 1 ) A (—1) Retrouver K !

-y+2z=0 —y+z2=0 0 1
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25.4 Compléments sur les Applications affines

25.4.1 Reésumé dans £ = R? ou R? affine euclidien

. f affine, est une isométrie affine de € (f € Zs(€), groupe); sil'appl.
1. Isométries affines =

linéaire associée est une isométrie vectorielle de F : f € O(E) (groupe).

- 7) € {ldg} < f € {Translations de £} essentiel et connu

=

f e{tldg} < f € {Translations ou symétries-point de £} connu aussi
- 7) = 07 [rot. vect. de R?] & felss ‘ (groupe des) déplacements du plan P|: vu
- 7) = OF [rot. vect. axiales de R3] & f€Tsy |(groupe des) déplacements de &3 ‘ : vu

2. |Non | isométrie, mais signalé
- 7) € {k.Idg,k # 0} (gr. abélien des Hom. vect.) < f € {Homothéties-Translations de £}
(non abélien pour hom.-affines et translations)

—_—
- 7 = k.(isométrie vect.) [on dit similitude vectorielle] < f : similitude affine de £.

‘Similitudes en dimension 2‘

« En vect. Matr. de f enbaseomn. : . <§§;§gg —ngg)):(g —uv> ou 1. <§?Z§Z§ filfs(ii))

. - / ;. .o =
On peut aussi utiliser les complexes z+ 2/ =r.e"*.2 ou 2 2 =re "z

e En affine z+ 2/ = r.e'®.2 4 Cte (similit. directes) ou 2z +— 2’ = r.e"®.Z + Cte (indirectes).
Avec C : 2 =a.z+b, a+#0, pour les directes.

25.4.2 Projection affine orthogonale sur P : x + 2y — z = —1; vérifications
2 o T . 1
1. On cherche 12 coefficients : Q = M': | ¢/ | = y|l+|.]. Notonsmw=1[2 | LP.
2 z -1

— N 1 : /
2. Posant |QM = \. 7| (1), on passe de 12 & 1 inconnue : Ap;.  On exprime (2) |M'=Q € P.

N . 3 SaAr — - —
Premiére solution. On a: I(0,0,1) e Pet IP=QM = A7 avec \.(W . 7)) =x+2y—2z+1
Distance d'un point & un plan affine. On trouve le type Y = A33.X + B. (I inutile !)

x—a 1 x! 5 -2 1 x 1
— 2y — 1 1 1
OM: |y—y :%. 2 i et [y =c{-2 2 2] (y)-z |2

z—2 —1 2 1 2 5 z —1

SN — N
Deuxiéme solution, légére variante. Avec QM = M'M = \. ', on exprime de plus que M’ € P (2)
pour trouver A : x’ +2y — 2 = —1.

‘ Vérifications de A ‘ on se doute que c’est la proj. vectorielle sur le plan vectoriel : z+2y—2=10:

— —
Avoir Tr(f)=rg(f)=2:vu Et on a expliqué que sa matrice était sym. car proj. orth.

—
‘Vériﬁcations de Bs ‘ on sait (ou on voit) que B, c’est O’ ou OO’ ; donc colinéaire a 7 !

25.4.3 Propriétés des applications affines

—

1. Composition |La composée de 2 applications affines gof est affine associée a go f .
A : ” 2] — / !/ — 7 — F .- LA
Démonstration. Ona O"M” =g (O'M')="gof(OM) et gof linéaire. Terminé.

Utilisation

e Soit s7, sy deux symeétries points; qu’est-ce h = sjosy 7 Rép. : 'endomorphisme associé
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est h = (=Id)o(—1d) =1d; d’ou h translation ... de vecteur 2.1J. (srosy # sjosy).
o t_wohrooty = f7 7 = Id o(2.Id)old = 2.Id; f hom. aff. rapport 2, centre I + (— ).

® hjo0hrye? Idem : translation. Dessins ? cf. ch Géométrie de R>.

Soit D une droite. Alors f(D) est une droite ou un point.

2. Image d'une droite f Et conserve le parallélisme au sens : Dy//Dy = f(D1)//f(D2).

Démonstration

—
si f (W) # 0p: il dirige f(D);
sif(w)= 0p image=un point.

Attention| On n’a pas dit f(D)//D ! Mais ceci vrai si translation ou homothétie affine.

D:(I,W) ou IM = A%. Donc m/:?(m) :)\7(7){

. ) N y M N’
3. Conservation du barycentre | Si G = Bar ) donc o + B # 0, alors G' = Bar o 8)

—  —

E = 7(04.GM +BGN) = UF ca.G'M +5GT>V’ = 6}1: Fini.

—_— —
0

—
Démonstration a.GM + SGN =

e L’'image du milieu de [M N] est le milieu de [M'N'].

e Si une application affine R? — R? permutte 3 points M, N, P (par exemple les sommets d'un
triangle), leur isobarycentre est invariant.

o Si M = Bar[(A,a); (B, 8): (C,7)] et (AM) N (BC) = A’ alors A" = Bar[(B, 5); (C,)] (Proj.)

—
4. (*) Lien : points fixes de f—Vecteurs invariants de f .

— — — —
(a) D’abord sur le rang. Soit I’ équation en M : f(OM)= b, r=rg(f). (%)
—
Veérifier que : soit (*) n’a pas de solution [si b ¢Im( f )], soit posséde comme solutions un sous-

espace affine de direction Ker (7)) ; donc de dimension p —r, p étant le nombre d’inconnues.
(b) Casou f: &—E (donc 7 : E — E). Notons & 'ensemble des points fixes.
. ’ —~ —_ — — —_— —,
Vérifier que : M'=M < O'M= f(OM) & (f —1d)(OM) =—-00". (xx)
Donc : soit & = (); soit sous espace affine de direction Ker( f — Id). Exemples ?

25.4.4 Remarques

—

1. En fait, un e.v. est lui méme un e.a., attaché a lui-méme ! La bijection de £ dans F : M — AM
est ici de "E muni de lorigine @" dans E: 7 € Bz +— 7 — d € E; on dit
qu’il posséde "une structure affine canonique". C’est pour celd qu’on parle de :

e Translation dans un e.v.: @ —— 2 + u pour M +—— M' =M + 7 ; et, en e.v.euclidien, de

e Distance entre 2 vecteurs : 6(u,v) = |7 — w|| pour §(M,M')=|MM'|=||OM —OM]|.

Attention ! une translation n’est pas linéaire (si u # 6)) 3

2. Résumé. On avait : Ici :
Espaces vectoriels Espaces affines.
Sous-espaces vectoriels Sous espaces affines.
Combinaisons linéaires Barycentres.
Bases Repéres.
Applications linéaires Applications affines.
E.v.euclidien E.a.euclidien.
Isométries vectorielles O(E) Isométries affines Zs(&).

— —
. On a encore f bijective < f bijective et f~' est affine associée & f '

. D’ou, pour £ = F : quand 7 décrit le groupe linéaire GL(FE), f décrit le groupe affine GA(E).

3

. (*) Rappelons "l'inversion géométrique", application non affine de & = R?, mais intéressante géométriquement !
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Exercices: Transformation de R? e.v. puis e.a. PTSI

Ne)

10.

. Dans E = R? espace vectoriel euclidien décrire les endomorphismes de matrice :

A:(—O1 é) B:(g é) O:(%Z —1732/2)’ D:(%?z fﬁ) et E:(i —34)'

[E correspond a r.e“® avec r? =32 4+ 42, Similitude vectorielle directe de rapport 5, d’angle a.

. . . . / ) / o0 —
. Dans R? e.v. e. (a) Que signifie en termes d’endomorphismes/matrices 2’ = e'®.z et 2/ =¢e'*z ?

(b) Soit o la sym. orthog./ y = xz.tan(B) et o' /y=xz.tan(B+ ¢). Que dire de 0’0o o ?
[Justifier par exemple, que 0’0 o est une isométrie vectorielle / positive / donc rotation / etc.]

L[ 22 0 0 -1 L[ 2 VB V6
.‘Dans]R?’e.v.e.‘(a)Soit A=zl2 -1 2);B=[-10 0] et C=7 V6 1 3.

2 2 -1 0 1 o0 4\/631

1
Décrire pour A, B, C' les endomorphismes associés (en base o.n.) Matrices inverses ?

(b) Préciser la droite, symétrique orthogonale de Vect(?) / au plan 2z — 3y + 2z = 0.

. Dans R? ou R? e.v.e. Matrices symétriques (# Symétrie en général !) et de plus orthogonales ?

. Dans R? e.v. e. Soit r € OF d’angle a autour de Vect(); 7 = a + AW, @ L . Si|w]=1:
)

(a) r(@') = cos(a). @ + sin(a).w ANa, r(T)=r(a)+\w, [, r(T
M) r(T)=c?+sdAT+(1-c)(J.Z) T =T +sdAT+(1-0c)&

On se limite (programme) a la premiére partie : en linéaire

(a) Dans R3 affine euclidien expression de la proj. orthog. sur P : x + 2y — z = —1. Vérifications ?

(b) (*) Lieu des projetés orthogonaux de O sur les plans z+Ay+pu.z = 17 [Sphére : 2° 45y +2% = x.

(a) Vissages dans R? e.a.e. Décrire f M —— M’ : 2’ = 2 — 2,9 =z, 2/ = y. [Complément : f
composée de 2 demi-tours axials=retournements et de 4 réflexions=symeétries; /plans affines.|
(b) Idem avec 2’ = (-2 +2y+22—4)/3, ¥ = 2z —y+22+2)/3, 2= (20 +2y—2+2)/3.

(a) (*) Dans R affine projection oblique ¢ sur P : 2z4+y—z = 2, de direction Vecﬂ(l, 1,1)).

—

20 = —y+2+4+2, 2y = 22+y+2+2 2/ =-20—-y+32+2; Tr(¢)? 00 =k
2 =3 4+4y+22—4

(b) (*) Inversement décrire f : { 3 = -2z -3y —22+4 |[Points fixes 7 Tr(?) 7 ... Dilatation.]
2 =4 +8y+52—8

(*) Applications affines telles que f(D)//D, VD. [f(D) étant une droite ou un point.|
(a) Soit 7 un endomorphisme tel que 7(?) colinéaire & @, ou V7T : 7(?) =k=.7.
Montrer que f = k.Id, k fixe. [Prendre 2, 3§ colinéaires ; puis libres et utiliser @ + /]

(b) Déduire que les solutions sont, si f # Cte, les translations ou les homothéties affines.

(a) (*) Lien affine-vectoriel : Peut-on trouver v tel que Tof = foT%, f affine, T translation ?
(b) (*) Dans R? affine euclidien, décrire soros, s symétrie orthogonale/plan, r rotation.

_ N [N RN
(c) (**) En e.a.e. f conservant les distances est affine! [|[MN + NP| = |[M'N' + N'P'| =

—_— — — — S —
MN.NP = .. dou,si f(MyM)=MiM', [ conserve le produit scalaire; donc linéaire !|




Chapitre 26

Les polynémes, K|x|

26.1 Généralités

26.1.1 Définitions. Opérations

1. Polynome (formel)

Pour aj € R ou C, on appelle polynéme (formel) d’indéterminée x, toute expression du type :
P(x)=ag + a1x+...+a,x". L'égalité P(x)=Q(x)= by + ... + by X" est définie par : ay = by, Vk.

Exemples. 1) Le polynéme nul P = O ou P(x)=—3x*+2x1x°
2) Mais : 1+x+x%+... non polyndéme car il faut un nombre fini de coefficients non nuls.

2. Trois opérations. Addition P + @, Multiplication par une constante A\.P, Multiplication P.Q :
si P(X):a0+alx+...+a5.x5, Qx)= bo + b1x—+...+byx? P.Q(x)= Z X, avec ¢, = Z ap—i-b;.

0<k<9 0<i<9
Degré |Si P(x)=ag + a1x+...+a, X", ap # 0, on dit d°P =n. Si P = O, on pose d°(0) = —oc. ‘
d°(P.Q) =d’°(P)+d°(Q) d°(P+ Q) <max[d’(P),d°(Q)] d°(P)=0« P =_Cte#O.
Exemple. Si P(x)=—3.x* +2xM4x": d°(P) =5 (et P normalisé, a cause du coeff. 1 de x°)
et val(P) =2 [valuation : degré du monéme de plus bas degré; si P = O, val(O) = +o0].
Et: SizeR, P(:E)x_)rxiool.xa P(:E)x:o —3.27, P(x)m:IT(x —1) [2*(z —1)(z* + 32+ 3)]!

3. On vient de considérer la fonction polynéme. C’est : =z € R — P(x) = ap + a1 + ... + apz”.

Ainsi, si Q(x)=P(x)+x(x—1)(x—3), les fonctions polyndémes ont méme valeur sur A = {0, 1, 3}.

26.1.2 Théoréme

1. ‘Si pour une infinité de x, P(x) = Q(x) : alors les polynémes sont égaux coefficient & coefficient. ‘

(On dit égaux formellement ; on peut donc identifier polynémes et fonctions polynomes).

Démonstration
SiD=P—Q dedegré d =d°(D) > 0, D s’annulerait au plus d fois. Faux : D = O, d°(D) = —oo.

Idem : ‘Si un polynéme de degré au plus n > 0, s’annule en n + 1 points distincts, c’est : P = O. ‘

2. Utilisation : polynémes de Tchebytchev ‘3 ! P, polynoéme, tel que P,(cos(f)) = cos(n.0). ‘

1) Unicité : Si P, (cos(0)) = Qn(cos(0)), alors P,(x) = Qn(z) sur tout le segment [—1,1], donc égaux
coefficients par coefficients. [Et ainsi, en particulier, P,(z) = Qn(z) Vz € C ||

2) Existence : Ou par la formule de Moivre [cos(0) + i.sin(0)]" = cos(n.f) + i.sin(n.0)) ; etc.
ou par récurrence avec cos|[(n + 1)0] + cos[(n — 1)0] = 2.cos(n.0).cos(#) et les indices n = 0 et 1.

3) Questions : préciser Py, Py, P>, P3.  Que se passe-t-il si on change 6 en 7w/2 — 0 7
(Idem sin((n + 1).0)/sin(f) polynoéme en cos(f) : polynéme de Tchebychev de 2éme espéce.)

175



176 CHAPITRE 26. LES POLYNOMES, K[X]

26.2 Divisibilité des polynémes

R|x] désigne ’ensemble des polyndémes a coefficients réels. C[x| 'ensemble des polyn. & coeff. dans C.

K|x] 'ensemble des polynomes a coefficients dans K, K = R ou C souvent. (Aussi: Q[x], Z[x].)

26.2.1 La division euclidienne

1. Théoréme
A, B dans K[x|, B # O} alors 3/(Q, R) (quotient, reste) : A = B.Q + R avec d°(R) < dO(B).‘
Démonstration
Unicité. A= BQ1 + R1 = BQ2+ Ry = B(Q1 — Q2) = Ry — Ry ; si Q1 — Q2 # O, impossible
avec les degrés.
Existence. Algorithme d’Euclide, par exemple [Le mot "algorithme" vient de Al Kharezmi].

Exemple A=2x3—7x?4+x—1, B=x?4x+1 a traiter comme la division de a =22 par b=7.

2. Définition ‘ On dit que B divise A, noté B/A, sl existe @ tel que A = B.Q. ‘ (Ainsi O divise O).

26.2.2 Division par (x—a)

1. Théoréme ‘On a: P(x)=(x—a)Q(x)+P(a), notée (x). Donc (x-a) divise P & P(a):O.‘

En effet, le reste est une constante cte; et x = a: cte = P(a). Equivalence facile.

2. Pour la programmation, hors programme, algorithme de Horner :
P(x) =apx" + ... +ap
Qx) = by 1x" L+ .+ by
. Alors, pour k > 1, le coeff. de x* dans (%) est a d’une part; et —a.by + bx_1 d’autre part

(convention b, = 0). Donc ‘bk—l = ay + a.bg. ‘

[Attention : on notera souvent P(x)=aox"+...+ay]

Notons {

«Si k=0, quest-ce b_1 =ap+a.bp? (*) montre qu’il s’agit du reste P(a) !

L’algorithme précédent permet de trouver non seulement le quotient, mais aussi

Donc | le reste de la division par (x—a) avec seulement n additions et n multiplications.
Ceci donne pour z =a, P(z)=a¢+z.(a1 +z.(.... + z.(ap—1 + z.a,)...)).

Exemple Faire ainsi la division de x®—x* — 3x3 + 3x* — 1 par x+2. [Un calcul direct de P(—2)
est plus long !| (Poser 3 lignes : celle des ay ; celle des a.by ; celle des by, avec bs = 0).

26.2.3 Polynémes irréductibles
1. Remarque Dans Z, la divisibilité est définie au signe prés (ainsi les diviseurs de 2, premier, sont
+1,£2) car les éléments inversibles de Z pour la multiplication sont +1.

De méme, les polynomes inversibles étant les constantes non nulles, la divisibilité dans K|[x]| est
définie & une constante non nulle prés.

Un polynéme P # O et # cte non nulle, est dit irréductible si ses diviseurs sont

2. Définiti .
=IOl les constantes non nulles : k& € K* et les polynomes "associés" : k.P, k€ K*.

Exemple P(x)=2x+4 irréductible sur R et sur C.

26.2.4 Irréductibles dans R[x] ou C|x]

Les polynomes de C[x], irréductibles sur C, sont exactement ceux de degré 1.

1. Théoréme Ceux de RJx] irréductibles sur R, sont ceux de degré 1 et ceux de degré 2 avec A < 0.
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2 [Fempied]

1) x*+x%41 est réductible sur R. Au ch. C, il a été factorisé sur R par plusieurs méthodes.
2) Idem : x*—x*41 sur R. Astuce : x?—x*+1= x1+2x*+1-3x? =(x*+1)? — (V3x)? = ...
Ou ses racines (*) ij, ij = i.j = —i.j%, —ij(parité), +i.j> et faire (x—z1)(x—%1) ...

3) x*+1 a factoriser sur R, méme astuce par exemple.

Démonstration

— Un polynéme irréductible sur C (donc non constant) ne peut étre que de degré 1, d’aprés le
théoréme de D’Alembert-Gauss : P(x)=aox"+...4ap=ao(x—21)(x—22)...(x—25) (%).
Inversement, un polynéme de degré 1 est irréductible.

— Pour P € R[x], irréductible sur R (donc non constant), soit a une racine sur C.
Si a € R, forcément P est de degré 1. Si a € R, comme P est a coefficients réels, @ # « est
racine ; donc P(x)=(x—a)(x—a)Q(x); forcément @ € R* et P de degré 2 avec A < 0.
En sens inverse, ces polynémes sont irréductibles sur R.

26.2.5 Relations entre coefficients et racines, somme et produit surtout

Définition ‘ Un polyndéme est dit scindé s'il s’écrit P(x)=aox"+...4-an=a0(x—21)(x—22)...(x—2p) ‘ (%)

x4 non scindé sur R.  Sur C, tout polynome est scindé et rappel :

o1 =21 +22+ ...+ 2
09 = 21.29 + ... + 2pn—12n

Formules de Viéte |Notons 03 = 212223 + ... "fonctions symétriques élémentaires"

Op = 21.22....2n,

lices aux coefficients : |01 = —a1/ag; o9 = +az/ag; ... o = (—1)¥.az/ag ... | développer (x)

(*) Exercice en complément :

(n—1)m

].

Résoudre (z 4+ 1)" = €™ a € R et simplifier P, = sin(a).sin(a + z)....sz’n[a +
n
z+1
e2ia
. s Tr . - , ‘rr k
z= e’(“+%)(e’(a+%) - e_’(aJrkT)). D’ou les racines zp = e’(“+%).2z’.sin(a + —W), ke [[0,n — 1]].
n
Leur produit vaut

. d’une part : (—=1)".[1 — €*™]/1 (Victe) ou (—1)""1."" 2i.sin(na);

ir (n=1)n

. d’autre part : 2".i".P,.e"™.en 2 ou 2".i.(—1)"_1.Pn.ei'"“. Dou P, =

. . 2. -1
(Question en plus : En déduire sin(=).sin(=2)...sin (n=Dm _ 2:71 )
n n

Solution : On a FEgq.< | "=1ez+1=¢¥0 e/ Eclo,n—1];

26.2.6 (*) Compléments sur la divisibilité
1. Montrer que PoP(x)—P(x) est divisible par P(x)—x. [= PoP(x)—x divisible par P(x)—x ||
Solution. Cet énoncé épouvante ! Posons P(x)= Z an_px®. On connait A¥ — B¥ = (A — B)(...)

0<k<n

En écrivant P(P(x))—P(x), il suffit de voir que chaque :  a,_;.[P¥(x)—x"| est divisible par
P(x)—x : la clé a bien comprendre. Mais que |...] soit divisible par P(x)—x est alors clair !

2. Division suivant "les puissances croissantes" :

. En plus de la division euclidienne, on a la division suivante; par exemple :
Si A=1+4x+x>; B=1—x+x* [val(B) = 0]; alors 1+x+x>=(1—x+x%).(14+2x+x?)+ x> R(x)
qui est appelée division suivant les puissances croissantes & ’ordre 2.

. Utilisée pour la décomposition de fractions rationnelles et pour les développements limités.
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26.3 Dérivation des polyndémes

26.3.1 Formule de Mac-Laurin

! (n)
P (0) X+... + 7P (0) X
1! n!

1. Enoncé. |Sin > d°P, alors: P(x)= P(0)+

2. Démonstration : On note tantét P(x)=ag.x"+a;.x" 4 ... +a, (1)
tantot P(x)=ag + a1x+... + a,.x" (2) (comme dans l'algorithme de Horner).

Ici, on utilise (2); on dérive k fois et on trouve : P%*)(0) = kl.aj; d’ou aj cherché.

26.3.2 Formule de Taylor pour les polynémes

P pm)
Sin>d°P, alors: P(x)= P(a)+ ('a) (x—a)+ ...+ '(a) (x—a)"
1. Enoncé. 5 P'(a) n‘P(")(a)
ou bien, avec x = a+h: P(a+h)= P(a)+ T.h—i—... + 0"
! n!

2. Démonstration. Si Q(h)=P(a+h), la formule de Mac-Laurin appliquée a @ avec @' (h)=P'(a+h)
. QW ()=P®) (a+h),... fournit alors naturellement cette généralisation [Q'(0)=P’(a)...].

26.3.3 Application aux racines multiples

PP a est dit racine d’ordre k (au moins) de P si (x—a)* divise P ;
Définition . . k+1 ..
racine d’ordre k exactement si de plus (x—a)""" ne divise pas P.
1 : > 1. a racia ‘or C ins k A = k 1) = c égalités
Théorome Soit k > 1. a racine d’ordre au moins k < P(a) = ( )_ = P*=D(a) = 0 (k égalités)

a racine d’ordre k exactement < P(a) = P'(a) = P<k D@)=0 et P®(a)£0.

Démonstration. Il suffit de voir ligne 1 :
= Si P(x)=(x—a)".Q(x), trouver ce qui est dit par (*) la formule de Leibnitz.

< Avec 'hypothése, la formule de Taylor en ¢ donne de suite la réponse.

Remarques

1) Un polynoéme de degré n sur C a n racines en comptant les ordres de multiplicité (P(x)=x").

2)Sia#b etsi P divisible par (x—a)® et par (x—b)”, alors P est divisible par leur produit.

3) (*) a racine de P a l'ordre k exactement < @ racine de P a l'ordre k exactement, ot P est le
polynoéme dont les coefficients sont conjugués. Donc

Si P est a coefficients réels, ses racines non réelles sont conjuguées avec méme ordre de multiplicité.

(*) Pour 3) en effet : si P(2) = ag.2™ + ... + ay,, par définition : P(2) = @g.2" + ... + @y,.

Donc P(a) = 0 < P(a) = 0. Et de méme pour les polynomes dérivés successifs.

. . . . . L / .
‘Un exercice corrlge‘ Soit P € R[x|; montrer que si P est scindé sur R, P’ aussi.

Sol. Entre 2 racines réelles distinctes de P, (au moins) une de P, grace au Théoréme de Rolle :

Si f est C° sur [a,b], dérivable sur ]a,b[, a # b, et f(a) = f(b), alors f’ s’annule sur ]a, b|.
. Donc si P a n racines réelles distinctes, c’est clair.
. Cas général : Soit x1 racine de P al'ordre k; > 1, ... ) & l'ordre k, > 1;0ona ki + ... + k, = n.
Alors z est racine de P’ a l'ordre ki —1 ! et comme on a une racine de P’ dans |1, x2]..., cela fait

(ki —1) + ...+ (k, — 1) + (p — 1) racines réelles pour P’ (au moins). Ou n — 1 : le compte est bon !
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26.4 (*) Compléments
26.4.1 Des exercices corrigés
1. Soit 2 : apz" 4+ a12" ' 4 ... + a, = 0, ag # 0. Montrer que | z |< 1+m, m = maz | L |,k > 0.
lzix - Tm a0

|alz"_1+...—|—an|< lay || 2 "7 4.4 | an | o | 2" | -1

Solution. Si|z|>1 ona: |z|'= < <m. ;
i a0 o] HE
|z |" < TZ || Z_1| dou |z |<1+m; et si |z|<1 évident. [Borne élémentaire|.

—b
2. Equation du 3éme degré : Soit ax® + bx? + ex+d=0; on pose x—=z +a et avec a = 35 on
a

est ramené a |23 +pr 4+ ¢ =0 (¥)| (c’est-a-dire pas de terme en z2 et on a divisé par a # 0).
Méthode de Cardan-Tartaglia : Posant z = u + v, (%) devient u3 + v® + ¢ + (3uv + p)(u + v) = 0.

Donc, si on impose (1) 3uv +p = 0, on a (2) u® + v> + ¢ = 0. Résolution de { ulé':}_j3_f/_3q
Divers points de vue : ou on cherche une racine réelle (si coeff. réels), ou on est sur C; si ul, v

3 J—
solutions de T —i—qT—%: 0 (R) dite équation résolvante, avec u.v :?p ; si (up,vp) couple solution,

les autres : (j.uo,jQ.vo); (j2.u0,j.vo). Alors : 21 = ug + vo; T2 = jaug + j2.00; T3 = j.ug + j.v0.

Remarques. A =0 ou 4p® 4 27¢®> = 0 < Une racine au moins double. Plusieurs facons :

A = 0= ud=v>=—¢/2, uv=—p/3. Soit a une racine (sur C) de —p/3; alors :
b =—p?/27T=¢ /4, donc o ou (—a)® vaut —q/2. Supposons o = —q/2; alors ug = vy =
convient ; solutions : 2a, —a, —a. Inversement : 9 = x3 = ug = vg; donc A =0.

. Une racine de P’, soit =+, est racine de P si et seulement si ... 4p> +27¢> =0 ... A voir.

| Cas des coefficients réels| Discussion des racines réelles a faire (*) !

3. Equation du 4éme degré : Ferrari 16éme siécle. On se raméne d’abord a z* 4+ pa? + gz +r = 0.

p+y)

p+y)
2

5 ait un second

Puis chercher y tel que z? 4 (p + y)z? + ( — 7+ y2® + (

membre avec A =0 [ (22 + ]%)2 = y.(x — a)?] d’ou une équation de degré 3 en y !
4. (*) Soit f(2) = 2"+ a12"  + ...+ an, gl@)=z"—|a | 2" —..— | a, |,an # 0. Montrer que g

a une unique racine dans R™ et qu’elle majore les | z |, f(zx) = 0 (récurrence) [Borne de Cauchy].

26.4.2 (*) D’autres analogies avec Z :

On dit que deux polyndémes sont premiers entre eux (noté A A B=1) si leurs seuls diviseurs communs sont
les constantes non nulles (les unités). [Dans Z les diviseurs communs & 9 et 16 sont +1]. On ale :

Théoréme de (Bachet-)Bezout : AANB=1 < 3JU,V: UA+V.B=1.
(<) évident (A A B =1 signifiant pgcd(A, B) = 1)
(=) Par l'algorithme d’Euclide : dans A = BQ + R, les diviseurs de A et B sont ceux de B et R; jusqu’a

arriver & R,=pgcd(A, B), dont l'existence est en méme temps fournie; ainsi qu’une relation de
Bezout en remontant  [voir déja 56 A 15 = 1]. On en déduit les conséquences :

1) Théoréme de Gauss : A/(divise) B.C et ANB =1= A/C. En particulier la condition de Gauss :
Pour P irréductible (premier avec tout polynéme qu’il ne divise pas) P/BC = P/B ou P/C.

2) Aussi : (A/C,B/C et ANB=1= AB/C.  Cas important A=(x—a)®, B=(x—b)’, a # b.

3) Existence et I'unicité de la décomposition en produit d’irréductibles, pour tout polynéme non constant ;
qui donne aussi : pged(P, Q).ppem(P, Q)=P.Q [a une constante non nulle multiplicative prés|.
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M+ Exercices: Polynomes R[x], C[x]. PTSI

1. Factoriser sur R :
(a) x5 —1; (b) a*+2*+1; (¢) () z*—2?+1;
(d) 2® 42" +1; (e) 2% 4 22% +22% +1 [poser y = x—i—l si utile ; mieux 22 + 1 en facteur]
X

(f) Factoriser sur C, en trouvant une racine a € R.i: P(z) = 2% — (16 —4)2* + (89 — 16i)z + 89i.

2. Montrer que B divise A (noté B/A) si:
() B=x(z+1)2z+1) et A=(z+1)*" —2® -2z -1, n>1
b) B=a*+ax+1 et A=z 423 4 43 [factoriser B].
(¢) B=(z—-1)?2 et A=na" —(n+1)2"+1,n>1 [racine double].
(d) B=2%—-2z.cos(a) +1 et A=a".sin(a)—z.sin(n.a)+ sin((n —1).a), n > 1.
[Factoriser B ; attention au cas ou ses racines sont confondues].
() B=a?—2x.cos(a) +1et A=az""cos((n—1).a) — z".cos(n.a) — z.cos(a) +1,n > 1.

3. (a) Quel est le reste de la division euclidienne de [z.sin () + cos()]" par z* + 1.

(b) Reste de la division euclidienne de A = 2™ par B = (z —3)? [dériver].

5n

(c) Quotient et reste de la division de A = 2z par B=2° -1 [¢= ).

4. Racines multiples 7
(a) Montrer que 14 z 4+ 2%/2! + ... + 2™ /n! = P,(x) n’a que des racines simples (sur C!)
(b) Ordre de multiplicité de = =1 dans P,(z) = 2" —n.a" ™ +na" 1 -1 7
(¢) Trouver P de degré 5: (z —1)% divise P41 et 2 divise P — 1.

5. (a) Avec les racines de P(z) — P(0), trouver les polynémes P : P(x + 1) = P(z).
(b) On cherche tous les polynoémes P tels que : (v + 3).P(z) = z.P(z +1).
Vérifier que 0, —1, —2 sont racines. Poser P(z) = z(z + 1)(z + 2)Q(z) et conclure.

(¢) (*) Trouver, de méme, les polynomes P tels que : P(z?) = P(z).P(z — 1).
6. (*) Trouver une C.N.S. pour que 23 + px 4 ¢ ait une racine au moins double.
7. (*) C.N.S. pour que les racines de 2* — az3 4+ bz? — ¢z + d forment un carré; un parallélogramme ?
8. (*) Sans division euclidienne (Horner, hors progr.) diviser A = z* — 23 4+22? + 2 — 1 par B = 2 — 2.

9. (*) Montrer que 1 — z.cos(a) = [1 — 2z.cos(a) + 2°](1 + bz + ... + by2™) + 2" R(2) ;
et z.sin(a) = [I — 2z.cos(a) + 2] (1 4+ c1z 4 ... + coz™) + 2" 1S (), by, cp, & trouver.

[C’est, en fait, la division suivant les puissances croissantes a l'ordre n (hors programme) ;
les racines du polynéme de degré 2 sont essentielles ...|

z4+1 z—1 z4+1 z—1

=1 puis () G ()" = 2eos(a)

10. (*) Résoudre (




Chapitre 27

Fractions rationnelles

Apreés un difficile chapitre sur les polynoémes, en voici un plus facile ; d’autant qu’il ne s’agit que de

la pratique (résultats admis) sur des exemples simples.

27.1 Généralités

27.1.1 Deéfinitions

N(X) .
D(X)’ avec D # O. En fait :

sont deux représentants de la méme fraction ; le second : représentant irréductible.

Une fraction rationnelle est le quotient de deux polynémes

X-1
xX2-1 % X11

N
Quand ) est irréductible, une racine de N a l'ordre k est dite racine de la fraction a 'ordre k.

Une racine de D a l'ordre k est dite pole de la fraction a l'ordre k.

On note :
R(X) I'ensemble des fractions a coefficients réels. X est l'indéterminée (qui peut étre une matrice)

C(X) l'ensemble des fractions a coefficients complexes. (Q(X) etc. K(X), K désignant R ou C.)
27.1.2 Opérations
1. Quand on parle de fonction rationnelle (f : z H%-i-l)’ on s’occupe du domaine, f est C™ sur

—1* k!
R\{—1} et f*)(z) :% . Mais quand on parle de fraction, on ne s’en occupe pas (

1)
2. Résumé des opérations :

Somme des fractions rationnelles, produit entre elles. Lien entre + et . : distributivité.

‘ On passe de K[X] a K(X), comme de Z a Q. ‘ On met ensuite  au lieu de X par commodité.

3. En complément (*)
Transformer Iéquation (1) az® +bz® 4 cx +d =0, a.d # 0, par la fonction f(z) =1/x.

C’est-a-dire, trouver une équation en y (2), dont les racines sont les —, xj racines de (1).
T

. 1 1 1 1 1 1 1
Solutionl On cherche ¢} =— + — + —, o) = + + et oh =—— ... Avec
1 i) T3 1.2 X2.T3 xr3.T1 T1.22.73
c b a
v — oty 4+ oby —oh =0, on arrive & : ¢° + Eyz—l— Ey—l—a =0 ou(2) diy*+cy’>+by+a=0.
ax® +bx? +cx+d=0

Solution2 "Eliminer" x entre C’est-a-dire, trouver une C.N.S. pour que

et: y=1/x.
les 2 équations soient ensemble possibles; soit une C.N.S. pour que les 2 équations aient au moins
une solution commune en x. C’est facile ici et méme réponse !
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27.2 Décomposition en éléments simples sur C

27.2.1 Le résultat

Si D(z) = k.(x —a1)™....(x — ap)*? alors on a, et de maniére unique,

1. Théoréeme | N(z) B()+ cte I
D(z) (x—ap)™ 7 x—a

+... Idem pour les autres poles.

E(x) étant un polyndme appelé partie entiére
pouvant s’obtenir comme quotient de la division euclidienne de N par D.

o .1 2.4 2.4 94 a . b n c . d

xemple-1 : = = .

S D)+ 12 (@ — i)z +i).(z + 1) T4 z4i @+1? T+l
C

Comment trouver les 4 coefficients 7 : partie principale relative au péle -1".

wr1)? "ot

. Déja, on voit juste aprés que a, b et ¢ sont aisés.

. Puis, on peut prendre ici =0 d’ou d (vu aprés).

. Faire une vérification ... et c’est fini !

. (Si on voulait, en conjugant tout sauf x : a gauche, fraction invariante ; a droite on aurait

(=)

a
2
+x+i+x—i+(9€+1)2

c C - _ ) L. .
Unicité = a =b, b=a, c,d réels : autre vérification !)

+:v+1'

2. Comment trouver le coefficient du terme de plus haut degré, dans une partie principale ?
c

d
@+ 12 741

Dans I'exemple trouver le coefficient ¢ de pour le péle double z = —1.

. Méthode : |Multiplier chaque membre par (z + 1)%; puis faire z = —1.| Car

4 . ,
a gauche ﬁf)_%, a droite (x + 1)%(2 + 1(11 + Iij)-k%-kd'(%m quec:c=1.
. Idem : multiplier par  — ¢ puis x = i; donc a = —1/2.
. multiplier par x + i puis = —i; trouver b = —1/2.
. Enfin, la valeur commode x =0 donne d= —3.

. Vérification z = 1 acceptable : associer les 2 termes non réels.

3. (*) Dans cet exemple-2, on calcule et utilise le début du reste.

4
5+ 1 . a b c ) 9
m = -1 + P—i_;—’_z’—i—z car . N(I’) :D(l')(x—l)+ [—Jf —‘r}
N(x) —x2 4 ..
donc : =x —1 + —— (fractions soulignées égales pour co apres).
D(x) @+ 1) ( ig gales p prés)
. Méthode : Multiplier par 22, puis = 0 [noté *z?, £ =0] : a=1/i = —i.
. Idem : Multiplier par (z + 4), puis prendre x = —i; alors, cette fois : ¢ = —2.
. x =0 : pole déja vu. Mais on peut utiliser co : dans les 2 fractions soulignées,
on multiplie par z et on fait tendre = vers co; alors b+c=—1;b=1.

. Vérification = i possible. Sans le début du reste, faire aussi x = 1 : moins bon.

27.2.2 Autres exemples

cte cte cte

1. Décomposer : ————. Rép. : déja fait car on a + + et unicité !
P (x+1)3 P ) (x+1)3  (z+1)?2 z+1 ——
7.
2. Décomposer : ﬁ
Tx 7 7

Réponse : il suffit d’écrire 7z =7(z+1) —7 d’ou: EFS)E = G @EE
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1
3. Décomposer : pran Réponse : 21 =0+ . iz’ + P a, b facile par la méthode, a = %
Mais on peut ici utiliser la parité F(z) = F(—xz) = I i = b= —a, utiliser z =0
_— —xr—1 —T+1i

et aussi multiplier par z, puis x = co qui redonne a + b = 0. (Et conjuguer si on veut : b =@.)

A bien voir car c’est la dérivée de =z +— Arctan(zx).

1
4. Dé —— .  En déduire une expression simplifiée de : =
écomposer @) Xp p Sh Z A
o 1 a b 1 ) : 1 11
Rép. : m = O+E+a:—+l’ a=1,b=-1. S, = 1_n—i— 1 (télescopie) car RETD "k T
2 +x+1
5. (*) Décomposer F(x)= m (Exercice de calcul.)
2
1 b d
Ind. : rArtl =0 + —1— + ¢ + ; et a,b, c, d réels, en conjuguant, si utile.
x?(z —1)? (=12 z-1
a =1 et c = 3 aisément. PUIS xx, =00 donne b+ d=0. Encore 2 éq. et la vérif. sera faite!
Voir que x = —j est commode vis a vis des dénominateurs : 1/j2 =4 1/j= j%2 = —1—j, avec
.2 .
I'implication ‘ (Aj+B=Cj+D; A, B, C, Dréels) = A=C, B=D. ‘ A gauche % = —27,

adroite aj+b(1+j)—c(l+j)+dj; don2éq. b—c=0, a+b—c+d=—-2;doncb=3, d=—-3.

27.2.3 Décomposition de P(z)
P(x)
Remarques o Toute autre solution que la suivante : difficile ! [Penser & P(z) = 9.(x — 1)%.2%]

e Tous les poles sont, en fait, simples; mnormal car : si a est racine d’ordre k > 1 de P, alors a racine

d’ordre k — 1 de P’ et donc pole d’ordre 1 de notre fraction ! Toutefois, le numéro suivant (sur les

poles simples) ne va pas car la fraction P’'/P n’est pas irréductible si P a des racines multiples !

Si P(x) =k.(z —a1)*.(z — a2)**....(x — ap)*”, avec (wvw) = v'vw +w'w +wvw' ... 1 P'(z) = ..
P/

donc : (x) LN (Les coefficients sont donc ici des entiers naturels !)
P(z) z—a xr —ap

27.2.4 (*) Complément théorique : cas d’un poéle simple

N
Suposons une fraction rationnelle irréductible Dgxi pour laquelle x = a est un pole simple, i.e. (=id est) :
x
1
D(a) =0, D'(a) #0. Ainsi: — n’admet que des poles simples : les n racines niémes de 1'unité.
"L‘ —
N
Dans ce cas , le coefficient de est : (a) .
r—a D'(a)
N(x) A . - . .
En effet, on a : D) = E(x) + ——+ parties principales relatives aux autres poles.
x r—a
N D D(x)—D
Et on sait que : A =] (z) (x —a)]y=q (évalué en z = a) et alors (=) = (z) (a) — D'(a)
D(x) r—a r—a z—a

si a est réel; (sia non réel, utiliser la formule de Taylor pour les polynémes.)

1

— ik.2m Wk .
Exemple = en notant w, =e » . Alors: A, = = —. Pourquoi ?
n. wn 1 n
k

n—1
Vérification :  Sin > 2, on doit avoir Z wr, = 0. Pourquoi ? (avec 0o). Est-ce vrai ? (connu !)
k=0




184 CHAPITRE 27. FRACTIONS RATIONNELLES

27.3 Décomposition en éléments simples sur R

27.3.1 Le résultat

1. ! 20
. Sur un exemple .
P2 21 1.z 1 1)2
. Rien de changé pour la partie entiére. Rien de changé concernant le pole (double) z = —1.
R . L. . , . , .. Ax + B
. Pour le pole x = i regroupé ici avec son conjugué x = —1, la décomposition est : PR A, B
x
224 Ax + B c d

2+

étant 2 constantes réelles a calculer (apres) : RS CESE = o + CEL + T

2. Autres exemples

! =0+ a + br tc do + de maniére unique
()2 12 z+1 [22+2+4+172 22+2+1 aue-
41
. L’exemple de fraction non réelle ————— n’a pas lieu sur R.
22.(x +1)

Tx 1 2 4+r+1

7 . .
1P @rl)P s@t1) 2@—12 identiques sur R ou C.

. Les exemples

LBt — 1 déja décomposée sur R (mais pas sur C : vue).
x
3. Que devient la méthode, vue sur C, pour le cas de R 7
1 a br +c dr +e
Sur I’ le F(x)= =0 :
ur Pexemple F(z) (x+1).[2%2 + 2 + 1]? +w+1+[x2+x+1]2+[x2+x+1]
On multiplie chaque membre par [z + x + 1]?, puis on fait = = j (qui annule [...]) !
A droite : il reste b.j + ¢ seulement.
1 | Or:

Etagalwhe:j—i-—lz——j?_l —j

Siw¢R, Aw+B=Cw+D, A,B,C,D réels = A=C, B=D [avoir]. Doa b=—-1,¢=0.

Finir :
a est facile. & = 0 est bon et donne e. *xz, x = 0o est bon aussi et donne d. x = ¢ pour vérifier.

(Autre fagon ayant bet ¢: On peut (pas obligé !) aussi faire

bx + ¢ 1 a dr+e )

Fz)-——— = ... = —— =0 t ...
(z) [22 + 2z + 1]2 [22 + 2 + 1] +:E—|—1+[:E2—|—l’—|—1] ¢

27.3.2 A bien noter

1 04— 4 br +c dr +e bit 1
= : jt+e=—0.
(x —1).[2%2 + z + 1]? r—1 [224+z+17?2 22+z+1 J j—1

1. Moins commode :

Alors faire le produit en croix : (bj +¢)(j —1) =1 et dés qu’on a j*, mettre —1 — j :
b(—1—j)+cj—bj—c=1. 2¢éq:-b—c=1, —2b+¢=0. Finir (z = 0,00), vérifier (z = 1i).

22" _g AztB e o d Iei: Ai+B=24"/(1+1)?
(22 + 1].(x + 1)? 22+1  (z4+1)? 24+1 \A=-1,B=0c=1Ld=-37

2. Exemple initial :

3. Attention : ne pas oublier ni partie entiére, ni parité s’il y a lieu

1 1 ax +b cx +d
.-Paire ——surR. zt+1=(22+1)2—22%; dou =0+ + .
-:E4—|-1 ( ) i +1 22 —V2r+1 22+V2x+1
Parité F'(—z) = F(z) : plus que 2 coefficients inconnus ! z =0, z =i : terminent.

(La méthode (*) ? w annulateur de 22 — V22 +1; w? = V2w —1, aw+b=1/w’*+V2.w+1..)
1
. PR (R ou C: c’est pareil ici). Ecrire F(z) = —F(—=z) et unicité ... Ci-aprés.
x(z? —




27.4. (*) EN COMPLEMENT

27.4 (*) En complément

27.4.1 Une fraction impaire

x(z? —1)?
1 1 b d
Ona: Flz) = (@212 z(z—1)2(z + 1) :%+ (x—1)2 +xi1 - (z+1)2 +a:j—1'
—b —d
Puis F(z) = —F(-z) = % + EFSIE + . _T_ 1 + @_1) + . i 1 attention ! Donc par unicité
1 1 b c —b c

a
peT e M z(z2 —1)2  x(z—1)2(z+1)2 x+(x—1)2+a:—1+(a:+1)2+x+1

Maintenant :
a est facile avec la 'méthode" ; bidem; et xx,x = oo est bon et donne ¢. (z =14 pour vérifier
1 1 1/4 1/2 1/4 1/2

mais on peut aussi relire son calcul) soit m == CESIE - + R -

185

1
27.4.2 Un cas de poéle d’ordre élevé
P (@+ 1)z + 2)
1 a be b5 by b3 by by
N t : = )
oS T @28 41 @12 @r2p  @r2t  @a2P  (wt2Zf z42
a est facile; bg aussi; by aussi (avec #x,2 = 00). On veut bien a la rigueur passer m a gauche

mais il reste 4 coefficients ! Il y a bien mieux, voici :

‘Posonsa:+2:T ou x:—2+T‘ alors £+ 1= —-1+7T et on cherche :

1 a bﬁ bl 5 6 a

= — 4.+ = s ———=bg+ b5 T+ ...+ 0. T°+T°. .
(C1+T)1°  —1+7 "qo g onencores T = 0ot b A b A L T
Eh bien, I’écriture 57 =bs+b5.T+ ...+ b.T° + TG.G(T) ou 7T non en facteur dans le dénominateur
de G(T) s’appelle "division suivant les puissances croissantes" de 1 par —1+ 7 (hors programme).

1-1T6
Mais ici, elle est connue car : T = 1+T+T?*+T3+T44+17° )
-1 1

Done —— :—1—T—T2—T3—T4—T5—T6.m. Dot bg=bs=..=by=-1 et a=1.

27.4.3 Equations réciproques
Une équation (1) ag.z" + ... + a,=0, a,, # 0, est dite "réciproque" si a racine d’ordre k = 1/a aussi.

1 a
Or I'équation dont les racines sont — est : —2 +..4+a,=0 ou (2) ap.2"+...a12+ +ap=0.
z z

Donc : (1) et (2) ont les mémes racines < DB =0k oavec k2= 1, soit k= £1.
QAn an—1 ao

L’équation est donc du type (I) si ar = ap—g [23 4+ 222 + 22 4+ 1 = 0

ou bien du type (II) si a,_ = —ak [0 =25+ (a - Dzt + (1 —a)z® +2—-1=0].

Résolution : Une fois les racines éventuelles 1 écartées, on arrive & une équation réciproque aussi,

de degré pair et du type (I) (sinon =1 racine) soit bz + by.z* 1 4 ... + by =0 et

1
bo = +boy, etec. Ouencore : bo.[z" + —] +by.[z" ! + |+ ...+ b, =0.
z" xr—1
1 2 1 2 2 Lo, 1 3 1
Posons y=x+ —; alors 2°+ 5 =y"-2; y(y"—2)=(2+-)@2"+—3)=2"+—3+y donc
x T x T x

1 . . 1 1., . . 1
x3+ﬁ:y3—3y; et en général x+1+W:(x+5).(x —i-ﬁ)—(a: l—i-ﬁ).

D’ot une équation de degré moitié en y. Voir les 2 exemples.
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M+ Exercices: Fractions rationnelles R(x), C(x) PTSI
2 1
1. Calculer la dérivée n-iéme de : 50+ . Puis de : . (Décomposer sur C.)
2 -4 241
2. Décomposer sur C :
1 -1 2 — g —1)?
T (paire) ; % (x=17); % (partie entiére non nulle) ;
n! 1 1
puis ) T e D@ =) () Sz —qyz (mpaire):; O e
3. (*) Décomposer
(a) sur C puis sur R : = (& voir) ; @ 1)1&:2 e (paire).
1 1 a4+ 32? +1 2’ +1
b R: =23 —_.
(b) sur 42241 333(1+:E3)( ) (x+1)2@2—x+1) (22 + 2 +1)2

/
4. Pour P(z) = k(z — a1)™...(x — a,)?, calculer P’ (méme avec coefficients complexes) ; puis 5

(*) Déduire que les racines de P’ sont barycentres de celles de P, affectées de coefficients positifs.

(*) Puis interpréter ce résultat en termes de convexité. (Théoréme de Lucas).

5. On cherche les polynomes P tels que P’ divise P.

(a) Veérifier que O est le seul polynoéme constant solution. Essayer de trouver d’autres exemples.
(b) lére méthode. Si n=degré(P) > 1, vérifier que : n.P(z) = P'(z).(x — a). (x)
Alors, avec (x) : Si b est une racine de P d’ordre k > 1, vérifier que b est racine de P’ d’ordre
k —1 et donc b = a. Conclure que P n’a qu’une seule racine (d’ordre n).
(c) 2éme méthode. Avec (%) et la formule de Leibnitz, montrer (n—k).P®) (z) = P*+D(z).(z—a).
Conclure que P®(a) =0,si k <n—1. Donc P(z)=K.(z —a)".
/ /
Z((j)) == ﬁ a(**) d’une part. D’autre part Z((j))
précédent ou cours). Par l'unicité de la décomposition (non démontrée, il est vrai), conclure.

(d) 3¢éme méthode (*) donne est connu (ex.

[On peut aussi penser a une équation différentielle ; voir cependant que a peut étre non réel.|

6. (*) C.N.S. pour que F(z)= ((a: — ;Lz)((x _2;2, ¢ # d ait des primitives rationnelles ?
x—c)?(x—
a B Y
prampn - R g | R
(z —c)

(avec xx,z = 00) donc C.N.S. B = 0. Voir alors que ceci se traduit -par équivalence- par :
1 1 C o o .
+ b= 7 ceci signifiant que (a,b, ¢, d) sont en "division harmonique" -ou quadrangle
c—a c¢c— c—
harmonique si complexes- avec, par ex., la relation équivalente : (a + b)(c + d) = 2(ab + cd).]

[Ind : Ecrire F(z) =

.Onveut 6=90=0; mais 3+ =0

Autre solution commode : identifier une primitive avec k/(x — ¢) +1/(x — d) et dériver celle-ci !




Chapitre 28
Intégrales simples f : [a,b] — R

Il s’agit d’un segment [a, b| et d’une fonction bornée ; sinon "Intégrale généralisée". [Spé comme les cas

Y1 ! . [T ds ) — oo da (@) +1(=a) 7
/0 ﬁ.dx, /o In(z).dz (non bornée) ; /1 ol I( )—/0 ST 5 =1 1

b
28.1 Définition de / f(z)dz en se limitant & f continue par morceaux

28.1.1 Cas des fonctions en escalier sur [a,b], a < b : aire

1. Définition
f définie sur [a, ] est dite "en escalier" s’il existe un nombre fini n et une subdivision A :
ro=a<1z1 <..<xyp=> dite "adaptée" telle que f soit constante sur chaque |z;_1,x;].

Exemple :

. & — E(x) est en escalier sur [O,g] et 0<1< g <2< g est une subdivision adaptée.

. D’ailleurs : chaque fois qu’on rajoute un point nouveau & une subdivision
(on dit subdivision "plus fine") si la premiére était adaptée a f, la seconde aussi !

2. Propriété-Définition

Si f = k; sur |z;—1, z;[ pour une subdivision adaptée; alors ¥a = Z (z; — x;—1).k; ne dépend

i=1
b

pas de la subdivision adaptée A; on lappelle intégrale de f sur [a,b| et on note / f(x)dz.

a

5/2
Démonstration. Se limiter simplement a voir que : / E(z).dx = 2.
0

Beaucoup de dém. seront omises mais faisons celle-ci : 1) D’abord un dessin !

2) Puis, soit A =x9p=a <z < ... <z, = b une subdivision adaptée. Notons :
AN =AUz 2 €ziq,z]. Alors o = Xar car (1 — xi-1).k; = (2 — 2 ki + (2 — 2521 ks
Et donc en ajoutant un nombre fini de points & A, de méme.

3) Puis : si Ay et Ay sont deux subdivisions adaptées, Xa;, = XA, 0A, = ZA,-

28.1.2 Cas fondamental des fonctions continues sur [a,b], a < b

1. Théoréme
Approximation uniforme des f continues par une fonction en escalier minorante ou majorante.

f étant C%([a,b]); Ve >0, Jp et 9 en escalier : p < f <Y et Vo € [a,b], 0<¥(z)—p(z) < e

Admis. En particulier :
Vx € [a,b],| f(x) — ¢(x) |< e donc : | supjap | f — ¢ |< €]; on dit que I'approximation est uniforme.

187



188 CHAPITRE 28. INTEGRALES SIMPLES F : [A, B] —» R

2. Conséquence. A partir de 1a, on voit sans peine que, si a < b, pour ¢, en escalier :

sup{/ xz)dr,p < f} noté I}  est égal a an{/l/J Ydx,v > f} noté I.

‘Cette valeur commune par définition | est appelée intégrale de f sur [a, b] et notée / f(z)dz. *

‘En résumé, on prend soit les fonctions en escalier minorantes ; soit les majorantes; soit les deux. ‘

/

/

Fonctions CM : z +— z.E(z)/2

28.1.3 (*) Extension au cas des fonctions continues par morceaux sur [a, ]

3 e < 4
1. Exemples . Limiter les paragraphes 2,3 a: / %E(.L)(LL =0+ 1 + % Dessus, fig.3.
ZACpIeh Jo 555, 1169
1+ tan(z)
1 —tan(z)
On peut la compléter aux points 7/4 + k.7 par la valeur 0, si on veut.

. Complément f(z) = Arctan( ) = Arctan[tan(z + %)] m-périodique ; graphe ?

2. Définition. Théoréme (facultatif)  Cas a < b.

On dit que f est continue par morceaux sur [a,b] s’il existe un nombre fini N et une subdivision
(adaptée) ag =a < a1 <..<ay =b telle que f/q,_, 4, soit continue et prolongeable

. . . . . . . . . + —
par continuité sur chaque [a;—1,a;], ce qui signifie : limites finies aux bornes a;” | et a; .

Notons : Cla, b] désigne 'ensemble des fonctions continues sur [a, b].
On notera : E[a, b] ensemble des fonctions en escalier sur [a, b].
CM]a,b] 'ensemble des fonctions continues par morceaux sur [a,b] : il contient les deux autres.

Alors ‘ Le théoréme d’approximation par des fonctions en escalier s’étend aux fonctions CM|a, b]. ‘

3. Conséquence :

On définit Vintégrale de f € CM]a,b] pour a < b comme ci-dessus?.

a b a
si a=1>b (définition) / f(z)de =0; et sia>b / flz)der = —/ f(z)dz.
a a b

Note ‘ Changer f en un point, donc en un nombre fini de points, ne modifie en rien I'intégrale.

De plus, on pose

28.1.4 Enoncé des propriétés de l’intégrale

1. Par rapport a Uintervalle. ‘Relation de Chasles‘

C (&
Si f continue par morceaux : Va, b, c: / = / + / qui se généralise.
a a b

2. Par rapport a la fonction. | Linéarité
. Posons : T / f(x)dz; alors ‘I(f—{—g)z[(f)—l—[(g); I()\.f):)\.f(f),)\GR.‘

. Pour f: [a b — C, (par exemple x +— €*), on définit :

/b f(z)dx = / fi(z)dx —i—i/ fa(x)dz. Alors ‘I()\.f) = AI(f), méme pour A € (C.‘

'Pour la fonction 1g sur [0, 1], on a aisément: I+ =0 < I; = 1; on dit "non intégrable au sens de Riemann".

*Pour d’autres fonctions aussi. f(0) = 0, f(z) = sin(1/z) sur [0,1] est : non continue par morceaux, mais a une intégrale !



B
28.1. DEFINITION DE / F(X)DX EN SE LIMITANT A F CONTINUE PAR MORCEAUX
A

28.1.5 Inégalités

b b
Sia<b: f20 = flx)dx >0; dou f< g:>/f /g(ac)dw.

En particulier : a<b = | / flx)dx | < / | f(x) | dx.

1. Théoréme

Démonstration® Attention : «a <b

b
. Si f > O, ¢ = O est une fonction en escalier minorante et o(z)dr =

0
. Pour la déduction, voir que g — f > O;  donc I(g— f) :al(g) —I(f) >

. Puis le cas particulier :

—[fISF<IfI]; etdone —I(| f]) <I(f)<I(|f]); or —B<A<B donne |A[<B

b
2. Remarque: Si| f|< K et a<b, on peut majorer encore : / | f(z)|dx < K.(b—a).
a

28.1.6 Valeur moyenne de f

189

b
< / f(@)de = I(f).
0.

On appelle valeur moyenne de f sur [a,b|, a # b, la valeur p =

1. Définition

si m< f<M, ona: pe[m,M]. (Voir le rectangle de meme aire)

Démonstration Permuter a et b n’a pas d’effet sur p : on peut donc supposer a < b. Puis facile.

Avec Uinterprétation géométrique (quart de cercle) l'intégrale vaut TR; = u= %

b
. Idem. Calculer par interprétation géométrique (demi-cercle a prouver) / V(x—a)(b—x)de.
a

Remarque

c b
Sia<c<bet f>0sur[a,c|, f<0sur [cb], I'aire gtométrique vaut / f(z)dx+ | / f(z)d

2. Cas ou f est continue sur [a,b]

. Valeur moyenne de x — / R? — z2 sur [0, R] L / f(z)de =(b—a)pu ——

b
e Propriété | Dans le cas ou f est continue sur |a, b, 3¢ € [a, b] tel que / f(z)dz = (b—a).f(c).

Démonstration [Propriété essentielle pour une preuve de la partie suivante.]

On prend M = sup, 3 (f) = f(w1) par Théoréme de continuité sur un segment ; idem m = f(2).

Par le Théoréme ici des valeurs intermédiaires avec la continuité : Je € [z1,x2] C [a,b] : p = f(c).

e Théoréeme : Hypothéses pour pouvoir affirmer / f(z)dx >0 [utilisé en Spé.|
a

b
Les 4 hypothéses suivantes : a <b; f > 0O; f# O; f continue; entrainent / f(x)dx > 0.
a

Démonstration
Soit xg tel que f(zg) > 0. Avec e = @ > 0, comme f continue, Ja > 0 tel que :
sur |xg — «, o + a[N[a,b] intervalle de longueur [ >0, on ait f(z) > f(zg) — €= f(;“o);
. . f(xo) Contre-ex. si on enléve la continuité
>0; dou: > l.—
ailleurs f > 0 don /a f(w)d l 2 prendre f : z — E(z), f # O sur [0, 1]

)

3Plus généralement, I(| f|) existe dés que I(f) existe; par exemple pour les fonctions monotones; 1/E(1/x) sur [0,1].
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28.2 Calcul d’intégrales

28.2.1 Théoréme fondamental du calcul intégral : ici f C°

Soit f continue sur [ intervalle, a € I. Alors F(z / f(t)dt est dérivable de dérivée f.

A N b
Théoréme | pyig (aisé¢) : Toute primitive est du type G(z) = F(x) + cte et / f(z)dz = [G(z))}

Au passage, toute fonction continue sur un intervalle y admet donc des primitives.

x

xo+h
Démonstration. Déja / f(t)dz existe. Et e € [xo,z0 + h] : F(xo+ h) — F(x0) :/ f(t)dt = h.f(c)

a

avec la formule de la moyenne, f C° (pas seulement continue par morceaux). Donc %(F (xo+h)—F(xg)) =

f(e) —”; f(zo) avec encore f C°, d'ou F'(zg) = f(z0). Ex : /;/29177( ).dx = [— (:05(.7:)}8/2 =+1>0.

C’est la 1ére fagon de calculer une intégrale (aire) : avec les primitives (mieux vues au ch. suivant) ;
la 2éme : intégration par parties (ci-dessous); la 3éme : changement de variables (ci-dessous).

Soit maintenant f C°% de [a,b] = R et w, v:J — [a,b], deux fonctions dérivables.

Conséquence Alors ¢(z / f(t)dt est dérivable sur J et ¢'(z) = flv(x)].0'(x) — flu(z)].u' (z).

Démonstration. Soit F' une primitive méme non explicite de f; alors ¢(z) = Flv(z)] — Flu(x)] est

1 d (/w2 dt 2.2 1 x—1

IR A i L iy R T v Rl T e M

dérivable par composition, etc. Ex : [f(t) =

28.2.2 Intégration par parties notons / f(z)dz pour / F(t)dt + cte, primitive si fC°

Soit ici  — u(z), v(z), C' sur un intervalle [«,v" continue par morceaux suffit], alors

Théoréme / (@) (z)dx = u(z).v(z) — / v(z).' (x)dz ou / wdv = ww — / vdu; du = u'(z).dx.

2 . ! ! A . N N . .
Démonstration. C’est (u.v) =u'.v 4+ u.v’ et on intégre. 4 exemples a bien voir :

. / 3.c08(x).dz = 3570 (z)— / sin(z).da . /0 " v cos(@)de = [sin(@)]— /0 " (e — T

car on a posé u(z) = z vu qu’on voulait le dériver (diminue le degré du polynome) et v'(z) = cos(x).

/ln )dz = /ln )N, 1 ode... u(z) = in(z),0'(z) =1 :>/ln(:17).d33 =zlin(z) - 1]+ C| e /e””.x.d:z; =..

/ Arctan(x)dx = [z.Arctan(x )]0 /0 N —sz dx = %—% [In(1+ xQ)](l) = %— 5 u(z) = Arctan(z),v'(z) = 1.

28.2.3 Changement de variables

1) Pour les primitives : soit z = ¢(t), C1 | [ f(z)dz = /f[gp(t)].gp’(t)dt mais on impose
Théoréeme| de plus ¢ bijective pour revenir & x: t = w_l(x).

t 2) Tandis que pour les intégrales :
b B
si p(a) =a,p(B) =0b; / f(z)dx = / flo(t)].¢ (t)dt, sans que ¢ soit forcément bijective.

Démonstration de 2). Voir, a droite, que Fog est une primitive. 4 exemples :

e f paire sur [—a,a] = ’ flx)de = /t_of( —dt) / f(t) ' f(z)dx = 2./af(:v)d:v
o (d;z:zt) = (:9) - °

e De méme : f impaire sur [—a,a] = f / f(t)dt; et donc : / / / fz

o /(1 + 2?)3.2.dz primitive d'un polyn()me; développer (1 + 2?)® mauvais car = 5 3(m).u (z) de prim. § !

e Soit I, = ’ Md:c; on n’a pas de primitive explicite mais ¢t = é =Va>0,1,=—-1,: I,=0.

1/a1+$2
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28.3 Sommes de Riemann (f C" ou C° par morceaux)

28.3.1 Meéthode des rectangles (zg =a <z <..<uxz, =0b, "pas" : mazr | v; —x;_1 |)
b—a

1. Notation. En général, subdivision A réguliére : x; — 2,1 = ——. Puis sur [z;_1,2;] : (&), avec
n

n

& € [zi—1,2;] qui donne Yp = Z(az, — x;_1.f(&), appelée somme de Riemann. ¢ On prendra :
=1

" b a b—a b-a b—a
e _ - - A - -
. les bords droits : En—; - .f(a—i—k.T) . ou gauches : En—kz_o - Sla+k. - )

. parfois les milieux (ici pareil que les tangentes aux milieux : méthode de Poncelet. Dessin aprés)

Admis : Les sommes de Riemann Y,, tendent vers / f(t)dt sin — +oo0. D’ot

1 & b—a 1 b .
=—. g fla+E. ) — / f)ydt=p= / fla+ (b—a).x]dx.
n n ' n—toc b—a J, Jo

; ; ; ; 1
° ‘ Comment reconnaitre une somme de Riemann si le cas 7 voir 3 choses : ‘ —, 2 etledéfile "
n

2. Théoréme °

e On peut se limiter & changer la variable discréte ”—" en la variable continue x € [0, 1] on
n

1
a aussi: p = / fla+ (b—a)z]lde |avoir: t =a+ (b—a).x|]. Mais ne pas écrire "z =-"1)
O n

1 1 1

28.3.2 Exemple. S, =——+ ——+ ...+ _1
n+1l n+2 n+n n

somme de Riemann :

1<k<n

1 1
de f(z)= o2 C° sur [0,1] avec les bords droits; (oude g(z) = . CY sur [1,2].) Par théoréme :

1 2
dx dt n+k T In(2
Sy converge et S,, — 52— /l - In(2). Analogues n2 2 w1 +%)

n—+o00 0

= [In(z + V1 + 22]§ = In(1+V2) : avec cette primitive donnée !

:Z n2+k2 n—>+oo/ ‘/1+,’E2

28.3.3 Complément : méthodes des trapézes de calcul approché (cf. 28.5.1)
1. Valeur approchée. Sur [z;_1, ;] au lieu de prendre (z;—x;—1)f(x;) (bord droit) ou (z;—x;—1) f(zi-1)

f@iz1) + f(z:)

(Base + base).hauteur

: aire du trapéze

(gauche), on prend la % somme (z; — z;—1)

2
S+ 3, :1<f<a>+f<b>
2

n

qui donne la valeur approchée : T, = 5

2. Dessin : équivaut a tangentes :

n

4 .« 1s . N L . L, .
On considére aussi la somme : sao = E (i — xi—1).m4, OU M; = 1nff Ci 1,24 > appelée somme de Darboux inférieure ;

i=1
n

et encore : Sa = Z(:cl —xi-1).M;, ot M; =sup fz, | 2.5 appelée somme de Darboux supérieure.
i=1

N2
M7 fC’1 pour les bords droits. Mais pour les points milieux, ou méthode dite
Rt
102  avee g(0) — g(u) = (v - u)g’ (o) + L0 e ful

5Un majorant de ’erreur est | en |<
Mo(b—

"des t tes" ili ! <
es tangentes" (aux milieux!), | €, |< EYPe
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28.4 Formule de Taylor Lagrange

28.4.1 Taylor avec reste intégral (*)

b—a
1!

Soit f C"*1 sur [a,b]; alors f(b) = f(a) +

n!

P+t O oy o [T oy

Démonstration (en fait facile, par récurrence ; on dit aussi reste de Laplace.)

b
1. n=0. On doit voir que : / f'(t)dt = f(b) — f(a) avec f C; cest clair,

2. Passage au rang n + 1. On doit voir que :
b n n+1 b n+1
(b=8)" (nt1) _(b=a)" / O=0)""" o : n+2
/a T f (t)dt = NCESE ! (a) + Ty f (t)dt si f C""° sur [a,b].
C’est sans probléme, par parties, dés qu’on voit que : ") = b-t" (t) = —M
p ’ p p Y q q . v - n' ’ v - (n+ 1)' .
28.4.2 Taylor avec reste de Lagrange
1. Egalité de Taylor-Lagrange pour f : [a,b] — R.
: | : : b—a, (b—a)", (b—a)"*tt
n-+1 = . _ / (n) (n+1)(,,
£ O (la,b B e € fa,b: £(8) = £(@) + T (@) + e O @) B e,

Démonstration (x) : Soit m = inf[mb]f("ﬂ), M = sup[a,b}f("ﬂ) ou| f*Y) ¢ [, 5] — R.| Aisément

y_ (1) /b(b—)"

(b—a)yt” [, n!

£+ donne : 3 € [a,b] tel que Y = f(n+1)(c)§ ou /

FrU@)dt € [m, M]. Le théoréme des valeurs intermédiaires pour

-t
n!

(b —a)"t!

(n+1) _
frRndt = ==

£ o).

2. Exemples importants

e Retenons : Le cas n = 0 de la formule de T-L : | 3c € [a, b] tel que f(b) = f(a) + (b—a)f'(c)| est
le Th. des Accr. finis ! (sauf qu’on sait méme Jc €]a,b] sia # b avec des hypothéses moins fortes).
n Nk

e Prenons b = z; Z%
k=0

f*)(a) est la "partie polynomiale" (de la formule de Taylor) connue.

e Pour f =exp, a=0,b=x;on va prendre x = 1 (puis £ = —10 ou z = +100; non proche de 0)
n ’ T ‘n—l—l

2
C et — rr -
Alors : |e (1+1!+2!+"'+n!)’<(n+1)!

K ou K= sup[o,x}(et) ne dépend pas de n.

. " 1 1 1
Pour a fixé, n — +o00, on sait 2 L ; d’ou par exemple |S, =1+ —-+=+..+— — e.
n! n—-+oo 1 2 n!n—+oo

3. Complément : Inégalité de Taylor-Lagrange pour f: [a,b] — R?

Au lieu de l'égalité de T-L, on utilise I'inégalité (moins simple) de T-L : En effet, I’inégalité est

vraie pour f:R— Cou f:R— R2. Mais I’ égalité des accroissements finis n’est pas vraie pour
f:R—C. Exemple: f(x)=¢" sur [0,7] : f(r) — f£(0) = 7.f'(c) impossible avec les modules !

Inégalite de (T-L) : N =9
galité de (T-L) : | f(b) Z i [ (a) | <

k=0

]b—a ’n+1
(n+ 1!

SUP[a,b) | f(n+1) |7 f Cn+1[a7 b]

4. Note (*) : Différence entre le reste de Lagrange et celui de Young ? (ici : DL, ch 30)

e Alors que le reste de Lagrange ne suppose pas « —a "petit" : Bien relire 'exemple précédent.
e Celui de Young (z —a)".€(z) n’est connu que si x proche de a. (ch.Développements Limités.)

. Retenons I’égalité de T-L pour f: [a,b] — R, qui généralise les Accroissements Finis.
. L’inégalité s’en déduit aisément (et se démontre pour f : [a,b] — R? & partir du reste intégral).
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28.5 Compléments

28.5.1 (*) Majorant de ’erreur dans la méthode des trapézes

Trapézes :° . D’abord : g(v) — g(u) = (v — u).g’(u) —;—g’(v) _ Izu)s.g(?’) (¢),c € [u,v].
(Prendre h(z) = g(z) — g(u) — (x — U)M — K(z —u)?, K tel que h(v) =0.)
Mg(b — a)3

’ fC27 My = SUP[a,b] ’ f” ’

v
. Puis avec L f(z)dz = g(v) — g(u) arriver & : |e, | < 12,2

28.5.2 (*) Probléme corrigé : intégrales de Wallis

w/2 w/2
1. |Soit I, :/ sin"(x)dx ;| alors |I, :/ cos"(x)dx.
0 0

Obtenu avec ¢ = g —x; (et dessiner cos?, sin® sur [0, g])

2. Puis on a la formule de récurrence : |n.J, = (n —1).1,—2| avec |Iy= g, I =1.

En effet

_ m/2 - n—1 - T - n—1 /2 _ m/2 - on—2
I, —/0 sin" " (w)\,.sn(x) Adw = [—cos(x).s1tn" " (x)]) " +(n 1)./0 cos(x).sin""*(x).cos(x)dx

et en écrivant cos?(z) =1 — sin®(x),ona: I, =0+ (n—1)[l,_2 — I,] pourn >2 ... (Finir !)
\ 1 g 3 3ln 22 442
3. Cela donne : 12—5.10—2.2 I4—4.I2—42 B) et I3—3Il—3 I5—5.I3—5'3.

4. Ensuite |n.0,.I,_ 1 = g En effet : la suite n.I,.I,,—1 est stationnaire (aisé) et vaut 1.I7.1y.

s
5. Puis |1, e % En effet sin™2 > sin™ ! > sin™ sur [0, 5] donne I,,_o > 1,1 > 1, >0;
dou I, Nate I,,_1 en divisant par I, : donc n.IELn;:_OOﬂ/2
4p . . .
6. D’ou |C5, v [Formule de Wallis utile pour montrer la formule de Stirling donnant
p—+oo /T.p
un équivalent de n!|. En effet :
[ (2p-1)(2p—=3)..31 7 2p(2p—-1)(2p—2)(2p—3)..321 7  (2p)! Kl
T T 2p)(2p—2)..42 2 [(2p).(2p — 2)...4.2]2 2 220 (p)272 potoo \[22p 77

28.5.3 (*) Précisions

. Quand f continue, T — / f(t)dt est dérivable : primitive de f. (Théoréme fondamental.)

. Quand f est seulement continue par morceaux (donc bornée sur [a, b]), on a quand méme (aisé)

F:xz+— F(z / f(t)dt est déja continue [on met la lettre ¢ sous l'intégrale]. car :

Io-l—h :Bo—l—h
| F(xo+h) — F wo\—\/ t).dt| < \/ t)|.dt| < K.|h|; (K majorant de | f |).

Et 14 ou f continue (donc sauf quelques points ), F dérivable. (cf. x +— / E(t).dt sur [—1,2].)
0

6 Et si f a une convexité constante, encadrement avec la méthode "des tangentes" ! On peut faire aussi un bary-
centre de la méthodes des trapézes T, et de la méthode des points milieux ou des tangentes I,, : c’est la méthode de Simpson.
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M- Exercices: Intégration des fonctions: R — R PTSI

x.dx

k.
— : type ——
V1—2a? P u(x)

N

1. Par parties. /ln(:c).da:, /Arctcm(x)d:c, /Arcsin(:c)d:c (

2. Changement de variable : (a) /:c.(l +22.dz  (avec u=1+z?).

a+T T T/2
(b) Si f € CM, T-périodique; montrer : / f(x)dx :/ f(x)dx :/ ... : indépendant de a.
- a 0

—1/2
(¢) (*) Avec z = tan(t),t €] —7/2,7/2[, montrer que : I Z/ dxz 573 = V3+ V2 >0
-1 (1 +x ) 2

3. (*) Calcul des limites des suites [on reconnaitra que ce sont des sommes de Riemann]| :

n

. 5 1~k ! 1
A o~ oot 5= 23 (52 deduire i [ wtido =5 Archimede
(a) Avec ; . T e nZ(n) , déduire nil}_len (O o®.dr = 5 Archime e.)

— 400
k=1

(b) S, = %.[ln(l + %) + ... +in(l1+ nT—l)] [Ajouter In(1+ %) bords gauches, /ln(t)dt vu.

"k km b .
(c) Sn= ; Esm(z) [On calcule : /0 x.sin(m.x)dr par parties.|
= k2 L 1 3
= - . /3 _ —1/3+1
(d) S, ; T [Indication : /[u(a:)] o (z).dx = U + Cte.|
(e) S, = %Z k(n—k). |Poser z= HSTm(t) dans l'intégrale ou interprétation !
n
k=1
L K2\ R a? 1 w1 [0
1 1 1 1 1 1
*) ‘Taylor—Lagrange. ‘Soit Up = 1—§—|—3—|— A (= 1)"_15. = 1—§—|—5—|— A (=) 12n— T
(a) Sur une droite, dessiner uy, ug, ug, u4.... Que penser si on considérait x,, = Uz, Yn = U2p+1 7
12 1‘3 . " (_1)n.xn+1
(b) On donne pour z €] —1,1] : In(l1+x) =z — 5 + 5 +.. .+ (=) - + D). Lo
ou ¢ € [0,z]; c’est I'égalité de (T-L). En déduire | In(2) —u, | < 1/(n+1).
1 _1 n .mn
(c) Plus simple. Intégrer sur [Ol, X]:1 —w+1w2 ot ()" = s ( 1_?_; . Puis: X =1.
Montrer que : 0< I, :/ 1::_ dzx < / z".dz. Conclure. (*) Cas de (vy,) avec Arctan?
0 x 0

b
5. (%) ‘ "Lemme de Riemann-Lebesgue. ‘ Soit Iy = / f(z)sin(A\.x)dz. Allure de z — sin(8.x) 7

Cte
On prend f C'. Montrer que I,\A—> 0 en justifiant avec soin (par parties) que : | Iy |< -
— 400

6. (*) Dans le cas f : [a,b] — C, (a < b) I'inégalité | / f(z)dz | / | f(z) | dz est vraie (modules).

Une preuve astucieuse : G= / f(z)dx —/ e f(z)dx —/ fi(x / | fi(z) | dx ...




Chapitre 29

Calcul de primitives

29.1 Primitives usuelles

29.1.1 Tableau (sh,

Fonctions

f(x) =z

Rationnelles :
1
T2+ 1
1
x2—1

Trigonométriques :

sin(x), cos(x)

L an®(x

cosi(m) = 1+ tan*(z)
= cot*(x

sin?(x) =1+ cot’(z)
sh(x), ch(x)

1
() =1 —th?(z)

1
ST = coth*(x) — 1
Avec le In : Z/((xx))
. tan(x)
. cot(x)
. th(x)
. coth(z)

Par parties : In(x)

ch, th, coth :

potl
F(x) = ) + cte; sauf si
a=—1: d;” In| e |)+C

Arctan(z) + cte

On décompose sur R

—cos(x)+cte; +sin(x)+ cte
tan(x) + cte
— cot(x) + cte

+ ch(z) + cte; +sh(x) + cte
th(z) + cte

— coth(x) + cte

In|u(x) | +cte

—In | cos(z) | +cte
+In | sin(x) | +cte

+ In[ch(x)] + cte

+In | sh(zx) | +cte

zlln(x) — 1] + cte

195

alléger ; Argsh ...

: hors programme)

‘ Domaines et remarques ‘

" dx

7

— =2z +cte :

10, +o00[

} - O0,0[; ]O JrOC[

de.

PR

x2 x
dx

x

1
—4+C:
1

= Arctan( )+cte
a

T +a

n |
T —

! +cte

n(ax+0b)d

e
/ 2+ a?
| ==
I

-1
= —-cos(ax+b)+c
a

tan®(x)dx = tan(zx) — x + cte

/cot2
/sh (ax + b)d

= —cot(x) — x + cte

1
= Ech(am +0b) +cte

/thz( Ydx = x — th(z) + cte

= / coth?(x

Une primitive de f[u
une primitive de f[u

/ (o)l (@) do = 2

)dz = ...

()] (z) est Flu()]

(x)] est inconnue!
a+1

+csia# -1

La ou le dénominateur est non nul.

Idem.
Rappel ch >

1 sur R.

LA ou le dénominateur est non nul.

Idem : /Arctan(az).dm.
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Irrationnelles : Seule la 1ére au programme

Arcsin(x)+cte = —Arccos(x)+Cte = Arcsz’n(f) + cte,a > 0
a

/ dx
Va2 — 22

Argsh(z)+cte = In(z+V/22 4 1)+cte = In(z + Va? + a2) + cte

/ dx
N

dx
Dépend des intervalles (x < —17) —— =In|x+ V2 —a?| +cte
V2 — a2

= [
e | e
8 8
(&) (3]

r2 —

—_

Attention une primitive de | f' | n’est pas | f | !

29.1.2 Pour retenir
1. Homogénéité
dx
. Dans / R si x en [métres|, a aussi; dx aussi; le résultat est homogéne a [1/métres|; d’ou
2 +a

1
7 =" devant. Tandis que :

a

la présence du terme

si x, a, dr en [m.]| : résultat homogéne & un pur nombre ; rien devant Arcsin.

dx
. Dans / —_—
A /(12 _ ZL'2
2. Démonstration des formules encadrées

d
/%, poser z =a.t, a#0 dr=a.dt ..
2 +a

dx 1
. /ﬁ a # 0, décomposer ——— sur R.
2 —a 2 —a

dz ™
L =at; besoin de a > 0 ... Et ——A t) = Arcsin(t) |
/ T poser x = a.t; on a besoin de a 5 rccos(t) resin(t)

. Celle-ci et la suivante non faites ... (I’énoncé la donnerait , poser x = a.t,a > 0.

d d
. De méme /\/% ... voir que : /\/2795_1 =ln|xz+Va?—1]+cte |deux intervalles|.
z2—a x? —

29.1.3 Des exemples (surtout 1, 2)

1 — cos(2x) dr — _ sin(2x)

1
1. Par linéarisation connue : /sz‘n2(x).dw = / 5 5[1‘ 5 |+C. Mais:

B sin(x)

C.
3+

2. Sans linéariser si puissance impaire /cos?’(aj)dl‘ = /[1—Sin2(aj)].d(sin(:ﬂ)) = sin(x)

3. (*) Calcul de F(z) = /w.tanz(x)dx par parties | w(z) = x est un polynome, mélangé a de la
trigonométrie. On dérive u(z); on sait intégrer v'(x) = tan®(z) tan(x) primitive de

1+ tan*(x) donc wv(z) = tan(z) — z primitive de tan®(z). D’ott (avec des constantes différentes
2

par intervalles) :  F(z) = x.[tan(z) — x| — /[tan(a:) — z|.dx = x.tan(x) + In | cos(x) | —% + cte.

eArcmn(x) dz
(1 + 227
dt t.dt. 3(t
x = tan(t) avec t €] — /2, 7/2[ (choix) dz = cos2(1) I = / %20(?)()‘ = /et.cos(t).dt.
‘A ce stade, on sait finir (cf. IH).‘ Cherchons une primitive, type : e'[a.cos(t) + b.sin(t)]; correct

1 1
sia =0b=1/2 (en dérivant). Il reste a revenir a x : cos(t) = + ———— =

1+ tan?(t) V1+a?’

eArctan(:c) + cte.

par changement de variables : t = Arctan(xz) ou bien :

4. (*) Calcul de F(z) = /

T 14z

_— ... D’Ofl Fl‘ =
V1 + 22 (@) 2.4/1 + 22

sin(t) = tan(t).cos(t) =
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29.2 Primitive des fractions rationnelles

29.2.1 Théoréme [Programme allégé jusqu’a la fin du chapitre]

‘ On sait trouver une primitive d’une fraction rationnelle : on la décompose sur R sauf si elle est impaire !

Cas d’une fraction en z, impaire, poser d’abord ¢t = 22 ou bien| f (z)dz |invariant en changeant x en —zx.

.d dt 1
Exemple : / 1:: ; = / 20 1 ) = §.Arctan(:1:2) + cte. 1 minute !

29.2.2 Démonstration

1. La partie entiére est un polynoéme ; s’intégre sans probléme.

—n+1
—-n (33‘ - (1) s .
1 /(x—a) der =———sin#1
2. Les éléments simples de lére espéce : ——— connu —n+1
(x —a)” dx
=lIn|z—a| +cte
r—a
A noter que |la premiére ligne vraie méme si a € C. ‘
b
3. Eléments simples de 2éme espéce : %. Ici, 3 choses & savoir :
z brT+q
axr +b a 2z +p cte

e Faire la répartition suivante : ——— = —. + .
P [#2 +pz+q" 2 [a*+pr+q"  [2?+pr+q]
Le premier numérateur [...]' prend tous les z; le second une constante a ajuster.
/
a u

e 1°" terme facile du type Rt
/III’L
e 2¢ difficile : trinéme sous forme canonique [z? + pz + ¢] = [(z — @)? 4+ 3%]; cf. aprés.
E 1 / du [ i ire !]
xemple —————— [non impaire !
—xempe z.(22 —x+1) p
On donne le résultat de la décomposition f(z) ! L T 1
T)=—"s——"—=—F —5——.
P z(x?2—z+1) =z 22-z+1
—z+1 2z — 1) 3

e le partage : =

22 —2x+1] [22—z+1] [22—2z+1]
e le ler terme a pour primitive facile : J = _—1ln[3:2 — 2+ 1]. L’autre (difficile) vaut :
d d(x —1/2
o K = / 5 ’ = / (z=1/2) (forme canonique utile maintenant).
[0 —z +1] (2 —1/2)% + (v/3/2)%]
dt 1 t
Ici, en fait, elle est dans le tableau : [ ——— = —.Arctan(-) + C.
t2+a®> a a
1 2 1 20— 1
Don F(z) = 3 lnm2_mim+1 + %.Arctan( w\/g )+ C. (In(z?) =2.In |z | )
. - dt
29.2.3 Fin du cas général : Ty g > 2
[t? + 52
Onenétaita/ de l=z—a raméneal—/L
(z — ) + 67" - B GEI S
Cas n =1 (I'exemple) connu : tableau. Et 2 méthodes, n > 2 :

1) On peut poser t = B.tan(p),p €] —7/2,7/2[ ou ‘:p —a = f.tan(p),p € —7/2,7/2]. ‘
1

ﬁ2n—1
2) Ou partant de I,,_y, relier I,y et I,, [t =t + 5% — 3%]; revenir a x.

Arriver a : . / 0032(”_1)(g0).dg0 et, la puissance étant paire : linéariser ...




198 CHAPITRE 29. CALCUL DE PRIMITIVES

On peut s’entrainer sur un des exemples :

dx dx
Ao [ B=| - T :
/ 22+ 2+ 12 / EZESIE rowver
4./3 20+1 1 2z+1 1 =z 3 3
A=Y Arct = te. B==: 2 2 Aret te.
V. B 1T Ip TR 1 TgAireenie) e

29.3 Polynomes et fractions rationnelles en sin(z), cos(x)...

29.3.1 Monoémes /(:osp(m)usmq(ﬂ?)dﬂ?

1. Si p et ¢ sont pairs, on linéarise [rien de plus simple pour primitive # intégrales de Wallis !|

/6082(x).8in4(x).d:r = i[:17 - siné(fa;) - sinf:la;) + 32711(26x)] + cte.

16

2. Si p ou ¢ impair, la linéarisation est médiocre car il y a bien plus simple. Exemple :

/cos2(m).sin3(m).daj = /cos2(m).sin2(az).sin(az).dx = /cos2(m).sin2(x).d[—cos(x)] donc
cos®(z) B cos3(x)
5 3

t = cos(z) facile avec sin?(z) =1 —cos*(z) ! ... F(z)= + cte.

3. Remarque / ch?(z).shi(z)dz analogue, sauf qu’au lieu de linéariser, mettre des e*, ™"

29.3.2 Meélange d’exponentielles

1. pour /ex.sin(x)dx :

. Par parties, deux fois : I = e”.sin(z) — /ex.cos(x)dx [€” intégré ; puis intégré & nouveau |

e®lsin(x) — cos(z)]

te.
2 + cte

I = e".sin(x) — e.cos(x) — I + cte ! don I=

. Avec des coefficients indéterminés :

On cherche une primitive du type e®.[a.cos(z) + b.sin(x)]; on dérive et on identifie ...

e(l-l—i)x

. Avec C : I:Sm/eu”)xdas:%m T3 + cte = Sm
B i

(CTINS

{(cos(z) +isin(z))(1 —i)] + cte

dou I = %[sm(az) — cos(z)] + cte.

2. I= /$.€x.608(l‘)dl‘ let analogues|

P(z) = x est un polyndéme mélangé avec de la trigonométrie. Par parties, en dérivant P

u(x) =z, v'(x) = €".cos(x); alors: wv(z)= ... [ce qui précéde, au choix !|
x x

[cos(z) + sin(x)] — %sin(m) +C.

dou I=

3. Remarque / sin(ax 4+ b).cos(cx + d)dxr 7 On sait transformer un produit en somme !

29.3.3 Fractions rationnelles en sin(x), cos(x)

1. ‘Régles de Bioche‘ Le changement de variables sera donné.

Soit T — dz la quantité encadrée (avec le "dz") étant appelée
N sin(z).(1 + 2cos(x)) "élément différentiel" ou "forme différentielle".
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Reégles de Bioche :

. Si lélément différentiel est INVARIANT en changeant x en —x, poser t = cos(x);

. Si invariance en changeant x en m —z, ici ¢ = sin(z); (x n’est pas forcément dans [—7/2,7/2]!)
. Si invariance en changeant x en m + x, poser ¢ = tan(z); (idem...)

. Si pas d’invariance, poser t = tan(z/2). On arrive a une fraction rationnelle en ¢.

L B dx B —sin(z).dx B dt
(Bx:t=cos(z) = I= / sz’n( ).(1 4 2cos(x)) / —sin2(x).(1 + 2cos(z)) / 2.2 - 1)(t+3)

I= %ln(l — cos(x)) + —ln 1+ COS( ) — gln |1+ 2603( )| +C

-1 1
. Idem avec t = sin(z), J = / = — + —In + sm(m) et
sin?(x).cos(z)  sin(z) 1- Sm(x)
1
CAvec t=tan(z), dt=(1+t)dr! K= d = tan(x) — +C.

sin?(x).cos?(x)

2. ‘Trois exercices a noter‘

d
. / S | tan( )| +C. Poser t = cos(x) est bon; mais exceptionnellement ¢ = tan(g)

sin(x)
2t dt =1+ tanQ(g)].d; = dx = 2.dt

est plus rapide :  sin(z) =

1+2° 1+

d d d s
. / cosg(na;) =In | tcm(g + %) | +C  car /cosfx) = / szﬁg?x—:%))m rameéne & la précédente !

2.
ol— / _dr

0o 2+ cos(x) )

1—1t 2 t 2
Onposeici: t= tan(f); cos(z) = ——— trouver : —=Arctan an(z/2)
2 14t V3 V3

Mais pour 'intégrale (fonction C° sur un segment), le changement de variable cause un saut en
z/2=m/2 ou z=m7 !

n & d 2.
Remeéde : [ — /4 %ﬁ;(‘r) (période) = 2_/0 Tjs(x) (paire) et prendre 7~ : [ = 77; > 0.

+C comme primitives.

29.3.4 Si fonctions hyperboliques : hors programme

h
1. (*) Par analogie. Exemple : pour :/%d:ﬂ; poser t = sh(z) ... car
dans J = / Md:p, fraction rationnelle en cos(1.x), sin(l.x) on poserait t = sin(x).
1+ sin(zx)

[Trouver I = 2.sh*(z) — 4.sh(z) + 5.In | sh(z) + 1 | +cte.|

2. Simplement, le cas t = tan(x/2) est plutot transformé en t = e®, plus connu que t = th(z/2).

: dx x x (1 —t2)dx 2.t
3. Deux exercices : ./sh(:n) —ln|th§|+C’ [t_th§7dt_42 ,sh(z) = 1_t2]
Alors que pour ° / % , on ne peut se ramener, ici, a la précédente ! Au choix :
ch(x
d
/—ch(:z:) = Arctan|[sh(z)] + C = 2. Arctan[e*] + D = 2.Arctan[th(z/2)] + C = Arcsin[th(x)] + C.

[cf. Ex. ch12 sur les loxodromies de la sphére pour les primitives de 1/cos(x), 1/ch(z).]

29.4 Et irrationnelles ?

Hors programme aussi; sauf 1/v/1—22 et 1/v/a?—22 du tableau.
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M-+ Exercices: Primitives des fonctions: R — R PTSI

1. Des primitives & bien voir

(a) / 21+ 2°)3dw (b) / l”;x)dx (c) / w'l‘ix(w) (d) I, = / In"™(z)da

2. Puis a bien voir aussi  [(a) : linéarisation inutile ! (b) : linéariser ...|

(a) / sin®(z)dz (b) / cos? (z)dx (©) / €2 052 (z)da (d) / ch(z).cos(x)da

3. Fractions rationnelles : en décomposant sur R; sauf si f(z) est 1mpa1re poser d’abord t = 22

> —x z’ 322 —33:—10
——d b d d
<a)/w4+3x2+2x <)/1+x4x @—2)%—dz 15"
.d 1.1 1 2t — 1
(d) /;6—_:61 (I:g[g.ln(l—l—t)—Eln(t2—t—|—1)—|—\%§.Ar6tan 7 | + cte, ou )

4. (*) Fractions rationnelles en sin(x), cos(x) (changement de variable donné)

_dr sinfe) g o [_ten@) o L= sin(a)
@ / cots?’(g(c)) (®) / 003(3x)d san )<d) / 1+ tan(w)d @ ! sin(z)[1 — coS(x)]d
(e)/mdm (f)/ cos(x)[cos(x) + sin(z)] (g)/ cos*(x) +sin4(az)’%'

5. (*) Parties ou changement de variables (guidés)
22, Arcsin(z)

(a /Arcsm Ydx (b) /Arcsinﬁ.dm (Vo = sin(t),| t |< m/2) (c) Ny
/Arctam/ d:U (parties et t = /) (e) /Arctan\/ 1 — 22dz(... puis © = sin(t),| t |< 7/2).

dx

6. (*) Des irrationnelles avec indications (obtenir une fraction rationnelle)

/\/fd“ =) W z (=) (c)/\/ﬁdag(t:x?.,)

b
(forme canonique) (e / Vaz? + bz + c.dx (parties v’ = 1,v =z + —)
Vaz? + bz +c 2a

dx _ 1 dzx . 1_@8
<f)/(a.x+ﬁ).\/ax2+bx+c(t_OzaH—ﬁ) <g)/x+m(X_ t5 =5 skl

.d
ou : ?tan(g&) avec | ¢ |[< m/2 oubien: Va2 +z+1=a+\)! (h) %_1_3
Va2 —dx +3

3/ 1 )
(idem avec ch ou bien : V22 —4z+3 =t.(z —1).) (i) :E_:—Q dr (icit = vz +1).
x




Chapitre 30

Développements limités. Formule de
Taylor-Young

30.1 Généralités

30.1.1 Un probléme

o . : . sin(zr) —x : -
On sait bien que : sin(x) ~ x; mais : th = ? (2% pour respecter 'imparité).
z—0 z—0 a:3
C’est un probléme "local"; c’est-a-dire au voisinage d’un point, qui demande plus de précision.

30.1.2 Exemple fondamental (avec 1+ ¢+ ... + ¢") et définition

1
1. On peut écrire T2 l+z+224+ 23+ . 42"+ 2"e(), e(:n)—»OO vu que €(x) = ] :
—z z— —z

X

Puis, changeant = en —z, n fixé : (—1)"¢(—x) = e1(z) avec el(x)j)O; que 'on continue &
Tr—

noter €(z) (mais ce n’est pas le méme) et donc : €(z) — e(z) = e(z) pour €;(x) —e2(x) = e3(z) !

1
o2 = l—z+2? -2+ .+ (=1)"2" + 2™.e(2), e(a:)g:éo.

D’otu aussi

2. Remarques. Ci-dessus = — 0; mais plus généralement si x — xg, €(z) — 0, h = (x —x¢) :
T—T0

— Dans la suite finie 1, h, hZ%, ..., ™, h™.e(h) ["reste"] chaque terme est négligeable /précédent.

— Notations de Landau. On note : sie(z) — 0, (2 — x¢)".€(x) = o[(z — x¢)"] ou bien si
T—T0

Ol(z — x0)"]

(x — x0)™

g(x) = o[(x — x0)"], ( 9(z) — 0; alors que est seulement bornée.

T — (Eo)n T—x0

3. Définition. On dit que f admet un développement limité a ’ordre n en zyp € R (Dl,,) :

si on a une égalité f(x) = ag + a1(x — zp) + ... + an(x — x0)" + (x — 29)".€(x), €(x) — 0

T—T0

ou avec les notations de Landau : f(z) = ag + a1(z — x¢) + ... + an(x — 20)" + o[(z — x0)"].

— Sion aun Dl,, alors on a un Dl,_; car ay(z — x)" + (x — 20)".€(z) = (x — 20)" L.e*(z).

— On peut poser, si nécessaire, €(xg) =0 (prolongement par continuité).

— Sion aun premier ay #0 alors f(z) ~ ap(z —20)*. Retenir (notations de Landau) :
T—T(
1 _ 2 3 n n 1 1 2 .3 1\ n
=l+zx+z°+2°+...+2"+ o(z") =l—-z+z*—z+ ...+ (—1)"2" + o(z").
1—2z 1+
30.1.3 Unicité
1. Théoréme : ‘Si f posséde un DI, en xq, il est unique.

201



202 CHAPITRE 30. DEVELOPPEMENTS LIMITES. FORMULE DE TAYLOR-YOUNG

Démonstration

eOna DLy& f (ac)x?; ap (et on prolonge par continuité si utile); ag = f(zo) unique.

e Puis Dy & f dérivabloe en zg de dérivée a; (avoir!); a3 = f'(x0) unique.

e Fin de l'unicité : [f(z)-partie polynomiale de degré < k —1] / (z — x0)* — ay : ay unique.
(*) Par contre f peut avoir un DIy sans que f” exist:ec_!mcO

2. Conséquence si parité

Le DI en 0 d’une fonction paire est pair; celui d’une fonction impaire est impair.

Résulte de f(x) = f(—=z) si f paire (ou de I'analogue si impaire) et unicité du DI.

30.1.4 Exemple et dessin

1
Montrer que f(z)=2— g(x —3)+2(z —3)% + (z — 3)%.sin aun Diy en z = 3. Dessin ?

1
(z —3)?
(Vérifier que f’ n’a méme pas de Dly en # = 3. Donc f’ non continue en 3, donc f7(3) n’existe pas !)

1
Solution . Posons h = (z — 3). Veérifions que h?sinm = o(h?) = h?.e(h), e(h)h—0>0 : clest vrai.

1 1
. Et f(3) = 2 par prolongement par continuité; f'(3) = —3 Puis : y =2 — 5(36 — 3) est I’équation de la

tangente en = 3. Donc "Courbe-Tangente" ~32(3: -3)2>0. K [Tracé aussi de
r—

1
la parabole y = 2— §($—3)+2($—3)2]. Enfin, calcul de f/(x); et (a voir) f'(z) sans limite en z = 3 !

Remarques : 1) Quand f”(z() existe nous allons voir, au III, que ag = 7'}0 ($0),
[+ (o)

2) En complément : R = >
y” (zo)

est le "rayon de courbure" en xg.

30.2 Opérations sur les DI

30.2.1 Somme de DIl; multiplication par constante (opérations linéaires)

1 1 1 1

==

Exemple. Soit f(x)zl_:n2 5 1_x+1+$

) décomposition en éléments simples.

Alors : f(x) = T2 == 1+ a2+ 2t 4284 .+ 2% + o(a?P).
-
Remarques
1) Dans il suffit de remplacer z par z%; mais on voulait illuster les opérations linéaires.

— X

2) Le reste est, par parité, z2P*2 + o(z?’72) donc est un infiniment petit, non seulement par

2+l sans effort ! Qui s’écrit : o(xz?PT1).

rapport a %P , mais méme par rapport a x
1

D’ou finalement : T2 1422+ a* + 2%+ .+ 2% + o(a?1).
—x
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30.2.2 Produit de DI

1 1 1
f(z) = 2 -1 2142 = (1 +x+22+0(x?).(1 —x + 2%+ o(x?) alordre 2, en z9=0:

Faire le produit des DI, ne garder que les termes utiles. Trouver f(z) =1+ 2%+ o(z?) cf. avant !

2
1 1 1
Autre exemple : g(z) = <1ix> = e i e al'ordre 2, en g =0 ?

5 =1+2z+ 322 + o(z?). Ici 2 autres méthodes aprés.

Idem : g(z) = ﬁ

30.2.3 Quotient de DI
_
(1—x)?

Diviser 1 par 1 — 2z + 2? mais selon les puissances croissantes. Encore 1 méthode aprés.

Méme 2éme exemple : g(z) = alordre 2, enz =0 7

30.2.4 Théoréme d’intégration des D! : opération nouvelle

Si f" admet un DI, en xq : f'(z) = ag + a1(z — ¢) + ... + an(z — 20)" + o[(x — 20)"], f admet

o n+1
un D, 41 obtenu en intégrant : f(z) = f(zo) + ao(z — zg) + ... + an% + o[(z — o)™
— — n
_ n+1
Démonstration. Théoréme des accroissements finis a p(z) = f(a:)—[f(xo)—l—ao(a:—xo)—i-...—i—an%].
n
Exemples de la famille de Retenir : In(1+ x), Arctan(zx)
1
e Ayant en 0, T l+az+a?+ 23+ .. +2" 4 o(z" 1), on en déduit avec In(1) =0 :
. )=
2 3 n
1
In(l—z)=—-x— % - % — = % + o(z").| Et changeant = en —x (ou avec n :E)
2 ad 12" :
In(l+zx)=z— 5 + 3 +(=1)"""— +o0(2").| Puis hors cours le suivant :
n
1 1 3 5 2p+1
[Argth(z) = §.ln(1 i_ i) =x+ % + % +..+ pr 1 + o(z**?) car impaire.
1
ou a partir de la dérivée : Argth’(z) = T2 pour |z |<1; Argth(z) partie impaire de In(1 + z).|
1
e Ayant en O : T = 1—2? +a* + .+ (—1)P.a® + o(z®™h), (parité pour le reste) et
x
FER: 201 ’
Arctan(0) = 0, par intégration, on a : | Arctan(z) =z — — + — + ...(—=1)F. + o(z?P+2).
sream =" 3 5 2+ 1

30.2.5 (*) Dérivation des DI

Difficulté. 1l se peut que f admette un Dly sans que f' admette un Dly (vu).

Reésultat | On n’a pas de théoréme nouveau ; c’est le théoréme d’intégration lu a 'envers; c’est pourquoi
il faut connaitre Pexistence du DI de f’. A ce moment, on dérive celui de f et on perd un ordre.

1
Exemple : 3éme fagon pour le DI de g(x) = ﬁ en 0 7
—_— —x

Déja, on est str qu’il existe & tout ordre : ou comme produit; ou comme quotient; mais mieux encore

comme fonction C* au voisinage de 0 : cf. III.

1 1
( ) = et donc, il suffit de dériver celui de .
1—x (1—x)? 1—=

Ensuite
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1
Ainsi : e =142z 4322+ ...+ (n+ Dz" + o(z").
1 p! _— 1 1 1 e
[(*) Idem (1 — a;)(p) = 1= o d’ottle Dl en 0 de : Aot = H(l — x)(p) par dérivations.|

30.2.6 Composition

Dl alordre 3 (ou lordre 2 déja) enz =0,de: f(x)=In[2+ Arctan(z)] ?

Réponse. Le Dl duln vu au voisinage de 1 : In(l14+h) =h — h; + h; + o(h?).
Orici [...] proche de 2. Ecrire [...] =2.(1+ Arct+n(:n)) donc f(z) =In(2) + In[l + h]
avec h = Arct+n(:p) = %(m - %3 +o(z")) et en ne gardant que les =¥, k<3 :
f(z)=1In(2)+In[1+ <g — %3 + 0(;1;4))]. Avec h=u+v= g + (—Tx?’ +o(x*)) pour h% h3
x r a3 1 22 1 23
et : hx:OE = o(h3) = o(z?) :2 f(:z;) =In(2) to - 5 +o(zt) — > T 33 + o(x?).
Ainsi:  f(z) = In(2) + g - % - % + o(z%).
Remarques 1) z? = o(z®); o(z?) + o(z3) = o(z?) !
2)In(1+h)—nh ot ; en accord avec la concavité. Dessin ?
3) Arctan(z) — x e % en accord aussi avec le dessin : imparité, cas x — 0.

30.3 Formule de Taylor-Young et utilisations

30.3.1 Les théorémes

Si f est n > 1 fois dérivable en z( (C.S.), alors f admet un DI, en xg

! (n) Taylor-Young.
aui est + £(a) = o) + 25 ) ot Lo 5 gy pofr — . |V
Cas xg =0: Si f est n > 1 fois dérivable en 0, alors f admet un

! (n) Formule de Mac-Laurin-Young.
Dl,, en 0 : f(x):f(O)—l—@:p—i— fT(O).x”—I—o(x”). ( 8)

Démonstration : On part de f™ D (z) = FO D (z0) + (x — x0).f ™ (o) + o(x — x0) ;
on intégre (cf. Théoréme) ce DI n — 1 fois, sans oublier les constantes & chaque fois.
Notes
1) On retrouve la formule de Taylor pour les polynémes, en prenant n > d°P !

2) Theoréme des accroissements finis = Théoréme d’intégration des D1 = Formule de T-Y.

30.3.2 Exemples a savoir : exp, ch,sh, sin,cos; et (14 x)%, bindme

a.x  a®.x? a.x™

. ar __ e
1. Pourae C: e* =1+ 1!+ 51 + ...+ p

Démonstration. Formule de Mac-Laurin-Young car d—(eax) =a.e” mémesi a=a+i€C!
x

+ o(x").

2 "

TR TR o(x").

_ . T
e ¢ = 1 donne : efl—&—l! 5
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2 4 2p
1T r 2p+1

ch(z) =1+ or tar tt ) + o(zP7).

3 2P x2pHl o L
sh(z) =z + e + & + ...+ 1) + o(2?P*?).| (Parties paire et impaire)

2 3 4 .M
; x oz iz
e Puis a =i donne : ¢ =1 —l—’LF T z§ + e + T + o(z™). Donc
2 4 2p
— 1 LT _1)P 2p+1

cos(x) =1 TR (—1) ) + o(xPT).

3 7D 2p+1

x> x -

() — p — - 12 _1)? 2P+2
sin(z) = x a0 + = e+ (1) 2 ) + o(x*PT7).
Remarques
1) Les relations exp’ = exp, cos’ = —sin... se retrouvent (par intégration) dans les DI.
2 2 3
—x x —z
2) On retrouve : cos(z) —1 ~ — ch(z) —1 ~ +—, ..etenplus: sin(z)—z ~ —.
z—0 2 z—0 2 z—0 6

3) Avec exp donc avec cos, sin, ch, ..., les factorielles ne se simplifient pas.

¥ y(ao — 1 y(a—1)...(« —n+1
2. Si o fixe (1+w)a—1+%w+%w2+...+n(a ) (:y nr );L'”—i—o(x”).
! ! n!
Démonstration. Formule de Mac-Laurin-Young car : [(1+2)%) = a.(14+2)*7!, a €R.

eCasa=6,Dlyen0: (142)%=1+6x+152° +o(z?). Binéme tronqué connu.

e Casa=—1en0: T =.. ‘Connu aussi : exemple d’introduction ! ‘
x
1
(Et: Diy en z=0 de =22 =(1—z)72 4éme fagon ! )
1 1 1
e Cas a= 3 Dlisen0: Vl4+z=1+ 3%~ §x2 +o(z?) (2!: ne pas oublier.)
1
e Cas a= —5 Dl en 0 a tout ordre :
1 1 3, 1.3.5...(2n — 1)
=1-= - e+ () — 2" ™.
Ttz P T e A ) e ol
30.4 Pratique des DI et utilisation
30.4.1 Deux exemples
. 1 1, 3 1.3.5..(2n — 1)
? — Z 2 v SOt ) 2n 2n+1
1. Arcsinen 0 * — 1+2x —|—8x +..+ Y +o(z=")
est sa dérivée (paire) d’ou Arecsin par intégration :
13 1.3.5...(2n — 1) x?nH!
Arcsi = ——+.. Ity
resin(z) = x + 53 Tt 54 o on i1 + o(x*"77)
1
*) De méme, mais hors programme Argsh(z) = In(z +v'1+ 22) en 0, de dérivée : )
2. tan(z) en 0, a 'ordre 4 ? (On va illustrer la composition)
e On peut faire la division tan(z) :SWEI; ; on trouve tan(z) =z + % + o(zt).
0S\T
e On peut aussi intéger :  tan/(x) = 1+ tan®(z) = 1+ 22 + o(z®) :  méme réponse.
e Ou composer : Le DI existe en 0, a tout ordre, car fonction C* au voisinage de 0 (sur ]—g, E[)

Et tan(r) = 2+ ax® + o(x*) (impaire), donc I'ordre 3 suffit ! On cherche a :
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Exprimer que Arctan(tan(z)) = 2 = 2+ 0.2 (en 0) et unicité du DL. A faire et méme réponse.

sh(z x3
| De méme on a| (*¥) th(z) = cZEa:; =z-3 + o(z?).

30.4.2 Remarques trés importantes

1. Comment avoir le Dl3 de cos(z), quand x — 1 ?

. Soit par la formule de (T-Y) en 1 (les dérivées en 1 étant faciles) .
.. Soit cos(1+ h) = cos(1).cos(h) — sin(1).sin(h) = ... A faire !

“’;fl) (x— 1)+ S“;fl) (z — 1)3 +of(z — 1)3].)
2. Diy deln au point 3 7 [in(3+ h) aulieude In(l+h) 7|

 Soit par (T-Y) : In(z) = In(3) + %(:17 ~8) — oz~ 3 +ol( 37

.. Soit, aussi bien : In(x) =In(3+ h) =In(3) + ln(l—l—g) = .. Idem.

(cos(z) = cos(1) — sin(1).(x — 1) —

3. V24 h, quand h — 0, ce qui est ,/... au voisinage de 2 ? (ci-dessus: V1 +z).
h
V24 h=\/2(1+ g)z V2.(1 + 5)1/2 (h — 0, bien str) : connu.

4. Dly de y/tan(z) en w/4.  [Note: En 0, /.. aseulement un Dly, car non dérivable en 0.]
Le Dl de tan en m/4 non connu; tan peu commode; puis /... ; donc dans ce cas,

x = % + h  ne doit pas faciliter la travail. [tan(g) =1; tan(a+0b) = 7|

C’est un rare cas o on utilise (T-Y) : f(7/4) aisé¢; f'(7/4) abordable; f”(n/4) = ...=1.

1 T

(Trouver : /tan(z) =1+ 1.(x — %) + E(x 4)2 + o[(x — 2)2])

30.4.3 Utilisation des Dl

.. ] — -1
1. Une limite nouvelle : M SN —
X

2. Branches infinies d’une courbe : on suppose que x — o0 et y — 00

Exemple : Branches infinies de y = Va2 +x+1 ? Domaine : R. Voyons en +o0 :
_ 1/2 _1.1 Loy .ttt 1
y=|z|.(1+h)" avec h_x+x2 ;;oo. Donc : y \x!.[1+2$+2$2 8$2+0($2)]’

- 1
Puis distinguer 400 de —c0. y=a.x +b+ € +o(—), c# 0 : asymptote et position!

|

En fait, on a une demi-hyperbole car courbe de degré 2 (y2 = ...), avec asymptotes !

( Si y — ax a une limite b € R ‘ y = az + b est asymptote oblique. ‘ Si

Si o a€R” y — ax — oo branche parabolique de direction asymptotique y = ax
Et si y —ax n’a pas de limite, on a seulement la direction y = ax.

En général Si LA oo on dit que l'on a une branche parabolique de direction (asymptotique) Oy
x

Si LA 0 on dit : une branche parabolique de direction (asymptotique) Ox et
x

Enfin: 2 peut ne pas avoir de limite ... Un exemple est : y = z[2 + sin(z)].
x

On essaie de tout avoir par un seul développement ("asymptotique" ou "généralisé"). cf. Exemple.
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30.4.4 Etude de fonctions

‘Un exemple traité‘ y=f(z)= =

1) On a ici légalité : y = f(z) = e7 1@ - dsfinie pour z > 0, x £ 1.
Y

2) Variations : 3y = y[ﬁ + In(x). @ :11)2] = @1 [t —1—In(z)] = ﬁ(p(x)

Puis on étudie ¢ : en dérivant, In ‘ isolé disparait ;
3) Limites :
Siz—0, y—1 car x.ln(az)—aO et 3y — oco: tangente verticale.
T —>

ou on sait ici In(z) < x —1 (concavité).

Stz —=1, y—e [car In(x) Nl(x —1)] etavec x—1=h, y —e/2. (D))

On prolonge par continuité en posant f(1) =e (et f(0) =1). Alors f est dérivable en 1 et f'(1) zg.

. [T S 1 B In(z) 1 In*(z) In?*(x) o
Sixz — 400, y=x.x71 =gxes1 = :v.[l—k/l7 — t3 @_1) + @1y ()], e(w)x_)—Jr;OO' Ainsi :

y/r — 1 et y—ax ~ In(x): branche "parabolique" de direction y = .
T—+00 T——+00

D’autres exemples ‘

e On prolonge systématiquement par continuité (si on peut) les fonctions.

e Souvent pour le signe de 3/, on fait une autre étude : |isoler la fonction "transcendante" | (avant de
dériver) comme dans 'Exemple ci-dessus.

1. f(z)=(2>-1).In ﬁ-i—_:v’ impaire.
— X
Ecrire donc @ f'(z) = 2z.¢p(x) puis ¢'(z) ... f/(0)=—2; en x =1, tangente verticale.

4 e(x) ! f

En o0, y =20—— + —= La suivante
3z T

. 1
2. f(xr) = /22(x —1). 2 tangentes verticales ! y =z — 3 asymptote oblique ...
En z=0o0uz =1 : revoir le Théoréme de la limite de la dérivée.

3. f(z) =| sin(z) |"*"®) #-périodique.
En z = 0 prolongement par continuité; puis tangente verticale (f non dérivable).

ho K2
En E, flx) =1+ —+h——|—0(h2) avec h = (r — E) ... Courbe :
2 2 8 2
e

4. En compléments, des développements "généralisés" :

Siz — 07, In[sin(z)] = ln(x)—%—|—o(:p3). [ler terme infini et parité de In M.]

1
Siz — 0, -7 + o(z?). [ler terme infini et imparité; a voir.]

tan(z) =z 3
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M+ Exercices: Développements limités PTSI

1. Préciser les DI suivants

(a) de

alordre 3 en g =0

(b) de €® alordre2 en: zg=1 [poser x =1+ h]
(c) de e“*®) a I'ordre 4 en 29 = 0
(d) de \/cos(z) alordre4 en xy=0
(e) de ln(ln(e +2)] a Pordre 3 en 29 =0
z? —1 b 1 b
(f) d a lordre 2 en oo [a+;—|—x—c2—|—0(P):a+;—|—x—02—|—L§),e(x)xjo>OO]

x2+2w
1

a lordre 3 au point g = 0; puis au point zg=1

e [tan(z 4+ /4))7¢?%) 3 Tordre 3 en zp =0
e [1+ Arctan(z )]x/sm2(x) a lordre 2 en xg = 0.

2. Calculer les limites suivantes (*) ici et ex. suivants !
1 1

(&) sin?(z) a2

(b) (3.4/2—2.¥/3)" en +oo |[trouver 8/9]

(c) n'n — (n— 1)% en +oo [trouver 1]

1 1
(d) 201 — yx) 3(1—21/3)

3. Trouver a, b tels qu’en xg = 0, f(z) = cos(x) —

en 0 [dénominateur commun ; trouver 1/3]

en 1 [dénominateur commun ; trouver 1/12.]

1+ az?

1+ ba?
possible. Equivalent de cette différence. [Rép. a=—5/12,b=1/12, f(x) ~0w6/480.]

soit un infiniment petit d’ordre le plus élevé

4. Développements asymptotiques ou généralisés
1 1
(a) Preéciser I'égalité f(z) = 22.In | e |=ax +b+ L o(—. Branches infinies ?
T T T
1 (x —1)(x —2) 1

—_ (1" 1y = .
T 3r o (LY 2 Pl

)

(b) (*) Branches infinies de y = (z—1). e:np[

5. Etudier les fonctions suivantes

(a) f(z)= v/x3 — 222 + z [tang. vert. en O et 1; tang. hor. en 1/3; f(x) = 2—2/3—1/9z+0(1/z)]
T

(b) f(x) = TTes [Asymptote y = /2 — 1/4; en 0, point anguleux : pentes 1 et 0]
e
1
(¢) (*) f(x) =(14 =)" [Prolongement par continuité en 0; mais alors tangente verticale]
x
-1
(d) (**) Etudier la famille de fonctions f,(z) =| = | .ewp(\/ﬁ). [On distinguera les cas a > 1,
x

0<a<1,-1/2<a<0.. On montrera aussi que f, est C° en 0 et que Vk‘,fék)(O) =0].

6. Equivalent en 0 de : sin(tan(z)) — tan(sin(z))? Réponse : —x'/30 ... par logiciel de calcul !




Chapitre 31

Les séries numeériques

31.1 Généralités

31.1.1 Définitions

1. Somme partielle. Convergence de la série, somme d’une série convergente

Soit la suite (upn)n>0 & termes réels (ou complexes). On pose | S, = ug+ ui + ... + up :Zuk
k=0

(bien voir 'indice k& muet) appelée somme partielle.

Définition : La convergence de la série de terme général u,, la convergence de la suite (S),).

—+o0
2. Dans le cas de convergence on note S = lil}_l Sn :Zuk et on appelle Reste d’ordre n la différence
n—-r+od
k=0

—+00
R,=5-5,= Z ug.| On revient de S, a u,, par : ‘un =5,—5,-1 ‘ (dérivée discréte) !
k=n-+1

1 1 15 |
3. Exemple. La série de terme général u,, = on converge car S, = Z of = %;1 S :ZQ—k = 2.
k=0

k=0

31.1.2 Plan d’ensemble

1. Condition Nécessaire de convergence : | Série convergente = u,, — 0. Réciproque fausse.
n—-+0o00

S, a une limite finie S. Et S,, — S,_.1=u, — S —5=0. Réciproque fausse : apreés.

n—-+00

2. Deux séries de références :

(a) Les séries géométriques u, = ¢" (| ¢ |<1 pour que wuy, 0 0).
n—-+0oo

(b) Les séries de Riemann wu,, = L (avec @ > 0 : idem).
na

3. Les séries a termes positifs essentielles (ou positifs & partir de ng) car ‘ici, Sy, croissante. ‘

4. Un cas important : les séries alternées, type u, = (—1)". | u, |; de signe réguliérement alterné.

5. Mais parfois : des séries ol u,, € C; ou bien wu, réel de signe quelconque : u, = 5
n

1

6. Ne pas oublier enfin les cas de somme télescopique : exemple u, = Py P
n.(n

n=1):

. . 1 1 .. .
Ici, S, =u1+...+u,; mais u, =— — 1 (décomposition en éléments simples) !
n n
1 1 .
donc S, = 1" nxl : la série est donc convergente de somme S = 1.
n

(Bien str la condition nécessaire u, —— 0 était respectée).
n—+0o00

209
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31.1.3 C.N. de convergence

1. Propriété : |Série convergente — u,, e 0. Réciproque fausse.
n—

2. Démonstration (rappel) : Soit S, = Zuk Si la série "Z uy," est convergente c’est (exactement)
k=0
que la suite (S;,) convergente. S, et S,_1 ont ainsi méme limite finie S (dans R ou C). Et donc :

Uy = Sy — Sn_ln:;oO. Quand wu, /4 0 (n — +00), on dit que la série diverge grossiérement.

Exemple. Un exercice (de la feuille) consiste & montrer que Z sin(n) diverge grossiérement.

3. Réciproque fausse :

1 1
Divergence de la Série harmonique S, =14+ =+ ...+ — ou wu, = —. [Nicole(las) Oresme.]
— n n

2
1 1 1 1 1 1 1 1
lére f btile. Sy, =1 =8, -8 = — >n— =,
¢ére facon, subtile. Sy, —|—2+3+ S T on— S n+1+n+2+ T
Si la suite S, convergeait, So, — S, devrait tendre vers 0, ce qui est impossible.

k+1 1 n+1
2éme fagon, comparaison avec une intégrale : z > / z.dt. Donc S, > / ?dt =In(n+1).
k 1

Et ainsi S, — + oco. |[Remarque : un autre petit travail, laissé, donnerait : S, ~ In(n).]
n—+o00 n—+o0o

31.1.4 Deux séries de référence

La série de terme général u, = ¢" € C converge < |¢q|<1

1. La série géométrique
g q et dans ce cas la somme est : E q" = ——

n—l—l

En effet, si | ¢|< 1, on a: Z q et on sait que q"Jr1 — 0. Inversement
1 —(q n—-400

Si|qg|>1,1a C.N.de convergence n est pas respectée : la série diverge grossiérement.

L. . La série de terme général u,, = — converge < o > 1.
2. Les séries de Riemann & "o &

La somme est inconnue. [Pour a = 2, c’est (* Euler) 72/6.]

Démonstration difficile en Ligne 3 (*) :  En effet @ > 0 est nécessaire sinon divergence grossiére ;

. . . . 1
méme « > 1 est nécessaire car la série harmonique est divergente (et par exemple, T >—..)
n_n
En sens inverse, a > 1 est suffisant en comparant & nouveau avec une intégrale : pour n > 1, on a :

1 ol 1 1 1 n 1 1 1
— < —dt; S — — <1 —dt =1 1= <
no /n_lt" T +/1 to tasi <1 na—l) a—1

par relation de Chasles et pr1m1t1ve.

Donc S,, croissante, majorée par une quantité qui ne dépend pas de n, converge.

Remarque. Pour les séries géométriques —=—+ = ¢; pour les séries de Riemann

n

U
n+1 - 1.

Unp, n—-+0o00

3. Opérations sur les séries convergentes

(a) Bien sir, si u, est le terme général d’une série convergente, A.u, aussi.
C’est ainsi que pour la série  u, = a.q”, le résultat est connu.

(b) De méme si (uy,) et (v,) sont les termes généraux de séries convergentes, (u, + v,) aussi.

. L1 L1 1 1

(c) Par contre : Série convergente + Série divergente — Série divergente (cas: u, = — — —).
n n

T s 1 . 1 -1

Série divergente 4 Série divergente = on ne sait pas ! cas : Up = — +— !
n n
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31.2 Cas des séries a termes positifs

31.2.1 Comparaisons fondamentales par inégalités

Soit : 0<u, <v, pourn>0 (ou pour n > ng, cela suffit) :

1. Théoréme. Si la série E v, converge, alors la série E Uy converge aussi.

Par contraposée : si la série E uy, diverge, alors E vy, diverge aussi.

n

En effet, la suite S, = E uy, étant croissante (au moins & partir d’un certain rang), on a :

k=0
la suite S, converge < suite majorée. Puis assez aisé.
) sin(n . )
2. Exemple. Si u, = % s 0<u, <v, = ol Comme la série E v, converge, E Uy, AUSSI.

31.2.2 Conséquence : régle de D’Alembert

. . N . . U
. On suppose ici que u, > 0 (4 partir d’un certain rang) et que SN
1. Enoncé. Uy, n—-+oo

sil > 1, la série diverge; si 0 < [ <1, la série converge; sil =1, cas douteux.

Exemples. Cas wu, =1/2", wu,=1/n% u,=n!/n" (ici ups1/u, — 1/€), u, = (71”.(12”)/77,!

. . 1+1 .
2. Démonstration. Cas [ < 1 : Introduisons ¢ :% < 1. dny > ng tel que: n > n; entraine

Un+1

< q;donc up < up,.q"""M =a.q", sin>n; (a=up,.q ") et lasérie de droite converge.
n

u
Cas [ >1:plusfacile ! In;: n>n; — ntl

>1; donc Vn=>mng:u, > uy,. Ainsiu, » 0.
Unp

31.2.3 Autre conséquence : comparaisons par équivalents, toujours u, > 0

1. Théoréme |Si wu, >0 (essentiel) etsi u, ~ wv,, alorsles séries sont de méme nature.
- n—-+4oo

La démonstration est laissée en exercice.

1 1
2. Exemples . Soit : u, =In(l1+ —); ona: u, ~ —=uv,=0.
— n n—+oo N

Comme la série harmonique E vy, est divergente, la série E U, aussi.

. 1 . k o
. Série de terme général u, =e — (1+—)". (D.L. a faire) w, ~ — :série divergente.
n n—4oco N

3. Contre exemple. On verra au III qu’on peut trouver Z Uy €t Z v, de nature différente

bien que u, ~ wv,. Mais u, NON de signe constant et le Théoréme ne s’applique pas !
n—-4o00

31.2.4 Convergence absolue

Soit uy, € R (ou méme wu,, € C) le terme général d’une série.
1. Théoréme | Si Z | up, | converge (condition suffisante), alors Zun est convergente.

On dit que la série, dans ce cas, est absolument convergente.

ADMIS. Et pour la série Z | un |, on peut appliquer les numéros 1,2,3, ci-dessus.

(=)™  sin(n) cos(ln(n))  sin(n).ln(n)
nZ ' 2 n32 n3/2

absolument convergentes (derniere : | u, |< n'/*/n%? si n > ng) donc convergentes.

(=" (="
n  \/n

sont

2. Exemples. Les séries de terme général :

Par contre : ne sont pas absolument convergente, M AIS ne pas dire

pour autant divergente ! elles sont "semi-convergentes" ; voir III.
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31.3 Quelques mots sur les séries alternées

31.3.1 Définition (ce n’est plus un objectif de base du programme)

La série de terme général u,, € R est dite alternée si elle est alternée en signe u, = (—1)". | uy, |-

_ ="

Exemples :  u, =

P sin(n
est alternée; par contre v, = (n)

ne l'est pas !

1)7L+1

31.3.2 (*) La série harmonique alternée %" =0

,n > 1, converge vers [n(2)
n

1. Elle est non Absolument convergente, mais elle converge; preuve avec So,, Son+1 adjacentes :

1 1 1 1 1 1
Sy =u =1, 8= 12, S5= iyl 1 1 1
1=u , D2 = U1 + U2 5 93 Uy + U +u3 2+3, 4 2+3 1
Dessin : So,4+1 et So, sont respectivement décroissantes, croissantes, et Sopi11 — Sop —+> 0:
n—-—r+oo

(_1)n+1

—+oo
‘adjacentes donc convergent vers la méme limite S. ‘ (*) Et ici )
n

n=1

=in(2). 3 fagons :

2. (*) cf. la formule de Mac-Laurin Lagrange a in(1 + x). Puis x =1. Trouver | In(2) -5, |< !

n+1°
. — 1—(—2)" 1 (=1)™.a™
PSRN e S — 1 _ 2 _ _1\n—1 ,.n—1 .
3. Idem, plus facile 1;:0( x) = () ou ——= l—z4a2° = +(-1)" 2"+ T

2 n X ..n 1, ..n 1
ln(l—l—X):X—X7+...+(—1)"’1X7+(—1)"/ 20T X 1 @) S, |:/ z".de g/ oy = —
0 J0O

o 14z’ 1+ n+1
4. Ou(*) T, =) :
k=1

= Ty, —Sa, = Ty, : Sop, somme de Riemann conv. vers In(2), Sop41 = S2n—|—2 -
n

> =

31.3.3 (*) Exercice : "Le Théoréme spécial des séries alternées" (idem, Ss,, S2,11 adj.)

| On estici dans le cas ou :  u, = (—1)".a,, avec an = |u,|>0. Siona deplus:
1. Enoncé ) . L. .
an tend vers 0, en décroissant, cela suffit pour que la série E Uy soit convergente.

_ n
2. Autres exemples. E Up OU Uy = (=1 converge par le Théoréme spécial des séries alternées.

NG

_ n
E ( 2) conv. par le Th. spécial des séries alternées; mais mieux : absolument convergente !
n

-n" 1 : . .
Rem. E (( ) + —) : somme d’une série conv. et d'une div.; div. Pourtant w, ~ u, !
\/ﬁ n ’ n—+o00

31.3.4 (**) Complément :

—1)" —-1)" 1 -1 n AT 3
1. Zun, up = In(1+ (=1 )= (=1 + ()7—’_6, est somme : d’une série semi-convergente,

NG N 3.n3/2

d’une série div. et d’une série absol. convergente (| ¢, |

oo 7373) donce diverge; (idem).

2. Nature de la série de terme général w, = sin(m.\/n?+2) avec ‘SZ"I’L(’I’L.T( +a) = (—1)".sin(«a). ‘

. / 2 2 11
Solution. On a: vn2+2=/n2(1+ =) =n.(1+=)"*=n. (1+l,3+k+6"). (k=22 2%
n n 2 n? 4 21

n
Et par D.L. de sin(h): u, = sz’n(n.ﬂ—kz—i-m#) = (-1 (E + K+ e
n n n n3

) , K inutile & connaitre.

Alors la série apparait comme somme d’une série semi-convergente (qui est connue : harmonique

alternée) et d’'une série absolument convergente (a voir !); donc la série E u, converge.

3. Exercice (*) : Dans les hypothéses du Théoréme spécial des séries alternées, montrer que :

| Ry | =1S—=S5,| <|Snt1—Sn| =|unt1]| et que le signe de R, est celui de uy41.
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31.4 Quelques cas oul on connait la somme d’une série

31.4.1 La série géométrique (et sa famille)

1. |La série de terme général u,, = 2" € C converge < |z |< 1. La somme est : Z " =

2. Exercice (**) : En dérivant Lot = zn::ck trouver =z zn:k el = et E ko
. : T , . . e oF
k=0 k=1 k>0
[l — (n+1).2" + n.a"+] =Xk
Reé k.a® = . Converg. si |z |< 1[car|n.|z|® — 0. — =2
Rép. Z " =L g si|z| [car|n. |z | n—too ok

avec x =1/2 (on peut aussi faire sa convergence par la régle de D’Alembert).

31.4.2 La série exponentielle (et sa famille)

—+oo
- . z" . z"
1. | La série de terme général u, = — converge Ve € R (méme z € C). La somme est E — =
n! n

Démonstration par la formule de Taylor-Lagrange avec pour le reste de T-L : | — — 0.

.. n2n+1) 2n+1 «al+pBn-1) .
e = > g g
En écrivant i 1) O sin>1 (=2, a=3)

préciser la convergence et la somme de cette série.

2. Exercice (**) :

Réponse. Série convergente par la régle de d’Alembert si on veut et avec 'indication :

n—1 n—1 1
D =33 oy Z :Zm:Zm:Zm

n>=1 n>1 n>1 n>=2 n=2
1
d’oil Zun—?)z Z =3e+2e=5e car Z—'—
n>1 n>1 nz0
31.4.3 (1+x)*size|—1,1] (et sa famille) : Spé
31.4.4 Cas de sommes télescopiques. (*) 2 exercices corrigés :
1. Convergence et somme de : Z _1 ? Série convergente (u, ~ i) et ... somme §
n(n+2) n—+too n2 4
. 1 1.1 . . .
(Attention =—(=- ) : dans les simplifications reste deux termes au début et a la fin).
z(x+2) 2z x+2

2. Trouver a, b pour que la série Z In(n) 4+ a.ln(n + 1) 4+ b.ln(n + 2) converge; calculer la somme.

A+e

Solution : wu, =In(n) +aln(n+1) +bin(n+2)=(1+a+ b).ln(n)—l—%(a +2b) + car

2
In(1+h)=h-— % + h%.e(h). Donc (convergence) = 1+ a+b =0 (sinon u, - 0) et a+2b =10

. K
(sinon  uy, N div. par équivalence de séries de signe constant) : a = —2,b=1.
n—4oo N
. A+en . .
En sens inverse, avec ces valeurs, u, = ——5— : série convergente. Puis on a :
n
1.3 24 35 (n—l).(n—l—l) n(n +2) 1n+2 1 R
Spn=n|—.—.— . =In|=. — In=. D’ou § = —In(2).
(22 32z n2 mr12) "\ o g1 are t2 OO n(2)

31.4.5 Souvent la somme est inconnue ; alors calcul approché : Z — =~ 1.202056903
k>1
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M-+ Exercices: Les séries numériques PTSI

1. Un cas de divergence grossiére. On pose : u, = sin(n).

Développer sin(n+1); déduire que 'hypothése sin(n) - 0 entrainerait cos(n) 0 0;
n—-+0oo n—-roo

et qu'elle contredirait sin®(n) + cos*(n) = 1. Conclusion sur la nature de la série Z sin(n) ?

!
2. Nature de Z% et Z(n+1)(n+2)...(2n) 7 (Régle de d’Alembert Unst 1 Ui g)

(2n)" Uy n—+tooe’ v, n—+ooe

(Avec [(n +1)/n]™ tend vers e en +o00.)

. 9l(=1)"] . 2 1. 1
3. Soit uy, :T; nature de la série 7 (0 < v, < 3—n) Et trouver la somme : (2 + 6).71 /5

4. On pose E, =1+ % + ..+ : —In(n). Donner un équivalent de d,, = Ey1 — E,. (—1/2n?)
n
En déduire que la suite (FE,) converge. (Ind.: E, = E;+ Z dy;)

1<k<n—1
In(n).sin(n) 1
5. (*) Montrer que la série g 13 converge. (Indication : Comparer |u, | a pEESYH )
* P P 1 _\/ﬁ 1 "
6. (*) Nature des séries de terme général u, = ————, v, =e€ , Wwp=e—|1+—] .
nlt+l/n n
1 1+¢,).dn(n . .. .
(Lére : up = — — % ~ — : et de signe positif; de méme nature, divergentes.
n n n—+oon 1
2¢éme : n2.vn —+> 0. Donc dng: n>2nyg=— 0< v, < — D’oit série convergente.
n—-+0o0 mn
€ . . L. P epe
3éme :  wy, Mo 2 Donc série divergente par équivalent des séries & termes positifs.)
n—-—+00 .n

7. Nature de : Z (l;(lggl ? (Th. spécial S.A.). (*) Puis de Zvn = \/5(171();1)” ? (DL, div. !)

x
8. Convergence des séries de terme général : wu, = In <1 — i), vy, = In(cos <2—n>)

Rép: n>2, somme: —In(2). Utiliser sin(2a) = 2.sin(a).cos(a).  Puis les cas :

wy, = Arctan(n + 1) — Arctan(n) = Arctan Tp =1".cos(n.a), 0 <r <1

nn+1)+1’

9. Dans le cas ou f est positive, décroissante pour n > ng et o (par morceaux).

X
(a) Montrer que la série Z f(n) converge < / f(t)dt a une limite finie quand X — +o0.
no
(b) Que dire sur le reste si Z f(n) converge 7 sur la somme partielle si Z f(n) diverge 7

n
(c) Montrer que la suite S,, — / f(t).dt dans tous les cas, décroit et converge.
10




Chapitre 32
Probabilités : généralités

32.1 Le vocabulaire

32.1.1 Définitions

1. Exemple. On lance 2 dés Bleu et Rouge; on regarde les couples obtenus. On note souvent :
Q={1,1), (1,2), .., (1,6), (2,1), ..., (6,6)} dit : Univers des (cas) possibles.
. A={(1,3)} est un événement possible (une éventualité).

. B=1{(2,3), (2,5)} en est un autre, signifiant obtenir en 1 lancer : (2,3) ou (2,5).
. ) est appelé événement certain. () : événement impossible.

A et B sont dit incompatibles si AN B = (. A est dit événement contraire de A.

Un événement N tel que p(IN) = 0 est dit "négligeable" (ici, c’est quand 2 est infini ...).

2. Une famille d’événements A; est un systéme complet d’événements si A; Q Aj=0et UA; = Q.
i#j

Ci-dessus {(1,1)}, {(1,2)}, ... .{(6,5)}, {(6,6)} : systéme complet d’événements élémentaires.

32.1.2 Espace probabilisé fini

1. Une probabilité p sur ) est une application
p: P(Q) —[0,1] telle que p(2) =1 et (A et B incompatibles) = p(AU B) = p(A) + p(B).

Exemple fondamental

Si  est constitué d’un systéme complet d’événements élémentaires équiprobables, (on dit
aussi probabilité uniforme), alors: p(A)= | é = ]\;\;)Z;:Z:Pdgpp?(jsf;:::g?i:g
Ci-dessus, (avec des dés non biaisés), p(B) = 6= %
Probabilité d’avoir au moins 1 as en 8 cartes d'un jeu de 32 7 p(A) = <288) / (382>

2. Attention. Sur le méme exemple, probabilité que la somme des 2 chiffres soit égale a 5 (noté C').

Les sommes possibles sont entre 2 et 12; il y a 11 sommes mais non équiprobables !
1

#11'

Ol =

La probabilité de la somme cherchée correspond a 4 cas équiprobables sur 36 ; soit p(C') =

3. Propriétés. 1l est facile de voir que (exercice) :

- p(0) =0 - p(A) =1 —p(4) - P(AU B = p(A) +p(B) —p(AN B)

. p(A\B) = p(A) — p(AN B) . A C B= p(A) < p(B), croissance

. et, si on a n événements incompatibles, alors : p(UlL;A;) = Z p(4;).
1<ign

215
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32.2 Probabilités conditionnelles

32.2.1 Définition (probabilité de A si B)
1. On note p(A|B) ou pp(A) la "probabilité de A sachant (que) B (est Vraie)", pour p(B) # 0.

Cette probabilité (au sens déja dit) est définie par |pp(A) = % Donc :
p
B).p(A
2. ‘])(A N B) =p(A).pa(B) = p(B).pp(A) ‘ et (inversion des conditionnements) pp(A) = pa( &;;( )
p

32.2.2 Formule des probabilités composées

1. La formule ci dessus se généralise : p(ANBNC) =p(A).pa(BNC)=p(A).pa(B).pans(C).

C’est la formule des probabilités composées : | p(NA4;) = p(A1).pa, (A2). ... .DA;NAIN..NA,_1(An).

2. Exemple
Trois urnes contiennent des boules Blanches et Noires. Ul contient 2B et 3N; U2 contient 4B et
2N; U3 : 6B et IN. On tire une boule de Ul, on note sa couleur, on la met dans U2; on tire
alors une boule de U2, on note sa couleur, on la met dans U3; on tire une boule de U3, on note sa
couleur. Probabilité pour que les 3 boules aient la méme couleur ?

332 9
On a: p(Ny N NyN N3) = p(N1).pn, (N2).paynn, (N3) = 578 = 140"
Idem : p(B; N By N B3) :%. On obtient la probabilité cherchée : p :% =0, 314.

32.2.3 Formule des probabilités totales
1. Ici, on a un systéme complet d’événements non négligeables A; : A; ‘Q'Aj =0 UA; = Q.
i#]

Alors |p(B) = Z p(BNA;) = Z p(Ai).pa,(B) (sommes sur i).| (p(4;) > 0)

2. Exemple
Trois urnes contiennent des boules Blanches et Noires. Ul contient 2B et 3N; U2 contient 6B et
4N; U3 : 4B et IN. On choisit une urne au hasard et on tire une boule. Probabilité que ce soit
une Blanche, si p, ¢, r avec p+ g+ r = 1 désigne les probabilités de choisir les Urnes 1, 2, 3 7

2. 6. 4.
Trouver :  p(B) = puvy (B)-p(U1) + puy (B)-p(U2) + pus, (B).p(U3) ==F + 23 + -
Si p=gq=r, p(B) _3_ 0,6. (Et il est possible de choisir p, g, pour avoir p(B) = 0,5 ...)

c=
32.2.4 Formule de Bayes (probabilité des causes !)

A;NB
1. C’est I'inversion des conditionnements : pp(A;) = %
p

et au dénominateur, en utilisant la formule des probabilités totales : |pp(A4;)

; le numérateur vaut p(A;).pa;(B);

_ p(A4)).pa,(B)
— > p(Ai)pa,(B)

2. Exemple
Quatre urnes contiennent des boules Blanches et Noires. Ul contient 4B et 1N; U2 contient 3B

et 2N; U3 :2B et 3N; U4 : 1B et 4N. La probabilité de choisir I'Urne 7 est %

. Probabilité d’avoir 1 B en 1 tirage ?
. Probabilité qu’on ait choisi I’'Urne Ul, si on a obtenu une blanche 7
1+2+3+4

1) Avec la formule des probabilités totales (correct car ona —————— =1 1) :
41 3 2 2 310 1 4 2

1
ULNB)  p(UL).p(BlU1)  4/50 1

: _n(
2) Et aussi p(U1|B) = B (5] =555 =5

= 0,2 (urnes non équiprobables).
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32.3 Indépendance en probabilités

32.3.1 Cas de 2 événements

1. | A et B sont dit indépendants si p(ANB) =p(A).p(B)| (attention # "incompatibles").

. Un événement B négligeable (p(B) = 0), est toujours indépendant avec un événement A.

. Sl p(B) > 0, Cela veut dire pB(A) = p(A) - connaitre B ne Change rien (Car pB(A) :p(A(;)B))
p

2. Propriété. |Si A et B indépendants, alors A et B, (donc A et B, A et B) sont indépendants.
En exercice : p(ANB) = p(A) —p(ANB) =p(A) — p(A).p(B) = p(A).p(B).

32.3.2 Cas de plusieurs événements
1. A, B,C sont dits indépendants sion a : p(ANB) =p(A4).p(B), p(ANC)=p(A).p(C),
p(BNC) =p(B).p(C) p(ANBNC)=p(A).p(B).p(C). Etc. en général.

(Donc : une sous-famille d’événements indépendants est indépendante !)

2. Trois événements indépendants 2 & 2, non indépendants ! On lance 2 fois de suite un dé équilibré.
A : le chiffre du ler lancer est pair. B : le chiffre du 2éme lancer est impair. C : avoir 2 chiffres
de parité différente : A et B sont indépendants; A et C aussi; B et C aussi; mais pas A, B,C.
. 1 33 1 1 1 1
Réponse. p(A) =p(B) =5. p(ANB)=¢==7. p(C)=p(I,P)) +p((P.1)) =7+ =75
ANC = (P,I): A et Bindépendants car p(ANB) =p(A).p(B); Aet C aussi; B et C aussi.

Mais : p(ANBNC)=p(ANB) # p(A).p(B).p(C); donc A, B,C ne sont pas indépendants.

32.3.3 Exemples sur 'indépendance

1. On lance n fois une piéce avec probabilité p d’avoir Pile et ¢ =1 —p d’avoir Face.

(

a) Probabilité d’avoir au moins une fois Pile ?
(b) Probabilité qu’en ces n lancers, Face ne soit jamais suivi de Pile ?

Rép. : (a) Le contraire est F; N Fy N ...N F, de probabilit¢ ¢" (indépendance des lancers).
D’ou la réponse ici : 1 —¢".
(b) Soit A : PPNP,N..NP,NFpi1N...NF,, pour 0<k<n. Onveutici p(UA) et ces
événements sont incompatibles; de plus : p(Ag) = pF.g"*.  D’ou la réponse :

n n pn+l o qn+l
Zpk.q”’k. (On sait que Zp’“.q"”" = sip#tq etsip=q,p=q=1/2 ...
k=0 0 f; -4
ottt —(1/2)" o fl@) - fa/2) 1 1
t: lim ————— =1 — = f(Z) = 1).— ...
O T 2 o1/2 e T —1/2 F5)=m+1)5 )

2. Trois machines My, My, Ms, produisent 50/100, 30/100, 20/100 des produits, respectivement.
De plus, 2/100 des produits fabriqués par M; sont défectueux, 3/100 et 5/100 avec My et Ms.

(a) Probabilité qu’un produit pris au hasard soit défectueux ?
(b) Probabilité d’obtenir une piéce défectueuse provenant de M ?
(c) Les événements "La piéce est défectueuse” et "La piéce provient de M;" sont-ils indépendants 7

(d) Une piéce est défectueuse. Probabilité qu’elle provienne de M;? (C’est : pp(M).)

Réponses :

(a) Avec la formule des probabilités totales p(D) = p(D|M1).p(M1) + ... = 0,02.0,5 + ... = 0,029.
alntenant, on veut : p(Mi N =D 1).p(M1) =0,02.0,5 =0,01. ar suite :
(b) Mai (M;N D) (D|My).p(My) =0,02.0,5 =0,01. P i
c) On a p(M;N p(My).p ; donc ces événements ne sont pas indépendants.
(0] MiND M D); d d d

d) Ici, c’est une probabilité des causes : p(M;|D) = o)~ 0,029




218 CHAPITRE 32. PROBABILITES : GENERALITES

32.4 Des exercices corrigés

32.4.1 Simple dénombrement mais pas facile (*) !

1. Avec 52 cartes, probabilité d’avoir exactement 1 Dame et 2 Coeurs en 5 cartes ? (13 coeurs ...)

2. On tire 2 dominos ensemble, d'un jeu de 28 (7+Lf). Probabilité d’avoir une face commune aux 2 7

Rép 1. (112> | <336) ’ @ | <122) | (326) ~0,081.  Rép2 (D | @ - @ | (g) _ T~ 0,380.
= ey

32.4.2 Indépendance, conditionnement, probabilité des causes

1. Pour ouvrir une porte, on a n clés distintes. Si k € [[1,n]], probabilité py d’ouvrir au kéme essai ?

1 -1 1 1 1
Rép. Ona: pj=—; py= n . = — ... Finalement p; = — tout le temps !
—_— n n n—1 n n

2. Aet Bindépendants, p(A) = %, p(AUB) = % : calculer p(B). [p(AUB) = p(A)+p(B)—p(A).p(B)...|

3. On dispose de 2 piéces de monnaie, 'une non truquée, I'autre truquée 1" ou la probabilité d’avoir

Face est p > 1/2. On fait les jets successifs avec la méme piéce.

(a) Probabilité d’avoit choisi T" si on a eu Face au ler lancer, noté Fy 7 [p(T|Fy) =2p/(2p + 1)]

2
(b) Les événements Fj et Fy sont-ils indépendants ? [Non : p(Fy)p(Fz) = (i + g) ,

2
ct: p(FLNFy) =p(FiNFNNonT)+p(FLNFNT) = % + %.]
(c¢) Probabilité d’avoir choisi T'si on a eun F', en n lancers ? [p(T|FiNFeN...NF,) = W]
p

32.4.3 (*) Limite de probabilités avec somme de Riemann

1. On tire une boule avec remise dans une Urne de n boules numérotées de 1 & n. Probabilité qu’au

k-é tirage (pg), on ait un numéro inférieur ou égal a tous les précédents ? Limite si n — +oo ?

1
Prendre en premiére lecture k£ = 2 et comprendre que py(n) —~ 3 ; puissi k=3,
n—-—+0oo

1
comprendre que p3(n) e 3 [plus petit numéro : position 1) 2) ou 3).] Non demandé
n—-+oo

1
mais si, par contre, on prenait n = 10 et k = 1000, voir que piggo =~ 0 [tirer la (1)].

2. Solution. Tirages indépendants et équiprobables. n” cas possibles; si on tire la boule i au tirage
1 n
k, on a tiré avant dans [[i,n]] : (n —i4 1)*71 cas favorables. = pp = — E (n—i+1)"1 et avec
n
=1

n

. . TGy o nn+1) n+1 1 J ko1 S 1
j=n—1+1p :WZ‘] . Ainsi py = = et pkz—Z(—) n:;o/o t dt:E'

2.n? 2n n<='n
j=

Jj=1

32.4.4 (*) Limite de probabilités avec une Matrice

N enfants Ej; jouent au ballon : au départ, E; a le ballon et 'envoie a un autre; etc. Relier les

les probabilités py ,, : Ej, ayant le ballon au pas n (p1,0 = 1) avec une matrice. Et sin — 400 7

|On ne traite que le cas N = 3.| Soit (Ayn)1<k<3 le systéme complet d’événements :
Ej a le ballon au pas n. Notons p, = p(41,n), g, = p(Aa,n), r, = p(As,n).
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Dn+1 1 (0 11 Dn
Alors Pn+1 = p(Al,n+1) = Zp(Al,n—l-l N Ajn = Zp]n Donc dn+1 | = 3 10 1f.1an]-
J j;ﬁk Trt1 1 1 0 T
1 1 1 1 1 1
ou : | Xpt1 = §.A.Xn, X, = 2—nA".X0 Xo =(0]. SsiJ=1(11 , A = J — I3, montrons que
0 1 1

! L, _Cor D" Lo o Lo
2—nA" = §.<1_ ).J—i— on I : qui "tend vers" §'J' Dot pyn, qn, n — 3 limite attendue !

‘(*) Calcul de : A", n > 1.‘ Déja J?>=3.J, J"=3""1J pourn>1; tandis que J° =13 !

1. 1e fagon (un peu artisanale et pas la plus simple) par le binéme A™ = (J — I)" : on sépare donc en

deux, selon : J% et J, i>1. (*) En général A" = B-1) 3 (=1) J 4 (=1)"I. Exemple A°:

A5 — J5—<?> Jhy (g) J3—<§> J2+<Z> J—T = % <35 _ (f) 344 (g) 33— <§> 32 4 <i> 3> I
oIy = % (35 - <§> 3t 4 (g) 33 _ (g) 32 4 <i> 3 30> J+ %J—I;; - %.J—I&

‘Autres facons de calculer A", peut-étre plus simples ! (ci-dessus, binﬁme).‘

2. Si on a une matrice facile, par exemple diagonale D, et P inversible telles que P~*AP = D, alors
A" = P.D" P~ (st le programme de Spé-PT.

3. Ou (Spé-PSI) avec A2 —A—213=0, X" = (X +1)(X —2)Q(X) 4 p,X + ¢y, on trouve p,, ¢,
avec X = —1, 2 puis on déduit que : A" = O + pp. A+ qy.1.

an bn bn
4. Ou encore ici A" = (bn an bn) avec api1 = 2.by, bpy1 = ap +by,. Tirer a, de (2), reporter dans
b, bn an

(1) = bpy2 — bpy1 — 2.b, = 0 d’équation caractéristique r2—r—2=0:b,=a2"+ B.(=1)"...

32.4.5 (**) Limite de probabilités avec suite arithmético-géométrique

Une urne B blanche contient une proportion 0 < a < 1 de boules noires (et 1 — a de bl.); une urne N

noire contient une proportion 0 < b < 1 de blanches (1 —b de n.) On choisit une urne (probabilité p pour

B), on tire une boule avec remise; si elle a méme couleur que I'Urne, on garde ’Urne, sinon on change.
- Soit V,, = ( "> ou p,, est la probabilité que la n éme soit blanche. Limite de V,, en l'infini 7

n
- Probabilité que la n éme soit blanche si blanche au k éme tirage : kK <n; puis k>n ?

Soit A, ’événement : Au n éme tirage, on a une blanche; qui implique : on est dans
l'urne B, aurangn+1. Déa: py=p.(1—a)+q¢gb et p,+qg,=1  Puis:

Pyl = P(Ans1 N Ay) +p(Ant1 N By) = (1 —a).py +b.gn, ¥n >0, en posant py = p, qo = q.

Ainsi : ‘ Pnt1 = (1 —a—b).p, +b. p, est une suite arithmético-géométrique (connue) ‘ d’ou :

b b
(..) pn:a+b+(1—a—b)n. (p—%) de limite : Puis :
Casoun>k Ici: V,=M"F V,on M= <1 ; “ 1 E b) et Vi = > La relation est donc
analogue a la précédente et devient : p, . = P +(1—-a-0)" Py b) pour n >k
Cas ou k > n. Cette fois: 1= P> +(1—a—bkm <pn7k —ll)—b ; d’ou on trouve, par

b
calcul ... ppr= P +(1—a-— b)"_k. (1 - QLM) pour n < k. Meéme expression !
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M- Exercices: Probabilités, généralités PTSI

1. (Dénombrement). On lance 4 fois un dé a 6 faces. On appelle tirage cette suite de 4 lancers.
(a) Combien a-t-on de tels tirages 7
(b) Combien avec exactement 2 numéros différents ?
(c) Combien avec exactement 3 numéros différents 7 (1296, 210, 720).

2. (Dénombrement). On lance 3 dés (Bleu, Jaune, Rouge) a 6 faces.
(a) Nombre total de tirages possibles ?

(b) Nombre de tirage ayant au moins un "6" 7

()

(d) Nombre de tirage tels que la somme des 3 dés soit paire 7

(e) Nombre de tirage vérifiant 2) et 3) 7 puis 3) et 4) ? (216, 91, 96, 108, 31, 48)

Nombre de tirage ayant au moins 2 faces identiques 7

3. (Probabilités) Un joueur atteint sa cible avec une probabilité de 0,04.
Combien doit-il faire d’essais pour l'atteindre (> 1 fois) avec une probabilité d’au moins 0,95 ?

Réponse : En n lancers, on résout : 1 —p = (0,96)" < 0,05. On trouve n > 74.

4. (Probabilités) On dispose de deux dés : A a 4 faces rouges, 2 blanches. B : 2 rouges, 4 blanches.
On joue toujours avec le méme dé; mais avec une probabilité 1/3 pour A; et 2/3 pour B.
(a) Probabilité d’avoir la couleur rouge au premier coup 7
(b) On a eu 2 fois rouge (sur deux). Probabilité d’avoir rouge au 3éme ?

(¢) On a obtenu n fois rouge en n coups. Probabilité d’avoir utilisé A ?

41 22 4

Réponses : (a) p(R1) = p(R1]|A).p(A) + p(R1|B).p(B) = 53 + 53= 9> 0, 4444.
2

(b) On cherche p(R1NR2NR3|R1NR2). p(RiNR2) = p(RiNR2|A).p(A)+p(RiNRe|B).p(B) ... = 5

10 5
p(R1 N Ry N R3) analogue... et vaut R D’ou la réponse : — ~ 0, 5555.
1 "2 o242
(c) Déja la probabilité d’avoir n rouge est (de méme) 3 g + 3 %) = 3n—L d’une part.
ANn— N n..N A).p(A
Et p(A|n — rouge) = p(AnNn = rouge) = p(f 0 1y ftn|4) p(4) (selon la formule de
p(n — rouge) p(n — rouge)
n n
Bayes). Le numeérateur est il D’ott la probabilité 713 (qui tend vers 1, si n — 400).

5. (Probabilités) Une particule se déplace entre 3 points A, B,C. Sien A, elle va en B avec la prob.
0,75 ou en C' avec la prob. 0,25. Sien B, elle va en A avec la prob. 0,75 ou en C avec la prob. 0,25.
Si en C, elle va forcément en B. On note a,,, b,, ¢, les probabilité d’étre en A, B,C au temps n.
0 3/4 0 12 3 1 an,
On considére aussi les matrices: M= [3/4 0 1] P=|[16 -1 —-1| et X,=[0b,].

1/4 1/4 0 7 -2 0 Cn

(a) Veérifier que X,,11 = M. X,,.

(b) Calculer P! (on peut s’aider d’une machine) et vérifier que P~'MP = diag(1,—1/4,—3/4).
En déduire M™ puis X,, en fonction de X.

(¢) En déduire la limite X, quand n tend vers +oo, de X,.




Chapitre 33

Probabilités : Variables aléatoires

33.1 Variables aléatoires sur un espace probabilisé fini

33.1.1 Deéfinitions
1. Soit 2 un ensemble fini, muni d’une probabilité. Par exemple, avec un dé lancé 2 fois,

1
Q=1{(1,1),(1,2),(1,3),...,(6,5),(6,6)} chacun de probabilité 36 si les faces sont équiprobables.

2. On définit une application de €2 dans R mais les notations usuelles ici sont X. Sur le cas ci-

dessus, par exemple, X est la somme des numéros pour 2 lancers : X(Q) = {2,3,4,...12}.

1 1 1 1 5 1
X=2=— pX=3)=—. p(X =4)= —, p(X =5)==. p(X =6)= —. p(X =7) = =
p( ) 36’ p( 3) 18,19( ) 12,19( 5) g,p( 6) 36,1?( 7) &
5 1 1 1 1
X=8)=— pX=9 ==, pX=10)=—, p(X =11)= —, p(X =12) = —.
p( 8) 36’ p( 9) 5 p( 0) 3 p( ) T p( ) 36

3. X(Q) ={z1,z9,...,2,} CN; onnote {X =uz;} l'ensemble {w: X(w)=a;} avec:
pi = p(X = z;). Clest une autre probabilité : Z pi=1. (X € A signifie {w € Q: X(w) € A}.)

33.1.2 Autres exemples

1. Composition foX : Sur 'exemple précédent, on peut considérer une fonction f (par exemple

un gain) disant si la somme vaut k, le gain est f(k). Par exemple avec : f(z) = 2.z,
foX se noterait 2.X et son ensemble de valeurs serait : foX(Q2) = {4,6,8,...,24}.

2. Toujours avec 2 lancers de dés, soit Y : le minimum obtenu. Ici, Y(Q) ={1,2,3,4,5,6} et :

11 9 7 5 3 1
Y =1) = — Y =2)=— Y =3) = — Y =4) = — Y =5) = — Y =6) = —.
p( ) 36 p( ) 36 ( 3) 36’ p( ) 36 p( 5) 36 p( 6) 36

3. Exemple. Loi de X, rang d’apparition de la Noire : tirages sans remise dans une Urne (2 B, 1N) 7

Solution. X () ={1,2,3}. Puis (X = 1) signifie qu’on tire de suite la noire p(X =1) = %
21 1 211 1 . S
p(X =2)=p((B,N)) = 353 p(X =3) = 33713 X suit une loi uniforme sur [[1, 3]].

33.1.3 Couple de variables aléatoires. Indépendance

1. Définition Etant donné, deux variables aléatoires, notées ici : X, Y a valeurs dans R, on peut
définir les probabilités : |p;; =p(X =2;NY =y;).| Exemple: Y \X| -1 0 1

|
0| 1/5 0 1/5
1| 1/5 1/5 1/5
Ici: p(X =0NY =1)=1/5|#|p(X =0). p(Y¥ =1) =1/5 . 3/5.

221
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2. Ce qu’on appelle "lois marginales", c’est : p(X = —1), p(X =0), p(X =1); idem avec Y'; en

général : p; , = p(X = x;, Y quelconque) =Y p;; et p, ; =p(Y =y;, X quelconque) :me-.
- .

3. On appelle loi conditionnelle de Y sachant que X = x;, la donnée de : p(Y = y;|X = ;) =P
Di, .

4. | X et Y sont dites indépendantes si p(X = z;,Y = y;) = p(X = x;).p(Y = y;).| Se généralise ...

Deux propriétés immeédiates. | Si indépendance : ‘ p(X €A N €B))=pX € A). pY € B)
et f(X), g(Y) indépendantes. Ainsi: X,Y indépendantes = a.X+b,cY +d indépendantes.

33.2 Espérance, variance, écart-type.

33.2.1 Définitions

1. Soit X une variable aléatoire prenant les valeurs x; avec les probabilités p;.

Alors ’espérance mathématique vaut, par définition : | E(X) = Z Ti.p; = Z:pl p(X =x;).

2. Exemple. Supposons une variable aléatoire représentant la longueur de divers lancers; soit :

Longueurs | 5m. | 10m. | 12métres

Effectifs: | 6 | 9 | 5. La moyenne ou l'espérance vaut : E(X) = X = 9 métres.

3. Variance et écart-type (dispersion) | V(X) = Z(:L’Z —E(X))% p; = Z(gjl ~X)% pi|lo=VV.

2

4. L’exemple : la variance en m?; D’écart-type en métres. V =7,5 m?; o~ 2,74 métres.

Note : |V(X) = E ([X — 7]2) =FE (X - E(X)]2) (Et une v.a. constante est dite "certaine".)

33.2.2 Propriétés de I’Espérance (Si E(X) =0, on dit v.a. "centrée")
1. Linéarite. EAX 4+ p.Y)=ANE(X)+ p.E(Y) que X, Y soient, ou non, indépendantes.
Done E(X;+ Xo+ ...+ X,) = E(X1) + ...+ E(X,).
Démonstration de Ligne 1 (*). E(A\.X) = A.E(X) évident avec la définition; et (intéressant) :
E(X+Y)= Z(zl +yj)pij = Z(zl +yj)pij = Zwi.pi,j + Zyj.pm-. Or doubles indices :

i,J (2] 2 i,j
Z ai.bj = a1b1 + a1by + a1bs + asby + agby + azby = Z ( Z ai,j) = Z(Z) A voir !
1<<2,1<5<3 1<<2 1<5<3 i
= Zmi.pm = Z(Z xi.pij) = lep, = E(X). Idem l'autre terme avec ZZ
.J i J i T

2. Croissance : FE(X) >0 si X >0 et donc (linéarite) : X <Y = FE(X) < E(Y).

3. Formule "de transfert" : E(f(X)) = Z f(z).p(X = ;). En exercice.

4. Enfin| X, Y indépendantes = E(X.Y) = E(X).E(Y).| p(X =20V =y;) = p(X = 2;) p(Y =1y;).

Démonstration :  Ici, E(X.Y) = Z:Ei.yj.p(X =x;NY =y;) = Z 2i.y;.p(X = 2;).p(Y =y;) !

(//ci-dessus) ... = Z zi.p(X =2;).E(Y) = E(Y).E(X). Réciproque fausse : a voir au I.

33.2.3 Propriétés de la Variance

1.|Sia, bER, BE(a.X +b) =a.E(X)+b. V(a.X +b)=a’>V(X) donc o(a.X +b)=|al|.o(X).

Démonstration. V(a.X +b) = Z (a.z; — a.E(X))2 pi = a’. (2:@Z — E(X))2. pi) = a2 V(X).
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2. Formule de Huyghens. |V (X) = F(X?) — (E(X))Z mais ici on voit mal V(X) > 0. (cf. Ex. I.1.)
Démonstration. Notons m = E(X)=X; alors: V(X)=E((X -X)}) =E (X —m)?) =

Z( Z:p pZ—ZmZprH—m Zpl— BE(X?%) —2m.m+m? = E(X?) —m?
3. Covariance. Ona:V(X+Y)=FE((X +Y)?) — (E(X + Y)) d’aprés la formule précédente ; d’ou

V(X 4Y) = E(X?) + E(Y?) + 2.B(X.Y) - (E(X))* = (E(Y))? = 2.E(X).E(Y). Qui donne

VIX+Y)=V(X)+V(Y)+2(E(X.Y)— E(X).E(Y)). Puis on définit (avec X = E(X)) :

Cou(X,Y)=E((X-X).(Y -Y)) = E(X Y)—Y E(Y)—? E(X)+X.Y = E(X.Y)-E(X).E(Y)
donc : |Cov(X,Y) = E (X — X). Y)) = —E(X).EY); V(X)=Cov(X, X).
Et VI(X+Y)=V(X)+V(Y)+2. C’ov(X Y) avec X, Y indépendantes = Cov(X,Y)=0.

(derniére implication déja vue en I1.2.)

Analogie avec un produit scalaire : (forme bi-linéaire symétrique, positive ...)
Analogie 7 .Y < Cow(X,Y)=E((X - X).(Y -Y)) = E(X.Y) — E(X).E(Y).
T.T e Cov(X X)=V(X) dou: V(X +Y)=V(X)+V(Y)+2.Cov(X,Y) est le Théoréme
d’Al-Kashi |7 + 7|2 =1Z I+ |7 > +2.(Z . %) [+ Inég de C-S et de Minkowski !]
4. Note. X —X ’centrée’ car E (X — X) =0. X,Y ind. = X - X,Y —Y ind. (fin I), Cov(X,Y) = 0.
A nouveau et retenir : ‘X, Y indépendantes = V(X +Y)=V(X)+V(Y).

33.3 Lois de probabilités finies usuelles.

33.3.1 Loi uniforme X(Q)={zy, zo, ..., z,}; p(X =ax) =1/n

Pour la loi uniforme sur [[1,n]] : |E(X) = 5 V(X) = 3 Car, avec Z k? (donné)
2) ) n+1 _lnr+1)@n+1) (+1)? Pl
V(X)=E(X?) Zk — = R e
33.3.2 Loi de Bernoulli B(p) X(2) ={0,1}, p(X =1)=p, p(X=0)=1—-p=gq

(Succeés, échec) : |E(X)=p; V(X)=p—p*>=p.q.| (avec: V(X)=E(X? - E(X)2)

Exercice. X,Y, Z sont 3 v.a. ind. suivant la méme loi de Bernoulli B(p) ; calculer E(X + XY + XYZ).
Solution Soit U =X + XY + XY Z. Par linéarit¢ E(U) = )+ E(XY)+ E(XYZ);e

E(X
par indépendance : E(U) = E(X)+ E(X).E(Y)+ E(X)E(YY)E(Z) = (1+p+p).

33.3.3 Loi Bindmiale B(n,p), X(22) = [[0,n]], p(X = k) : avec les coeff. binémiaux

Si X1, ..., X, v.a. indépendantes suivent une Loi de Bernoulli, alors S,, = X7 +... + X,

Théoréme : — . . e
—HCOLEE (Nombre de Succés en n tentatives indépendantes) suit une loi binomiale : B(n,p).

Démonstration. Si indépendance, S,, = k signifie qu’on a choisi £ X; ot X; = 1; les autres : 0. D’ot1

p(S, =k) = (Z) .pk‘.q’“k. ‘ E(S,) =n.p; V(S,) = n.p.q‘car X,Yind = V(X+Y)=V(X)+V(Y).

Exercice 1. Une Urne contient 5 boules numérotées de (1) a (5). Tirons successivement avec remise 2

boules; soit X le nombre de numéros pairs obtenus. Loi de X 7 Rép. X suit la loi B(Z,%).

Exercice 2. Espérance, variance par calcul : Simplifier f(z) =) ( ) 2Py 7k [(x 4+ y)"]; calculer f'(x)
k=0

[n(z+y)" Y ; en déduire E(X) = n.p. Vérifier que > k(k— 1.2®y" % =n.(n—1).2%(z +y)" 2 avec
f7; endéduire F(X?) — E(X)=n.(n—1).p* et V(X)=E(X?) —n?? =n.p.q, comme ci-dessus !
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33.4 Inégalité de Bienaymé-Tchebychev

33.4.1 Enoncé et démonstration

1 . 1
Ona |p(|X—-EX)|>t) < f_zV(X) oubien: p(|X—E(X)|>ko(X))< ok

Preuve. V(X)> Y (zi — E(X))2 pi = thp (| X —E(X) |>1t) et isoler le terme cherché.

[X-E(X)|> t

33.4.2 Exemples

1. Exemple 1 : On fait divers lancers d’'un dé parfait a 6 faces. Nombre de lancers a faire pour pouvoir
1 1
affirmer avec une erreur < 5/100 que la fréquence d’apparition du 6 est dans [~ — 0,01, 6 +0,01]7

1
X, le nombre de 6 obtenus en n lancers, suit la loi : B(n, 6) Xn est la fréquence :
n

X, 1 V(Xn/n) 10%npq 510 5.10% 5
_ = = = = . < _—
p<| & |>0 01> < 0,012 = % 36n  100 suffit ; réalisé si n > 27778.

2. Exemple 2 : On effectue n > 1 lancers avec une piéce équilibrée. Trouver n pour qu’on puisse affirmer

3
avec un risque d’erreur < 4/100 que la fréquence des piles ne différe pas de 1/2 de plus de —

100
- Xn, nombre de piles obtenus, suit la loi B(n,1/2). La fréquence F,, = X,,/n vérifie :
(| F, | i)< 10° . On veut (|F——|<i)>1—i 1—O4<isufﬁt n > 6945.
P ~ 1007 = 36.n P 100 100" 361~ 100 =

3. Exemple 3 : Un avion peut transporter 400 passagers. Un passager prévu fait défaut avec une

8
probabilité de 100" 420 réservations ont été faites. Probabilité qu’il manque des places 7

On étudie les désistements : on a la loi B(420;0,08) d’espérance m = 33,6 et de variance

V =30,912. Si D est le nombre de désistements : p(D<19) = ((D m) —14 6)
4,5
: < e
Donc < 19) .p (| D—m| >14,6) TR

33.5 Exercices corrigés

33.5.1 Une Urne a 4 boules 1B, 1N, 2R. On tire sans remise chaque boule ...
1. XrangdelaB.; Y dela2¢ R. Loide (X,Y) ? Loi marginalede X? deY? deZ=|X-Y|?

2. Solution: Y\X | 1] 2] 3| 4 avec un arbre ! X : loi uniforme; et :
o 010112112 p(Y =2) = 16 p(Y =8) = 1/3 p(Y =4) =12
R ; _HI/I2_]171; \_0_] I/g Loide Z=|X—-Y | temps d’attente :
461611610 p(Z=1)=1/% p(Z=2)=1/3 pZ=3=1/6

33.5.2 Comment trouver la loi de la somme de 2 v.a., a valeurs dans N

= Zp ((X =kNY =n-— k‘)) Et si X, Y sont indépendantes, somme de produits !
k

33.5.3 (*) Comment trouver la loi de Z = minimum(X,Y’), & valeurs dans N

Ce qui est commode p(Z >n) =p((X >n)N(Y >n)) puis p(Z=n)=p(Z >n—-1)—p(Z > n).
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33.5.4 (*) Comment trouver la loi de Z = mazimum(X,Y), a valeurs dans N

Idem: p(Z<n)=p(X <nNY <n) puis: p(Z=n)=p(Z<n)—p(Z<n-1).

Ex. : Une Urne contient n boules numérotées 1,2, ...n. On tire 2 boules a la fois et Z=max(Numéros).

Loi de Z 7 Rép. p(ng‘):% car (Z)_% Donc p(Z:k):%,2<k:<n.

33.5.5 (*) Espérance et Variance d’une Loi hypergéométrique H (N, n,p)

Sondage de n 'personnes’ (n < N) dans une 'Population’ de N, avec proportion p de tel caractére - ex.
groupe sanguin AB - (donc N.p € N au total) et ¢ sans ce caractére (donc N.¢ € N non groupe AB).

(N.p) . ( N.q )
Soit X la v. a. donnant le nombre de ’AB’ dans le sondage : p(X = k) :#, 0<k<n.
(%)
[Ex. si N=12,p=1/3, Np=4 AB, N.¢ =8 non, n = 3, en notant p = p(X =k) :
8.7.6 87 12.11.10

on vérifie que :  po + p1 + p2 +p3 = ( Lo Ao +68+41) / e = 1.]

La somme de ces probabilités vaut 1, c’est normal : formule de Van Der Monde, exercice.

(L’idée, dans une grande population de 70 millions d’h, est de chercher p = 1/3 (?) par des tests dans
des échantillons de n = 500 personnes par ex.) Puis F(X) avec ce qui suit et le rappel :

Np—-1\ ( N.
<’:> N % <2:1> E(X) =) kp(X =Fk) :ZN.p( i ><n _qk> =N.p.— = n.p (bon).

k>1 k>1 N (N o 1) N

n\n-—1
(**) Et toujours avec la formule encadrée ci-dessus et celle de Van Der Monde :

(=) ()
E(X?) =) "k p(X =k) = E(X)+Y _k.(k—1).p(X =k) =n.p+Y_ Np(Np-1).

N.(N-1) (N -2
k>1 k>2 k22 n.(n—1) <n—2>
E(X?)=np+Np(Np—1) n—1) D’ou avec la formule de Huyghens V(X) =n Non
=n.p p.(N.p NN 1) Vg =Pl

33.5.6 (**) Indépendance ? (On a besoin de la somme des k?)

Une urne contient n boules numérotées de 1 & n. On tire une boule, soit X son numéro. On la remet et
on ajoute alors une boule numérotée X. On tire une boule dans I'urne modifiée et soit Y son numéro.

Questions : Loide X ? deY ? E(X.Y) ? Conclusion ?

1 1
1. X suit la loi uniforme sur [[1,n]]. P(X =k)=—. E(X)= nt

(sera utile).

2. Puis avec un systéme complet d’événements évident, Y suit aussi cette loi uniforme car :

p(Y:i):p(Y:i\X:i).p(X:i)—i—p(Y:i\X;éi).p(X751'):nil.%—i-n_li_l.n;l

1

E.
2 .

n+1’

1 n

—. . Donc, avec S = E i2

n n+ —
1=

3. Ensuite: p(X =iNY =1i)=p(X =0).pY =i|X =1i) =

S

etsi i£j: p(X=inY =j)=pX =4)pY =j|X =1) =

1
5 2 S | 2 N2 1
PN = & P TS T S T ()

1<i=j<n

1 n(n+1)(2n+1)+n(n+1)_3n2+7n+2
nn+1) 6 4 12

# E(X).E(Y) : V.a. non indépendantes.
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M-+ Exercices: Variables aléatoires. PTSI

1. Dans une ville, il y a une proportion p de personnes ayant un virus. Si on est en contact avec une

telle personne, on a 2 chances sur 3 d’étre contaminé. Un représentant rencontre n personnes.

(a) Montrer que la variable aléatoire N : nombre de malades rencontrés suit une loi B(n,p).

(b) Montrer que la probabilité que le représentant soit contaminé est : 1— (1 — %p) .

2. Une puce fait des sauts (égaux) a Droite avec une probabilité p, ou & G. (1 — p).

Au départ son abscisse vaut 0. Soit X, ’abscisse au pas n. Loi, espérance et variance de X,, 7

Rép. Soit Si la v.a. de Bernoulli valant 1 si le kéme pas est a D, 0 sinon. Alors D,, = Z Sk (k < n)
suit une loi B(n,p). Et G, =n—D,. Donc X, =2.D, —

Dou: p(X, =2k—n)= (k) PR EB(X,) =n.(2p—1) et V(X,)=4n.paq.

3. Montrer la "formule de Van Der Monde" : Z (n1> . ( 2 ) = (nl N n2). (N =nq +na).

k n—=k n
k

4. (*) Avec une matrice 3x3 (a la puissance n). On a deux casiers A et B contenant chacun 2 jetons.
Au départ (n =0), A posséde les jetons 0 et 0; B les jetons 1 et 1.
A chaque coup, on permute un jeton de A et un de B. Soit X,, la somme en A aprés n coups.
(Xn(2) €[0,2]]). On note : a, =p(X, =0), b, =p(X, =1), ¢, =p(X,, =2). Avec :

(a) p(Xns1 = 1) = p(Xpn = 0).p(Xnt1 = i[Xn = 0) + p(Xny1 = i| X, = 1) + p(Xp1 = 1| X, = 2),
on a :

an 1 0 1/4 0 1 1 -1 1 (12 0 -1)2
by | =A" [0 on A=[1 1/2 1|=PDP'=|0 4 2 |diag(0,1,—)| 1/6 1/6 1/6
e 0 0 1/4 0 11 -1 2°\“1/3 1/6 —1/3
o 1 1 /—=1\" 1 2 2 /—1\" 2

(b) On déduit pour n > 1 : a":C":6+§'<_> R— bn:§—§.<7> =3
5. (*) Indépendance ? (on a besoin des Z k2 et Z k3).  Une urne contient n — 2 boules N et 2 B.

On tire successivement une boule sans remise : X € [[1,n — 1]] est le numéro du tirage pour lequel

la lére B. apparait; Y € [[2,n]] le numéro de la 2éme B. Loide X ? deY ? E(X.Y) ? Conclure.
—-2).(n—=3)...[(n—-2)—(k—-2).2 2(n—k

@ Ona: px ) =D =3 =2) = (k=22 2n—k)

1 nn—1)..(n—(k—1)) S onn-—1)
, _n_ 2(n —k) n+1
D’ _Z::lknn_l =— Et (...)
oy 2(k-1).(n—2).(n—3)..[(n—2) = (k-3)] 2(k-1) ~2(n+1)
(b) (Y =k) = n(n—1)(n— (k—1)) “nmoy PO =5
2.(n—2)(n—-3)..(n—k+1) 2

(c) Et pour 0 <i<j<m,pij= On trouve alors :

| nn—1)..n—(k—1)  nn-1)
B(X.Y) = ﬁ Z;% R 1)1(5” 2 L pX).EY). ind.
j=1




Chapitre 34

Compléments : Hyperboliques réciproques

34.1 Fonctions hyperboliques réciproques

34.1.1 sh '=Argsh (graphe aprés)

1
Vita?

Ceci se voit par le Th. de dérivation des fonct. réciproques ou bien avec | Argsh(x) = In(xz +v/1+ z2).
En effet

y=sh(z) ©2y=¢e —e® o e —2.e” —1 =0 (second degré). On trouve e” = y ++/y2 + 1 car il
faut choisir la racine positive; d’ot x = Argsh(y) = In(y + 1 + y2).

sh est bijective de R dans R, C' et sk’ > 1. La réciproque est Argsh, de dérivée Argsh!(x) =

1
Exercice. Argsh(xz) ~ In(x). Retenir | ——= admet pour primitive in(z 4+ /1 + x2) + cte.

s—roo Bl BV

34.1.2 ch '=Argch (graphe aprés)

ch est bijective de [0, 4+-00[ dans [1,4o0c[, C! mais ch’ > 0 que sur ]0,+oo[. La réciproque est Argch, de

dérivée | Argeh/(z) = = > 1.

2 —

Ceci se voit par le Th. de dérivation des fonct. réc. ou bien avec | Argch(x) = In(x + Vz? — 1),2 > 1.
En effet

y=ch(z) 2y =e"+e %o e® —2y.e” +1=0 (second degré). On trouve e® =y £+/92 — 1 et il faut
choisir la racine > 1 [produit des racines =1|, donc +; d’ot = = Argeh(y) = In(y + Vy? — 1).

Exercice. Argch(z) ~ In(z).

Tr——+00

1

On peut retenir ici -

admet pour primitive sur chaque intervalle : z < —1 ou x > 1,

ﬂ

1
In|z+vz?—1|+cte, cte dépendant ici de I'intervalle.

34.1.3 th '=Argth. coth'=Argcoth
Argth définie sur | — 1, +1][. Argcoth définie hors de [—1, +1].

Attention : c’est th (et non Argth) qui "ressemble" a Arctan. (Mais trés différentes pour la dérivée).

1.1 1 1
On a : Argth(z) = §.ln1 i_i ; et : Argeoth(x) = i.lnz—il; chacune de dérivée 1.2 !

En exercice.
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228 CHAPITRE 34. COMPLEMENTS : HYPERBOLIQUES RECIPROQUES

Si on veut une primitive de
En sens inverse : 1 r+1
et on trouve T.Zn |

, décomposer en éléments simples

2 —

| +cte, avec cte dépendant de l'intervalle.

r—1

34.2 Expressions logarithmiques -parfois-, dérivées et graphes.

(On peut ainsi donner deux preuves des dérivées : soit avec une telle expression, soit comme dérivée de

fonction réciproque)

- /"

y 0.
I I ) I I I I 1
_(l) 5
X
Argsh(z) = In(x +v/'2? 4+ 1) de dérivée
22 +1
e
2-
y
0 I I I I : Argch(z) = In(z +V 2% — 1) de dérivée ! z>1
0 5 g V21
— I =
y y —y
o a)
f ° T | [ I A | | |
’ 0
X
4 — X
s 1 L 1
Argth(x) de dérivée .2 >0, |z|<1 et Argcoth(z) de dérivée .2 <0, |z|>1
- -




Chapitre 35

Courbes en paramétriques |hors coniques]

35.1 Exemple : la tractrice

35.1.1 Domaines
x = alt — th(t)]
y = a/ch(t).

composante de OM (t)|]. Mais en changeant ¢t en —t, on a une symétrie / Oy. Domaine d’étude : ¢ > 0.

a>0. F' définie pour ¢ € R [chaque coordonnée de M (t) ou

Soitt€R|—>F(t)€R2{

35.1.2 Variations. Tableau a faire!

—
t M
acslg((t)) Pour t =0: dd—t(o) =0 ; on dit point stationnaire A <2>

Ona:a'(t) = ath®t); ¥'(t) = —

—
2

‘Tangente au point stationnaire A‘ lére méthode : Calcul de W(O) souvent par D.L. cf. II-III

aM h(t
2éme méthode : Ona o = 22 (t)
dt ch?(t)

—

W colinéaire & U = < Sii(lt) > e 0.

Alors : w(0) = — 7 colinéaire & o mais non nul en ¢t = 0, donne la tangente en A, car :

t 1 -1
;Z—Z = %j—m [dér. des f. composées| et dat = % [dér. des f. réciproques| donc ici ;Z—Z = WE — 00

A
T T 1

Par le th. de la limite de la dérivée, on a une tangente verticale en A. = v o1

35.1.3 Courbe ci-dessus et propriété géométrique

‘Pour tout point M de la courbe, avec T intersection de la tangente en M avec Ox, on a MT = cte = a. ‘

(D’ou I'appellation de courbe tractice : MT = a longueur de la barre de remorquage.)

dy /
En effet : déja ;l_y = % = y’Eg £y (t) = % selon la notation usuelle précédente !
x ax x
dt
Puis :
Y-y _ -l T[X =z+y.sh(t),Y =0]. L 1—th?(t) donne MT? = (X —z)*+(Y —y)? = a*.
X —xz  sh(t) ’ ch?(t)
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230 CHAPITRE 35. COURBES EN PARAMETRIQUES [HORS CONIQUES]

35.2 Fonctions a valeurs dans R" n =2 ou 3

35.2.1 Définition [Fonction vectorielle d’une variable réelle]

FiteRv F(t) = OM(t) e RZouR? (ou @(t) ou M(t)). Aul, cétait OM(t) :{ 58 € R2.

35.2.2 Limites, Continuité, Dérivée lére (vitesse) : voir chaque composante

e Opérations et les théorémes généraux usuels.

e Composition : u € R—t = p(u) € R — Flp(u)] € R" est continue si F' et ¢ le sont : on dit que
c’est un changement de "parametre". Dérivée : (Fop) (u) = ¢ (u).F'[p(u)]. (coefficient .Vecteur)
¢ Remarques
1) Pas d’égalité ses accroissements finis, seulement une inégalité vue avec les intégrales.

En effet : ¢7/2 — 0 = g.i.eic est impossible avec les modules.
2) Dérivation du produit scalaire : %[F(t) LG(t)] = F'(t).G(t) + F(t) . G'(t). (Avec les composantes)

3) Dérivation du produit vectoriel dans R? : %[F(t) ANG)] = F'(t) ANG(t) + F(t) NG (t)

— — —
i(MN) _ 4N M ol M _ d (m) VA fixe, est le vecteur vitesse du point M.

4 -
) dt dt dt dt - dt

35.2.3 Dérivées successives. Fonctions C?, ™

e Analogue au cas des fonctions : R — R, & voir.

e Exemple : Vitesse et accélération en coordonnées polaires

— OM —
u = )

1) D’abord étant donnée une courbe, ne pas confondre les coordonnées polaires (

— . . . . . . < —> T . N
avec 1 1 unitaire aussi, directement perpendiculaire & u [a dessiner|; avec le repére de Frenet (7', N),
—

—
T unitaire sur la tangente, N unitaire, directement perpendiculaire sur la normale [a dessiner].
Le risque de confusion provient des mouvements circulaires (uniformes ou non) de centre O.

2) On a O—]\j = p(t). U (t)| avec u = (cos[(t)],sin[0(t)]); d’on d_u = du df _ 9

dt_ do dt _dt "
Donc AM dp_>+ d—eu De méme PN —[@— (dﬁ) |7+ [ @d—e—l— d20]_>
. a T Pa clar ” tar Tat dt dt " "ae
1d, ,df . . o df : :
3) En fait le 2¢ [...| vaut —a(p dt) D’ot | Mouv. & acc. centrale de centre O< p o= cte, loi des aires.

1 1 ,do
En effet, aire balayée pendant dt par le rayon-vecteur est : dA = 3 p.p.do = = p2 i dt = Cte.dt.

35.2.4 Deéveloppements limités. Formule de Taylor-Young

(o) + - + (t_p%)p[ﬂm(to) + 2O, avee [ F (0] —0.

Si FP)(ty) existe, 3¢ (t)/F(t) = F(to)

x = aft — th(t)]
y =a/ch(t).
Ona th(t) =t—t3/3+t1e (t) donc z=a.t3/3+t e (t). Puis 1/(1+h) =1—h+h*+h%eh) et

2
a

— — t 3 9 — o L
v 1+t2/2+t4/24+t462(t) = a(1= ) +te(t) quisuffit car W = F7(0), 7 = F(0) non colin.

— [(x-0 0 t2 0 t3 2a 3 R R t2 t3

Tracé (recto) : Le ler vecteur ;é 0 , col. & 7', donne la tangente. Et Y (t) change de signe avec t.

Exemple "DL" au point stationnaire (t+ = 0) pour la tractrice : t € R +— F(t) € R? {
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35.3 Courbes en paramétriques : plan affine euclidien

35.3.1 Autres exemples

ot c 04| — v R'CO.S(t) est un cercle parcouru deux fois et en sens inverse.
y = —Rsin(t)
a2
T = R.l—u2
o u €] — 00,400 — 1—2i_uu est un cercle sauf un point. (u = tan(6/2), 0 €] — =, «[).
y=R——
1+ u?

35.3.2 Tangente

e Définition : Position limite, si elle existe, de MoM (t) quand t — .
e Calcul (Par la formule de T-Y) :

Si F'(to) # 0 il donne la tangente : point ordinaire. Si F'(ty) = 6), on dit point "stationnaire" :
—
0,

en général, s'il existe un plus petit p tel que F®) (to) # il donne la tangente.

Remarques
1) En pratique, on peut éviter ceci : faire comme dans Exemple 1.

_ —1/t?
r=e R .
VR aprés prolongement continue en O,
y=te

posséde quand méme une tangente (horizontale) en O(0,0) bien que chaque F (P )(O) soit 0.

2) Exercice laissé (*) t €] — oo, +00[ — {

35.3.3 Position de la courbe par rapport a la tangente
On suppose qu'il existe un plus petit p tel que FP)(ty) # ?;

et qu’il existe un plus petit ¢ > p tel que F' (a) (to) soit non colinéaire au précédent.

Nodi ) @ (t = to)?
La formule de (T-Y) donne MM (t) = X (t)F'\P)(to) + Y (t) F'\V(to) ; X(t)t S Dl
—1lo . —l0 .

d’ot 4 dessins selon la parité de p et q. A faire :
1) Cas usuel p = 1,q = 2 : point régulier ; p impair, ¢ pair : idem (z =t, y = t?)
2) Le cas p et ¢ impairs : inflexion (Par exemple : x =t, y = t3)
3) p pair, g impair : rebroussement de lére espéce (Tractrice; ou z = t2, Y= t3).
4) p et q pairs : rebroussement de 2éme espéce (z = t2, y = t* +t°).

Retenir | Inflexion = F'(tq), I (tg) colinéaires. | dét(F'(to), F” (to))—+

5 = 0 si ’on veut.

)

35.3.4 Exemple classique

z(t) = a.cos>(t)

3 [e.9]
y(t) = a.sind(t) Fonction C* sur R.

L’astroide : t € R — {

‘Tout est dans le domaine d’étude‘
F(t+ 2m) = F(t) montre qu'un intervalle de longueur 27 donne tout ; on le centrera aprés !

Demi-période : F'(t + m) = —F(t) un intervalle de longueur 7 suffit en faisant une symétrie /O(0,0).
Puis z(t + g) = —y(t);y(t + z) = z(t) : un intervalle de longueur g suffit avec des rotations d’angle g

2
T

Maintenant, on va changer ¢ en —t, donc on centre notre intervalle en ¢ = 0 : [_Z’ Z] Le changement ¢

en —t montre que : D, = [0, %] suffit en faisant de plus la symétrie /Ox.

. L. . R . . ™
Attention : on fera les symétries en sens inverse, a partit du "motif" ¢ € [0, Z]

Tableau de Variations sur [0,7/4] ‘ On prend a > 0. 2'(t) = —3a.cos®(t)sin(t); y'(t) = 3a.sin>(t)cos(t).
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2 dt 1

—
aM -
. Pour t = /4, point B : on a OB = 2ot L2 colineaire & ( 1 >

. . . dM — t -
. Pour ¢ = 0, point stationnaire A. Tangente ? g est col. & < S;O;E)) ) donc col. & 7, car t = 0.

Compléments
1) Inflexions :
d @ / t d2 ) t / t o t / t
A partir de : _y:ﬂ:y() on a : _y:y()x() x()y() On retrouve que
dv dz - g/(t) dx? [2/()]?
s —
d%y dM d*M d? Y () (t) — 27 ()Y (t)

=0 ¢ (sauf si 2’ infini)

——, —— colinéaires; méme : dk du signe de
dt ’ dt? dx?

dz?
2) Obtention cinématique de la courbe :

Soit K fixé sur un cercle (centre 2, rayon R/4) roulant a l'intérieur du cercle (centre 0, rayon R).

On note A(R,0) I le point de tangence; t 'angle (OA,OI); 6 langle (QK,QI).

Alors si roulement sans glissement, les arcs IA et IK sont égaux a R.t = R.6/4.

_ 3
Donc 0 =4t et angle (QK,Qx) =3t. Avec OK = 02+ QK, on a [calcul] K= R'C(,)S?)(t) .
yx = R.sin’(t)

Le point K décrit une astroide.

35.3.5 Autre classique

La cycloide : | Mouvement d’un point d’un cercle roulant sans glisser sur un plan‘

Soit I le point de contact cercle-plan; K fixé sur le cercle; § = (QK,QJ) :
. e A S x = R[f — sin(0)]
Sans glissement : O =arcOK = R.0. Puis OK = O 4+ IQ2 4+ QK donne

y = R[1 — cos(0)]

Domaine d’étude : déja se ramener & [0,7]. Tableau ?

Vi ,
Tangente au point stationnaire : dd—H = 2.R.Sing. <zz)zgz?§§>

Courbe (voici une arche) : W\/

0 5

Compléments

1) Tangente en K L KI car I "centre instantané de rotation".

2) Aire d’une arche [cf. ch. Intégrales|
/y.dx = R.[1 — cos[f)].R.[1 — cos(0)]df = 2.R2./ (cos?(0) — 2.cos(0) +1)dh. Pour finir
0

N 1+ cos(20)

5 D’ou laire valant : 37.R?= 3 fois I’aire du disque.

on linéarise : cos®(6)

3) Longueur d’une arche > 2.7rR.  cf. ch. Longueur des courbes (plus tard) !
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35.3.6 Cas de branches infinies

1. Déja bien voir le numéro ‘Branches infinies ‘ du ch. Dév. limités.

r=1t*—2t
2. [T exempte] { °71 272
. Domaine : R*; pas de symétrie apparente.
20— D(t+1)(t*+1
. Variations : 2’ = 2(t —1); ¥y = ( I :; )+ )
. Points particuliers : A(t = —1) tangente horizontale; (¢t =0) Asymptote z =0; B(t=1) Point

stationnaire et Tangente : (cf. I) dirigée par ( 411 > C(t = 2) intersection avec Oy.

Branches infinies pour t — +o00 : y/x — 1; puis y—x =2t+ 1/t2 tend vers +o00 sit — +o0 et
tend vers —oo si t — —oo :  Branches paraboliques de direction y = x mais pas d’asymptote.
Point double : 3t # ' tels que { 2(t) = (1) bt =2

y(t) = y(t') (tt')? =1
Deux cas a voir : ¢, solutions de T? —sT +p=0 !

On trouve : t=1 =1 le Point stationnaire ! et t,¢ =1+v2 soit D(1,6).

soit, aprés simplification par ¢t — ¢’ : {

o 5

(Inflexion : une recherche facultative conduit a t = 1.)
Au point stationnaire : Faire un "DI" (instructif) et retrouver tangente et position/tangente.
t=1+h, 1/(1+h)*> =1—2h+3h® —4h> + h3.e(h) par produit ; ou puissance —2... A Finir.

3. Exercices complémentaires (*)

x = sin(t)
y = cos(t/3)
Réduire le domaine a ¢ € [0, 3.7/2] avec des symétries.
Pas de point stationnaire ici. Points doubles faciles par symétries.

(a) Une courbe de Lissajoux. Note ! {

(b) La Cubique ("Versiera") d’Agnesi.  Note >
. Soit une droite Dy paralléle & Ox et Dy paralléle & Oy coupées par A passant par O en P € Dy
et Q € Dy. Alors, si M = PyN Qx, M décrit une hyperbole équilatére.
. Si on remplace D; par le cercle passant par O et tangent a Dy sur Ox, M décrit la cubique
d’Agnesi.
x = a.cos*()

y = a.tan(0) et en cartésiennes : zy? = a’(a — z).

Elle a pour équations paramétriques {

! Cette famille de courbes fut étudiée par Nathaniel Bowditch en 1815, puis plus en détail par Jules Lissajous en 1857.

2 "Cubique étudiée avant elle par Fermat, James Gregory en 1668, Huygens en 1674 ..."

"Maria-Gaetana Agnesi était d’'une beauté touchante, avec sa physionomie douce et candide. Sa taille était élancée. Ses yeux
noirs et se cheveux noirs faisaient ressortir I’éblouissante blancheur de son teint. Elle avait un doux sourire. On admirait sa
beauté et sa grace. A 13 ans, outre 'italien et le francais, elle a appris le latin, le grec, I’hébreu, ’espagnol et 1’allemand.
Son oeuvre (scientifique) principale, les "Institutions analytiques" parait en 1748, elle a alors 30 ans.

A la mort de son pére, Maria entra dans l'ordre assez rigoureux des religieuses appelées Célestes ou Turquines, d’aprés la
couleur de leur robe. Elle renonga complétement & la science humaine et devint supérieure de I’hépital Trivulzio & Milan
(ou elle est née). Apres avoir abandonné tous ses biens aux malades, on la vit mendier pour eux afin de "servir Dieu ainsi
que le prochain". Maria Agnesi, la servante des pauvres, est morte dans son cher hépital a 81 ans, en 1799".
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M+ Exercices: Courbes en paramétriques PTSI

1. Tracer les courbes d’équations paramétriques suivantes :

x = alt — th(t)]
(2) { y = a/ch(t).

x = a[ln(tan(u/2)) + cos(u)]

y = a.sin(u), u €]0, (|

[Tractrice ; on a aussi {

3
x = a.cos”(t) )
(b) { y =aQa Szns(t) [AStl“Olde]
x = aft — sin(t)] i}
() { y = a[l — cos(t)] [Cycloide]
— a.t? (*) Sa courbe orthoptique -lieu des points d’ou
@ { y _ a.t?’ [Parabole "semi-cubique"] l'on voit cette courbe sous un angle droit- est
Yy = a. la parabole tangente : z = 27@/2/(4@) + da /2.
_ 2 2
(e) { :; _ Z.ES?S 1 EQ; [Cissoide droite]
z=a.(t>—1)/(1+t ) .
®) { Yy = t.gg (cf. Cz—/cgessus)) [Strophoide droite]

r=3a.t/(1+1t)

y = t.z (idem) [Folium de Descartes. Changer ¢ en 1/

42 — 1
t3+1’y

(h) (*) Autre cubique z = =t.z.

[une Lemniscate de Bernoulli. Changer ¢ en 1/¢]

. z=at/(1+t")
(1) ( ) { y:a.t?’/(1+t4)

x=1t>—2t

y=t2 41/ Etudier

2. (*) Tracer la courbe d’équations paramétriques {

— les branches infinies,

— le point double,

— et au point stationnaire, faire un développement limité suffisant pour certifier la nature du point
(de rebroussement)

x = r.cos(w.t)
3. (*) Une courbe de R? : L’hélice circulaire (qui sera revue pour sa longueur) { y = r.sin(w.t)
z = h.t.




Chapitre 36

Courbes en polaires |hors coniques]

36.1 Coordonnées polaires (p négatif permis ici)

36.1.1 Généralités

1. Points
—_— —
Ici, le paramétre est 'angle polaire § = Ox, OM (7) ; de fagon précise :
o _ 2 2
Si M £ 0, et 6 = 02, OM(2r) | S0t 0= 01(2m), alors p=+ a2 1y

— | soit =6, +7(27), alors p=— /2% +y?
Et si M = O, il est repéré par 6 quelconque, p = 0.

Dessin 7

Insistons
Pour les courbes en coordonnées polaires, p n’est pas toujours > 0 : c¢’est plus commode !
Voir des exemples aprés |ainsi le cercle : p = a.cos(0)].

Dans tous les cas
Notant @ = [cos(0)]7 + [sin(0)]7 on a: OM = p. U ou x = p.cos(h),y = p.sin().

En sens inverse :  p? = 2% + 92, tan(d) = y/x.

2. Vecteurs

d—)
En dérivant : d—z =1 = [—sin(0)]7 + [cos(0)]] soit (W, uw1)=m/2, U1 unitaire.
du df du
3. Remarques. o Quand 8 est fonc‘zliir}l de t, d—:: = Ed—z 1. - -~
e Méme en dim. 3, si ||| =1, d—TZ LW [car W . 7w =1 dérivé en d—u _>—|—ﬂ>.d—1; = 0]

36.1.2 Equations de droites et de cercles

1. Droites

1
Passant par O : §=cte (7).  Ne passant pas par O : p =

— Acos(0) + Bsin(6)’ (4, B) #(0,0).

b
Démonstration. azx + by =c¢, ¢ # 0 devient g.p.cos(@) + -.p.sin(f) = 1. Etc.
c c

d
z.cos(a) + y.sin(a) = d < p.fcos(f).cos(a) + sin(f).sin(a) =d < p= cos@—a)"
2. Cercles
Centré en O : p=cte. [Ainsi p = —1 est le cercle trigonométrique !|
Passant par O : p = 2a.cos(6) + 2b.sin(6). Sinon : trop compliqué en polaires !
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Démonstration
2,2 o op 2 B - _ p=0(1) et (2):
x“4y°—2ax—2by = 0 [O €Cercle] & p*—2apcos(f)—2bpsin(f) = 0 < { p = 2acos(6) + 2bsin(0)

mais O [p=0] appartient & (2) [a voir|, donc inutile & rajouter !

Cercles d’équation : p = 2a.cos(f) p = 2b.sin(0) p =2r.cos(f —mw/4).

3. Pour retenir
1

P= A.cos(0) + B.sin(0)
e p= A.cos(f)+ B.sin(0), (A, B) # (0,0), est 'équation d’un cercle passant par O. Ceci s’explique
par Iinversion géométrique de pole O, vue au ch. Applic. géométriques des Complexes.

(A, B) # (0,0) : équation polaire d'une droite ne passant pas par O.

36.2 Tracé de courbes en polaires

36.2.1 Tangentes en polaires

— —
1. Formule. Notons|V = (, %)(W) 'angle de la tangente avec u | (7, %) =0+ V(m). Alors:
dM  d
~— . dM _dp_, P e ., (passage B
OM =p.u = 0~ a0 +p. Uy [ tan(V) = ra Si p(6g) =0 <au péle)’ la tangente est 6 = 6.

Démonstration du 2éme résultat
Ici p' =dp/df; ce qui termine, sauf le cas out p(fy) = p'(6p) = 0 : laissé a Pétude.

2 dessins pour un passage au pole [p(6p) = 0] : a faire !

. Cas ou p passe du signe + au signe — pour y [le plus naturel].
. Cas ou p s’annule mais garde le signe + [point de rebroussement.

2. | Exemple : la Lemniscate de Bernoulli p = a./cos(26)

e Domaines

. Domaine d’étude : p(@ + 7) = p(#) : Donc un int. de longueur 7 suffit en faisant la symétrie /O.
p(0 + 7/2) ne donne rien (mais c’est bien d’essayer !)
Choix [—7/2,7/2] de longueur 7 car p(—0) = p(#) ramere a [0, 7/2] en faisant la sym; /Ox.

. Domaine de définition : Dger N Desyge = [0, 7/4].

e Tableau de signes de p
On se contente d’un tableau de signe |ici, clair que p décroit de a > 0 & 0, # allant de 0 & 7 /4].

e Tangentes et Courbe ci aprés.

.En A (0=0,p=a), p) =0 [sans calcul!] donc tan(V) = oo, V = /2 : Tangente //Oy

.En O (0 =7/4,p =0), tangente : § = 7/4 soit y = .

. Complément : point & tangente horizontale.
On veut 0+ V =0(mr) donc tan(f) = —tan(V), qui donne tan(f) = —cot(26). Plusieurs
facons : cot(20) = tan(m/2 —20) = —tan(20 —7/2) par exemple! Trouver 6 =7/6, p=ah/2.

(N
NI N
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3. ‘Autre exemple : La Cardioide p = a[l 4 cos(0)] ‘
e Domaine Un intervalle de longueur 27 donne tout car p(6 + 2.7) = p(6).
Choix [—m,m] car p(—0) = p(f) rameéne a [0, 7] en faisant la sym; /Oz.
e Tableau de signes :
p varie de 2a (point A, § = 0) a 0 (point O, § = 7) en passant par a (point B, 6 = 7/2)
e Tangentes et Courbe :
.En A (0 =0,p=2a), p =0 [sans calcul !| donc tanV = oo, donc V = 7/2 : Tangente //Oy
. En O tangente 0 =7: y=0
. En B trouver V = —7/4(7) angle fait par la tangente avec uw = 7, ici !

36.2.2 Branches infinies

1. Dessin de la Spirale logarithmique [ou exponetielle] p = ae™’

. Etude pour 6 e R !
tan(V) = cte, V = cte ! Un point-asymptote : le pole.
Note : Courbe invariante par similitude (bien choisie) de centre O.

2. Dessin de la Spirale d’Archiméde p = a.0

. Etude pour 0 € [0, +o0[ avec une symétrie /Oy car p(—0) = —p(0) !
. Tangente y = 0 au pole. Ne pas oublier la symétrie.

3. Dessin de la Spirale de Nicomeéde p = a/6

.« Méme domaine (sauf § = 0) que Spirale d’Archimede !
x = p(0).cos(0)
y = p(0).sin(0)
. Dessin : sans oublier la symétrie; le pole, point asymptote.

—=a (*) ou en polaires !

. Asymptote en paramétriques {

4. Autres courbes classiques en polaire : surtout les coniques.

« Théoréme d’un ch. ultérieur . Conique avec, ici, 1 seul foyer et directrice associée :

MF
Soit F' (foyer) ¢ D droite dite directrice. Alors {M : (0. D) =e}, e>0, est une conique :

e =1 Parabole; 0 < e < 1 Ellipse (cercle si e — 0); e > 1 Hyperbole (équilatére < e = \/5)
p =e.d dit parameétre; 0(F,D) =d |Pour Parabole : 6(F,D) = p; 6(Sommet, Foyer) = g

Pour toute conique, le paramétre p = longueur du "rayon-vecteur" issu de F'// D directrice.

Supposons que Py O Si p.sin(f — 9())9—9>l : sil finie, Yo = [ est asymptote [direction 6] ;
—bo —bYo

si [ infinie, branche parabolique. [Si pas de limite, seulement "direction asymptotique" 6 = 6].

Démonstration
On se place dans (O, Xo,Yy) d’angle 6o; la projection de OM sur OYy est OH = p.sin(0 — 0) ...
L’exemple : direction asymptotique 6 = 0; et asymptote ¥ =a; quise traduit (6 =0 !) par y =a asymptote.
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A

~d
zb

. Conséquence : Equation polaire des coniques

O est un foyer : ni centre, ni sommet ! et D d’équation z.cos(a) + y.sin(a) = d; une équation
. . p D d
olaire des co es est |p= .| Etp= = ‘edonne D.
DOTAILE €65 COMAUEs €58 1P =171 e.cos(f — ) P e.cos(f —a)  cos(f — ) redont
Démonstration
OM? = p? et 62(M, D) = [p.cos(f).cos(a) + p.sin(8).sin(a) — d]? = [p.cos(d — a) — d]? conduisent a
p —p

+p = p.cos( —a) —d. Donc: Conique =C;UCy p1 = P2 =

1+ ecos(6 — )’
Or Ci=Cy car po(0+7)=—p1(0): Mi(p1,0) = Ma(p2, 6+ ) !

1 —ecos(f —a)

Et enfin D : p.cos(f)cos(a) + p.sin(f)sin(a) =d.  Correct |  (2éme dessin : « = 0)

Remarques
. L’intérét (outre que les coniques sont des courbes de degré 2, les plus simples apreés la droite)

provient de la trajectoire des planétes autour du soleil ...
a

1+ cos(6)

. p est une parabole (que l'on peut tracer; et en cartésiennes : 2a.x = a? — yz).

36.3 Des compléments en polaires

36.3.1 Dans le repére tournant, équation de tangente et de normale

2
Tangente : Y = §(X—p). Intersection avec OY : OT = —% appelé "sous-tangente polaire" (O, w, u1).
A
Normale : Y = —p(X — p). Intersection avec OY : ON = +p’ appelé "sous-normale polaire".
P YN=7TP

Courbes a "sous-tangente polaire" constante 7

Y
1) Cas _’? =k €R* ontrouve p= I : Spirale de Nicomeéde & une rotation prés.

P — Yo

2) Cas OT = 0, qui ne veut pas dire p = 0 : @ n’est pas un paramétre possible puisqu’on va voir qu’il est

—
fixe | OM = p(t). W (t) = % = %ﬂ) +'Oill_fﬂ>l donc col. & OM < p.fl—f =0 soit 0 = 6 :

Droites passant par O qui correspond & ON = oc.

3) Cas OT = co qui correspond & ON = 0; ici p' =0: Cercles de centres O.

Courbes a "sous-normale polaire" constante ?

Hors les deux cas particuliers déja vus, il reste p' =a € R* ou p=a(f — 6) : Spirale d’Archiméde !
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36.3.2 Etude générale

1. Le plus important est le domaine d’étude.
e On commence par la période éventuelle, (puis la demi-période), qui fixe la longueur (et non pas
le centre !) de l'intervalle d’étude. De plus les cas T' = 2mn et T = (2m + 1)7 sont différents : dans

m
celui-ci, une sym/O = rotation(O, ) est nécessaire ! A noter que T = 27.— est aussi possible.
—_— n

26 30 66
Des exemples : p = a.cos(g); p= a.cos(?) ;op= a.cos(g) [6 rotations ici !|

T T
e Demi-période. Si p(6 + 5) = —p(#), amplitude réduite a 3 & faisant une rotation d’angle — + .

e Symétries éventuelles, enfin :
p(—=
p(=
(
(

0) = p(0) est une symétrie /Oz. Avant, on centrait l'intervalle en 6 = 0.
0) = —p(0) est une symétrie /Oy. Avant, on centrait I'intervalle en 6 = 0.

p(0g — 6) = p(0) est une symétrie / Droite § = 6y/2. Avant, on centrait I'intervalle en /2.
p(0g — 0) = —p(f) est une symétrie /Droite 6 = 0y/2 + m/2. Avant, on centrait I'intervalle en 6y/2.
2. Ensuite un tableau (facile) du signe de p suffit en général. Et |tan(V) = ﬁ/ si utile.
p
3. Branches infinies : on sait trouver une asymptote éventuelle. Courbe.
. . soit p(6 + k2m) = p(0)
r? )
4. Points multiples 1 { soit p(0 + 7 + k27) = —p(6)
5. Concavité(trés rare) ?
e A l'origine, la courbe est connue.
— dM &M, —
e Si M # O, soit k =72 A7 ; on considére le signe de [W A W]
Cette quantité vaut par calcul : [p? + 2(p')* — p.p”]. Donc :
si [...] > 0: concavité tournée vers O ; si [...] < 0, convexité tournée vers O si [...] = 0, inflexion
(en général). La quantité |...| sera naturellement retrouvée quand on parlera de la courbure.
Question : Quelles sont les courbes telles que V6, [...] =0 7 On s’attend a trouver les droites ne
passant pas par O (car 6 variable); y en a-t-il d’autres 7 Non :
1 1 1 1 1
En remarquant que (—)" 4+ — = %, c’est facile : (=)” + — =0 donne — = Acos(f) + Bsin().
p’ T p p p’ o p p

36.3.3 Notes finales (toujours en compléments)
1. p = a.cos(f) est un cercle passant par 0. Plus généralement p = acos(f) + A est une famille de
courbes appelées "Limagons de Pascal" (Etienne, pére de Blaise). FEtude 7

Elles ont méme p’ que le cercle : on dit "conchoides de cercle par rapport & un de ses points".

_a
P= cos(0)

3. Par inversion de podle O des "Limagons", on obtient p =

2. De méme les "concholdes de droites" + A

p .
————— ce sont des coniques de foyer
1+ e.cos(0) q A

O [vu plus tard]. L’inverse de la parabole par rapport a son foyer est justement la cardioide (e = 1).
4. Attention et & voir :

L’inverse d’une hyperbole équilatére par rapport a son centre est la Lemniscate de Bernoulli !
5. (*) On appelle podaire d’une courbe par rapport a O, le lieu des projections orthogonales de O sur

les tangentes. Cas de la courbe p = 2a.cos(d) ? [Cardioide].
Cas d’un cercle ne contenant pas O 7 [Limagons de Pascall.
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M- Exercices: Courbes en polaires PTSI

Pour les branches infinies, on peut se raméner & des paramétriques : 6 — {

1. Tracer les courbes d’équation polaire :

(a) p=a.[l + cos(9)] [Cardioide]

(b) p=a. \/cos(2) [Lemniscate de Bernoulli]
(¢) (*) p=a.sin®(8)/cos() [Cissoide droite]
(d) (*) p = a.cos(20)/cos(0) [Strophoide]

(e) (*) p=a.f [Spirale d’Archimede] p = a/6 |de Nicomede] p = a.e™? [Spirale logarithmique]

2. Tracer les courbes d’équation polaire :

(a) p = a.cos(2.0) [Tréfle; domaine réduit & [0,7/4] ] (*) p = a./cos(2.0) [Son "inverse"|;
o a , o 2.0, o 3.0
(b) (*) p= Teos(@) [+ (0| [Jolie ']  (*) p= a.cos(?), (*) p= a.cos(7).

3. (*) L’inversion géométrique (et le cours !) intervient en (a) [et (c)]

1

bes d’équati =
(a) Courbes d’équation p Acos(0) + Bsin(d)

(A, B) # (0,0) puis p = A.cos(0) + B.sin(0).

a _ 4 1

(b) (*) "Coniques" : 1) p= T cos(@) 2) p= 2+cos(9—7r/4); 3) p= m

P ?

(c) [(*) Et aussi] Courbes d’équation p = 1T c.cos(d)

et p = alcos(d) + A 7

1 (0 n? (0

Remarques. 1) Ellipse de centre O : — = cos 2( ) + s 2( ) ; d'ousionprend 6 et 6+ T,

EE—— p a b 2
1 1 1 1 1

Vel + ONET 2 + EhareY el "I’enveloppe des droites (M N) est un cercle" (Newton) !

2.p.cos( 2.a.b?.cos(f
2) Coniques passant par O : p = M ; a.b” cos(9)

sin?(0) P= b%.cos2(0) &+ a?.sin?(6)’




Chapitre 37

E.v. euclidiens/Affines, affines euclidiens

Introduction : Le travail élémentaire d’une force est donné par 0W = F.dl=F .dl.cos(a).

Plus généralement, on a dégagé les axiomes (de calcul) suivants en e.v. de dim. finie ou infinie :

37.1 Produit scalaire

37.1.1 Définitions

On appelle produit scalaire sur E e.v. réel : toute "forme bilinéaire symétrique définie positive".

forme signifie : ¢(w, v) € R
bilinéaire : ¢(u1 + o, V) = ¢(U1, V) + d(Wa, v); oAU, V) =Ap(w,V); idem /T
symétrique : ¢(u, V) = ¢(V, W)
positive : ¢(u, W) >0 et

)
définie : ¢(u, W) =0= u = 0 (réciproque évidente).

!

Remarques
T i aaes = - : s =
. La linéarité /u et la symétrie entrainent la linéarité /o'

.Ona ¢(w,u)>0; maison peut avoir ¢(u,v) < 0.

=
.Onnote ¢(u,v)=(u.v) ou <, v >; /o(u,uw)= ||

37.1.2 Exemples : en dim. finie et en dim. infinie
/
1. Sur R? avec W (;) , v (;,) Note !

&(w, V) =ay +2'y: £bs. Linéarité/u car : 2,y fixés, on a (cte cte) . <§> positive.

/
X X
2. Sur R? avec o (y) U (y’) &(u, V) =xz' +yy + 27

/
z z
est un produit scalaire dit produit scalaire canonique. Valable aussi pour R?!

3. Dans E = C([0,1],R) e.v. de dim. infinie (car contient R[z]), maintenant :

1
o(p, ) = / o(z).1)(x).dx | est un produit scalaire. "Définie" : avec un théoréme du
Jo

ch. Intégration, dit "des 4 hypothéses" :  (¢?> >0, p? #0, > C°, 0<1) = ¢(p,p) > 0.2

1 — —> / PP — . . — — 2 7 .
. ¢(W,v) =zz' +1 non linéaire /u ; donc n’est pas un produit scalaire. . oW, V) =22 idem.

2 Sur E' = CM([0,1],R) ce n’est pas un (vrai) produit scalaire, cet axiome n’étant pas satisfait. Pas trop grave ...

241
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37.1.3 Inégalités

1.

Inégalité de Cauchy-Schwartz : | o . v |< || % ].]| 7|, avec les nouvelles notations.

On va voir que c’est vrai sans utiliser ¢ "définie" ; [donc méme pour les fonctions continues

1 1 1
par morceaux : | / o(x).p(z).dx |* < [/ ©?(x).dx] . [/ Y?(z).dx], par exemple ! |

0 0 0
Démonstration
Avec les anciennes notations : ¢(\.w + v, \. U + ) =0, VA Ou |[calcul essentiel] :
Nop(W, ) +20.6(0, D) +¢(T,70) =0, VAER.
Cas ¢(u, @) > 0; on a un trinéme du second degré et forcément A < 0 : c’est I'inégalité de C-S.
Cas ¢(u, w) =0; il reste 2.\.0(w, V) + ¢(v,v) =0, VA; ce qui exige ¢(u, v) = 0. Fini.

Inégalité de Minkowski : ||w + v'|| < [|[@|| + |7, avec les nouvelles notations.
Démonstration
1T + BN = 60T+, T + ) = 607, @) + 2608, 7) + 6(F, 7) = [T|2 +2.(7 . 7) + [ 7|2
YT, . - — - — — 1= , .
a déja été vu. Onmajore: w . v < | u . v | <||W].[|7V] et c’est fini.

37.1.4 Théoréme géométriques

1.

Norme euclidienne.

Définition weEE— N € %Jr est appelée une norme si on a, de plus, les 3 propriétés :
— | NuW)=0=u=0; NOMZ)=|).NW); NT+7)<NZ)+N)

Théoréme | %] (radical du produit scalaire) est une norme;; dite euclidienne car de plus on a
E— le théoréme du parallélogramme : |7 4+ 2 ||> + |7 — ¥ = 2[| 7 ||* + | 7 ||%].

Démonstration

Ce qui était difficile était 'inégalité triangulaire, appelée ici inégalité de Minkowski.

Le théoréme du parallélogramme ou de la médiane est laissé en exercice (facile).

. Théoréme d’Al Kashi ou de Pythagore généralisé

@+ 7= |7)?+2.(7 . V) + | V)| (déja vu ci dessus !)

Remarques, en plus de faire des dessins !

e Théorémes vrais pour tout produit scalaire, méme avec celui vu en dim. infinie.

e La norme & 'aide du produit scalaire (p.s.) : || 7| = /(W . ).

1%+ =17 =]

B~ =

1
Le p. s. 4 l'aide de la norme? | w. v = §[Hﬂ) + 7P =)= 17| =

37.1.5 Bases orthonormeées

1.

2.
Introduction. Dans E = C°([0,2.7],R) soit le p.s. (facile a voir) < @,9) >= / o(x).p(z)de.
0

Considérons la famille (cos(p.x), sin(q.x), p € N, ¢ € N*).
2.

1
Limitons-nous &, pour p # p’ : < cos(px), cos(p'z) >= / 5[cos(p—i—ﬂ)x—kcos(p—p’)w]dw =..=0;
on dit que la famille infinie, ici des (cos(px)) est orthogonale pour ce p.s.
Définition | (W1, ..., Uk, ...) est dite orthogonale si u’;+ u; = 0 pour i # j ; normée si Vi, | u;| = 1.

. Intéréts d’une base o.n. : on suppose étre en dim. finie, quitte & se placer dans un s.e.v.

. — — 2 .
Soit €7, ..., e, une base orthonormée de £/, muni d'un p.s. Alors :



37.1. PRODUIT SCALAIRE 243

n n n
.= — — — - — —
e Si® = i€, Y = Yi-€i, leps. | 2.y = x;.y; | lanorme ||| 2] =

n
L — — — — — .
e Si ¥ = g T;.€e;,0n a : composantes de = obtenu avec le p.s. Toutefois :

=1

n — —
T « Q5

. — — — —
Si la base est seulement orthogonale (aq,...,a,), et o = g «;.a;, alors: |a; =

[ai]l*”

Dans tout e.v. euclidien : e.v. : réel et dim. finie muni d’un p.s.,il existe une

3. Théoréme base orthonormée. (Procédé d’orthogonalisation de Gram-Schmidt par exemple.)

—
L . .. N . . — —
Démonstration (*) On se limite & un exemple en dim. 3 avec une base initiale 7", 7", k .

/

"], s0it (U, V) = xx’ —xy — 2 y+2yy —2y2 — 2y 2+ 222" + 22" 2+ 827

!/

—
Pour v =

SIS
S
I
SRS

—

e ¢ est un produit scalaire. Forme : évident ; Linéarité/w car o — ¢(u, V') = (cte cte cte) ;

INEE SO

Symétrie facile ; Définie positive : ¢(u, W) = (v —y + 22)2 +y? 422, [6(W, W) =0=u = ﬁ]

e Pourquoi n’a-t-on pas la forme z2’ + yy' + 22'? Car :

1 0 0
la base canonique (0], 7 = (1 ,? = | 0 | n’est pas orthonormée pour produit scalaire.
0 0 1
e On va donc construire une b.o.n. Procédé de Schmidt : on pose
a = puis :
— — —
b=\Na+7; et: 7,7,k €Vect(d, b,C) : générateurs ; donc nouvelle base !
N N — =
c=ua+v.b+k
On ortho gonahse au fur et & mesure et on se sert du travail déja fait comme suit :
—
TLD ed(d,0)=00 (T, @) +6(d,T) =06 .. =1
=
a1l 7cedd,C)=0cpup(a,d)+o(d, k)=0&..pu=—2
— N - — — — —
b LeCed(b,c)=0cv.¢(b,b)+¢(b, k

,k)=0& . v=0.
[

Enfin, on normalise pour [ce] produit scalaire : [ainsi H?Hé =11

@ ! — ! R
I =——=10 ,J=—=—=11 , K=——==-10 est o.n. D’on,
el \y _ 1ol \o _ el 2\ -
77771{: 77771{: —Z>777k
X X’ . 11 -1\ /y
siw=|Y v =Y L NT,T) = XX +YY' 427 Ft |y = 0 1 (1) v
Z)73.% 2') 33 % z 00 5/)\4

Complément 3

® D’autres produits scalaires (*Spé)

. Sur Ms(R), vérifier que Tr(*A.B) =< A, B > est un produit scalaire. Préciser (Io)". Vérifier encore que les sous e.v. des
matrices sym. et antisymétriques sont orthogonaux. (Idem dans M, (R)).

. Sur E = R, [z] de dim. n+1, avec a; réels distincts et le p.s. (P, Q) =< P,Q >= Z P(a;)Q(a;) ["défini" car un polynome
i=0

de R, [z] nul en (n+1) valeurs est identiquement null, une base o.n. est constituée des polynémes d’interpolation de Lagrange

signalés en compléments au ch. Déterminants.

1
. En e.v. de dim. infinie, on a divers produits scalaires (avec des intégrales : ¢(P, Q) = / P(x)Q(x)dx par ex. sur E = Rz],
-1

qui donne des polynoémes "orthogonaux" classiques : Polynémes de Legendre, ici)
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37.2 Projections et symétries orthogonales

37.2.1 Orthogonal d’une partie

AR e : 1 = = — | —
Définition Pour A une partie quelconquede E| A~ ={7 €e E:Va € A, 7 L a'} 5 tout vecteur de A

< Vecteurs orthogonaux >

Propriété | AL est toujours un sous e.v. et AT = (VectA)®; {6)}l —FE; Bt = {6}, wt = Veet(uw)*t.

Facile en exercice (pour Et:si@ e B, T est orthogonal & tout vecteur, donc & lui-méme : .7 = 0...)

37.2.2 Projection orthogonale sur un sous e.v. de dim. finie

Théoréme Soit F de dim. quelconque et F7 un sous e.v. de dim. finie. Alors il@Ef )
Par suite, la proj. sur Ey // Ef‘ est appelée proj. orthogonale; la symétrie de méme.

Démonstration igtéressante R
1) BEyNEf = {0} est vrai méme si dim(E)) =4o00: T € BiNE}f = 2.7 =0. Donc 7 = 0.
2)E C Ey —I—Ef‘ pas toujours vrai si dimFE; = +o0o! Sidim(E}) finie : soit €7, ..., &, une base orthonormée
de E; (existe : Schmidt) ; pour @ € E, posons 21 = (T .¢€1).e1 +... + (7 . &.).e, € By [choix malin!]
Voyons que @ — 71 € Ef ou (T —71).ef =0 sil <k <r; [cela finira, car alors T = 71+ (7 — 7))
Or:si ¥y =ai;. €1+...+a,.e,alors Ti.e, =ag;doncici: Ty1.ep = 7 .ep;dou (7 —71).ex =0.

Remarques

e Si on a seulement une base orthogonale de Fy, (ay, ..., a,), alors |z = p(7') = H“_)\Tzl ag+ ..+ ﬁ_f
1 s
(2. )
en particulier, la projection orthogonale sur Vect(w') est telle que : |p(7) = H_lHQ u
u
e Soit Ty =7 — 7. Alors | Z|? = || Z1]|* + || Z2/|*>. Pourquoi ? Dessin ?
—

|s()| = ||Z|| : conserve la norme.

Et s(7') = @1 — 7' est la symétrie orthogonale qui vérifie donc

Tandis que pour p = proj., : ||p(Z)|| < || 7] [Id + s = 2p|

37.2.3 Exemple dans F = R?, avec base canonique o.n.

Expression de la symétrie orthogonale (matrice M) / plan II d’équation 2x — 3y + z = 0. ‘

a 2
Solution : D’abord, si la base est orthonormée, | 7w = (b) 1lM:ax+by+2=0.| Icin = (—3) .
c 1

Puis si g estla proj.; sur Vect(w) =11, alors

T:X=y|l—ed)="= L == (2r-3y+2).|-3]|=—[-6 9 -3|.|y|=4X.
7|2 14 14
z 1 2 -3 1 Z

On aurait pu aussi trouver la matrice A par colonnes en faisant ¢(7’), etc [laissé]. Et si s est la symétrie

=2 3 &
Tr(A)=rg(A) =1 (proj.) M.M =13 et Tr(M)=+1,dét(M)=—1 (pourquoi?)
Enfin on va voir au III que ‘M.M = I3 était attendu, qui donne *M = M~!. Avec M~! = M ici, on a
1
—(I3 — M).
5 (s — M)

(Rappel : une symétrie orthogonale conserve la norme de tout vecteur, pas une projection)

3 6 -2
cherchée, on a (dessin) : 7’ — s(@) =2.q(7); dou: M =1I3—2A= E ( 6 -2 3 ) cf. ch.25.

expliqué que 'M = M ou bien que M soit symétrique; et donc A aussi car : A =

37.3 Automorphismes orthogonaux. Changements de bases o.n. (ch.25)
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37.4 Espaces affines

37.4.1 Généralités

E # (), dont les éléments sont appelés points, est un e.a. attaché a un e.v. F si :
—
1. Définition . Quand on choisit une origine O € &, on a la bijection : M € Eg — OM € F;
— —_— —
. Les changements d’origine se faisant par la relation de Chéasles : PR = PQ) + QR.

Ainsi
—
e Dans un espace vectoriel (e.v.), il y a un élément particulier, & savoir : 0.

e Un espace affine-muni-d’une-origine £4 est "identique" & un e.v.; mais justement : on n’est pas
obligé de choisir une origine ! dans un e.a., tous les points jouent le méme roéle : homogénéité.

—_—
2. Translations : Soit w € E. |VM € £,3IM' € £: MM’ =W ; noté aussi M' = M + u
d’aprés la bijection. On dit que M —— M’ est la translation de vecteur w .

L’ensemble des translations muni de la composition (7, 0) est un groupe abélien comme (F, +) ‘

Au lieu de dire "comme", on peut dire "isomorphe 4" (sans importance).
Simplement comprendre que composer 2 translations, c’est additionner 2 vecteurs.

3. Exemple usuel : ‘ £ = R? est un e.affine attaché a e.v. F = R3. ‘ (0,7,7, ?) est un repére de & si

— — 77 1 . — —
O€cet (7,7, k)basede E. | 2] :point ou vecteur OM, AB, ... € E. Chang. de repére : cf. Ex.
3

37.4.2 Sous espace affine

Un sous e.a. & est défini par la donnée de : A € £ et d'un sous e.v. E7 de E selon
Meé’l(:}MGEl ou‘M:A—FU,UEEl‘AESl # (). Ei : direction de &;.

Dessin dans R? : (0,7, 7)) avec By = A = Vect(W), 0 # 0'? On a des droites paralléles affines
Dy, D) passant par A, B.  Attention : Pas de parallélisme avec des sous e.v. !

1. Définition

2. Les sous c.a. de £ = R3 sont : les points, les droites affines, plans affines et £&. Notes *

37.5 Applications affines (cf. ch 25)

37.5.1 Définition

Soit £, F deux e.a. associés aux e.v. E.F.  f: M € & — M' € F est dite affine s’il existe une A.L.,

— - — —
forcément unique notée f (changement de notation pour les A.L.) : |VO, M, O'M' = f(OM)

Remarques
. Au lieu de dire "VO, M ...", il est équivalent de dire "VM”, O fixé. En effet :

—_ —_— — — — — —_ —
Si O'M’' = f(OM) pour O € & fixé, alors O'I' = f(OI); par différence I'M' = f (IM),VI, M.
—
.Cas f =0 € L(E,F) : M' =0’ soit f = Cte. Peu d’intérét géométrique. On préfére f bijective.
— —— — ——
. On peut écrire au choix |M' = 0"+ f(OM)| ou |f(M)= f(O)+ f(OM).| (F dorigine Q.)

37.5.2 Expression d’une application affine

Théoréme |En dimensions finies, p pour £, n pour F, on a I’écriture matricielle Y = A.X + B. ‘

Démonstration. Résulte de ce qui précéde.

4 . . . . . .
. L’intersection de 2 sous e.a. est ou bien () ou bien un sous e.a. de direction E; N E>.

. Dans € = R®, quelles sont (dessiner) les intersections du tétraédre ABCD, avec le plan (M NP), ou :
M e [A,B]; N € [B,C]; P€|[C,D]? [Facultatif et indication : considérer M N N AC].
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37.5.3 Exemples dans le cas F =&

1. ‘Homothéties affines et Translations, donc F =& ‘ mais dimension quelconque

? = Idp < f translation. Et si k ¢ {0,1} : 7 = k.Idp < f homothétie affine de
p—

rapport k, de centre 'unique point fixe. En particulier : f = —Id < f symétrie-point.

On a

2. Cas d’un point fixe (au moins), donc F = & (dimension quelconque)

Une application affine est, en général, plus compliquée que I’A.L. associée;
(penser, en dim. finie, a: Y =AX et a: Y =AX+B). Mais:

-
si f a au moins un point fixe [ ‘ en prenant I pour origine, f et f ont méme expression

7 LY = ?(?) f:IM = 7(IM) ; f n’est ici pas plus compliquée, seul le langage change.

3. | Autres exemples dans £ = R? [La lettre P est réservée pour un point. A pour une matrice ...|

e Soit P un plan affine contenant un point ; w un vecteur qui n’est pas dans la direction II de
P; c’est-a-dire la droite affine D = (I, E)) non inclue dans P; ou encore : si ax + by + cz = d
—
(a,b,c) # (0,0,0) est une équation de P dans un repére (O, 7, 7, k), alors: ax +by+cz =0
— = T\ — — — - . n ) .
de I dans (¢, 7, k), W =a + [ +~k ne vérifie pas 'équation de II : aa + b5 + ¢y # 0.

Attention : Dire w € P ou dire w ¢ P sont tous deux absurdes.

L’application ¢ : M — Q o Q € PND', D'//D passant par M, est affine, appelée projection
oblique sur P de direction A = Vect(w ), d’endomorphisme associé ¢ proj. vect sur II de dir. A.

e Si enfin Q—]\j” = k.Q—]\j, k#0, fr : M — M” est dite "dilatation affine ou affinité" de base P, de
direction A, de rapport k. Si (w, @) base de II, matrice de f; dans (u, v, w) ?

37.5.4 Propriétés générales des applications affines : ch. 25

37.6 Espaces affines euclidiens

37.6.1 Généralités

1. Définitions & est un e.a.e. si I'e.v. associé E, est euclidien (p.s. et dim. finie

~—

; distances, angles.

f est une isométrie affine de &, [f € Zs(€) (groupe

~—

| si Papplication

2. Isométries affines
€ O(F) (groupe).

linéaire associée est une isométrie vectorielle de E :

=l

3. |Non | isométrie, mais connu

. 7 € {k.Idg,k # 0} (gr. abélien des hom. vect.) < f € {Homothéties-Translations de £}
(groupe non abélien pour les homothéties-affines et translations !)

—_—
) 7 = k.(isométrie vect.) [on dit similitude vectorielle] < f : similitude affine de £.

Similitudes vectorielles/et affines en dimension 2
— s _ :
— En vect. Matr. de f en base o.n. r. cgs(oz) sin(@) = (" ") ou n cgs(oz) sin(a)
sin(a)  cos(a) v sin(a) —cos(a)
On peut aussi utiliser les complexes z — 2’ = r.e'®.z ou 22 =re?z.

- 2 2 = r.e'® 2 4 Cte (similit. directes) ou  z + 2’ = r.e'® Z + Cte (indirectes).

37.6.2 Projection et symétrie affines orthogonales, dans & = R?

Exercice (*) Soit P, le plan affine : azx + by + cz = d, (a,b,c) # (0,0,0) dans (O, 7,77, ?), de
direction I : a.z + b.y + c.z = 0. Expression de ¢ : M + @ = M’, projection orthogonale sur P ?
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I/ . . . x . a
. On cherche 12 coefficients : Q = M’ : (y’) = ( . ) . (y) + () Notons 7 = (b) 1 Il ouP;
2 S z . c

et f*(M)=ax+by+cz—d. |Lalettre f étant gardée pour une application affine R® — R3|.

. Posant |QM = A\.7 | (1), on passe de 12 & 1 inconnue : Ay;. Reste a exprimer que | M’ = Q € P|(2).

Dessin ?
Cherchons A ( ) (

a
)—A(b) et ax’ +by +cz=d : ar+by+cz—d=Na>+b>+%) O
C

a
b

C

, d’oularéponse Y = A X + B

d a
— | b ].
+a2_|_b2_|_02 .

b2+ 2 —ab —ac
ou bien : y’ -t —ab  ad®+c —be
’ ) 2 2 ’
2 a®+b* +c —ac —be a® + b?

Vérifications. Remarques.

o N e 8
IS
~

X

Y

Z
X
. En reportant (y
z

PR
~

T
)
z

RS

1) A : est la matrice de ¢ proj. vect. associée : rg(¢) = Tr(q) = 2 (vérification) et ¢oq = ¢ .
. . / A7 — A = * d
2) B : X =0 (soit O) a pour image O'; B=00" =pu.n;et 00. W = f(0)=-d = p=—

3) Si d =0, ce n’est rien d’autre qu'une projection orthogonale en espace vectoriel : endomorphisme.
. . L . VY — ~ .
4) Si on voulait la symétrie orthogonale / P, il suffit de dire M”M = 2.\.7, avec le méme \ : fini.

5) Au passage soit o cette cette symétrie; o + Id = 2.7¢ conserve la norme; comme & est une symé-

trie orthogonale, sa matrice est symétrique : S = S™! ='S; donc A = (13 + 5) est symétrique !

6) Si I € P, la proj. orth. p de M sur D(I, 1) est aisée : IP=\7. (P =1/(N.N).(N!N)=Id—7q).

(e o (IM.T) —  fr(M)
° n=|b|LP et les égalités : QM = IP = Wﬂ = ||—>H2 -Nn.
n )

&

— (M x1 + b 21 —d
e Elles redonnent la | distance de My a P : 6(M,P) = || QM| = |/ (H v | = a4y + ez — ¢ ’
77| va?+ b+ 2

. . S Y " T :
e Si, plus généralement, QM" = k.QM , k # 0 fixe, M — M" est appelée dilatation affine, orthogonale ...
37.7 Isométries affines en espace affine euclidien : ch.25

37.8 (*) Exercice : dans £ = R?, projection affine générale oblique !

Soit P plan affine az + by + cz = d (a, b, c) # (0,0,0) dans (O, 7,77, ?) - w ¢ 11, ot II direction de P :
ac + b3 + ¢y # 0. Expression de q : M +— Q = M’, projection oblique sur P de direction A = Vect(w).

x 1 b3 + cvy —ba —ca d Q@
On trouve : y | =— —afl  aa+cy —cf . +—105].
o a.a+b.pB+cy —ay —by ac + bj a.a+b.pB+cy o

Vérifications. Remarques.
. . / A — VPN * d
2) B: X =0 (soit O) a pour image O'; B=00" = p.w [et O'O.n = f*(O) = —d donnent y =)

SIS

1) A : est la matrice de ¢’ proj. vect. associée ...
]

—

® ou : cf Notes; ou:on avu (ch. R*, R®) | MoM . 7w = f*(M), YMy € P.| Puis My =Q = M'... : méme .
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Exercices: E.v.euclidiens/affines euclidiens (cf. ch 25) PTSI

. (*) Dans R3 e.v. e. orienté. (a) Montrer :

Angles dans R? e.v.e. | : (a) Avec la relation dim(IT; + Iy) = dim(I1;) + dim(ITy) — dim(IT; N 1Iy),

montrer que pour Iy, [Ty, plans vectoriels de R? : II; = IIy; ou I3 NIIs = A droite vectorielle.
(b) Angle des plans + —3y +2z =0,z +y+ 2 =07 [penser a des vecteurs orthogonaux et dessin.|

(c) Soit A" = Vect(w) ou v = 7 +27 + 3k (base o.n.). Angle approximatif de A" et de Il ?

‘Montrer qu’une famille orthogonale de vecteurs non nuls (méme infinie) est toujours libre. ‘

. (a) Montrer I'inégalité (X:ai)2 < n.Za? ou a; € R (comme cas d’'inégalité de Cauchy-Schwartz).

i=1 i=1
(b) Soit A = (a,-j) une matrice orthogonale (de vecteurs colonnes 'y, ..., ¥, : nouvelle base o.n. )

— — — — — — —> .
Avec vV = V14 ...+ V,, W=¢€e+..+e, (ek : ancienne base o.n montrer Za” <

. (a) En e.v.e., rappeler I'expression (du cours) de p(x), p = proj., sur Vect(u). Malntenant :

(b) Dans R?, si w = a7 + 37 + 7? en base o.n., vérifier que la matrice de p est alors (UD)

tUU

. (*) En e.v.e., montrer, plus généralement, que la projection oblique sur Vect(w') parallélement &

(—>—>

utoest: p(7) :(;, %;7 [ou (V. 7%)#0 donc Vect(?) etw ™ supplémentaires).

(UAD)(TAE) = (T W) (T E) = (W £).(T.W).
(b) Puis (ﬂ’/\?)/\(ﬁ/\ = (W, 7, )0 — (0,7, w).t =W, 0, £)v—(v,7d, 1)«
Si W, v, W t

.U , ).
u, v, w libres, composantes de S.

?  |Formules de Cramer reconnues, dans ce cas.|

10.

Chang. de repéres en dim finie pour un point. (a) Commenter les formules X = P.X et X — Xy = X'.

(b) Montrer le cas général ‘X - Xo= P.X" (Changer d’ origine; puis de vecteurs de base).

(*) Lien : points fixes de f—Vecteurs invariants de 7 Casou f: &— & (donc 7 :E— F).

Notons & I'ensemble des points fixes.
. , - — —— — — —,
Vérifier: M =M < OM= f(OM) < (f —1d)(OM)=—-00". (xx)
—
Donc : soit & = 0; soit sous espace affine de direction Ker ( f — Id). Exemples ?

. (*) Préciser les antidéplacements de R?? [2' = 0.z 4 1|

— —
(I,J)on.
Dans ce repére (O,?,j) on a M(‘if) M (;(/) _ ((1) _01> G/() n <g) X — X 4+ a;Y—;Y g

Si a = 0 on reconnait la sym, /D : Y = (3/2, notée o. Sinon : f apparait comme la composée

commutative de o et de la translation ¢t - (vecteur dirigeant D!) : on I'appelle "symétrie-glissée".

[f = oot =too = fof = tocooot =tot =t, —; dout; puiso = t~Yof uniques !]

— —
Solution. on sait que f est une sym /y = x.tan(6/2). Soit I sur cette droite vect. et

Etude des similitudes affines indirectes en dimension 2 : 2’ = a.Z + b, a € C*.

(a) Pour | a |# 1 (sinon ex. précédent), vérifier qu’il y a un point fixe.
(b) Etudier le cas 2’ = re*® %, r > 0. Puis conclure qu'on a une composée commutative d’une
homothétie de centre My et d’une sym. orthogonale / D, My € D.

Voir aussi le chapitre 25.




Chapitre 38

Les cercles et les coniques

38.1 Cercles [révisions]

38.1.1 Revoir les équations

— x = a+ R.cos(u) — 2., .2 0 o — , y 1
{ y = b+ Rosin(u) ‘Pabbant par O |z + y* — 2ax — 2by = 0; p = 2a.cos(0) + 2b.sin(0)

38.1.2 Et le théoréme de ’angle inscrit

N a b c abc . . . .
D’ou : = = = —=2R relation des sinus. Relation des cosinus ?

sin(A)  sin(B)  sin(C) 28

38.1.3 Et le théoréme de la puissance d’un point

MA
1. Au ch. Géométrie de R? on a vu {M : Wi k} : Cercles. Ou {M : MA* — k> . MB?* =0},k > 0.

(*) En compléments, le théoréme de la puissance d’un point/un cercle avait permis de montrer

l'orthogonalité de ces Cercles Ci, k # 1, (C; médiatrice) avec tout cercle passant par A et B 2

2. Exercice : | une généralisation {M : o.M A% + 3.MB? 4+ v.MC? = \} ?
Solution. Soit ¢(M) = o.M A% + 3.MB? + v.MC? : "fonction scalaire de Leibnitz". Alors

VG € P p(M) = a.(MC + GA)? +_[>3.(J\TC5_+> G—B>)2_—|—>’y.(]\Td +GC)? = (a+ B+7).MG2+

2MG . (.GA + .GB +~.GC) + ¢(G). Donc deux cas :
eSia+f+7#0

Prenant G = Bar <21 g g), ona: ¢(M)=(a+p+7)MG*+¢(G). Dou
H(M) =\ GM? = A=9(G) = C'te : cercles de centre G sous réserve que Cte > 0.
a+fB+y

e Sia+ [ +~v=0. Soit ici G = O (comme on veut)
— — — —
Soit Vo = a.OA + 3.0B + ~v.0C (on sait méme que ce vecteur ne dépend pas de O). Alors :

¢(M):A<:>‘7(]).O—]\)4:% ou <g>.<;§>=0t€: droitesafﬁnesJ_V}o si 170756)

a+ bt . . .
L T = 2.1 s cercle qui contient aussi O :
Un paramétrage de cercle passant par O : y =t.x = _, t.(a_:— bt) . —Ta Sib£0; t=oo,sinon )
142

2 Au ch. Equations différentielles, on avait aussi vu que les cercles d’équation z2 + y2 — 2ux = 0 (tangents & Oy en O)

étaient "trajectoires orthogonales" aux cercles 2 + y> — 2.y = 0.

249
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38.2 Ellipse, hyperbole, parabole : équations réduites

38.2.1 Courbes du second degré Az? + Bxy+ Cy* +Dx+ Ey+F =0,(A, B,C) # (0,0,0)

‘ Classification. Il n’y a que 3 coniques propres : parabole, ellipse, hyperbole (et quelques cas dégénérés). ‘

Démonstration en compléments (plan affine euclidien) (*)

Commengons par un éventuel centre de symétrie. Soit f(z,y) = Az? + Bxy + Cy?> + Dz + Ey + F.

r=xz9+h On supprime les h et k, ou bien on a : 2Axg + Byg = —D
y=1yo+k Ah? + Bhk+CE* +0.h+0k+G =0 "\ Bxo+2Cy,=—E.

Posons {

Note 3
e Cas B? — 4AC # 0, systéme de Cramer. On dit ici : conique a centre, type ellipse ou hyperbole £, H. 4

2 Y2
On arrive a Elhpse + — = 1.| Dessins si a > b; puis si b > a; dorénavant, a > b : Fig 1.

@@ N

y? X2 y? X2 y?
ou | Hyperbole — — —= =1 ou — — —5- = —1.| On verra que
a

b? a’? b

Dorénavant, on prendra OX pour "axe transverse" : Fig 3.

= 0 sont les asymptotes.

a? b2

[Sauf cas dégénérés : 2 droites sécantes (4.X2 —Y? = 0), point (X2+2Y? =0), 0: (X% +2Y?=—-1)]

e Cas B> —4AC =0 : On est ramené, si C' # 0, a C(y — mx)? + Dz + Ey + F = 0 : type parabole P.
[Sauf cas dégénérés : 2 droites paralléles (X2 = 1), confondues (X2 =0), §: (X2 = —1)], on a avec

changement de repére o.n. possible : | Parabole X? = 2pY ou Y2 =2pX.| 5

/& _&

Ellipse :

38.2.2 Ellipse Z— + 2 =1 [On reprend =z, y|

b2

x = a.cos(t)
y = a.sin(t)

x = a.cos(t)

1. Paramétrage { y = b.sin(t)

t
cercle "directeur" (a > b) (Aussi: T =tan(<).)
- 2

(E

y =

=T
2. Par affinité (ou dilatation) f: <ayc> n—>< b ), ce cercle a pour image 'ellipse. Ci-dessus.
—Y
a

df /0x(xo,y0) = 0
af/0y(xo,y0) =0

* . Une solution de Spé consiste alors a étudier la forme quadratique (h, k) — Ah® + Bhk + CK>.
. ) .. (h\ _ [(cos(0) —sin(8)\ (X . , 14
. Solution de Sup : Posant ici (k) = (sin(@) cos(0) v [rotation d’axes, donc P~" ="P]
(On supprime le terme "rectangle" en h.k) < B.cos(2.0) + (C — A).sin(2.6) = 0; qui est possible.

3 \ — = 2 . .
On a exactement le systéme ou grad(f)(Mo) = 0. B~ —4AC intervient.

5 On verra que p est le "paramétre" et OF = g, ou F foyer, O sommet ; cf. Propriétés monofocales.
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b b
3. Compléments e D’ou laire de lellipse : —.7.a®> = m.ab. cf. intégrales : Geltipse(T) = = feercie(T)
—_ a

a
e Méthode de la "bande de papier". M lié a une tige PQ, P € Oz,Q € Oy, QM = a, PN = b, décrit
une ellipse. (N € C(0,a) — M, ON = Q—]\/I : affinité de dir. Oy de base Ox de rapport —b/a). [Ou

Cercles de Chéasles. M = mil(R (r'cos(t)) ,S ( S'Cos(t)))), r=a+bs=a—0b; F',F,R,S quadr.harm.

r.sin(t) —s.sin(t

car (OF) biss., OF? = OF'> = OR.OS ; donc (RM) biss., MR* = MS* = MF.MF' (F'FRS cocycl.)]
e Théoremes d’Apollonius. Avec M (t)[a.cos(t),a.sin(t)], on a : m(t)[a.cos(t), b.sin(t)], p = m[t + 7/2].
O—T>n, (71;, diam.conj. 1) Om? + Op* = a® + b*> 2) Aire.parall(Om,Op) = a.b 3) Hcoeﬁ.dir :—b%/a’.

2 2
38.2.3 Hyperbole I—Q — Z_Q =1 Axe transverse Ox
a
x = e.a.ch(t) 1 1 1
1. P ét =41 ouz=a(T+ =), y=b(T— =); t = ——,y = tan(t)...
aramétrage { y = b.sh(t) € z=a(T + T) y = b( T) x o5 (@) y = tan(t)
22 ’]/2 b [P NN
2. Asymptotes : | — — 7= Olou|y ==+-—x. ‘Hyperbole équilatére" (asymptotes L) < b = a. ‘
- a a
p >0, y>0 Ona: 2= 2mw b pui b = bsh(t) — ch(t)
reuve : casz >0, y=>0. Ona: = =— — —; puis: y— —x =b.ls —c =
2z V=7 T a totooa’ ¥ L
— b.e_tt—+> 0™ ; d’ott une asymptote. Et asymptotes orthogonales < produit des pentes : —1.
— T 00

2
Autre preuve : Pour I'asymptote cherchée, dire y = b%.ﬂl— % et DI: (1+h)*=..

3. Théoréme ‘Equation de 'hyperbole rapportée a ses asymptotes : X.Y = Cte ou Y = Cte/X. ‘

1 1
Car T = ——(a.7 —b7), T = ———(a.7 4+ b7), nouvelle base orthogonale en
a? + b2 a? + b?

L T\ X\ 1 a a\(X\ a

général convenable. <y> = P<Y> =T <—b b> <Y> P X = m(){ +Y), y...
2 2 2 4 32
ct. Matrices) et I’ancienne équation : — — % = onnent (a voir ! Y = .
£ Matri I anci . 172 322 14 N l—b
a

~
AN

38.2.4 Parabole. Prenons ici I’équation 2? = 2py : tournée comme ci-dessus

Compléments e Pour M sur le parabole, soit MT, T € Ox la Tangente, P la projection de M sur
Oz. Alors OP = 2.0T par son équation. Et donc la Tangente coupe Oy en U avec yy = —yu.

e Exercice Lieu des milieux des cordes d’une parabole de direction donnée ?

2 _ / »
On résout { v =2py = m.p = cte dans 22 — 2p.m.x —2pA=0:

y=m.x+ A\ A variable. Milieux

Droite //Oy qui est la direction asymptotique. [Déja vu avec le Théoréme des accroissements

finis pour f(z) = a.a®, C¥(R) = f(b) — f(a) = (b—a).f'( a;b ) '

. Note sur les Coniques.

6 Avec cette génération, on peut construire la tangente en M a l’ellipse de deux fagons :
. Les normales a Ox et Oy en P et @ donnent le "centre instantané de rotation" I = R, d’ou (tangente en M) L M !
. Et aussi : l'image de la droite tangente au cercle en N coupant Oz en T est la tangente MT (T fixe) & Een M !
Th. d’Apollonius et Hyperbole. Si mla.ch(t),b.sh(t)], pla.sh(t),b.ch(t)] € Hyp. z°/a® — y*/b> = +1, O—n%,O—;)) diameétres
conjugués/forme bilin. sym. xm'/a2 — yy'/b2 [Des //(O,p) coupent Hyp en K, L, Asympt en U,V, Om en p : milieu] ; alors
on a encore (2), (1') Om® — Op® = a® — b* et (3'). Et les diagonales du parallélogramme mOpgq sont // Asymptotes.

" Ce sont les sections planes du cone de révolution z°.tan’(a) = z° + y°. [Théorémes de Dandelin-Quetelet].
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38.3 Propriétés monofocales des coniques

38.3.1 Théoréme : 1 seul foyer utilisé et sa directrice associée

MF
Soit F' (foyer) ¢ D droite ’directrice’. Alors {M : S(L.D) = e}, e > 0, est une conique :
e =1 Parabole; 0 < e < 1 Ellipse (cercle si e — 0); e > 1 Hyperbole (équilatére < e = v/2).
. . R p
Soit |p = e.d| dit tre, d = 0(F, D). | Pour la Parabole : §(F,D) = p; (S t, F ==
ol it parameétre, (F, D). |Pour la Parabole : 6(F,D) = p; §(Sommet, Foyer) 5
Pour toute conique, le paramétre p est la longueur du "rayon-vecteur" issu de F' // D directrice.

Démonstration (*) 8

A

O/

Remarques et dessin

e Pour x =0, on a aisément (sur ’équation initiale) y = £p comme annoncé.

. X s
e [’étonnant, quand e # 1, est que I’équation : — + = =1 donne un autre axe de symétrie ! cf.IV.

v
a? B

38.3.2 Conséquence : Equation polaire des coniques

O étant un foyer, ni centre, ni sommet ! et D d’équation : x.cos(a) + y.sin(a) = d, une équation

P P d
Et p= = d D!
1+ e.cos(f — o) P ccos(f —a)  cos(0—a) redonne

polaire des coniques est |p =

Démonstration
OM? = p? et 6*(M, D) = [p.cos(0).cos(c) + p.sin(8).sin(a) — d]? = [p.cos(§ — a) — d]* conduisent a
+p = p.cos(§ — a) —d. Donc : Conique =C; U Cy d’équations p = T ecoi(@ —y P 1o eco_s]()ﬂ )

C1=Cqy car po(0+m)=—p1(0) : Mi(p1,0) = Ma(p2,0+7m) ! D: p.cos(d)cos(a) + p.sin(f)sin(a) = d.
Remarques

e On retrouve, pour 6 = a+ g (Rayon-vecteur // Directrice) la valeur connue p =p (paramétre).

P ) [ = 0] qui est aussi y? = —2p[z— g] =-2X, X =za— b

e Dessiner la parabole p = 1+ cos(6) i

8 Prenons ici, F(0,0) et D: z=d>0. d=FD : distance d’un foyer a la directrice associée. Alors :
4y’ =e’|d—z|?=(ex—p)® [parfois 2® +y’ = (ex+p) x =20+ X : 3° =2pX + (e* —1)X?)]
ou sy 4+ 2px = p?; soit yP = —2p.[z — g] Parabole : §(F,D) =p; &(Sommet, Foyer) = g
tandis que appelée excentricité, on obtient : (1 — 62)232 + 2pe.x + y2 = p2 ou encore :

[z + %] y?
2 2 =1
(1—e2)2 1—e2

Donc si0<e<1:Ellipse. Si e—=0, d— 400, p=e.d#0 fini, ona: z?+y%=p? -cercle.
(Planétes autour du soleil : excentricité faible. Mercure 1/5, Vénus 1/140; méme 1/2 quasi-cercle).

Si e > 1 : Hyperbole. Et hyperbole équilatére < e* —1=+/e2 -1 & e= V21 est revu plus loin.

On a aussi une définition pour Ellipse et Hyperbole par Foyer et Cercle directeur avec 2 foyers : aprés.



38.3. PROPRIETES MONOFOCALES DES CONIQUES 253

. . . . . c
38.3.3 Ellipse (avec foyer) : Retenir surtout o =0"+c¢’; e=- <1
a
Dém.(*) Soit Q(l_—pz,O) le centre de symétrie, OF = v, 0D = 57, OA= QA = a7, OB = b7 -
—e
AF  AF a—-c¢c a+c 2a 2 T_E_ LT x+y x— D
cC = — = g g = — = — Cal — = — = _ = — = g onc
AD A'D d—-a d4+a 20 2a y ot y t  z4+t  z—t
BF 2
ezEZ%ZT <1 5:a— BF:a‘BF2:a2:b2—|—02‘0uc2:az—bz,‘axefocal:Grandaxe.‘
a c -
Placer les points et distances ci—dessous‘ (ici, un seul couple Foyer F' = O, Directrice D). Note 9
. a2 +b? L b2 Iy 1 12
3 exercices . (E;H), O pole: p* = TP cos? (@) ° d = dist(F,D) = — M, F, M" alignés, AR TS e

. Théoréme (angles, foyer, directrice) Si M, N € C et I € D alignés, F'I est bissectrice de F'M, F'N :
Biss.-ext. sauf si M, N € 2 branches d’hyp. ‘ En particulier si M1 tang. FM 1| FI ‘ cas M, F, M’ alignés?
. JIM dist(M,D) FM . R F pied de hauteur de IMM’' et* I
Fig.1,2: IN = disi(N.D) — FN = [ sur une bissde M F'N ; puis N — M. (Cemm de cercle (ex)inscrit MM’F’)
=vM =p, v=yproj, (K,FM), K = Normy NG.axe. [D = pr(F,D),H = pr(M,D), [ =TgND, MFIH € cercle
w= MHF = MIF = FMK : MHF, FMK semblables; vM = MK.cos(u) = e.HF.cos(u) = e.FD = p. Parabole : verso.|
(Note : FM 1 FI donne les propr. des tang. a la P. et, pour E et H : Tangy;. biss. de F'MF ! 1V.)

—
N

4

38.3.4 Hyperbole (avec foyer) : ¢ =a” +1°; ¢ = fo. Equilatére < e = 2
a

2 2
Dém. (*) en complément. Ayant —- — ‘7;—2 = 1,(B = —b?) : ‘L’axe focal est toujours l’axe transverse. ‘
a
Soit Q( ;—pel > p_ d,0) centre de symétrie, QF — —c. 7, 0D = —0.7, QA =—QA' = —a.7. Alors
e? — e
e—A—F— AF _cza cta 2c_2a Se=c=2>1 5_&_2 (comme l'ellipse) mais e > 1
~AD  AD a-6§ a+6 2a 20 a0~ 7 ¢ P '

b
Ici | c® = a® + b2 | : soit B/, A'B' = b.7 ; QB asymptote car pente —; si M( * 0 S b—x) dans Q,7, 77
a grand a
& MF?  (a®+b?)a?
a2 82(M,D) ~  aZa?

Donc |Q)B' = QB = c (triangle rectangle) ce qui donne une construction de ¢ = QF = QF’ rigoureuse.

sur H : e2 = (x — +o00) ! Enfin (hyp. équil.)@azb@ezg:\/i.
a

:Z?;Z() + % = 1. Si Mr = (¢,p) ‘p: b?/a et TangNaxes (8,0); (0, a).‘
‘Dir. D : polaire de F. ‘ 4 fagons 1) Tangm, N Ox = D(4,0) € D et sur la polaire de F. 2) Affinité, triangles semblables
QF Pr, Pr(c,b) € cercle.principal C(Q,a) et PrFD, d = bz/c. 3) Ici, MFM' alignés : MFI = M'FI = w/2, I € D
aussi sur la polaire de F. 4) ‘F/E =-A'F/AD: (A A F,D)D. H. ‘ (donc D aussi pol.(F/C), d’ou C L tout cercle
de diam FL,L € D). On déduit : T = Ta N Tn pole de (M, N) est conjugué de I € (M,N); I et F aussi conjugués

‘ = FT Biss.(FM,FN) (Poncelet) ‘ FT | FI. Et VA passant par F' coupant Con. en U,V ; Dir.en J : [U,V, F,J] = —1.

. Axe radical des cercles 38.4 (F',2a) (F,0) cercle-point droite des points qui) car (DFMr rectangle) |
ont méme puissance et sym, /DMp
Hyp. idem !|IV. H = {centres(c), F € (c) tang. & Cps 2, en Q, tangy meédiatr[FQ]}. M — oo, (¢) — dr(FQ") L Asympt.

homp2(Cprincipat) = Cr/ 24 : tang. issue de F' & Cp le rencontre en P* € DN Asympt. (P* conj. de F(c,0)/Cp donc /H).

® Complément . Tang. en Mo(zo,y0) € € :
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38.3.5 Parabole (avec foyer)

Soit ici F(g,()); D:xz= —71) Alors {M : MF = §(M,D)} est la parabole | y? = 2pz | p paramétre.

[Ex. facile| L’origine n’est pas le foyer maintenant ! Par contre FD =p (e=1) ! O milieu de FD.

La tangente en P € Parabole, projeté sur D en M, est médiane de F'PM isocele
1. Théoréme donc médiatrice, hauteur, surtout bissectrice intérieure de FPM. D’ou
la propriété des rayons lumineux pour les miroirs paraboliques et le mot "foyer".

2. Démonstration vue au II; mais la parabole non tournée ainsi. Aussi voyons ce calcul : pour ¥/,

explisciter y fonction de z, y = +1/2pz mal aisé et inutile! 2 = 2pz = 2yy’ = 2p; ¢/ = g

Tang. en P(;)E P )};_ 4L_L. (z,y) : y? = 2px.| TangNOy: X =0; U(0, %) mil[PT], mil[M F].
“z y

TangNOzx : T(—x,0); F mil[TN] car HN = p=vP, H(z,0); N : NormNOx ;v : proj, (N, FP)

donc ‘les rayons lumineux paralléles & I’axe, passant par M convergent vers F' | ‘ A dessiner.

3. Exercices en complément. Les deux Th. de Poncelet 1) FT biss de FP,FP" 2) PTz=FTP.
1) TMP = TM'P' (car TM = TM’) donc ... [Autre figure & voir : T & droite de la directrice].
2) MTz = 2TM' : 2.PTF — 2TF = 2TF + 2.FTP ..., isogonalité. D’ou : [ii) vrai que pour P|

PFP alignés < T € D car PFT = /2 = TMP. Si Tangp: L Tangp, T € D car MTM' = 2(FTP+FTP).

\\3 F ot - m \

38.4 Propriétés bifocales des coniques

38.4.1 Théoréme : 2 foyers (pas de directrice ici)

Nouvelles notations : soit un repére o.n. @ = O ici, 7, et F(c > 0,0); F'(—c,0). Fig. 3,4. Dém.(*) 1°

2 2
{M:MF+ MF' =2a} est sia<c:0; sia=c:[F',F]; etsia>c:ellipse %—i—#:l

2 2
{M:|MF—MF'|=2a} est sia>c:0; sia=c: (F,F)\|F/,F| etsia<c: %—623’_&2:1

38.4.2 Conséquences (parabole exclue ici)

1. "Construction du jardinier" pour Iellipse. Avec un fil de longueur 2a tendu entre 2 piquets F, F,

FF' =2c<2a: ‘MF + MF' = 2a. ‘ Placer les foyers ci-dessus : fig 3,4. (Hyperbole analogue).

191) Cas a < ¢ : aisé. Casa>c:soit &' ={M : MF + MF' = 2a}, € Vellipse. £ C £ clair avec la "déf. monofocale".
Réciproque : M € &' & [MF? = (2a — MF')?;, MF' < 2a] & [a.MF' = a® 4 cz; MF' < 2d]
& [Me& MF' < 2a; a’+cr > 0] & M € &, car les 2 conditions sont satisfaites pour M € £.
2) Casa > c:aisé. Casc>a:Soit H ={M:| MF— MF'|=2a}, H 'hyperbole. H C H’ aisé avec la "déf. monofocale".
Réciproque : [M € H'; > 0] & MF' = MF +2a & cx—a’ =aMF & [MeH; cx—a® > 0] < [M €H; x> 0] car
[t>0;M € H] = cx>ca>d’! DouE, Havec cercle.dir. C(F’,2a) : M centre de T tang. 4 Cen ¢, F € T'; F ¢ C.
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2. Propriété des tangentes. [Autre dém. : position limite de MM’ avec ¢, ¢ et axe radical de Cps s ;
ou bien, D étant la médiatrice de F'¢, M est le seul point de D tel que FM + F'M = 2a. (*)]

La tangente en M est bissectrice extérieure de FMF' pour £ et intérieure pour H.
Pour P'ellipse, convergence des rayons issus de F' vers F’ par réflexion. Divergence pour hyp.

— —
—— - d [=— —— dM —— dM dM
2 2 I3 19 _ a 2 _ 2 _ = ) — |
Dém. \/FM (t):l:\/FM(t) cte, or 7 FM?2(t) 2FM.—dt /27 FM?2(t) U | =1 dou o 1l uw+w!
Propriété "des confessionaux" F=pénitent, F'=confesseur seul lieu d’audition (abbaye de La Chaise-Dieu 43).11

\ /| |

. D'oit le lieu des sym. de F’/tang. est le cercle directeur (F,2a) F, M, ¢’ alignés |directrice si par.]
et par hps 175 le lieu des projy (F ' tang) est le cercle principal [tangente au sommet si parabole.|
Si proji,, (F, F') = a, 3, alors : Fa.F'3 = b?. [Puissance de F'/ cercle principal|. Th. de La Hire.
ler Th. de Poncelet‘ (1 foyer, fig.1) : MFP = PFM' [car Pp = PF' = Py : PF biss. de @F¢' ]
2¢ Th. de Poncelet ‘ (2 foyers, fig.2) : PM, PM'; PF, PF’ isogonales |[PM,PM’ | F'p, F'¢’ : biss.
de (PM,PM') (F'p, F'¢') méme dir. : F'I, F'J et IJPF alignés*, méme dir. de biss. que FPF’ ]
*[ P, I milieu de de [, ¢'] alignés par le ler Th. de Poncelet, cf. aussi III [ ... ligne suivante : 2.IFJ = m’]
. Angle pivotant : portion de tang. mobile I.J entre 2 tang. PM, PM’ vue de F sous un angle fixe !
. T € Orthoptique, T = o x ¢/ ,FT L Typ: TF?+TF"? = 4a®, TO* = a*> + b*> (Th. de la Médiane a FTF")
lou F@'P, 40> = PF? + PF"* — 2PF.PF'cos(V), angle des tang. donc V = 7/2 & PO? = a* + b* ]
Ex. 1) Sitang.meru.ou. Hyp.N tang. 4 a» = {P, P'}Y:PF 1 FP. 2)SiH,H =proj, (F,F'/tang.,s), [ = FH' N"HF' :
MI 1 tang; N = sym(M/I) € (F,F'); O,H', K' = proj(F', Norm.) alignés. [hom..cpntres. r.pr, ¥,% = sym(F, F').]
Puis XY _ FZ/TM; MN? = éMF.MF’ etsi t= F’/J\I\N, cos(t) = % = I;Z ; d’_oﬁ (aussi pour P).

3) E. (H) Si (BB') coupe tang.as en U, norm. en V, p = sym(M,BB’) # M : F € Cercle(MUp) [a voir| F',V aussi.
11

. Compléments : un exercice sur ’hyperbole équilatére et les fonctions hyperboliques et coniques :

¥
2

g=ohlt) — L @
sl Cercle
1
hit) T @) CAT
Ellipse
4 Parabole
5 1 1N 2 T P

Ut L bt ot

y Hyperbole

-7 La droite de Vinfind ©
deux droites paralléles

d et du pavage, dessing
en perpestive, se coupent
i Tinfini

g e sieracs

. Perspectives : la vision euclidienne devenant vision projective d’Alberti. Ici,

"I’ Annonciation" de Léonard de Vinci.
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Exercices: Cercles et coniques PTSI

1.

10.

. Courbe d’éq. pol. p=

‘ Sur les cercles. ‘ Montrer, avec le théoréme de I’angle inscrit, que le symétrique de 'orthocentre H,
par rapport aux cotés d’un triangle, est sur le cercle circonscrit.

. Dans le plan affine euclidien, soit A, B,C tels que AB = 3; AC = 4; BC = 5. Dessin ? Quel est

Pensemble C = {M : —=5MA? + 4AM B? + 3MC? = 12} ? [Vérifier que (B, C) est tangente a C.|

. (*) Soit M un point quelconque du plan P : A, B,C. (a) Montrer que M est forcément barycentre

— — — e, ey ot
de A, B,C avec des coefficienst «, 3, judicieux [AM = A\.AB + u.AC ou AM,BM,CM liés.|
—
(b) Montrer qu’on peut choisir @ = Aire(M BC) etc. |Prendre le produit vectoriel de aMA + ...+
— —
YMC = 0 par M A; se limiter & M intérieur au triangle (a, 3, v > 0) ici et pour la suite.]

c¢) I étant le centre du cercle inscrit & PQR, déduire que I = Bar ( QPR PQR P%) [PQ longueur.|

d) En déduire la position du centre de gravité d'un fil triangulaire homogéne ABC' pesant.

(
(

(e) Cas de la plaque triangulaire homogéne 7 [Découpage en lamelles paralléles a (B, C)].

—
. (*) Soit I le centre d’une similitude directe plane A — A’; B # A — B’ donnés, donc a = A—B), A'B.

_— =, — —
Que dire des angles TA,IA’, IB,IB’ ? Déduire que I est intersection de 2 cercles connus et que
c’est le point autre que (A’, B") N (AB). [Sinon, cercles tangents et résultat encore vrai.]

. Parabole. Soit D : x = %p et F( g ,0). Equation de {M : MF = §(M,D)}? [y*> = 2pz.] Puis

(a) Equation de la tangente en M (z,y) € Py, décrite par(X,Y)? Tangente NOy, conséquences ?
(b) Si N = Normale NOx et P(z,0), vérifier que PN = cte. [Peut servir pour la courbure en O].
(c) (*) Avec (a) mais fixons ici V(X,Y’). Nombre de tang. contenant V' [second degréeny; A > 0|7
Lieu de V' d’ou la parabole est vue sous 90degrés [courbe orthoptique; tangentes L : produit des
pentes -1] ? Vérifier que les points de tangence sont alignés avec F' et que (V, F) L (M, M) !
[(*) Lieu d’ot Py, est vue sous un angle « : hyperbole(foyer F, direct. D, excentricité 1/ | cos(a) |).]

. Hyperbole. Lieu des centres de symétrie des hyperboles : H,, (m —z)y=xz>—-1? (m# £1.)

Ellipse, image du cercle par affinité. (a) Aire de lellipse et "méthode de la bande de papier" ?
(b) Coupant & par des droites paralléles, déduire que les milieux des cordes sont alignés. [On dit

"diamétre conjugué"; par une application affine bijective, I'image d’une droite est une droite !...]
. 22 y? 2y .
(c) Soit & : et 1; & : St = 1. Montrer que si deux cordes de &1, AB, AC, sont

tangentes a £, il en est de méme de BC. [Qui se généralise "grand théoréme de Poncelet".|

a oo a Lo 2.a 2 Gi,— P _ p/V?2
1+ cos(0)’ P=1 +v2.cos()’ P=57 cos(9) = — P=17 e.cos(0)’ P=17 “5-cos(0) ’
(*) montrer que les droites (P[§ = a — 7/4], Q[+ 7/4]), P,Q € lére conique, enveloppent la 2éme !

[Trouver (P,Q) : (e + v2).X.cos(a) + V2.Y.sin(a) = p. Point caractéristique 6 = o ]

. (*) Si A € D, lieu des foyers des paraboles passant par A de directrice D; puis lieu des sommets ?

[Affinité encore pour les sommets : trouver une ellipse.]

(*) Soit 'hyperbole équilatére H : x.y = k, My € H, Ny son symétrique / O et { My, My, M3} = HNC
ou C est le cercle de centre My passant par Ng. Montrer que le triangle obtenu est équilatéral :
(a) Avec les complexes. (b) Puis en montrant que G[(z1 + x2 + 23)/3,...] coincide avec Mj.




Chapitre 39

Longueur/courbure des courbes planes

39.1 Longueur d’un arc paramétré

39.1.1 Généralités

1. Exemples d’arc paramétré. C’est la donnée de F':t € I [I segment| — O—]\j(t) € & =R?ouR3.

e cn cartésiennes :  x € [zg,x1] — F(z) = { y i szzp [Arc de parabole.|
e cn paramétriques :  t € [0,27] — F(t) = © = a.cos({) [Ellipse.]
’ y = b.sin(t)
r=2x9+ ta o N
autre cas a voir :  t € [0,1] — F(t) = y=yo+t6 [Segment [My, Mi]si w 5] # 0]
z=z0+ty v

e cn polaires : 0 € [0,27] — F(0) = O—]\j(e) =p(0). W (#) ot U =cos()7 +sin(f)7 ;
[p = : coniques de foyer O;  p = 2a.cos(0) + 2b.sin(6) : cercle passant par O.|

1+ e.cos(f — )

9. x = r.cos(w.t)
2. Etude de I'hélice circulaire dans R3 : ¢ € [0, —W] — F(t) = { y = r.sin(w.t)
w z=ht.

Elle est tracée sur le | "cylindre de révolution" : 2 4 y? = r? dans R3.

2. 2.
La période en projection sur Oxy est T = —. | Le "pas" de I'hélice est —.h | (avancée sur Oz).
w w

dM —r.w.sin(w.t) dM
On a : - = rw.cos(w.t) | donc : HEH =/ h? + r?w? : vecteur vitesse constant en norme;

h
a3 h 1 itesse fai 1 %
et a _(E’ ) = cte, car cos(a) = \/ﬁ ;| le vecteur vitesse fait un angle constant avec k.

3. Longueur d’un arc
Soit t € [a, b] ; pour la subdivision A : tg = a < t1 < ... < t,, = b soit An = MgMy + ...+ M,,_1 M, la
longueur polygonale. ‘On appelle longueur de I'arc : sup{Aa, A quelconque}. ‘ Et si ce sup est fini,

on dit que l'arc est rectifiable. Un arc continu [F' C°] n’est pas forcément rectifiable ! cf. au dos.

39.1.2 Longueur d’un arc C'!

boang b
1. Théoréme |Si F est Cl[a, b] alors I’arc est rectifiable de longueur L = / ||%Hdt = / | F'(t)]|dt.

o . dM = =
2. Interprétation cinématique : Petite longueur : dL = H%Hdt = |V (t)|.dt = ||dM]|.

257
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39.1.3 Changement de paramétre

Définition. On écrit plutdt : s(¢) =Longueur-arcM, M;, appelée "abscisse curviligne" ; donc % H H

ds
sauf si on change l'orientation en prenant s(t) =Longueur-arcM; My, cas o — H H D’ou :
—

aM Y : . .

ds = iH?”(ﬁ :N:HV( )||.dt = £||dM||. Toujours + en pratique ! Puis: L = ds. | 123

¢ Arc
s est un parameétre essentiel, car "intrinséque" ; on dit "paramétrage normal".

39.1.4 Calculs de longueur (paramétriques, polaires, cartésiennes)

_ e ’ ™~
1. Arche de cycloide { z = R[t — sin(?)] W ; \/

y = R[1 — cos(t)]

— .t
dM - t [sin= " "
Z_ —-R (1 cos(t)) = 2R.sin—. 2| avec 1—cos(t) =2. 977125 ; 14 cos(t) = 2. (*0925

dt sin(t) cos s
—) - t
et AT =| A7V : s—H H dt—2R]sm— | dt. L:2R/ \sz’ng\dt:...:SR.
-7
x =r.cos(w.t)
2. Hélice circulaire (pour un tour) : ¢ € [0,—]+— F(t) =< y=r.sin(w.t)
w z=ht.

— —
aM aM
On a vu que HEH =Vh?+r2w?; donc: ds= Hﬁﬂdt = Vh?+r2w?dt; dou la longueur
2
pour un tour : L = / ds = 25 \/h2? § 120,
Arc w

Vérifions. On découpe et déplie le cylindre : hypoténuse d’un rectangle de cotés

et 2m.r.

w

! (*) Complément et cas de fonction F, CO, ou la longueur est infinie : Flocon de Von Koch.

Soit ABC' équilatéral ; sur AB divisé en 3 parties égales AA; A2 B, on remplace A1 Az par A1 A’ As extérieur avec

A1A" = A'Ay = A1 Az ; idem sur BC, CA, ce qui fait que la longueur est multipliée par 4/3 & ce premiér pas. Dessin ?

On recommence sur chacun des 12 cotés. Etc ! Enfin, on prend la courbe limite ...

? Démonstration (*)
PN YRV b ’ b ’ s d d
Déja : M;—1M; = ||M;—1 M| = || F'(t)dt| < |[F"(t)||dt, en utilisant || o(t)dt| < llo(t)||dt pour ¢ < d
ti—1 ti—1 c d

b b
qui est vrai pour ¢ C° (mais non prouvée); donc Aa < / |F'()|dt dou L < / IF'(t)]||dt.

Inégalité inverse : Posons L(t) :Longueur—arcmt;

t4+h B
on déduit h> 0 —s %/ IF (u)ldu > L(”h}z L), I1Fe+ ;)L H/ w)dul.
t

Par passage 4 la limite quand h — 0, on a [norme continue] L'(t) = ||[F'(¢)||; et ceci termine.

Remarque. Le résultat se généralise & F' C’ et C* par morceaux, dont voici une définition :

F est C* par morceaux sur [a, b] s’il existe un entier N et une subdivision ap =a < a1 < ... <any =b
telle que F)jq; 4 a,[ SOit Ct sur Jai—1,a;i| et prolongeable en une fonction O sur lai—1,a].

Exemples. Si f a valeurs dans R : f(z) =| z | sur [-1,1]. Non C° et C' pam.: f(z)= E(z) sur [0, 6].

3 ok

Propriété (*)
D’abord : ¢ = @(u), u € [o, 3], est dit changement de paramétre "admissible" si ¢ bijective et ¢, ¢ = sont C.
On a vu [fonctions R — R] que ceci équivaut & ¢ C et Vu € [a, 8] : ¢/ (u) # 0.

B
[L= / ||(Fog0)'(u)|\du, pour tout paramétre admissible. Voir le cas ¢ décroissante : @(a) = ..

Si | |— H H #0, Vt€[a,b], soit avec un arc C'' sans point stationnaire, alors s est "admissible".




39.2. REPERE DE SERRET-FRENET

3. Cardioide : p = a[l + cos(0)].

.
dM [y B —sin(f) \ 0
e <p>7_71 - <1 +cos(0)) — 20.€05

™

Dot L:2a/ ]cosg\dé?:...:&t.

Courbe(s) :

4. Chainette :  — {

_
T=z dM 1
Yy = ach% dr - <sh£>

a

39.2 Repére de Serret-Frenet

39.2.1 Définitions

—

N
On note | T' = s unitaire dirigeant la tangente

S

259
OM = p(6). 7 (0) = dM /df = 9T + p. 1.
.0 =
321162) donc |ds = HCZ—]\;HdH = 2a | cosg | do
cos
du :
< 1=y = .. aussi o.n.)

—_— =

(d’aprés le théoréme). Et « tel que (Oz, T') = a.

-
al _

ds

N

Donc

(G

)= ()| i | F = AT (o)

— =
Ainsi pour passer de T & N, inutile de dériver ; mais permuter les composantes et signe —.

- = = —
Enfin |7 AN = B = k |: binormale. (M,

39.2.2 Exemple

On a donc :

— — =
T, N, B) est appelé repére de Serret-Frenet.

N
rT=2x
Chainette : x +— z  Ona ﬂ = L donc : ds = chz.daj.
Y= QChE dx sh(z/a) a
— — x z
dM ~ dM/dz  [1/ch— -  [—th—,
D’oil, dans la base (7, 7) : T=2" 2 = a = a !
(+, 7) ds ds/dx thE : 1/ch£
a a
39.3 Courbure des courbes planes
39.3.1 Dérivée seconde : courbure
@ = @ = @ da _ da N Qu’est-ce ds (homogéne a une longueur)
ds2  ds da'ds ds ' da - & & ’
Ao = angle des tangentes. Dessin ?

Soit M (s), N(s+ A«)

.. As . .
Ainsi Ao ~ rayon du cercle, centré en Ip;y intersection des normales en M et N (passant par M).
@

- ' As , . As . .
| Deux dessins a voir|: Cas Aa >0 (virage a gauche)  puis An < 0 (virage a droite).
da A« ds
— = lim—— est dit courbure en M, notée c; |R = — | = — : rayon de courbure en M
ds As do c

Définition

Enfin C défini par |C' = M + R]_V)

et on a, pour le signe :

R > 0 <= virage a gauche.

(ou MC = R]Tf) est appelé centre de courbure.
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39.3.2 Formulaire. Formules de Frenet

dM dM ! dM 1s
ds
. Calculer — ouen polaires 0 <Z>771 : ds= € HWHdt ou.. choix — >0 ou e=+1
dM dM /dt 7
—
« Puis : s T= ds/di et N en permutant les composantes avec changement de signe. Alors
5
dM
parametrlques —— col. & <Zf§§3;> = tan(a) y—/(t), do en différentiant
R ds =
1 da pola1res — col. a cos(V) = tan(V) = ﬁ, dV en différentiant
u 771 Szn( ) p,
attention ici : a=60+V (n) :> da=df +dV.
diT N dN -T
.Enfin |C =M +R.N.| Et conséquence : ‘deuX formules de Frenet‘ == —=—
ds R ds R
Formule donnant R : aprés. lére de Frenet : ci-dessus.

-
dN _dN do 1

2éme : —

= =.(-T)
ds da’ds R’ '
‘Deux exercices corrigés‘ (et voir que C est dans la concavité : R >0 ou R <0)

) Courbes dont la courbure est toujours nulle

) Courbes dont la courbure est constante, non nulle (R = cte) ?

do
Solution 1) — = 0 soit @ = cte = . Alors T = c?s(oz) constant en norme, est aussi constant en
ds sin(a)
direction, soit T' = T'g. La dérivation e T donne OM = s.T g+ OMq ou MoM = s.T
s
Droites.

—

M
) Ici on a do = R =Ry d’ou [s=TRo(s— sog) non utile] et dM_ T
a

dx = cos(a)ds dx = Ro.cos(a)da x —x9 = Ro.sin(a)
{ dy = sin(a)ds = { dy = Ry.sin(a)da donc Yy —yo = —Ro.cos(a) Cercles de rayon | Ry |.

{ dx/ds = cos(a)

dy/ds = sin(a)

39.3.3 Rayon de courbure en tout point

N
s x = x(t) dM <x'(t)> .
1. Courbes paramétrées na — — ul donne ds et do :
b { = y(t) a ~\y®) 9
o ds = j:” Hdt =e./[2] '12(t)dt, €= +1 en général, notre choix ;

et

—
dM ‘(t
T = cgs(a) étant colinéaire & — @ tan(a) = yit) ; d’ou da en différentiant.
sin(a) dt x'(t)

2 9,0 9 . 9,
. Yz — a2’y , y'a' — a2’y
Voici : [1 + tan®(a)]do = Z———"_dt ; soit en remplacant tan(a) : do = dt.
[2/]2(¢) [2']2(t) + [y'1*(2)
d 12 112\3/2 M3
Donc : R:_s_([xl;i—[y]”)/ cequiest: |R= l)l) car on a
da Yy —ay (M7, M*]
IL'/ .Z'”

¢ ; IV Y . ds -
dénominateur = [M', M”] = - numérateur : cube de v = prie V.
1) Points d’inflexions a chercher parmi ceux tels que : 3”2’ — 2"y’ = 0. Connu

) Preuve cinématique en paramétre quelconque. [Noter I'accélération centripéte au passage|
— —
v dM — = d’M  dv=

T. T T U8, VAT=-"B. |= Ivie

—_— = . : = — = — — : = — : = = =

dt ’ dt? dt R R VAT)%

1 dae d®y dyd’zx . de., dy.s de d*z  dy d%y 1 ., d%y
==L (= A R P A Al A l'id. de L — =

B wsae asae Gs) T, Tl asde Tdsase 0 avee id. de Lagrange

R (@) + (@)2]-
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. =alt — d:
Tractrice { . y S[Z/clif(bt()t)] Prendre |R = ﬁ (Formule ci-dessus longue !)

. dM _ sh(t) (sh(t) 3 _ a1
Rayon : Ici o= e ( 1 donc ds=ua.|th(t)|dt; et tan(a)= D)
2 o 1 o Ch(f) o dt o
d’ou (1 + tan®(a))da = 1+Sh2(t)).da = 20 dt donc da = a0 R =a.|sh(t) |
) o ~. = dﬁ - dﬁ/dt - sh(t) sh(t)\ _ (cos(a)
Centre de courbure : C=M+RN; T = Ts " ds/di  Tsh(D) | oh(D) ( —1) = Lsin(a)

don N = % <Sh1(t)>’ puis @) - (tﬂc%)) " “izg (Shl(t)> - (cht(t)>

et ye=a.ch(z./a) : la développée est la "chainette" !4
— 2
2. En cartésiennes { yi_y(i:) [cas particulier t = x| : 2’ = Z—i =1;27=0; ¢y = ;Z_i; ” %
d 11213/2
R = i = % > (C'est aussi : R = %() cf. 3.4.)
Chainette (ci-dessus) : y = a.chZ. < h(z/a) ) .. Trouver R = a.ch®Z.
a a
3. En polaires: p=p(f). Baselocale o, u; ( ,?) V= (u, T) donc a=60+V(n)
[do = db + dV ] %:(Z)ﬁé dot ds — H H 0 = /o2 + (7)2.do. tan(V)zg donne
en différentiant : [1 + tan?(V)]|dV = ... don dV = % 9, da="L —;22:_ zp) Pr do
2 L [ 1\213/2 14 [(Ly2)3/2 /
— 2[/0 + (,02) ] = (pl 1[(p)1 ’)’ p@]e - R = P_ & R: T T 771 —
p>+2(p')* = pp =l ()] — 2 [5 4 (5)"].sin?(V)
pour une conique de foyer O, R = _P_ s pour la spirale log., V = cte ici, R = — P__.
sin3(V) sin(V)

[Note. Pour une conique, soit M N la sous-normale, N sur 1’axe focal et v = proj (N,FM);

si on sait que vM = p (Ex.) on en déduit une lére construction du centre de courbure !|

p = a[l+cos(6)] @ L (_Sin(0/2)> ds = 2al cosg | df, choix | 6 |< 7

do 2\ cos(0/2)
3

0 s 0 T 6 4 0
- — Z = Z_(—=2)]: 1cl - 4~ | — e . e
tan(V') cot 5 tan[2 ( 2)],1@1 % 5+5 +kr | da=dV +df 2d0. R 70 | cos 5 |

U1

YOnaP= Tang N Oz = proj . (C,Ox); dist(P,Tangcechainette) = a! et inv. (éq. diff.) | D’ou |le lieu de F foyer d’une
Parabole ‘ roulant sans glisser en I(CIR) ‘ sur D = Oz est une chainette. Dém. A =Dir., K = proj(I,A); P = mil[KF]
T=AND(T,I,P alignés) : TF L FI, donc (T'F) tangente et dist(P,TF) = dis(P,A) = dist(F,A)/2 = cte. Fini.

2 3 . d .
Yy y°.y Y

2
(yy')2 = —a+qy®. Sig=0, —a=p®: parabole, axe Oz; sigq #0, y? = 2px + gz’ + % ; cas a < 0 : choisir

p® = —a conique d’axe Oz [Ox axe focal que si g = e—1> —1]; etcasa>0: ¢>0, qy® — (qz —‘—p)2 = a.

¢ Centre de courbure pour ellipse : soit deux normales en M et M’ (proche) sécantes en C'; o = MEM' , B= MF'M' ,

0 = MCDM'. Avec les réflexions F'MF,F'M'F, on a : 9 =(a+ 5)/2' comme §/MM' ~ 1/R (diam.-cercle-circonscrit) si

P, @Q sont sur Normale-en-M et MFP = MF’ =7/2, -t : [P,Q,M,C] D.Harm. ! Supposons MF > MF’,
MC ~ MP ]\/IQ

¢ = sym(F'/Normale), U = (FF') N Normale, v € (MF) avec MU~= 7/2. Comme ¢ sym  (F'), UM, U~ biss.(UF, Uc)
Les perp. donnent C, P,Q : C € Cercle(M,M,~). (Si MT tangente au cercle de dim [F'y], v = proj . (T)).

Si parabole : Q = oc0. MC =2.MP = 2.Mu, p € Normale N Dir. (triangles égaux). Si hyperbole : 6 = (a — 3)/2, [ avec
le foyer F' de ’autre branche. Mais M P, M Q sont de sens contraire, & nouveau [P,Q, M,C] D.H. Si U = NormaleNn(F'F),
ﬁU\fy =7/2 avec v € (MF), prendre encore : Normale Nperp.en.y & (MF) ! ["René Godefroy, éléve a Polytechnique".|

Autre solution de ‘ Mannheim utilisant le théoréme de Pascal et ’hyp. équil. d’Apollonius ‘ passant par M, M’ confondus ...
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39.3.4 Rayon de courbure en un seul point

1. Relation simplifiée. Dans (M, ?, ﬁ) La courbe a pour équation y = f(z) avec f(0) = f'(0) =0:
/1/2

n2\3/2 99
R = (S U = |[Avec f(0)=f(0)=0: R= ; = lim car ~ y_(())xg

y” f”(O) x—0 2_1/ z—0 2

2. C’est le cas des exercices classiques suivants :
— Parabole : 2% =2p.y donne: R =p au sommet seulement. (*) Autre solution : sachant que

la normale en M coupe Oy en N avec QN = p, ou Q = proj (M, Oy), faire tendre M vers O !

— Ellipse aux sommets seulement : = a.cos(t); y = b.sin(t). [cf. plus loin pour la "développée".]

2
On fait une translation de repére : X =x; Y =y —0b alors lin} ‘;(—Y est possible et donne :
t—m/2 —

| Rp |=a?/b (calcul intéressant, t = 7/2 + h, 1 — cos(h)h~0h2/2); et donc: |Ra |=b%/a !

N

39.4 Courbe développée

39.4.1 Définition (3éme figure ci-dessus et 39.5.3)

‘Soit une courbe I'. Le lieu C du centre de courbure C' en M € I' est dit : courbe développée de I. ‘

On a déja vu que la développée de la tractrice est la chainette : le centre de courbure C' est non

seulement sur la normale en M & la tractrice initiale; mais de plus (ci-aprés) cette normale

est tangente en C' a la développée, ici la chainette ! [c’était d’ailleurs "prévu", vu 39.3.1.]

39.4.2 Propriété générale de la développée [et développante 5.3]

La normale en M € I' (courbe initiale), non seulement contient le centre de courbure

Théoréme C=M+ Rﬁ; mais encore est tangente & la développée C, en C € C.
On dit que C est "l’enveloppe" des normales a la courbe initiale T

=
Démonstration. Avec C' = M + Rﬁ, la tangente est donnée par (Z—S ol * est un paramétre
quelconque (admissible). Prenons donc 'absisse curviligne s sur T Dessin 7
dM iN -T dC  dR R
— — —
Ona —=1T; — =——; quidonne — = —N et qui termine si —— # 0.
ds T ds R4 ds ds d ds 7

[Sinon point stationnaire de C; qui correspond en général, & un extremum de la courbure de T'.

(1) Ainsi do = ||d—>C’H =+ dR : la longueur de la développée est toujours calculable

car c’est la différence de rayons de courbure de I' (hors des points stationnaires).
(2) Si T env. des Dy : w.cos(8) + y.sin(0) = f(0), [p = f(0), podaire] alors C enveloppe des Dj;
R=(f+f)0). |Ac|=|[f+ f]?]. Idem As avec une primitive de f ! Ex. développantes :
M=C+\7T, m/da:ct6.7 = d\/do=-1,A\=—-0+4+o0gouoc+A=o0y: ®+C—M:Ct6.
C cercle : f'(§) = R, f(8) = RO, F(0) = R.6%/2; As = R[g]g Développante de cercle, par ex. env.
des x.sin(f) —y.cos(f) = R.0; param.: x = R.cos(f) + R.0.sin(f),y = R.sin(0) — R.0.cos(0).

102 /2 102 2

—y(@ " +y (" +y
(3)1"0—1": /(77 ) /)7y6_y: /(77 77/)
Ty -y ryT =y

: calculs rationnels ; intersect. de 2 droites, enveloppe.

—_—
(4) Si C est convexe (pas de rebroussement), ayant ||C1Cs|| < | R2 — Ri |, forcément un cercle
de courbure (ou osculateur) est intérieur a 'autre | (cf. encore les développantes de cercle.)
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39.4.3 Autre exemple en paramétriques

—
) ) . x = alt — sin(t)] am t (sin(t/2)
Développée de la cycloide { y = a[l — cos(¢)] Rayon| On a o T 2a.sm2 cos(t/2)

t
d'ott: ds = 2a | Sin§ | dt

-1 t
+kr; doa= 7dt. R = —4a. | sz’n§ |

N |

t t
et tan(a) = cot— = tan(z ——); doncici: a= T_
2 2 2 2

Un dessin montre que c¢’est une nouvelle

: - = T = alt + sin(t)]
Puis C = M + RN |donne ... { Yo = a[—1 + cos()] °
Xc =2.—aw = a[e — S’L?’L(e)]

N — _ |
Ye =y + 2a = a[l — cos(6)] o f=t—m!

cycloide, ce qui se prouve : {

D

39.4.4 Autre exemple en polaires

Développée de la cardioide : p = a(14-cos(f)). Rayon de courbure vu. Prenons § € [—m, 7], c’est permis :

— —
= dM  dM/df  [—sin(0/2) = [—cos(6/2) — oy e N 3.0
P = = @i ( cos(8/2) ) o N T \csintoyp) o, (N =T (N =TS
N = <:Zf§8§g;> : [ou ch. Matrices : pour changement de bases des vecteurs.|
w7
_ ~ o [z [ p-cos(8) 4 0 (—cos(30/2) _
C=M+7RN conduit & <yc> = <p.sin(0)> + 50085 _sin(30/2) - . p=a(l+cos(h)).

Alors :  sin(a)cos(b) = %[sz’n(a +b) + sin(a —b)]; cos(a)cos(b) = %[cos(a b) + cos(a — b)] donnent

a 2a a

2
T = —|cos(0) — cos>0 + —a; et X, =2 — — 1 — cos(6)].cos(0
3C£ ( ) ] 3 Donc 3 a 3[ ( )] ( ) dans (Q, —Z>, 7) avec
Yo = g[sm(e) — sin(6)cos(0)] Ye=y.= g[l — cos(0)].sin(0).
9(2?@, 0); clest-a-dire: p= g[l — cos(0)] est une équation polaire de la développée dans (2, 7, 7)

On reconnait une nouvelle cardioide trois fois plus petite, ce qui se prouve : posant ¢ = 0 + m,

donc étant dans (2, —7%',—7), une équation polaire est : p = g[l + cos(y)].
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39.5 Des compléments

39.5.1 D’autres longueurs (pas toujours calculables !)

1. Arc de parabole [cartésiennes| 22 = 2py, 0 < z < p.

= dM 1 x2
On écrit z +— x- x paramétre ! Alors — = donc : ds =4/1+ —.dx.
y=o T dx z/p p?
p

p | 2
dou L= / 1+ x—Q.dw. Reste le calcul : c’est une intégrale irrationnelle difficile.
0 p

N

Posons x = p.sh(t); alors z=p<= sh(t)=1<=t= Argsh(1) =In[l + 1+ 1?]

n(1+v2) m(4V2) ep(2t) 4 1 2+ In(1+ /2
et L= / ch(t).p.ch(t)dt = p./ &dt =..= p.\/_—i_ n(1+v2)
0 0 2 2
2. Ellipse { z i Z;O;((f)) ds =v/a2sin2(t) + b2cos2(t)dt. Mais intégrale non calculable exactement !
. Intégrales dites "elliptiques" pour et :

. Idem : la longueur de la lemniscate : p = a.1/cos(20) est, elle aussi, inconnue. Enfin :
. Dans R3 : (ds)? = (dz)? + (dy)* + (dz)? = (dp)? + (pdh)? + (dz)? = (dr)? + (rdf)? + (rsin(0)dyp)?.

39.5.2 Cercle osculateur

On cherche le cercle qui approche le mieux la courbe : osculateur. Avec de bonnes hypothéses :

F©),  f70) 5 OO 5 5 f0) o fO0

(1) Yeourbe = f(0) + T x + 51 TR + ze(x) = TR + T 23 4+ 23e(x) et
(2) cercle : 2° 4+ (y — R)> = R? soit 22 +¢y> —2Ry=0 ou y=R—/R?—a22carz=0=—y =0.
2
Donc Yeercte = R — R(1 — %)1/2 :;—R + 0.23 + cte.x? + zt.e(x). [f7(0) >0, R > 0 supposé|
s . . . 1 . z?

Pour que la différence soit la plus petite possible, un et un seul cercle : | R = ——— = lim ——
f (0) =0 2.Ycourbe

Nous voyons que ceci est exactement le rayon de courbure : | R |=| 1/f7(0) | si f(0) = 0. De plus :

— | En général, le cercle de courbure traverse la courbe en M ‘
car  Yeourbe — ycerclemzok‘.:pg, k= f(3)(0)/3! #0: ler dessin.

1

— Cas particulier k = 0, par exemple si f paire : souvent Yeourbe — Yeercle Nol.w4, 1#0:
r—

on dit ‘cercle surosculateur‘ 2éme dessin (donc cas assez particulier).
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39.5.3 La développée comme "enveloppe des normales" (Spé)

1. Le théoréme sur la "développée" donne une autre méthode de calcul : enveloppe des normales

— Développée de la Tractrice (en bleue)=la Chainette (en rouge)
— Développée de la Chainette (en bleue)=la Courbe en rouge.
— Développée de la Cycloide (en bleue)=la Cycloide translatée (en rouge)

] |
I N I
] I

dieznze
i
|

1 \\r\l

e
N

mEra
A

-3 2
1T 4 7 T

2. Inversement, on dit que I est une "développante" de C. [Ici, on a limité les traits|

— Développée de la Cardioide (en bleue)=Une Cardioide semblable (en rouge)
— Développée de I'Ellipse (en bleue)=Une astroide-dilatée (en rouge)
— Développée de I’Astroide (en bleue)=Une Astroide semblable (en rouge)

—
1 dT

3. Dans R3, on a seulement une courbure arithmétique == Hd—H
s

On parle aussi de "torsion"...

4. Voici enfin 3 autres courbes (de la feuille d’exercices, verso) en compléments !

Respectivement : La Deltoide. La Néphroide. Le Bicorne.

)
>
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M-+ Exercices: Longueur/courbure des courbes planes PTSI

1. Longueur de courbes

x = r.cos(w.t)
|— F(t) =1 y=rsin(wt) (b) Astroide {
z = h.t.

& = a.cos>(t)

0 2.
’ y = a.sin3(t)

(a) Hélice circulaire : t € |
w
x = alt — sin(t)]

* - 9
y = a[l — cos(t)] (d) (*) Arc de parabole [cartésiennes| 2° = 2py, x € [0, p]

(c) Arche de cycloide {

(e) Cardioide p = a[l + cos(6)] (f) Spirale logarithmique p = ae™?,8 €] — 00, 6] ; m > 0.
[On trouve s(0) = k.p(); k> 1. (*) Réciproque 7|

) Deltoide J = a.[2.cos(t) + cos(2t)] ) Nevhroide J © = a.[3.cos(t) — cos(3t)]

(g) (*) Deltoid { y = a.[2.sin(t) — sin(2t)] (h) (¥) Néphroid { y = a.[3.sin(t) — sin(3t)]
x = a.cos(t) 22 2

(i) (*) Bicorne _a.sin®(t) (G) (%) 12 + o 1 et p = a.cos(20) ont méme longueur.

Y= o sin()

2. Trouver les courbes

(a) dont la courbure est toujours nulle.

(b) dont la courbure est constante non nulle [i.e. R = Ry|.

2

. rray I S
3. Rappel : si y = f(z) avec f(0) = f'(0)=0 |R= 70) —il_)mog

= 2py au sommet 7

(au signe pres).

(a) Rayon de courbure de la parabole z*

(b) Cas de l'ellipse x = a.cos(t),y = b.sin(t) aux sommets A et B ?
Equation de D L (A, B) passant par I(a,b) 7 Vérifier que C'4,Cp sont sur D !

(¢) (*) En général, quelle est la position du cercle de courbure/ une courbe ? (cf. cours et dessin)

4. Rayon de courbure en tout point et lieu du centre de courbure : développée

. x = a.[u — th(u)] .
(a) Tractrice { y = a/ch(u) cf. dessin
. x = a.cos(t) ,
(b) Ellipse { y = bsin(l) cf. dessin
c¢) Cycloide (équation ci-dessus) cf. dessin

(
(d) Spirale logarithmique (idem ; un changement de bases a faire pour le vecteur ? )
(e) (*) Cardioide (idem) cf. dessin

(

f)

*) Chainette y = a.ch(x/a) cf. dessin
*) Parabole 2% = 2py. Si U = proj, (C,(FM)) voir que F est le milieu de [MU]

(*)
g) (%)
—
(*) Hyperbole équilatére I : zy = a®. Voir que C = M +1/2.NM ou N = Normale N T.
(*)

(&)
(h)
(i

*) Astroide. Trouver z, = a.[¢® + 3c.5%], y. = a.[s> +3c®.s] ou ¢ = cos(t),s = sin(t)

[c’est surtout pour voir cette notation ! et] nouvelle astroide.

5. (*) Pour la cycloide, avec une arche centrée sur Oy, vérifier que : R? + 5% = 1642,

[En fait, on peut chercher toutes les courbes vérifiant cette propriété].




Chapitre 40

Continuité des fonctions de plusieurs
variables

On a vu les fonctions de R dans R.  Puis de R dans R" : ¢ — O—]\j(t)
Maintenant voyons celles de R? dans R™; p=2, 3: c’est plus difficile.

40.1 Exemples géométriques

40.1.1 Cas f:R* =R

Retenir |z = f(z,y) est ’équation en cartésiennes, d’une surface de R3, en géneéral.

Des exemples :

z=f(x,y) =1—2x+3y: équation d'un plan affine (non vertical).

z=f(z,y) =1 —22—y?>: 1/2 sphere de centre O.
- 2p.z:x2—|—y2 :
Surface de révolution autour de Oz (faire z = cte); paraboloide de révolution autour de Oz.

— ztan(a) =22 +y?, 0<a<m/2:

Surface de révolution autour de Oz (faire z = cte); puis 1/2 cone de révolution (sommet O, axe Oz).

—a.z=2% a>0; yn’intervenant pas : cylindre parabolique d’axe Oy (gouttiére).  Dessins 7 !

40.1.2 Cas f:R?* - R?

/
- M (;) — M’ (3:/) = <CCL Z) (m) + <g> est de R? dans R?; f bijective < ad — be # 0.

Y Y

/ 2
- M (m) — M’ (3:/) = ( o > est non affine mais définie sur RZ.
y y sin(zy)

Exercices

1
/
1) Domaine de définition de f: M (m) — M’ (x,> = T —y : dessin dans le plan O, z,y 7
y y In(zy — 1)

! 2 1 42
2) Revoir l'inversion géométrique de R? : M <;j> + (8) — M’ <§,> =k |* _;Jy [f~t=f]
z? 4 y?

1 .
Sur les deux derniers cas

1)Si: VA (z,y,2) € S= (Az, \y,A.z) €S, on dit cone de sommet O.
2) De méme si : Vy, (2,0,2) € S = (z,y,2) € S, on dit cylindre d’axe Oy.

267
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40.1.3 Cas f:R? — R® (surface en paramétriques)

_ <U> — y=3u—v M = My+u. @ +v. b (77?) libres - <M det(M_())M’ b)) = 0)
v z=3—u—+2v B ou bien : ( A b). 0.

j?l

— Inversement, partant d’une équation cartésienne, trouvons une représentation paramétrique :
. ~ $2 y2 22 Z2 5 $2 y2 9
Partons de 'ellipsoide ) + o) + 2= 1. Posons 3 = cos (v) et o) + 52 = sin (v).
U x = a.cos(u).sin(v)
=1 ... On peut donc le paramétrer : ( > — | y = b.sin(u).sin(v)
v z = c.cos(v)

2 y2

Al
ors a?.sin?(v) * b2.sin?(v)

40.1.4 Cas f:R?®— R : fonction numérique de 3 variables

Soit f(x,y,z) = 22 +y? + 22 — 2ax — 2by — 2¢z ; on dit que flx,y,2z) =k est ‘une ligne de niveau ‘ de f.
Les "lignes de niveau" (ici Surfaces 2) sont des sous réserve que Rayon® = k+a? +b* +c* € RT.

40.2 Exemples calculatoires

40.2.1 Produit scalaire

=z’ +yy + 22 € R est polynomiale.

eR— |U|=Vu.W R,

f=<,>: W(x,y,2),7,y,7)eR — W,
u

Par composition avec Vo on obtient g:

40.2.2 Produit mixte

Dét - W(z,y,2), vy, 2), Wy, ") € R — Dét(w, v, w) € R est polynomiale.

40.2.3 Produit vectoriel
fi(w, ) = yz - zy

Soit f: W(x,y,2), V(@ y,Z)eER — f(W,V)=UAT = | fo(W, V) = 22’ —xz' | € R®.
f3(W, V) =y — ya

On dit que fi, fa, f3 sont les applications coordonnées de f. Chacune ici polynomiale de R dans R.

. Pour la continuité, on peut étudier les composantes (ou applications coordonnées) l'une aprés Pautre.

. Ce qui fait qu’on peut (pour la continuité) se limiter aux fonctions de R? dans R.

40.2.4 Applications partielles

Soit A(az1,...,ap) € Dy. Fixant p — 1 variables, on obtient les p applications partielles en A :
Définition| ¢ : 21 — f(x1,a2,...,ap); ... ; @p:Tp — f(a1,az,...,xp) chacune fonction d’une variable.
A ne pas confondre avec les applications coordonnées (du numéro précédent)

Exemple
.y

Soit la fracti ti 11 ="
oit la fraction rationnelle f(z,y) 2

si(z,y) # (0,0); £(0,0) = 0. Applications partielles en O ?

e Hors de O, fraction rationnelle et le dénominateur ne s’annulle pas : aucun probléme (cf. §III).

e En 0(0,0), les applications partielles sont ¢1 : z —— 0 méme si x =0; et @ :y+—— 0 idem.

2 , , . .
Remarque. Les surfaces du second degré sont appelées quadriques. Comme les coniques, elles sont toutes connues.
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40.3 Continuité des fonctions de plusieurs variables

40.3.1 Définitions

1. Normes Sur R”, pour @ = (z1,...,%p), on a 3 normes usuelles [définition déja vue]

W2 =¢/7} + ... + 22 (norme euclidienne) ;
NN =21 |+t |7 | et

—
e N loo = mazf[ 1 |, | zp |
La norme 1, par exemple, ne provient pas d’un produit scalaire car ne vérifie pas le théoréme du
parallélogramme : 7°(1,0); 77(0,1) e R%et |7+ 7|3+ 7 7 |IF =4+4 # 2.(|7|*+||7|°) = 4
Exercice

Dessiner les 3 "boules unités" fermées {M : ||OM|| < 1} dans le cas de R2.
2. Limite finie. Continuité
e V est un voisinage de M s'il contient une boule de centre My de rayon > 0 (norme quelconque) !
e Soit f définie dans un voisinage de My. On dit que f(M) tend vers T eR" quand M tend vers

My eRP si || f(M) — TH tend vers 0 quand : ||[MyM]|| tend vers 0 (normes quelconques).
e On dit que f est C® en My si: f(M) — f(Mo).

M — M
Exercice (norme quelconque ici.) Les "projectionso" (ou plutédt les "formes coordonnées")
Y1 (y1)o
pi:| .. | €ER"—y €R, sont C° [Si Yo=|[ .. ona: |yi—(yi)o| < Y =Yo]
Yn (yn)O

40.3.2 Théorémes généraux

1. Enoncés
. La somme de fonctions C° est C°.
.S p:RP R est C° et f:C° de RP dans R", alors: M —— o(M).f(M) est C°.
.Si f, g C° de RP dans R, alors M —— f(M)/g(M) est C°, la ou le dénominateur non nul.
. Ajoutons la composition. (f:RP — R™ et ¢:R"+—R™ C% = gof: C°.

2. | Conséquences

e Les fonctions polynémiales R? — R sont C° partout.
e Les fonctions rationnelles R? — R sont C° sur leur domaine de définition.

e Soit f: RP — R" de composantes (ou coordonnées) fi, ..., fn.
1 0

Avec fi(M) =piof(M) et f(M) = fi(M) | .| +...4+ fu(M) | ... |, on déduit | fC° < Vi, f;C°.
0 1

40.3.3 Exercice classique (et modéle)

J_;ny si (z,y) #(0,0);  £(0,0) =0 ?

e Hors de O(0,0) f est continue comme fraction rationnelle avec dénominateur non nul.

Continuité de f(z,y) =

e En O, les théorémes généraux ne s’appliquent pas;

on voit que les applications partielles, d’une variable, sont continues, mais

. . . 1
f n’est pas continue en O : s’approcher de O sur la demi-droite y =2 > 0: f(x, ) =5 +—0.

x—0

40.3.4 Difficulté

; fC? en A = chacune des p applications partielles @1, ..., p, est continue : 1 en a;
1. | Attention . . . . L .
fonction d’une variable, ..., ¢, en ap. Mais réciproque fausse : vu sur 'ex. traité.

Démonstration
= Car une application partielle est une maniére particuliére de tendre vers A(ay, ..., ap).
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2. ‘Exercices en compléments‘ Peut-on prolonger par continuité :

3 493 e’ —eY y.z3
) f(z,y) iy ) 9(z,y) pra—y (*) ) h(z,y) =227 1 2 (*)
Réponses :
1) f est une fraction rationnelle définie continue sur R\O(0,0). En O :

. La lére application partielle est  # 0 — @1(x) = f(x,0) = z; donc .
le seul prolongement éventuellement continue ne peut étre que ¢1(0) = £(0,0) = 0.

. Inversement avec f(0,0) = 0: f(z,y)—£(0,0) = Pleos’(0) + 5in’(6)] = p.Jbornée] — 0. fCO(R?).

P’ (2:4)=(0,0)
2) g est définie continue (par composition) sur le domaine D = R*\A(y = ). En My (zg, o) :
T _ ,T0
. La lére application partielle (a titre indicatif) est x # xg — p1(x) = € 7% done la seule maniére
T — X0

que @1 (et donc g) soit continue oblige de poser g(zg,xg) = €.
. Inversement si g(zo, zo) = €*°, par le théoréme des accroissements finis, 3¢ € [z, y] : €V —e® = (y —x)e’;

donc e — e®o.

D’oit § (g prolongée) est ainsi continue sur R [A bien voir]
(@,y)—(20,20) -

3) h est une fraction rationnelle définie continue 1 ou le dénominateur est non nul : sur D = R%\0(0,0).
Tout le probléme est en O(0,0) :

. La lére application partielle est x # 0 — ¢1(z) = 0; donc 1 C% en 2 = 0 < ¢;(0) = h(0,0) = 0.

. La 2éme application partielle est i # 0 — @3(y) = 0; donc 3 C° en y = 0 < ©2(0) = h(0,0) = 0.

. Tendons vers O selon un trajet rectiligne quelconque, non vertical : y = a.z,a # 0 fixé (sinon, vus).

4 4 N
Alors h(z,ax) = 2(a _(1';)2 T x6x:0;22 ::)0. Peut-on donc dire que poser h(0,0) = 0 rend h C° ?

5

x
Non ! ce n’est pas vrai : Siz # 0, h(z,z%) = 5 o, T I (arc de parabole y = z2.)
T~ xz—0

En particulier ‘rctcnir que la continuité des applications partielles n’entraine pas celle de la fonction.

40.3.5 Propriétés des fonctions C°

1. Généralisations
e Le théoréme en une variable " fC° sur un segment est bornée et atteind ses bornes" se généralise :

f continue sur un fermé-borné de R? ou R?® a valeurs dans R est bornée et atteind ses bornes".

Mais 1) qu’est-ce un fermé ? 2) un borné ?

Pour 2) c¢’est naturel : une ellipse partage R? en 2 parties; 'une bornée, I'autre non.

Pour 1) disons (intuitivement) qu’une partie est fermée si elle contient sa "frontiére" (non définie!).
Exemples dans R? : Pintérieur d’un triangle avec son contour ; un disque avec le contour ; une demi-
droite fermée; (une droite aussi est fermée). Dans R® : un plan est fermé. R*\O non fermé !

e Le théoréme des valeurs intermédiaires (& bien revoir pour f: R — R) se généralise aussi.

2. | Exercice corrigé‘ Pour M eTriangle-fermé, minimum de M A% + M B? + MC?. Dessin ?

Solution f(M) = MA? + MB? + MC? est continue (si M(z,y), elle est polynomiale) sur un
"fermé-borné", donc possséde un minimum atteint. Mais attention : le minimum peut étre atteint
en plusieurs points ! (Penser aux fonctions d’une variable).  Ici, on a une solution aisée :

‘ La fonction scalaire de Leibniz ‘ donne : f(M) = 3.MG?* + GA* + GB* + GC? ou G isobarycentre.
Donc minimum atteint uniquement en GG et valeur connue ; de plus, cette solution montre qu’on a
un minimum en G méme si M € R? (le plan)! Finir : ... GA? + GB* + GC? = (a® + b* + ¢%)/3.
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3. Complément | Autre Exercice corrigé‘ (Transition avec le chapitre suivant) (*)

Pour M €Triangle-fermé, soit x = §(M, BC);y = §(M,CA); z = 6(M, AB), maximum de z.y.z 7

Solution en plusieurs étapes

1) Déja, M est sur un plan; 2 degrés de liberté ; il y a un lien entre z, y et z. Avec AM B, BMC,CM A
eta=BC,.,ona ax+by+cz=25=Cte. Carcz=2Aire(AMB) !

25 —a.x —b. 1
2) Ensuite f(z,y) = z.y. 25 —ax—by = —.[z.y.(25 — a.x — b.y)| est continue sur le domaine :
c c

0<x 0<y; 25—axr—>by >0 quiestun fermé-borné. Donc maximum (et minimum) atteint.

25 28
Dessin 7 (En repére orthonormé Ozy, on a le triangle rectangle :  0(0,0) P(0,—) Q(0, 7))
a

3) Le maximum peut-il étre atteint sur la frontiére ?
Non car alors £ =0 ou y=0 ou 25 =ax+by < z=0: c’est le minimum du produit.
Ainsi le maximum (absolu) est atteint en un point "intérieur" (on dit maximum local) !

4) Pensons aux fonctions d’une variable : un maximum local, si f dérivable, se décéle par f’(zg) = 0.
On fait pareil ici (c’est 1a qu’on anticipe!) : au maximum local, vu les dérivées partielles, forcément

xOvyO =0
3
y

(x()uy()) 0

Ce qui donne, comme y #0, £ #0:

2S5 —axr—by—ax =0
28 —ax—by—by=0

Soit encore, en faisant jouer des roles symétrique a x,y, z

b 25
ax:by:25—aw—by:c.z:L:W:?:cte

x,1, z connu : un seul point candidat ; comme on sait que le maximum est atteint au moins une fois
(sans calcul, par notre continuité sur un fermé-borné), c’est le bon ! Maximum en ce point.

5) Reste a savoir si on connait ce point géométriquement ! Oui, une question de barycentre :

e Admettons un moment que M (quelconque, intérieur au triangle) est barycentre de
< A B C

aireMBC >0 aireMCA>0 aireMAB > O>' Comme az = by = cz, on déduit que

8.53
27.a.b.c’

Le maximum est atteint ici en un seul point : I’ isobarycentre M = G ; et il vaut

e Montrons le résultat utilisé pour finir.

Déja M A, ..., MC liés (3 vecteurs en dim 2) ; donc (v, 8,7) # (0,0,0) : aMA+SMB+~yMC = 0 ;

—
puis A, B, C non alignés = a+ [+~ # 0 (laissé). Alors, en faisant le produit vectoriel avec M A
et ayant ici «; 3;y > 0, on termine sachant que ||[MC A MA|| = 2.Aire(Triangle MCA) :

B B o _ o |
—_— T = =, T =
|MCAMA| ||MBAMA| |MC A MB|

(les coefficients barycentriques étant définis & une constante multiplicative non nulle prés).
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M-+ Exercices: Continuité des fonctions de plusieurs variables PTSI

1. Domaine de définition de

(a) f(z,y) = \/ — (fj;)f — (point isolé en O )

(b) f(x,y) =In ﬁﬁ—l (f C° par composition sur le domaine)

r+y

(c) (*) f(z,y) = Aresin 2

? (idem).

2. ‘Peut—on prolonger par continuité ?‘

|z +y? z2.9?
fa(%y)—m en 0(0,0) 7 9(957y)=m (Noter : 2|z |y* <az®+y")

3. Interprétation de f : R? — R?

/ 1 _
(a) M <§> — M’ <ayc/> = 7 <i N Zy/> + <g> (isométrie affine : laquelle ?7)

r_
(b) M (5) — M’ <y' i Q_yﬁ_ 3> (application affine & décrire)

(¢) M(z) =M (¥ =az+b), a=7re"*#0, b=a+ip? (connue)

/
« x e k T\ o o . . - k
(d) (*) M <y> — M <y/> Zig <y> : domaine? fof? (inversion géométrique z E)

4. Interprétation géométrique de f : R? — R

8

¥ =u
(a) Soit le paraboloide de révolution 2pz = 2% + 3 ; et 'affinité : (y) — (y’ = 2y> :

l
Z =z

N

Equation du paraboloide elliptique image (PE) ? Dessin ?
(b) Etudier diverses sections planes du paraboloide hyperbolique (PH) 2pz = 22 — y%. Dessin ?

. . . r—y=a , z+y=> 0
Que dire des familles de droites D, { 2pz = alz +y) et Dy { 2pz = b(z — ) pour (PH)?

(c) (*) En sens inverse : équation du cone de révolution d’axe Oz, de demi-angle au sommet 7/6 7

5. (*) Dessins et paramétrages.

2 1'2 y2 2,2

Z— = 1 dans Oxz. Puis la surface (de révolution) — + =5 —— = 1.
a’  a

(a) Reconnaitre la courbe —-

2
2
¥ =x
Image par laffinité M ( — M’ [y =b/a.y | (H; comme hyperboloide & 1 nappe) ?

/
2=z
Justifier que x = a.cos(u) ),y = b.sin(u).ch(v),z = c.sh(v) est un paramétrage possible.
. 7> . . 22 2 22
(b) Reconnaitre —— —|— — = 1 dans Ozz. Puis la surface (de révolution) —— — = + — = 1.
a c a a &

Image par l'affinité précédente (Hs : hyperboloide & 2 nappes)? Dessins? Paramétrage ?

6. (*) Le tore.
Décrire et dessiner la surface (de révolution/Oz) d’équation (2% 4 y* + 22)? — 4a*(2? + %) = 0.




Chapitre 41

Dérivation des fonctions de plusieurs
variables

41.1 Dérivées partielles (d.p.)

41.1.1 En un point

On appelle d.p. de f en A(ay,...,ap), par rapport a la lére variable, la dérivée de la lére application

particlle en a1 [¢](a1)].  On note f;, (A) ou ng(A) Idem pour les p— 1 autres d.p. en A.
1

Soit  (z,y) — f(z,y) = sin(e®.y) + g(z.y®) + 2.Arcsin(z), g étant forcément d’une variable [sinon

g(—,—)], et g supposée dérivable. Calcul de :  f2(0,0); f;(0,0); fi(zo,y0); frly, ).
Réponse
o En 0(0,0)
@1 : x> sin(0) + g(0) + 2. Arcsin(x) ; donc  f1(0,0) = 2.
Et de méme @9 : y — sin(y) + g(0) +0; donc  f,(0,0) = 1.
* En (z0,0)
Pour f.(xo,y0) v bloqué en yo; x varie, on dérive, puis x = xg

. . / oy »
g fonction d’une variable, g, serait incorrect

f2(w0,y0) = €™yo.cos(e™yo) + yg.g (z0-y5) +

1-—- :173
e Donc : fiy,z) = e¥.z.cos(e?.x) + ...

‘ Ainsi, a bien voir ‘

e Dans la notation abusive f.(z,y) les deux "z" n’ont pas vraiment de rapport! Jamais on ne verra
10(0,y) (absurde)! L’énoncé doit fixer les notations dés le début du probléme.

e On ferait mieux de noter fi(z,y), le 1 désignant la premiére variable qui peut étre parfois u, d’ailleurs.
(Exemple (u,v) — f(u,v) !) Maple note, quant a lui : D[1](f)(z,y).

41.1.2 Sur un domaine

On fait de méme en chaque point A o c’est possible.
On obtient p dérivées partielles ; et chacune est fonction de p variables!

or or\ (O O

Dans le passage (p,0) — (x,y) calculer les matrices jacobiennes 9p 00 9z Oy
Y Y @ @ 3 % %

op 00 or Oy

Solution [Jacobienne vient de "Jacobi"|
1) On a x = p.cos(f),y = p.sin(f) dou J = <COS(9) —p-sin(6)

sin(0)  p.cos(0)

) de déterminant (noté)

2) Pour la deuxiéme matrice :

273



274 CHAPITRE 41. DERIVATION DES FONCTIONS DE PLUSIEURS VARIABLES

0 1

Attention 8_p # 5-, comme on va le voir! (Quand on dérive/x, y est fix¢, mais pas 0).
T ox
dp

On part de | p” = 2% +y*; tan() = y/x. alors 2-P-g—g =2z... et [1+ tcmz(@)]'% - ;—3
cos(0)  sin(f)
D’otu la matrice : K = . K =J71 dét(K) = Dip.6) = 1/dét(J) (dét. jacobien).
—sin(f) cos(0) D(z,y)
p p

41.1.3 Fonctions C* (*)

1. Attention! En [une] variable, on sait que : f dérivable en x¢ = f continue en xzg.

‘Faux en 2 Variables‘ : exemple vu de fonction ayant des d.p. en My mais non continue

Soit f(z,y) = % f£(0,0) = 0. fnon CY en O déja vu: s’approcher sur z = v.
Mais les applications partielles en O, vues aussi, sont ¢1(x) = 0, Vz : dérivable en z = 0, ¢}(0) =0,
d’ott f1(0,0) existe et vaut f.(0,0) = 0. De méme 3(y) =0, Vy; donc f,(0,0) = 0.

Si f admet des d.p. définies sur un voisinage de My et continues en My, comme
2. Théoréme fonctions de plusieurs variables, alors f est continue en M.
On dit : fC* (admet des d.p. définies sur un voisinage de M et continues) = f cP.

. Ceci est un résultat théorique.

En effet, si on 'applique & f : (z,y) — f(z,y), il faudrait voir la continuité de (z,y) — fL.(z,y)
et (z,y) — f;(x,y) d’une part; et d’autre part, c’est une condition suffisante !

. Démonstration

Cas de fonction de 2 variables a valeur dans R (Si dans R" : chaque composante). On écrit

f(a,y) = f(@o,90) = [f (2, 9) = fzo, )] + [f (2o, y) — (2o, yo)]!

L’égalité des accroissements finis en une variable pour fonction & valeurs dans R donne

Jzy1 € [zo,2]; 51 € [v0,9] ¢ f(2,y) — fzo,90) = (x — 20)-fr(21,9) + (¥ — Y0)- fy (w0, y1)

Comme fg’c(xl,y)( )—(> : fi(zo,y0) et analogue l'autre, la différence tend donc vers 0. Fini.
2,y)— (0,90

41.1.4 Extremum local d’une fonction numérique ; c’est-a-dire f: R? — R

Si f numérique définie au voisinage de My, présente un extremum local en My :
1. Théoréme | Ir >0 /{M : MoM < r} =B C Domaine et f/z > f(Mp), pour minimum local,
alors on a I'implication : f posséde des d.p. en My = Les d.p. sont nulles en M.

Démonstration
Elle est immédiate en ne faisant varier qu’une variable aprés 'autre.  Mais réciproque fausse
déja en 1 variable : f(z) =2° CO®(R) vérifie f/(0) =0, sans extremum local.

2. Dans R?, soit I(3,0,—1) et le paraboloide de révolution (P.R.) z = % 4 »?. Dessin ?
Distance de 7 & M €(PR) : minimum de : IM? = (z —3)?2 +y* + [z +y* + 1]* = f(z,y) e RT?
e Le domaine en (z,y) est ici RR?, non fermé—borné : bien que f soit C°, I'existence du minimum
n’est donc pas acquise mais supposée ici vu le probléme géométrique. Au minimum absolu (atteint
en un ou plusieurs points!) on a un minimum local de fC car polynémiale. En un tel point My :

{ 0= fi(v0,y0) = 2(x0 — 3) + 2.(xF + y§ + 1).2.2¢
0= f,(0,90) = 2y0 + 20zt +y2 +1).2.y0

e On a un seul point candidat : yg = 0; 2:1:3 +3290—3=0 (xg~0,7;20 ~0,5) : donc c’est le bon !
—

—_
Remarque : si g(x,y) = z — 2 — y?, vérifier : grad(g)(Mp) colinéaire a I My, comme vu plus loin.
(Cette condition donne la méme équation de degré 3 ...)
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41.2 Calcul de d.p. de fonctions composées (*)

41.2.1 Casde R - R —R

Soit  h(z1,...,xp) = g[f(z1,...,2p)]; pour calculer a—(ajl, ...,Zp), on a une seule variable x;.
z1

Oh of

C’est donc connu : 8—361(951, e @p) = g'[f (21, ..,xp)].a—wl(wl, ey Tp).

41.2.2 CasdeRF - R" —-R

fl(xl,...,a:p)

Ici f: (21, 2p) — et : h(xy,...,xp) = glfi(x1, ..., xp), fa(@1, o, Tp)s ooy (X1, o, 2p)]-
(1, zp)

Par choix, les d.p. seront notées : 8—f of et @ 99

dx,’ 7 O, oy’ Oy
Théoréme [régle de la chaine]

) , Oh, . Og 0f1
Ona f, g, C" = gofC et 5 (M) =5 -, oo fu(M)] 70

dg
(M) + ... +6—yn[ cey e

Ofn

9, M)

C’est-a-dire : On passe successivement en revue les n casiers de ¢ en faisant des +. En exercice (*)

1) Soit (z,y) — f(z,y) de classe C* et  F(p,0) = flp.cos(8), p.sin()].  Calculer aa—i(p, 0).

[Notre "f" est la fonction "g" de ci-dessus|. Vérifier avec  f(z,y) = 2> +y>. (Donc f.(z,y) = 2.x...)

_oF .

d(p-cos(6))

d(p-sin(0))
dp

of of oF oF
" Ox’ Oy’ Op’ 00

Solution : On note les d.p ; toute autre notation exclue; [donc

L or _of . d(p-cos(0))  Of
On a, par théoréme, o (p,0) = pe [p.cos(@),p.sm(@)].iap + By
OF

Ou encore : a—p(p, 0) = %[p.cos(@),p.sz’n(@)].cos(@) + g—z[p.cos(ﬁ),p.sz’n(@)].sin(@).

insensé ||

[p.cos(0), p.sin(0)].

F
a—p(pﬁ) = 2.p.

F
Par notre formule g—p(p, 0) = 2.p.cos(0).cos(8) + 2.p.sin(0).sin(f) = 2.p. Idem.

Vérification : Calcul direct F(p,0) = p* =

2) Autre exemple (*¥) !

41.2.3 Cas de R? - R" - R™

Le cas général  gof(M)=h(M) = n’est heureusement pas plus compliqué :

Appliquer ce qui précéde & chaque hy.

! Complément. Trouver f, C°R —R: f(z+y) = f(z)+ f(y). [déja vue au ch. Continuité].

Solution. Montrons deJa que f est dérivable ! Soit @ < 3. Une fonction C° est mtegrable
z+06
/ fm—l—ydy—/ f(z dy+/ fly)dy = (B — ) f(x) +cte. Mais z+y=1t= g(x / flx+y)d / f(t)dt

dérivable; de dérivée g¢'(z) = f(z+ B) — f(x+a)! Donc (B8—a).f et f dérivables.
Alors, en dérivant/x : f'(z +y) f(z); dou f' = Cte; donc f(z)=ax+b. s f(x) =
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41.3 Différentielle (*) (relire si trois variables)

41.3.1 Objectif

Onavu|f Cl= fC°| On va intercaler | f C* = {

f différentiable N 1) fCet
ou admet un DIy 2) f admet des d.p.

Rappels

e Pour les fonction | d’une | variable

f C"en zy = f admet un D.I. d’ordre 1 [ou différentiable] < f dérivable [f’(x) existe] = f C°.

e Mais pour les fonctions de variables
Existence des d.p. en My #= continuité en My! Donc : Existence des d.p. pour f #= f différentiable.

41.3.2 Développement limité d’ordre 1 en M;. Théoréme fondamental

Soit f:R* = R™ Alors [f C'en My(zo,10)] = Je:R? - R" avec E(M)M—J\Z[ 0 tel que
—Vig

_—
F(M) = f(x,y) = f(zo,90) + [(z — 20)-f1(x0, y0) + (¥ — y0) f, (x0, y0)] + [[Mo M ||.€(x,y). (%)
On dit que : [f C'en My] = [f posséde un DI; en My ou que f est différentiable en Mp.]

Démonstration en exercice.

Méme début que pour f C!'= f C°, appliqué a chaque composante ... Note 2
41.3.3 Différentielle en M, (termes de degré 1)

On reprend f fonction de deux variables; on pose MoM = o = <Z> = <§/ B §0> = (i;), au choix.
— Y90

Alors df (M) définie par u = <Z

appelée différentielle de f en My (ou A.L. tangente en Mp); sa matrice dite "matrice jacobienne".
(*) devient f(M) = f(Mo+ u) = f(Mp) + df (Mo)(w) + || ||.€(w), avec e(u') — 0,7 — 0. (%)

> — h.fr(z0,y0) + k-f, (20, y0) = df (Mo) (W) € R" est linéaire

On écrit :  df (Mp)(Az, Ay) = f,(Mo).Az + f,(Mp).Ay ou, sans que dz,dy soient forcément "petits" :

df (Mo)(dz, dy) = f(Mo).dz + f,(Mo).dy

41.3.4 Deux exemples importants

[— —
1. Cas f affine. Préciser df (M) si f: M <z> — M’ <:;, ; i n Zy/1—§> [sim. aff. dir. & centre].

Réponse : fL(z,y) = <gz/?gi> (z,y) = <i> = fi(zo,y0) = <i> ;  idem f;($07y0) = <_11> .

2 Remarques :
. . . . s
1. Siaulieu de (%) on dit (xbis) f(M) = f(z,y) = f(zo,y0) + [(x — z0).p + (y — yo).q] + ||[MoM]||.€(z,y)
alors on montre aisément que : fa(%0,%y0) existe et vaut p. Idem pour ¢. Donc (x) <= (*bis).

2. Et méme : Dérivée suivant un vecteur.
f(Mo +t.0) — f(Mo)

f différentiable en My — a une limite finie quand ¢ — 0 réel,

t
valant df (Mo )(W'), appelée dérivée suivant le vecteur w. En particulier, avec @ = 7', 7, ...
On a [f C'] = f différentiable (ou admet un Dy en M) = f admet des d.p. en M.

Démonstration (facile). Le numérateur vaut df (Mo)(t. )+ ||t. % ||.e(t. W) = t.[df (Mo)() + || ||.€* (t. )] car df (Mo)
linéaire ; ce qui termine. En particulier : G—(xo, y0)=fu(x0,50) = fu(Mo) = df (Mo)(7), etc.
x

3. Enfin ‘ f différentiable en My [qui est donc (%) ou (%) bis] = f continue en My ‘ est clair! (Exercice)
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Dmcﬁ@@ﬁﬁzﬁ@@(@):hc>+h<f>:<i1?(@:#@@mﬂ@mﬁm

— —
ici de My, on reconnait application linéaire associée notée f |df(My) = f | constante/Mj. Note 3

2. Cas fréquent oft f est numérique ; soit f : R? — R; donc f.(zo,0); f/(x0,y0) sont sdes nombres.

Y

” : : — / — / — . .
L’introduction du vecteur gradient | grad f(My) = f,(w0,90). v + f;(x0,Y0). 7 | conduit, en notant :

— N _ - - — — —
dM = dzx.v" + dy.” 7" un vecteur quelconque, au produit scalaire : df (Mg)(dM) = grad f(My) - dM

. L. < = — ) —
Retenir : |Pour f numérique (a valeurs dans R), on a df(My)(w) = grad f(Mp). .

41.4 Dérivées partielles d’ordre k > 2 (*)

41.4.1 Définitions

82
Si on peut dériver f, (x1,...,x,) par rapport a xa, par exemple, on note f” (M) o / (M). Ete.

u
r1T2 633‘233‘1

Note : Cela fait donc p* dérivées secondes.

On dit que f est de classe C* si les d.p. d’ordre k existent et sont continues comme fonctions de
plusieurs variables. En appliquant : ¢ C!' = ¢ C° [connu|, on en déduit : f CcF = fCF L

Note : Pour la réciproque (fausse) toujours penser, d’abord, au cas des fonctions d’une variable.

41.4.2 Théoréme de Schwarz

2 2 2 2
Si aaxéfy et aay 8f:n existent dans un voisinage de My et sont continues en My, aam—éfy(Mo) = aég; 8f:n (Mpy)

Généralisation : Si les d.p. qui interviennent sont C°, alors on peut permuter I'ordre des dérivations.

Admis. On dit que les dérivées partielles mixtes sont égales. Note 4

41.4.3 Formule de Taylor a 'ordre 2 (avec de bonnes hypothéses)

_ )2
‘Rappels : Pour f:R — R”‘ f(x) = f(zo) + w‘fd(ﬂ?o) + %]’” (zo) + Reste.
Sin =1, c’est-a-dire pour f: R+ R: Déquation de la tangente est y = f(zg) + @f’(m)
, (x—z0)” ., |
et f (1’0) 7& 0 = (ycoube - ytangente) 1‘:960 T‘f (1’0)

Le cas m > 1 : On a une égalité de Taylor-Young; mais seulement une inégalité de Taylor-Lagrange ;

(*) celle-ci démontrée a partir d’une égalité de Taylor avec reste intégral (rappelée ci-aprés).

Cas de f: R* — R"?| Méthode : F(t) = f(xo + t.h,yo + t.k) raméne au cas variable

11 n2
(ﬂF@:F@+%F@+%W@+A(uﬁF@@M

On calcule F'(t); on déduit F'(0) et on reconnait les termes de degré 1 (a savoir la différentielle) :

F'(t) = fro(xo+ t.h,yo + t.k).h+ fy(xo + t.h,yo + t.k).k

% Complément. Pour une application affine en dim. quelconques & — F : M’ = O’ + 7(OM)7 YO, M.
—
Avec O = Mo, ona f(M)= f(Mo)+ f(MoM); donc f différentiable en My et méme réponse.
& f & f
M) = M).
8m8y( ) 8y8x( )

* Exemple : Pour f(z,y) = 2¥ définie, C™ par composition sur |0, +o0o[xR, vérifier :
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F'(0) = fu(z0,y0)-h + f,(z0,y0)-k = df (Mo)(h, k) !

Puis (& bien voir encore)

F7(t) = f"(zo + th,yo + tk)h2 + f7(zg + th,yo + th)hk + 7 (z¢ + th,yo + tk)kh + f” (z¢ + thyo + tk)k2
y 2

x2 Ty y

Alors (x) devient la relation suivante notée (xx), R désignant le Reste :

f(zo+ hyyo + k) = f(wo,y0) + hfz (w0, y0) + kfy (0, y0) + %[h2f” (Mo) + 2hkf” (Mo) + k£ (Mo)]+R.
e Ty Y2

‘ Complément. ‘ Soit f(z,y) = Az* 4+ Bxy+ Cy? + Dz + Ey+ F

e La formule de Taylor a l'ordre 2 , en O(0,0), revient tout simplement & écrire :
f(z,y) = F 4+ Dz 4+ Ey + Az® + Bxy + Cy? et ici, Reste=0.

e Et en (z0,y0)? Ecrire x = 29 + h,y = yo + k. On obtient dans ce cas :
f(z,y) = f(xo,y0) + h.[2Az0 + Byo + D] + k.[Bxo + 2Cyo + E] + Ah? + Bhk + Ck>. (%)

e On suppose, de plus, f numérique : ou que les coefficients sont des nombres avec (A, B, C) # (0,0,0).

Alors f(z,y) =0 est une conique; on a en vue un éventuel centre de symétrie My(zo,yo).

Ayant (xx), la condition d’avoir 0.h + 0.k est, par équivalence :

fg/v(m(by(]) = 214{170 + By(] +D=0
fg//(‘r(])y(]) = BZEO + 2Cy0 +E=0

— =
Ce qui re-donne (ch. Coniques) M, solution de grad f(My) = 0.

(ou bien, avec notre vocabulaire :  Vh, k : df (Mo)(h, k) = h.f,(z0,y0) + k. f, (z0,90) = O.)

Le cas B* —4AC # 0 (systéme de Cramer, déterminant principal # 0, ou solution unique) est le cas :

conique a centre Ah? + Bhk + Ck?+ f(xo,y0) = 0, type "Ellipse" ou "Hyperbole". Cependant, cela peut
ne pas donner de centre de symétrie pour la conique réelle ; 2° + y? +1 = 0 : cercle imaginaire | Note °

41.5 Théoréme des fonctions implicites (*)

41.5.1 Enoncé pour f:R* - R

1. Probléme. Soit la courbe d’équation f(z,y) = 0 passant par My. Supposons ne pas avoir d’expres-

sion explicite de y fonction de z ; on aimerait toutefois avoir la tangente en Mo, si elle existe.

Remarque : | Dans le cas général ou f est quelconque, mais & valeurs dans R : numérique, on dit que

(h,k) — h2f7(Mo) + 2hkf” (Mo) + k> f7 (My) = A.k> + B.h.k + C.k* est une "forme quadratique".
z2 Ty y2

. Et dans ce cas particulier (des dérivées), cette forme quadratique est appelée la "hessienne".

. C’est elle qui renseigne sur la différence :  f(zo + h,yo + k) — f(xo,y0) — [hfe(z0,90) + kfy (%0, yo)]-

Ici, on arrive & expliciter : y = + \/1 — 22 =pi(x); soit y=— 1—22=pa(x).
. Donc au point My(1,0), on n’a pas une fonction, mais deux fonctions ... Dessin ?
. Par contre vers ce point, on peut dire : = =+ /1 —y2 =¢(y) ! Ce probléme était prévu car tangente verticale !

Nous allons voir, sous de bonnes hypothéses, que : grad(f)(Mo) L Tangente en Mp.
—_
Donc a partir de f, avec grad(f)(M), on aurait pu deviner le probléme en Mp(1,0) sans dessin !
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2. (*) Théoréme difficile en complément. *

Avec les hypothéses : f(My) =0, fC' et grad f(My) # 0 :
3. Conséquence | Au voisinage de My(xo,y0), f(x,y) =0 est une courbe (contenant ce point)

"
ayant une tangente, dont un vecteur orthogonal est : grad f(My).

Démonstration.
(.Z'() ) ?JO)

(20, y0)

Y—% _

!
=— fgf soit
T — T 1y

Une fois le théoréme admis, la tangente en M; a pour équation :

fe(@o,90).[z — o] + f, (20, y0)-[y — yo] = 0

E—
On reconnait la droite passant par M; orthogonale au vecteur grad f(Mp).

1
Exercice. Tangente a la courbe 14+z.¢Y —2y = 0 au point (—, 1) (y(l) =1, y’(l) =e, y”(l) = 3.e2>
e e

41.5.2 Cas f:R* =R

1. Le résultat (admis) est analogue

Soit f numérique de classe C'! au voisinage de My avec f(zo, 0, 20) = 0 et grad f(My) # 0.
—
Au voisinage de My, f(x,y,z) = 0 est une surface de plan affine tangent: [My, L grad f(My)].

2. L’équation du plan tangent en M, sur la surface, est donc

Fe(20, Y0, 20)-[ — x0] + f(0, Y0, 20)-[y — Yo] + f2(0,Y0, 20)-[2 — 20] = 0

En physique, cf. la fonction potentiel M — V(M) et le champ electrique E = —grad(V)
1 aux surfaces équipotentielles d’équation : V(M) — cte = 0. Complément.®

" [Retenir seulement la conséquence]
. Soit f : R? — R avec f(Mo) =0 ot My = (20, o). Supposons f et fy C° au voisinage de My et fy(Mo) # 0.
Alors au voisinage de Mo :  f(z,y) =0 < y = ¢(x). [dou p(zo) = yol
(¢ existe donc en théorie ! mais on ne sait pas I’explisciter ... )

. Si de plus f est C' (donc f. continue aussi au voisinage de Mp), alors ¢ est dérivable et :
' fz(Mo) ot T ] ’ falz, p(2)]
x) ¢ (x0) = — . Généralisation : ¢'(z) = —S—"——=5.
() 00 = = Gt S HEREIED)

Admis. Un calcul toutefois & voir : on a donc Vz proche de zo : f[z, ¢(z)] = 0; donc dérivée par rapport

a z, (par composition !), identiquement nulle; ce qui donne (x) et sa généralisation :

folz, o(@)] 1+ fylz, o(z)].¢ () =0

8 Exercice corrigé : Soit la surface d’équation f(x,y,z) = 0. On suppose qu’on peut écrire z = p(x,y) et alors

0 . 0 0z Oy O
8—;(1:71/) =g (z,y), ...; idem : z=1(y,2) et 8—2(3/7,2) =Y. (y,2); etc. Montrer que a—;a—za—j =—1.
Solution. . On peut déja voir le cas ou f(z,y,z) = 2x — 3y + 4z — 5 (surface plane).

. Cas général. (*) Bien voir que dans ces dérivées partielles, ce n’est pas toujours la méme fonction !

Puis un calcul analogue au cas de R? montre que V(z,y) proches de (zo,y0) flz,y,¢(z,y)] = 0; donc, en dérivant

par rapport a y, par exemple (& bien voir) :

folz oy, o(@, )] 1+ fllz,y, o(z, y)].y(z,y) =0

Dot une dérivée partielle de z = ¢(x,y) (analogue au cas de R?)

/(JZ ):%:_f;(x7yvz)
PRV = 5y iz, y, 2)

Analogue pour les deux autres et on reporte.
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M-+ Exercices: Dérivabilité des fonctions de plusieurs variables PTSI
1

10.

11.

12.

13.

. Montrer que f(x,y) =

. Soit f(x,y) = Arctan 1x_

. (*) La fonction f(z,y) =3z.y —x

. Soit f(z,y) = a:zxi—i/f si (x,y) # (0,0); f(0,0) = 0. Etudier sa continuité [vue au ch. précédent].

Montrer que f posséde des d.p. partout sur R2. Prouver leur non-continuité sans calcul.

x2 .92

x2 + 12
+vy

si (z,y) # (0,0); £(0,0) = 0 admet des d.p. en O puis est C* sur R?.

— Arctan(z) — Arctan(y). Domaine? Vérifier : f(z,y) = 0 = f, (z,y)

sur chacune des 3 parties du domaine. Conclusion ? [formule déja vue au ch. Fonct. élémentaires|
En déduire une expression simplifiée de :  Arctan(b) — Arctan(a), sia >0, b > 0.

. Plan tangent a la surface —x+ 2y + z — ch(z.y.z) + sin(x.2) =0 en My(1,1,0)?

[Orthogonal au gradient, en ce point, de la fonction f(x,y,z) = —z 4 2y + z — ch(z.y.z) + sin(x.z)]

. (*) Pour une boite de dimension z,y, z, sans couvercle, de surface Sy donnée, comment choisir ses

dimensions pour avoir un volume maximum? [Se ramener & un domaine fermé-borné. x =y = 2.z|.

. (*) Calcul de la distance de I(x1,y1, 21) au plan az + by + cz = d, comme probléme de minimum de

d—ar — by

| axy + by + cz1 — d |

Va2 +b%+c2

(*) Distance de I(3,0,—1) au paraboloide hyperbolique (P.H) d’équation z = 2% — y* [cf. cours|.

flz,y) = (w—x1)2+(y—y1)2+( —21)2 sic # 0 et retrouver 6 =

. (*) Vecteur directeur de la tangente en My(2,1,2) a la courbe : 2% 4+ 3% + 22 = 9na? — % = 3.

3 _ 43 possede-t-elle un extrémum sur R? ?

(*) Identité d’Euler pour les fonctions homogeénes différentiables ; hypothése notée ici : diff.
f:R? = R" est dite (positivement) homogéne de degré o si f(A.z, \y) = X°.f(z,y), VA > 0.
Si f diff., montrer : f (positivement) homogéne de degré o < x.f.(x,y) + yf;(:n, y) = a.f(x,y).

[= dériver /A. < Sig(\) = f(A\z, \y) — A*.f(z,y), voir ¢'(\) = %.g(/\) ; g(A) = kA et g(1) = 0.

(**) Equations aux dérivées partielles du ler ordre : En posant u = = 4+ y; v = x — y, résoudre

2 2
1
% — % = a; et en passant en polaires ZE% — y% = k.z. Puis du 2éme ordre : (9_f — —ﬂ =0

ox Ox Oy Ox ox? 2 ot?

(cette derniére étant I’équation des ondes planes; ¢ la vitesse de la lumiére).

(**) Traversée d’un prisme constitué de 2 demi-plans d’angle au sommet A, d’indine n, le rayon
incident faisant l’angle ¢ (3 variables), puis  aprés une réfraction, puis arrivant sur le 2éme plan avec
I'angle r’ puis enfin i’ en sortie. Ayant sin(i) = n.sin(r); sin(i') = n.sin(r');r+17" = A;D =i+i' — A

L. ) D cos(i).cos(r’) 9D sin(A) oD n.cos(r’)
d’ t é ﬁ . _— = 1 _ _—- _— - — 1
(déviation) vérifier que i cos(i').cos(r)” On  cos(i').cos(r)’ 0A cos(1)
(**) Extremum lié. Extrema de f(x,y,2) = zy + yz + 2z quand z* + y? + 2% = 1.

[Maximum valant 1 sur +(1/v/3,.,.); minimun valant —1/2 sur Sphérenz +y + z = 1].




Chapitre 42

Intégration des fonctions de plusieurs
variables

42.1 Intégrales doubles sur une surface plane

42.1.1 Domaine

Ce sera : I'intérieur d’un triangle, d’un rectangle, d’un cercle ... en général.
Un domaine borné, auquel on peut attribuer une aire ...

Propriétés : Invariance de l'aire par translation.
Si Dy et Dy sont 2 domaines avec Aire(D; NDy) = 0, alors Aire(D; UD;) = Aire(D) + Aire(Dsz).

42.1.2 En cartésiennes

1. Définitions Pour f & valeurs dans R, continue, sur un domaine découpé en petits rectangles :
(xio1 <z < @i yio1 <y < y;) d'aire p;; autour du point M;;, on considére Zf )-Hbij-

La limite de cette somme (y;; — 0), si elle existe, est notée : I = // flx,y)dxdy.
D
Propriétés
1) Par rapport & f : Linéarité I(f +g) = I(f) +1(g); et I(\.f) = AI(f).
Croissance [ < g= I(f) < I(9).
2) Par rapport aux domaines : additivité si Aire(D; ND;) = 0.

Remarque : Si f =1, on trouve 'aire du domaine // l.dz.dy = Aire(D).

2. Théoréme de Fubini
On suppose que le domaine s’écrit [a <z <b et p1(z) <y < pa(z)] @ dessin 7 et qu'il
sécrit aussi [e<y<d et ¥i(y) <z < Pa(y)|: dessin a Compléter. Alors, au choix :

b haut(x) b 2 (z) od o (y)
1= [anl [t = [Canl [ fwddont= [Capl[ " fewis
Ja b Ja © c Y

Jbas(x) e1(x) ¥1(y)
!
HI= //3:2.y.daj.dy sur D: (y<1; x <y; 0<x) de deux fagons.

Dessiner le domaine : triangle, non carré ! Trouver I = 1/15.

2) J = //x.y?’.dx.dy sur D: (y < x; 2% <y) de deux fagons. J =1/60. Autre !

! 3) "Masse" de la plaque de densité p(z,y) = 2z limitée par le cercle 224+9y* -2z -3=0.

. Bien dessiner le domaine limité par le cercle : (z — 1)2 + > =2 Trouver M = 8. avec
v 3 J +H/22—(z—1)2 J " | ) ) ! r—1= 2.005(9)
. =2 /71 2. :r[/o y] = ... On utilise alors le paramétrage nature J= 2.5in(0),0 € ?

281



282 CHAPITRE 42. INTEGRATION DES FONCTIONS DE PLUSIEURS VARIABLES

42.1.3 En coordonnées polaires

1. D’abord z = f(z,y) = f(p.cos(0), p.sin(0)) = g(p,0).
is. D’ou :

2. Ensuite, prendre p > 0 : le petit élément de surface est alors dp.p.df : dessin ? Admis

I=//Df(w,y)dwdyz//Ag(p,H)-p-dp-dH;M

A étant le méme domaine, mais exprimé a 'aide de (p, 0)

Calculer I = //(:172 +yA)dz.dy sur D: 2? +y* —2a.2 <O0.
e :

Nous verrons que cette intégrale est un "moment d’inertie" (sans importance pour le calcul). Le domaine
est l'intérieur d’un cercle passant par O, ce qui va bien en polaires : 0 < p < 2a.cos(); dessin ?
w/2 2acos(0)
Dou I = 2./ d9.[/ p?.p.dp] car domaine la fonction sont symétriques /Oz. Donc
0 0
3.

=
N

4 /2
9 =8.a* slm_3ma avec les intégrales de Wallis / cos*(0)dh =
0

1 /2 44
I=- 2%.a”. 0)d
2 /0 a*.cos*(6) 1227 " 2
(sinon, linéariser, car la puissance est paire).

=
o

42.1.4 Formule de Green-Riemann
1. Enoncé. Comme dans le théoréme de Fubini supposons, pour commencer que le domaine D est
limité par un contour fermé I' et s’écrit [a < x <b et ¢i(z) <y < pa(z)]; et quil s’écrit aussi
[ce<y<d et 1(y) <x<y): on dira "fermé-borné élémentaire" ; dessin ?

Alors :  si <x> — <PE?Z;> est C' sur un domaine contenant I son intérieur D,
aQ op ’ o
— — —)dz.dy % P(x,y)dx + Q(x,y)dy, I' orienté trig., ici fermé, entourant D.
y
Analogie : En une variable, / f'(z)dz ne dépend que du bord, avec une primitive : f(b) — f(a).
- PP N . ) 0 0 0
La formule de Stockes (VI) généralise et aide a retenir (G-R) : opérateur Nabla V(d— oy 8_)
C o S T = e
Si V(M)=(P,Q,R) calculer rot(V(M))=V AV (M) puis rot(V(M)).n, sin = k.

Démonstration 3

2 [Des exempls]

1) jé (x — y?)dx + 2xydy = I'? de deux maniéres sur le triangle OABO A(1,0); B(1,
Mparcalculde/:/m —i—/m +/m=—+1+(_ —)(cf§VI smtpar// I——
oa Jap Jpo 2
2) Calcul de I = //my.\/xQ + y2dxdy sur le domaine [z > 0; y > 0; y < z; 22 + % < 1]
1
Soit polaires, pour // I = %0 soit : P(z,y) = O; Q(x,y) = %(w2 +%)%? et j{ . idem.

2 Soit, par exemple A(1,0)B(1,2)C(0,1)D(—1,2)E(—1,0). La formule s’étend au contour (polygonal ici)
ABCDEA bien qu’on n’ait pas ¥1(y) < z < 2(y) : il suffit en effet ‘de le décomposer‘ en ABCOA et en OCDEOQO et
additivité ! Dessin ? On dit que c’est un fermé-borné (ou un "compact")

as a

"simple".

P(z,y)dx — /m P(z,y)dx =
ACB

— P(x,y)dx = — /m P(z,y)dx. Et 'autre terme est analogue.
JT

~
JACBDA
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42.1.5 Application aux aires planes en cartésiennes

Prenons Q(z,y) =z, P(z,y) =0. Alors : //da:.dy = Aire(D) = jé\ x.dy.
r

Prenons P(z,y) = —y, Q(z,y) =0 //da:.dy = Aire(D) = ¢_—y.dx. On retient :
r

. 17
Aire(D) = # —y.dx = % x.dy = = % z.dy — y.dx
Jr r 2Jr

Ellipse © = a.cos(t); y = b.sin(t). Avec la ‘ derniére relation‘ on trouve de suite :

Aire(D) = 7.a.b (comme vu sans calcul, par affinité).*

42.1.6 Application aux aires planes en polaires

na: zdy —ydr =z°.d(=) = p°.cos dltan =p°. . ou ire =
0 dy — ydz = 2°.d(2) = p*.cos”(6).d[tan(6)] = p.d(9). D'ou | Aire(D

#p?d@
JT

|

2

3.7
Aire de la cardioide p = a(1 + cos(#))? Trouver 7r2a .

Compléments.®

42.2 Utilisation des intégrales doubles pour l’intégrale de Gauss

00 ‘
*) Existence et calcul de intégrale I = (f:*"”zdx Intervient en probalilité en particulier).
g I p
0

b
4 Dans le cas particulier de courbe y = f(x), a < x < b, vérifier : ?{f —y.dx = /a f(z)dx

® 1) Calculer I = //(x2 + y?).dz.dy sur D : intérieur du triangle A(—2,0)B(1, +/3); C(1,/3).

Ici le domaine la fonction sont symétriques /Ox. En cartésiennes. Trouver [ = 3.V/3.
(On est amené & écrire 'équation de Droite (AC).)

2) L’intégrale // x;:—yy2 dr.dysur D: (x20; y>0; xz+y < a) ne pose-t-elle pas probléme en O ?

Réponse : f non continue en O, mais bornée: 0 <z ; 0<y; 2.2.y < 2+ y2 ; pas de probléme.
a

/2 S teos @)
En polaires : [ = ./0 sin(H).cos(O).dH.[/o Wpeon® p.dp] car la droite : p= Sn(0) + cos(0)’

Donc avec la régle de Bioche, qui nous conduit ici & une intégrale "généralisée" t =tan(0) :
/ _sin(f).cos(0).df a? /+°° t.dt /+°° dt T—2 9
= — = — e - a
[sin(0) +cos(0)]2 ~ 2 J, (E2+1)(t+1)2 2+1  (t+1)2 8

3) Aire en polaires ; calcul direct. Pour 6 donné, on suppose : 0 < p1(0) < p < p2(0).

. ler cas : Domaine limité par une courbe fermée entourant le pole.

2m p2(0) ~
A partir de A = //p.dp.ch‘ A= %/ d9[/ p.dp] = % Lp?d@, le symbole I' signifiant qu’on est sur le contour
. 0 Jo JT

pour p.
1 (%

. 2¢me cas : Domaine limité par une courbe fermée n’entourant pas le pole. Ici A = = / de.[p ]p2gz; ou encore (dessin!)
01

2 _1 2
[ PRQ ' (0).d8 - /13ng ()0l = 2 /13R55Pp (6).a6.

Donc dans chaque cas on retrouve la formule déja encadrée.

4) Remarque. Changements de variables généraux : Spé.
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42.2.1 Existence

B
Soit F(f) = / e’ dt. F est non calculable | Mais F dérivable et F'(B3) = e’ [bien voir les lettres] :

0
F, croissante (méme strictement), a forcément une limite en +oo par le théoréme de la limite monotone.

De plus, pour 8 > 1, F / * —1—/ gt < / * +/ e7ldt <1+e ' —e P <2, F est majorée.
0 1

+oo
Donc : F posséde une limite finie L en +oo et c’est cette limite que 'on note L = / e~ dt <2
0

42.2.2 Un calcul astucieux
B _x2 B a2 . —(1‘2+ 2) 2 .
D’abord F(3) = e vdr = e ¥ dy. Ensuite e Y dxdy = [F(B)]* aisément.
0 0 Le<B0<y<B

Soit alors ¢(f5) = //>0 oty e~ @) dudy. Avec exp > 0 #(8) < FIA)% < 6(8./2) : dessin !
y=0522+y

. T g o Yo L, m
Or ¢(B) calculable en polaires ! ¢(8) = Z[l — e P7]. Par passage a la limite (...) / e Vdt = 5
0

42.3 Intégrale double dans le cas de surface non plane (*)

Pour / / f(M)dA ou dA est la petite aire de surface non plane :  Spé.

On va se limiter & deux calculs d’aire, cas f = 1. (*) Noter que si la surface a pour

équation z = f(x,y), avec les notations de Monge et ”aa—]\f A %—A?;IH , I’aire vaut //\/1 + p? + ¢Z.dz.dy.

42.3.1 Tranche sphérique d’épaisseur h

‘L’aire de la tranche sphérique d’épaisseur h a pour aire 2.7.Rh. Résultat da a Clairaut.

Donc : 1) L’aire ne dépend pas qu’on soit ou non proche du pole.

2) Projetant | une sphére a partir d'un axe sur le cylindre circonscrit, cette projection conserve la surface
(mais déforme les angles) ! [Aire du fuseau sphérique 2.R2.V@€[O,V} = Aire du triangle sphérique (*)]

3) | L’aire totale de la sphére est 4.m.R*|  (Archimeéde) — (Faire h = 2R)

Démonstration. Soit § = (Oz, OM) la colatitude, ¢ = (Ox, Om) la longitude. Dessin ?
Le petit élément d’aire vaut ici : dA = R.df.Rsin(0)dy |déplacements orthogonaux| et donc :

0
A= R / / sin(0)df.dp = 2.7T.R2/ ’ sin(0).d0 = A = 2m.R[Rcos(01) — Rcos(02)] = 2m.R.h.

01

42.3.2 Rotation de la lemniscate p = ay/cos(2.6) autour de Oz : aire
a.df

Soit ds I'élément d’abscisse curviligne sur la courbe : ds = w (laissé). Puis le petit déplacement
cos(2.

en rotation autour de Oz est | y | dp = a.\/cos(2.0).sin(0).dp si ¢ est un angle de rotation :
—

~ 1,7; plausible !

w/4 2m
dA=ds. |y|dp. A= 2.a2./ sin(@).d&.[/ dp] = 2.m.a*.(2—V/2) [deux boucles].
0 0

4.71'.(%)2

7.a2.(2 — /2)

Rapport des aires des surfaces de révolution autour de Ox, c6té droit :
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42.4 Intégrales triples (*)

42.4.1 Domaine

De maniére analogue aux / / , ce sera un domaine volumique borné usuel. Cf. Exemples.

42.4.2 En cartésiennes

1. Intégration par piles : / puis / /
z2(z,y)
///f x,y, z)dxdydz = //d:n dy. / f(x,y, z).dz] ou d est le domaine en x,y permettant
d’avoir tout D. [z1(z,y) bas de la p11e zg(ac y) haut].

2. Intégration par couches : / / puis

2B
///f(w,y,z)dwdydz = / dz.[// f(z,y,2z).de.dy|, S(z) étant la section a la "hauteur"z.
zZA S(z)

3. 1) Vol;me de la sphére par couches. Ici f(z,y,z) = 1.
Ona V= 2./ dz.[// l.dz.dy] ; mais S(z) est le disque de rayon / R? — 22; donc
0 S(z)

R 2 4 4
V= 2./ dz.m.(R* — 2%) = 2.7 [R%2 — 3]{3 = §7T.R3. V= §7T.R3 pour la sphére.
0

2) Volume de la sphére par piles

RZ_z2_y2
lei V = 2// dw.dy.[/ l.dz] = 2// p.dp.df.n/ R?2 — p2. Fin en
x24+y2 <R? 0 0<p<R;0<K0L2m

-1 4
polaires : ce sont donc les coordonnées cylindriques ! V = 2.277.? [(R*— p2)3/ 2 = §7T.R3.

3) Volume d’un céne & base plane quelconque . Pour z = h, soit un contour (usuel) limitant
une surface plane d’aire S et la portion de cone de centre O s’appuyant sur ce contour. Dessin 7

.h
Le volume de la portion de cone est V = ST ou S=Surface de base. En effet :

h S(z) Z.9 " S ",
V= [ dz| dr.dy]. Or ——= = (+-)” par homothétie de centre O donc V = = [ 2°.dz !
S(2) S h h? Jq

42.4.3 En cylindriques

Au lieu de prendre (z,y,2), on prend (p > 0,0,2). Soit [ = /// (p,0,2)p.dp.df.dz.
1) Volume de la sphére par piles ou par couches : relire; c’était en cylindriques, en fait !

2) Complément. (*) Dans Oxz, soit A(a,0). Pour 0 < h < a, on considére le triangle OI(h,h)H (0, h)
et la petite surface AK(a,h)JA telle que J soit sur le quart de cercle de rayon OA, avec z; = h

et JA = Arc JA. Dessin 7 Par rotation autour de Oz, on a deux volumes de révolution & comparer.
3

h
w.h
Rép. : L’un est un cone V; = 5 L’autre Vy = 7r./ dz.[a® — (a® — 2%)] = V; car couches = couronnes.
0

3) (*) Volume limité par la sphére 2 + 32 + 22 = a%, 2 > 0 et le cylindre de révolution z2 4y — az = 0.

Dessin ?  (La surface découpée sur le cylindre est appelée fenétre de Viviani.)

v a2—x2—y2 w/2 ra.cos()
Ona V = // dﬂ;dy[/ dz] = //p.aip.d@.\/a2 —p? = 2./ Va2 — p?p.dp
mz—l—y —az<0 0 0

0

—4
il 5 a® (intégrale de Wallis pour finir si I'on veut).

/2
Soit V= 2; / [1 — sin3(6)]d =
0
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(*) Remarque sur l'aire (non plane) de la surface de Viviani (z > 0) : trouver Aire = (7 — 2).R* donc

laire du complémentaire dans le 1/4 de sphére s’exprime sans facteur transcendant et vaut 2R?.

[Et l'aire de la section droite (toujours avec z > 0) vaut : R%

42.4.4 En sphériques
Les coordonnées sont : 7 = OM > 0,0 = (Oz, OM) colatitude, ¢ = (Oz,Om) longitude; ici 6 € [0, 7

Et I—/// (r,0,p)dr.rdf.rsin(0)dy = /// (1,0, p)r?.sin(0)dr.df.dy

‘Exemple : Volume de la sphére en sphériques ! ‘

R
Finissons par dr. Alors V:/ dr.[//TZ.sin(H).dH.ng].
0

4
Mais représente l'aire (déja vue) de la sphére de rayon r : 4.m.72.  On retrouve V = gﬂ'.Rg.

42.5 Applications diverses
42.5.1 Calculs de masse
e Pour un fil de masse linéique p(s), sa masse est M = / dm = / w(s).ds

e Pour une plaque plane de masse surfacique pu(z,y), sa masse est M = //,u(aj, y).dzdy.
(On peut passer en polaires | Et le cas de surface non plane n’est pas mentionné).

e Pour un volume de masse volumique p(x,y, z), sa masse est M = ///,u(:n, Y, 2).dxdydz.

42.5.2 Centre de gravité

Sa;. 04, [ OM.d
Par définition OT? = 2T st généralisé. Notation : O—é —J am dans tous les cas.
Yoy fdm
— —
oOnaainsi:/GM.dm: 0.
.d
oO—C>¥:xg7+yc7+z(;?et074:3:7—1—@/7—1—,2?. DonczngfzdnT
M M [ [ [ OM .dxdyd
e Cas particulier : solide homogeéne. y = cte = oYh Aisément (dm = Vd:ﬂdydz) L OC = V' Ty

C’est le centre de gravité géométrique.

1) Centre de gravité géométrique de la demi-sphére homogéne : 22 +1y?+22<R% z>0.

2) Centre de gravité géométrique de la plaque homogene (plane) limitée par y? =23 z =a: dessin ?

3) Centre de gravité de la tranche sphérique homogéne non plane comprise entre 2z et 29 : zg = a2 42—22
4) De I'hélice x = a.cos(t),y = a.sin(t),z = h.toc<o 7 2a +iyg = p.e"02 2o = h.0/2, p = %/92/2)

Pour 1) de volume V = %T.R?’

[ z.dm B [ z.p.dv
[ dm N [ p.dv

2 [V 1 (R R! 3R R
Donc —7.R3.2g = //p.dp.d@[ z.dz] = —/ (R%p—p®)dp.2m = (i z2g = — < — correct.
3 o 2 Jo 1 8 =7

Pour 2)

1
Par symétrie : xg =y =0. Et: zg= =9 / z.dv, dv étant 1’élément de volume.

5a  a
La courbe est trés intéressante et appelée parabole "semi-cubique". On trouve G(7 > ok 0) [2 calculs.
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42.5.3 Théorémes de Guldin [centres de gravité géométriques| (*)

1. Premier théoréme. Dans le demi-plan Oxy = > 0, soit une surface S d’aire A, de centre de gravité
géométrique G. Par exemple un disque.
Alors, par rotation autour de Oy, on engendre un solide de volume tel que : ‘ V=A2.m1.xa. ‘

2. Deuxiéme théoréme. Dans le demi-plan Ozy = > 0, soit une courbe I' de longueur L, de centre de
gravité géométrique G (pas forcément le précédent!) Par exemple un cercle ; un demi-cercle ! ...

Alors par rotation autour de Oy, on obtient une surface non plane d’aire telle que : ‘ A=L2m.xg. ‘

Démonstrations : En exercice ; mais sans difficulté, sauf la nouveauté. (Guldin, Suisse, 1577-1643.)

Note. Quel est le centre de gravité d’un fil homogéne triangulaire 7 Vu au chapitre Cercles, Coniques.

42.5.4 Moment d’inertie (*)

1. Définitions

On appelle moment d’inertie par rapport & un axe D la quantité | J/axe = / (52(M, aze).dm|ou §

désigne la distance de M a ’axe. Ceci intervient dans le mouvement d’un solide autour d’un axe.

[Rappelons que tout solide ayant un point fixe (au temps t) décrit une isométrie de @;‘ soit possede
un axe instantanné de rotation; le cas plus général étant un mouvement hélicoidal au temps ¢ (*)].

Ainsi J/Oz = /(:L'2 +y?).dm, Vintégration étant sur le volume du solide.

. . . 1
2. |Moment d’inertie de la poulie homogéne par rapport a son axe : J = 3 M.R?.

En effet, soit Oz son axe et h son épaisseur. Alors: J/Oz = /// (22 + y%%dwdydz =

M ) o Mh [?7 R M R! MR?
7//p.dp.p.d9[/0 dz]; soit J/Oz—m/o d@.[/o p°.dp] = ool .277— 5

3. | Moment d’inertie de la sphére homogéne / un de ses axes : J = % M.R?. (*)

En effet : Astuces car (*) Pour faciliter des calculs, sans tenir compte du sens physique, on

pose de plus : /xz.dm = J/plan : yOz, ..., et /(3:2 + 9% + 2%)dm = J/point : O.

2
Soit 2% + y* + 22 < R? la sphére. J/Oz = J/yOz + J/x0z = EJ/O avec les notations signalées.

Nous allons calculer J/O avec les coordonnées sphériques : c’est le plus simple !

5
J/O = ///x+y +2%) dwdydz-/// —.dr.rdf.rsin(0 //sm deQOR?

v
Ou J/O = W 2m.[—cos(0)]g = BMR2 D’ou la réponse :  J/Oz = g = —MR2

2
3 5

42.5.5 Théoréme de Huyghens (ou Koenig) : lien entre moments d’inertie (*)

1. Soit D un axe quelconque et Dg I'axe paralléle passant par le centre de gravité G a la distance d.

Ona: |J/D=J/Dg+ M.d%.| C’est donc en Dg quon a le minimum d’inertie. Dessin ?

2. En effet, soit K la projection orthogonale de M sur D et H sur Dg. Alors :
J/D= | KM*dm = | (KH*+2.KH.HM+HM?)dm = | d°.dm+2KH.( | HM.dm)+ J/Dg.
P— — —
(Le domaine d’intégration pouvant étre un volume). Or /HM.dm = /HG.dm + / GM .dm.

La 2¢éme intégrale est nulle; la lére est un vecteur orthogonal & K H (qui est fixe) ! Fini.

[Note : On parle encore "d’ellipsoide d’inertie" ... (Poinsot 1777-1859).]
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42.6 Champs de vecteurs (*)

42.6.1 Définitions

—
1. Un champ de vecteurs est la donnée d’une application M € Domaine C E3+—— V (M) € E3 (E.v.).
Exemples : Champ des vecteurs forces et accélérations. Champ des vitesses ; dans le cas particulier

. T v == dQ o= dP
d’un solide, c’est un champ équiprojectif, soit : P(t)Q(t)* = cte = PQ. o = PQ. T Torseur !

Ici, surtout en vue : champ électrique avec potentiel scalaire et magnétique avec potentiel vecteur.

N P(z,y,2) 2(t)
2. La circulation d’un champ M |y | — V(M) = | Q(z,y, 2) | le long de arc t € [a,b] — | y(t)
z R(z,y,z) 2(t)
— — b
est : /A V(M).dM = | _ P(z,y,z).dx+ Q.dy + R.dz :/ [P(z(t),y(t), z(t)).2'(t) + ..).dt
AB AB a

3. Soit I'arc d’hélice t € [a,b] — (r.cos(wt),r.sin(wt), h.t) et T_/)(M) = OM. Circulation ?

— —— 1 1
Ona [ OM.dM = | _ zdxr+ydy+ zdz = - /m d(z? +y* + 2%) = = (0OB?* — 0A?).
. .B . AB . 2 AB . . o, . 2 .
Ici, la circulation ne dépend pas du trajet ; seulement des points initial et final! On va y revenir.

/(x7 +v.7 + 2.?)ds = 0G si dm= cte.ds.)

1
(Note : Ne pas confondre cette intégrale avec I

42.6.2 Champ de gradients, potentiel scalaire et forme différentielle exacte (totale)

1. Rappels (1)| [f C": RP — R"] = f(M) = f(Mo) + df (Mo)(MoM) + || Mo M |.€(M), G(M)Mj](/[o—}

(2) Et, pour une fonction numérique, soit f : R — R, ona |V W, df(Mo)(dW) = grad f(Mp) dM

2. (*) Ceci va permettre de trouver le gradient dans tout systéme de coordonnées. Déja les notations :

f(x,y,2) = fp.cos(), p.sin(0), z )85 9(p,0, z m U= f(z,y,2) = glp,0,2) = h(r,0,¢) € R

(de méme). Ainsi 5 Sera noté 9y 8_ noté o abus d’écriture & bien voir !

Alors : aU = (??_U/; dp + %—g do + ((;—U dz = %—U dr + %—g do + Z—U dy (ch. précédent).

Et : dU(dM) =grad U. dM dM = dp.u +p.df. w1 +dz. K =dre € r+r.di.eg+r.sin(f).dp. €,
(g—U, l@_U7 a—U) (W, U, ?), en cylindriques;

donnent les composantes de : grad U(M) U 1 8Up 09 1 0z ouU
o700 vsine) o) |
— — _
3. | Trois définitions | e V' (M) est un champ de gradients si 3U(M)/V (M) = grad U(M); U(M) est
appelé potentiel scalaire [En physique, on prend le signe opposé V(M ) =grad (=U) = —grad U(M)]

— —_ e —
e On a ainsi : dU(dM) = grad U(M).dM = V (M).dM = P.dz + Q.dy + R.dz. On dit encore que
P(z,y,z).dr + Q.dy + R.dz, égal & dU = P.dz + Q.dy + R.dz, est une forme différentielle exacte.

oU(x,y, z) ou oUu
81_ (':U7 y7 Z), 8y Q) 82 R

Si V( ) est un champ de gradients, les deux résultats (équivalents) suivants sont vrais
/m V(M dM / dU = U(B) — U(A) ne dépend que de A et B, pas du chemin suivi C*

- = — .
€y, €9, €,), en sphériques.

e U(M), potentiel ou primitive, se calcule alors par

{ 1—/( ).dM = 0 pour tout chemin fermé C! (dans le domaine oi on a le champ de gradients).
R

este en suspens : comment reconnaitre si on a un champ de gradients 7 Voici :
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42.6.3 Forme différentielle fermée ; cas d’un domaine étoilé :

1. Condition nécessaire (C.N.) Si w = P(z,y, 2)dz+Q.dy+ R.dz est une forme différentielle exacte C,

) oP 0Q oP OR 0@ OR
tentiel ? le Théoréme de Schwarz & U(M) = (%) | o= = —=—— = ——; — = —.
avec potentiel U, C* le Théoréme de Schwarz a U(M) (%) 3y 9z ' B2 97 D2 a2y

Définition |Forme diff. exacte C'' = relations (%), cas ot 'on dit ici : forme différentielle fermée.

Ayant vu le rotationnel (rappelé ci-dessous) @(V(M)) = ?/\V(M) (%) & 7“—(»5)(‘_/2(]\4)) -0

2. Théoréme (de Poincaré; admis) : Condition nécessaire et suffisante C.N.S.
‘La C.N. est une C.N.S. sur un domaine étoilé : D est étoile /| K € DsiV M € D, [KM] C D. ‘

Un ensemble convexe est étoilé/chacun de ses points. Dessin d’un domaine étoilé mais non convexe ?
— —
Si domaine étoilé V (M), C! Champ de gradiants [f. d. exacte] <= @(V(M)) -0 [f.d. fermée]

s [Bremie]

1
e Onavu: 3 }{ —y.dz + x.dy = Aire(D) # 0 : non exacte. Non fermée :

or_ 1,09 11
oy 2 or 2

—yd .d
_ “yar+ray sur R2\0(0,0) : qui est fermée (calcul) !

e Soit la forme différentielle notée w : w =
T2 + 92

Mais cet exemple classique montre que Rz\O(0,0) n’est pas étoilé car elle n’est pas

exacte : si I' désigne le cercle trigonométrique = = cos(t),y = sin(t), t € [0, 2.7], j{ w=2m#0.
r

Soit w = xzdy — ydx. Trouver f: R — R telle que f(z).w soit fermée; puis une primitive
w w

de —;, soit U telle que dU = —;. Résoudre ainsi I'équation différentielle xy’ — y = Arctan(x).
x x

Solution. Exprimant ({%[f(gj)y] = ((%

forme différentielle exacte sur R?\R™, étoilé.

k 1
[f(z).x] ona f(x)= ek donc ﬁ(ajdy —ydzx) = dU,
8—U:_—y, a—U:l donnent U:g—i-C. Puis
oxr 22’ Oy «x x
Eq. diff <= dU = Arctan(z)/2* .dx ... On sait finir | (parties et fraction impaire : t = %)

42.6.4 Formule de Stockes, généralisant Green-Riemann (mémorisation !) :

T P(z,y,z2) Pl Pz; P!
1. Divergence. Rotationnel. On reprend M |y | — | Q(z,y, 2) | ; la matrice A = | Q’, ; !
z R(z,y, z) R, R, R,
dite "jacobienne" est la matrice de df (M), linéaire. Sa trace est : dw(‘_/)(M)) =P, +Q,+R.
0 o0 0 =

‘Moyen mémo-technique : ‘ Opérateur Nabla v ( Alors | div(V (M)) = v. ‘—/(M ).

o By’ 02
Et @(V(M)) VA ‘_/2(M) ‘Composantes?‘ (d’ott : Forme diff. fermée < 7“—0t>(‘_/’>(M)) = ﬁ)

2. Formule de Stockes. Soit un contour fermé orienté I' limitant une surface (méme non plane) S, de
normale 7 (M) unitaire orientée selon I', sur laquelle le champ est C L Avec I’élément d’aire d.A, plus

généralement : j{‘_/)(M) M = // @(V(M)) . (M).dA.| (On dit "le flux du rotationnel")
S

42.6.5 Formule d’Ostrogradski et potentiel vecteur : pour champ magnétique

Comment savoir
si c’est le cas ?

— — — ——
On dit que | V(M) dérive du potentiel vecteur A(M) si V(M) =rotA(M).

—_ — — — —_—
Comme rot(grad f(M)) = 0,si A(M) est un potentiel vecteur, A (M) + grad f(M) en est un autre.
Et : dw(r—mt)Z(M)) = 0, donne une C.N. qui est une C.N.S. si domaine étoilé : dzv(‘_;(M)) =0.

Plus généralement, V étant limité par la surface fermée ® : / / V. TWdA= / / / div(‘_/)(M )).dv.
® v
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Exercices: Intégration des fonctions de plusieurs variables PTSI

10.

11.

12.

13.

. Volume intérieur a 2% 4+ y? 4 22 = a? et au cone de révolution z

Aires planes en cartésiennes. ‘ Cours et Cycloide z = aft — sin(t)]; y = a[l — cos(t)] (Arche 3a?).

3ra? 3a.t 3at?
. Folium de Descartes * = ——=; y = ——= : idem
) 1+ /T 146
e, , 3a? . _ 1—t2
pour boucle et partie limitée par ’asymptote ! (7) Boucle de strophoide droite = =a
4 —7 2

1—t 2
d ); ( a®). Aire du bicorne z = sin(t); y = cos (t) 7
L+ 2 2 — cos( )

Astroide x = acos®(t); y = asin®(t) (

1+t2;

16
(Trouver (—= — 9)7 vérifié

V3
2 2 22

b
par Maple). Aire commune aux ellipses :E—z + Y1 et —1— =1 (4d.a.b.Arcsin —) !
a

»? = T

2
. ‘Aires planes en polaires. | Tréfle p = a.cos(2.0) ? Lemniscate p = a.1/cos(2.0) 7 [Trouver % . a?.

. ‘Volume de la sphére par plusieurs méthodes. ‘ [Vu en cours, mais a revoir absolument |

. Volume de l'onglet cylindrique —R<z < R; 0<y<VR2-220<z<hy/R. (V=2hR?/3).

2

=224y 220, (7(2—V2)a?/3)

. Calculer I = ///22.dxdydz sur : 22 4+ 9% 4 22 < a® par couches et par piles. (I = 4.7.a°/15)

‘Forme différentielle exacte. ‘ Vérifier que w = xdy — ydx n’est pas "fermée". Trouver f : R — R

telle que f(x).w soit exacte sur un domaine & préciser ; puis trouver une primitive de soit une

27

w
fonction U telle que dU = —;. Résoudre ainsi I'équation différentielle xy —y = Arctan(z).
x

. Idem. Calculer /y2dx — 22dy sur le segment ; puis sur I’arc de cercle : A(1,0); B(0,1). Conclure.

1 l 2 2 2
‘—;(M) = m(y, —x,0) dérive-t-il du potentiel vecteur Z(M) = (0,0, ni@ +2y Rk ))7
(*) Soit une surface passant par O, de plan tangent z = 0. On la coupe par deux plans perpendicu-

laires, contenant Oz. Soit Ry et Ry les 2 rayons de courbure des deux courbes découpées. Montrer

que 1/Ry + 1/Ry = cte quand les plans varient. Déja voir le cas des paraboloides z = az? + By
2 2
Cas général : Af(x,y) = % + Z_f est indépendant de la base o.n.d. choisie : laplacien.
Y

—_— — — — —
(*) Calculer div(grad U) = AU ; et ensuite grad (div(V)) —rot(rot(V)) = AV.

’U 192U 10U

(*) SiU = f(z,y) = g(p,0), vérifier que AU = FrEl +?W+;%

(laplacien en polaires)

rouver f:R%— e la forme f(x u(z).v u, v e laplacien nul.
(*) T f:R* =R delaf f(a,y) = u(@)o(y) , u, v, C?, de lapl 1
(Trouver u”v+v”u = 0; donc w” (z) /u(z) = —v”(y)/v(y) donc constant ; puis v’ = C.u;v” = —C.v)




Chapitre 43

Appendice : Groupes, Anneaux, Corps

43.1 Groupes

43.1.1 Définition

Soit G # () muni d’une opération interne notée *, c’est-a-dire v € G,y € G =z xy € G :
(on dit "loi de composition interne " : l.c.i. car au départ, ¢’était la composition), est un groupe si
1) * est associative (zxy)*z =z * (y*2),
2) possséde un neutre e: exxr =z*e=uz,
3) et un symétrique pour chaque élément x * ¥=a'xx=e.
Enfin, si de plus * est commutative, on dit groupe commutatif ou abélien.

Remarques

n_mn n_mn

— L’opération non interne dans N. est interne dans Z mais non associative.

— (N,+) n’est pas un groupe. (R,.) non plus.

43.1.2 Propriétés

1) Pour une loi interne, s’il y a un neutre, il est unique.
2) Si la loi est associative et si z a un symétrique (ou inverse), il est unique.
3) Le symétrique de x * y est (z * y)_l =y ' 27!, Enfin dans un groupe tout élément
4) est simplifiable & gauche : a*xx =a*y = = =y [on dit régulier & gauche|; et a droite.

Démonstration
/ : ,
1) exe’ =eoue. (eteindépendant de x)
2) 2’ % x %2 =12’ ou 2” en associant. Dorénavant noté z

1

3) Si u = x*y, résoudre u * z = e, trouver z =y~ = * 7! et vérifier que z xu = €.

4) "Composer" & gauche par a l.

Remarques

— Avec une loi notée "+" la propriété 3) devient : —(x +y) = —y — . Mais on réserve cette notation "-+"
("0" pour le neutre) pour un groupe abélien, en général.

— On note aussi la loi "." ce que nous ferons : x .y, maintenant.

43.1.3 Exemples

1. ‘ (Z,+) est un groupe abélien.

2. (U,.) [ensemble des complexes de module 1] est un groupe abélien.

3. (U,,.) est un groupe cyclique a n éléments. [U, = {1, w,w?..w" 1} ]

Donc ‘Vn € N*, on a au moins un groupe d’ordre n [de cardinal n| a savoir le groupe cyclique U,.

291
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(Q,+) (R,+) (C,+) (R*,.) (RT*..) ... sont des groupes abéliens.

5. F(I,R), avec I=[0,1] par exemple, est un groupe abélien pour +

Remarque : Et pour o ?
Le neutre serait Id donc aller de F dans E'; et f bijective pour I'inverse; c’est I'exemple suivant :

L’ensemble des bijections de E # () dans E est un groupe pour o, appélé groupe symétrique,
noté Sg. Ses éléments sont appelés permutations. Et on sait : | E' |=n =| Sg |=n!

Note
Quand F ={1,2,....,n}, on note Sp = S,.  Par exemple les 6 éléments de S3 sont : Id; (1 2) qui

1—2 1—2
est la transposition ¢ 2+— 1 , (1 3), (2 3) de méme; (1 2 3) qui est le cycle { 2+ 3 | et le cycle
33 3—1

inverse (1 3 2)=(12 3)~!. On peut voir géométriquement ce groupe comme le groupe des isométries
planes conservant un triangle équilatéral de sommet 1,2,3. (transposition=sym / droite)

‘Un groupe non abélien 7 Justement (S3,0) ‘ (en fait tout groupe de cardinal < 5 est abélien)
Voir : (1 2)o(13)=(132) # (13)o(12)=(12 3).

43.1.4 Intérét des groupes

1. Théoréme | Dans un groupe, 1’équation a .z = b posséde une et une seule solution z = a1 . b.

Démonstration
L’équation a.x = b entraine a™
Inversement z =a '.bdonne a.z =a.a .b=b. Donca.x=b<x=a"'.b.

La.z=a"1.bouz=a"t.b (associativité, neutre, inverse)

. Deux exemples

1) Dans R, I’équation a + x = b en a une et une seule : (R, +) groupe.
Par contre a . x = b n’a pas toujours de solution; (R,.) non groupe a cause de 0.

2) Dans P(F), 'équation AU X = B n’a pas de solution si A ¢ B; donc (P(E),U) : non groupe.
Pourtant U est interne, associative, (méme commutative), () est neutre : c’est que certains éléments
n’ont pas de symétrique! (seul (), le neutre, posséde un symétrique).

Par contre

(P(E),A) est un groupe abélien, ou A est la différence symétrique [AAB = (A\B) U (B\A)].
(pour l'associativité, faire un "diagramme de Venn" de (AAB)AC et AA(BAC); neutre (), chaque
élément est son symétrique.)

Donc 'équation AAX = B a une et une seule solution : X = A"'AB et méme A~ = A ici.

43.1.5 Sous-groupes

1. Définition

On dit que H est un sous-groupe de (G,.) si H C G et si H est un sous-groupe
pour la "loi induite" dans H par G, ce qui suppose qu’elle est interne dans H.

Remarque
Soit e le neutre de G et € le neutre de H. A-t-on e = €7
Oui car e.e = € = e.e donc (en simplifiant, ce qui est permis dans un groupe) e = e.

En pratique |Si H est un candidat a étre un sous-groupe, on vérifie H # () en vérifiant e € H.

2. Caractérisations pour H C G (Equivalences)

H C G: H sous-gr.de G < V;L"eh;[#;p@/eﬂ N H#) et
. S Ag- 7y ) -U VLL‘,yGH,:L’-y_l(OuLL'_l.y)EH,

Vee Hz 'eH
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‘Utilisations des caractérisations ‘ (Démonstration en exercice. Analogue au ch. E.v.)
1) Montrons que n.Z est un sous-groupe de (Z,+) pour n € N.

Avec (1): 0€nZ; puis z=nq, y=nqgd =x+y=n(q¢+q); etenfin —z=n.(—q).

2) Montrons que C([a,b],R) est un groupe pour -+.
On montre que c’est un sous-groupe d’un groupe connu ! par exemple de F([a,b],R).
Avec (2) : La fonction O est continue; puis si f, g sont continues, f — g est continue. Fini.

43.2 Morphismes de groupes

43.2.1 Définitions

Soit (G,.) et (G, *) deux groupes; f : G — G’ est un :
homomorphisme de groupes si f(z.y) = f(z) * f(y), Vx,y € G;
Divers cas isomorphisme si, de plus, f est bijectif;
endomorphisme si f est un homomorphisme de (G,.) dans (G,.);

automorphisme si f est un endomorphisme bijectif.

43.2.2 Exemples

1) f:ne(Z,+)— 2" € (Q,.) est un homomorphisme injectif, non surjectif ! (3;6 & Im(f).)

2) Sia € (G,.) groupe. n € (Z,+) — a" € (G,.) homomorphisme. non injectif si G fini !

3) |z € (R,+) — e” € (R™™,.) est un isomorphisme de réciproque In (fondamental).

4) |6 € (R, +) — €% € (U,.) est un homorphisme surjectif, non injectif (fondamental).

5) Les groupes Sy et le groupe des isométries du carré sont-ils isomorphes (c’est-a-dire les mémes aux
notations prés) 7 Non : il y a seulement 8 isométries du carré, tandis que | Sy |= 4! = 24.

6) Les groupes Ug et S3 sont-ils isomorphes? Non : 'un est abélien, pas 'autre.

43.2.3 Propriétés

Soit f un homomorphisme de groupes. Alors 1) f(e)=¢';  f(z™b) = [f(z)]};
2) f(GQ) encore noté Im(f) est un sous-groupe de G’ et f surjective <= f(G) = G’
3)Et Ker(f)={re€G: f(x) =¢€}, appelé noyau de f, est un sous-groupe de G et
‘f injective <= Ker(f) = {e}. ‘

Démonstration
1) x.e = z entraine f(x)* f(e) = f(z) = f(z) € et on peut simplifier dans un groupe.
Puis 2. 27! = e entraine f(z)* f(z71) = f(e) = ¢ = f(x) * [f(2)]7! et idem.

2) Im(f) sous-groupe avec une caractérisation : contient f(e) = €’; puis si f(x), f(z) sont dans f(G),
f(@)* f(z') = f(z.a') aussi; et [f(z)]7! = f(z™") est aussi dans f(G). Equivalence claire.

3) ! Ker(f) sous groupe de G avec une caractérisation. Equivalence a bien voir : Pour = : évident.
Pour <= : Supposons f(z) = f(z'). Ceci équivaut a f(z) * [f(z)] ' =€ ou f(z)* f(a:'_l) =

ou f(x. a:'_l) —¢ soitaz.a’ ' € Ker(f). L’hypothese dit alors que x. Z V=€ soit: =21

‘Dans I'exemple ci—dessus‘ 0 € (R,+) — €% € (U,.), le noyau est le sous-groupe 2.7.7Z de (R,+).

1 . . .
En allemand, "Kern" veut dire "noyau" (coeur?) Voir aussi en breton : "Keranna" ...
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43.3 Anneaux et corps

43.3.1 Anneaux : 2 lois internes reliées entre elles

(A,4+,.) est un anneau si : 1) (A,+) est un groupe abélien : neutre noté 0;
1. Définition 2) . est associative et posséde un neutre noté 1; et enfin
3) .« est distributive/+ a droite et a gauche a.(b+¢) =ab+ ac et (a +b).c=ac+ be
Remarques 2

— La commutativité de + résulte des autres axiomes [développer (14 1).(z + y)]
— Si. est commutative, on dit anneau commutatif.

2. Exemples

1)‘ (Z,+,.) est un anneau commutatif ‘ 2) De méme‘R[x], Clx|, Q[x| anneaux de polynomes

3) F(I,R) ou I = [0, 1] par exemple est un anneau pour + et . (des fonctions). Sera revu apres.

4) ‘Un anneau non commutatif ? ‘ Plus tard, pendant plusieurs chapitres.

5) Bien voir la question suivante : Et si on prenait (F(R,R),+,0)?

- On sait que (F(R,R),+) est un groupe abélien.

- Aussi : o interne, associative et Id neutre.

- Lien : (f + g)oh = foh + goh d’aprés la définition de +, car (f + g)[h(x)] = f[h(z)] + g[h(x)].
Reste fo(g+ h) = fog + goh? Pas toujours vrai! sin(z? 4 %) # sin(x?) + sin(z®) a cause de sin.

Dans tout anneau, on a : O.z=2.0=0 ou O estle neutre de +
(—z).y=x.(—y)=—(r.y), ou —x désigne le symétrique de x pour +
3. Propriétés (—x) . (—y) =z.y; et deux relations essentielles siaet b commutent
(a+0)" ZCk”kbk a" —b" = (a—b) Za”lkbk Za”lkbk )-(a —b)

Démonstration

1) (04 a).x = a.x d’ou 0.z + a.z = 0 + a.x donc en simplifiant pour +, 0. = 0; de méme z.0 = 0.
2) [z+(—2)].y = 0d'on z.y+(—x).y = z.y+[—(x.y)] et simplifier pour + ; de méme z.(—y) = —(z.y)
3) z.y et (—x).(—y) sont tous deux symétriques pour + de (—x).y, donc égaux. Puis attention!
4) Egalités. Si a.b # ba, (a+b)? = (a+b).(a+b) = a®+a.b+b.a+b*; (a+b).(a—b) = a®—a.b+b.a—b*!
Si a.b = b.a on développe par double distributivité aussi. Rappel : (> —b%) = (a—b).(a® +a.b+b?).

‘Exemples importants ‘ b =1, neutre pour la deuxiéme loi commute avec tout élément. D’ou :

n n—1
n_ Z n\ k. on_ 1 _ Et, dans ce contexte,
(1+a)" = <k‘> a’; 1-a"=(1 a)(kz_oa Za (1-a) { a’ =1, méme si a = 0.

k=0

43.3.2 Anneau intégre

1. Diviseurs de 0
Dans tout anneau (z = 0 ou y = 0) = x.y = 0. Mais (grave ennui) la réciproque peut étre fausse !

Exemple d’anneau ‘01‘1 il existe a.b =0 avec cependant a # 0, b # 0, appelés "diviseurs de 0". ‘

oA ) , D nulle sur [0,1/2]; affine . valant 1 en 0, affine sur
Soit A = 7([0,1},R) ; et a 'application : { sur [1/2,1], valant 1 en 1; [0,1/2], nulle sur [1/2,1].
Le neutre pour + est ici application nulle O. Onaa##0O,b# O mais a.b= 0. Dessin ?

? C.A.N.S.A.D. et N. (C.A.N.S. pour +) A. et N. (pour .) D.(lien./+). En espagnol, descansarse =
se reposer mais ici c’est le contraire et c’est un impératif ! (I’ ancienne définition était seulement : CANSAD !)
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Un anneau est dit "intégre" si on a 'implication a.b=0=a=0o0ou b =0.

2. Définition Intérét :a.z=a.y,a#0=z=y. Idem : x.b=y.b,b# 0= x =y (facile).

Exemples : 1) (Z,+,.) est un anneau intégre. 2) De méme R[x|, C[x], Q[x| anneaux intégres.
3) F([0,1],R) commutatif non intégre. 4) Nous verrons un anneau ni intégre ni commutatif.

3. ‘Exercice important | Si, pour un certain n € N*, on a " = 0 avec a # 0, on dit que a est nilpotent.

Alors : | a nilpotent == 1 — @ inversible pour . et d’inverse : (1 +a +a®+ ... +a™1).

Voir les formules précédentes. Attention : Si a nilpotent, ce n’est pas a qui est inversible !

43.3.3 Corps

1. Définition | Un corps (K, +..) est un anneau avec (K*..) groupe: donc Vz € K*, x inversible pour .
= p ) bl b g p ) b p

Exemples usuels

Q,R,C; R(x),C(x),K(x) : corps de fractions rationnelles‘ On passe de R[x] & R(x) comme de Z a Q‘

2. Propriété |Un corps est (en particulier) un anneau intégre.

Démonstration
Soit a.b=0. SiaecK*, aestinversible, dot ¢ t.va.b=a"1.0=0; cest donc que b= 0.

Sous-anneaux ; morphismes d’anneaux ; sous corps 7 Hors sujet sauf : R sous-corps de C; Q de R.

Notes en compléments. 3

3

— | Un théme d’algébre générale : la preuve par 9. ‘

Question intéressante qui concerne : 9.Z (les multiples de 9) et une relation d’équivalence ; la compatibilité de celle-ci avec
I’addition et la multiplication ; enfin le systéme décimal. Voici :

1. Congruence modulo 9, dans Z : soit la relation aRb si a — b € 9.Z (c’est-a-dire multiple de 9).
On lit : "a congru & b modulo 9", et on note a = b(9). Elle est réflexive (clair), symétrique (aussi) et transitive
[aRb,bRc = aRc; car a —b = 9.k1,b— ¢ = 9ko = a — ¢ = 9(k1 + k2)| ; donc une relation d’équivalence qui conduit
a la partition de Z, en 9 parties :
0=classe de 0=nombres congrus & 0 modulo 9= {—9,0,9,18, ...}
T=classe de 1=nombres congrus & 1 modulo 9= {—8,1,10, 19, ...}

8=classe de 8=nombres congrus a 8 modulo 9= {—1,8,17,...}.
2. Compatibilité avec + et . de cette relation !
Aisément, si aRb et a'Rb’, alors (a + a’)R(b+ b'); et aussi a.a"Rb.b".
En effet a — b = 9k, a —b =9k = a.a’ = bb + 9k1b" + 9kab + 9k, .9k = bV + 9K.
3. Conséquence : Ici intervient aussi le systéme décimal.
10 = 1(9) (clair) ; donc 10* = 1.1 = 1(9) ; 10°> = 1(9) ; et ce n’est pas tout :
1234 = 1.10° + 2.10> +3.10+ 4 = 1.1 + 2.1 + 3.1 + 4.1(9) ; et on recommence 10 = 1+ 0 = 1(9).
La preuve par 9 : Soit la multiplication : 1234.5678=7006652
Ona:1234=10=1+0=1(9) et : 5678 =5+6+7+8=11+15=1+4+1+1+ 5= 8(9). La réponse doit étre congrue a
1.8=8 modulo 9. Or:74+0+4+04+6+6+54+2=13+13=1+3+1+3=8(9). Clest le cas!
Remarque : Dans le systéme décimal, la preuve "par 11" est assez simple aussi, car 1234 =4 — 3+ 2 — 1(11) = 2(11).

— | Les carrés magiques. ‘

« A ne pas confondre avec les "carrés latins" de la table d’un groupe (cf. Verso, Exercice).
. Ici, la somme des lignes, colonnes, diagonales est constante. Pas de répétition : Fig. 1 et 2.
La Fig. 2 provient d’un tableau d’Albert Diirer. La Fig. 3 est le célébre carré de lettres "SATOR"...

7
A

16 [3 [2 13 Rﬁggg n ; ©

g _160 _171 _182 TIEINIET PIASEIRéDISI;EIRI

B OIPIEIRIA E -

aEs e RIO[TIAIS|  gonnant : "PATER NOSTER" R
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M+ Exercices: Groupes, Anneaux, Corps PTSI

1. ‘Intersection de sous-groupes. Réunion 7

(a) D’abord dans (Z,+). Préciser 2Z N 3Z; puis 6Z N8Z. Constat(s)?
En général, montrer que : Si Hy, Ho sont deux sous-groupes de G, Hj N Hy aussi.
[Et idem avec (NH;);er ot I est une "famille" quelconque d’indices|.

(b) Que dire, par contre, de 6Z U 8Z? Y a-t-il un plus petit sous groupe de Z les contenant ?

2. Rappeler la premiére caractérisation des sous-groupes. Montrer-la. Puis la seconde.

3. Rappeler le cours sur les homomorphismes de groupe (Définitions, Exemples, Propriétés).
(a) Exemple 1 : Quedirede f:z€ (C,+)— 2z € (C,+)? Etavec .7 Et z+—]z]|?
(b) Exemple 2 : Vérifier que (H7,0) (homothéties-translations) est un groupe (non abélien) ; et
f ¢ € (HT,o0) —rapport(p) € (R*,.) est un homomorphisme avec Ker(f) =7 (abélien)!

4. (*) On peut trouver un autre groupe a 4 éléments distinct de Uy :
Soit (G,0) I'ensemble des isométries du plan affine conservant un rectangle non carré.
Si A, B,C, D est ce rectangle de centre O, I et J milieux de [A, B] et de [B,C], voir que G com-
prend : - I'identité, notée Id, - 1o rotation de centre O d’angle 180 degrés,
- 8 symétrie par rapport & Of - sy symétrie par rapport a OJ et ce sont les seules.
Voir qu’on a un groupe et faire la table des (carré latin : pas de répétition en lignes, colonnes)
lavec s, : (A, B,C,D) — (B,A,D,C); ro:(A,B,C,D)+— (C,D, A, B) par exemple|. Trouver

g\fl Id 1o sz sy

Id |Id ro sz sy (La loi o est interne ici, toujours associative,

ro |ro Id Sy Sy Id est neutre et chaque élément est son symétrique).
Sz |8z sy Id 1o

Sy |sy sz 1o Id Note : (G, 0) est appelé "groupe de Klein".

Constater que ce groupe G est aussi abélien; mais qu’on a une différence de structure avec Uy :
dans G tout élément est son propre inverse fof = Id; alors que dans Uy : i.7 # 1 (le neutre) !

5. (*) Sous groupe engendré par un élément.
Vérifier que {a",n € Z} est un sous-groupe de (G,.); on appelle sous-groupe engendré par a et on
le note < @ >. On appelle ordre de < @ > son cardinal : |[< a >| (comme pour tout sous-groupe).
On appelle aussi ordre de 1'élément a € G le plus petit p € N*| ¢’il existe, tel que a? = e.
On veut vérifier que c’est la méme chose : ordre (a) et ordre (< a >):
Cas particuliers : G =Uet a =47 Cas G=TUet a=¢e" (on admet 7 ¢ Q)?
En général (G fini ou non), vérifier que : ordre(a)=ordre (< a >). (Donc pas de probléme) !

6. ‘Anneaux et corps‘
(a) Exemples d’anneaux? Un anneau non intégre : A = F(I,R) ou I =[0,1]; pourquoi?
(b) Exemples de corps? Montrer qu'un corps est (un anneau) intégre.

)
(¢) Montrer que si a est nilpotent (a # 0), dans un anneau, 1+a est inversible. a est-il inversible ?
)

(d) (*) Montrer que Z[i] = {a + ib,a,b € Z} est un anneau [appelé anneau des entiers de Gauss;
il posséde aussi une division euclidienne et il est trés utile en arithmétique].

(e) (*) A=P(FE),A,N est un anneau "de Boole", soit : Vz € A,”z .2 = 2" ("idempotent").
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Progression du cours‘ (1 chapitre / semaine)

ch.06 : Toussaint ch.13 : Noél ch.23 ... ou 26 : PaAques
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ch.30-33 : fin mai-juin.

‘Lecture du cours‘ Faire des résumés. Refaire les exemples traités. Faire des dessins.

Exemple : médiatrices, hauteurs, bissectrices (intérieures), et aussi médianes concourantes :

A

AR

‘Eviter enfin les divers compléments qui ne sont que des thémes de probléme.‘




TABLE DES MATIERES 299

‘ (*) Quelques exercices de Révisions‘

1. Sur les suites. On admet ici le Théoréme de Césaro : Soit (u,,) une suite & terme réels qui tend
UL+ ug + ... +up

n

vers L (finie ou infinie). Alors v, =

tend aussi vers L quand n — 400.
(a) Lemme de escalier :
a
On suppose que : an41 — ap tend vers L. En déduire que : — tend vers L.
n
(b) Avec in(ay) :

Q@
On suppose que «, > 0 et que 1 tend vers L > 0. Montrer que /o, tend vers L.
an

P ol (21 nfm"
En déduire que : — 4; et que: — —
n n—-+o0o n' n—-+4oo

2. Des intégrales avec des changements de variables.

(a) Soit f définie continue sur R. Pour z # 0, vérifier que : / ft)dt = / flzu)

(b) Soit I, :/a Arctan(z)

.dx, a>0. En posantt= —, montrer que : I, ln( ).
1/a x T 2

w/4
(c) Soit I = / In(1+tan(x)).dx. Avect = % — x, vérifier que I = %.ln(2) — 1. Valeurde I 7
0

1
In(1
Soit J = / Mdm. (On se ramére a l'intégrale I précédente) Montrer que : [ = J.
0

Soit K = 7@).&%. vérifier que K = z.ln(2) —J. Conclure que I = J = K.
0 1+ 4

3. Sur les matrices.
(a) — Veérifier par division euclidienne que : X +2.X2 +2.X = (X? 4+ X + 1)(X +1) — 1.

— On suppose que la matrice carrée A vérifie A% +2.4%2 +2.4 = O.
Déduire que (A2 + A+ I)(A+1)=1. Conclusion sur A% 4+ A+1 ?
8 0
0 -1
En déduire que M est forcément diagonale. Prouver qu’il y a une et une seule solution.

(b) On cherche les matrices M telles que M3 = ( = A. Montrer que M.A = A.M.

4. Divers développements limités.

2
(a) Au point 0, vérifier que : In(e*® + 2.e* +3) = In(6) + 3% + x.e(x).

1
(b) Au point 0, vérifier que : ch(In(ch(z))) =1+ §x4 + 2t .e(x).
(¢) Au point 1, en posant z = 1+ h, vérifier que : In(1 + z + %) = In(3) + %h + %h2 + h2.e(h).
T—1-2
(d) Soit f(z) =~

3 Montrer qu'elle est bijective au voisinage de z = 0 et que f~*

2

y posséde un DLy valant : f~1(y) =y — % +32.€(y).

In(2
(e) Montrer que : 4 —1=0 posséde une unique racine positive x, ; et 1 —x, ~ ( )

n—t+oo N
In(z) (k) . PO |
5o trouver, pour k € [[0,3]], f*/(1). (Réponse:0;1;1;5; par DL !)

(f) Pour : f(z)=
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5. Quelques problémes de dénombrements.
(a) Soit une partie donnée A d’un ensemble E. On suppose que | A |=p < | E |=n.
Nombre de parties X telles que A C X ? (Dire: X C A; donc 2"7P cas).

(b) Nombre de parties X telles que XN A=0 ? (Idem : cest X C A).
c¢) Nombre de parties X telles que X UA=FE ? (2P car c'est X C A).

(
(d) Nombre de coupes (X,Y) avec X CY 7 (3" avec le Binome de Newton !)

f) Nombre de coupes (X,Y) avec XUY =F ? (Idem carcest: X NY =0.)

g) Nombre d’applications strictement croissantes de [[1, p]] dans [[1,n]] ? p < n. ((n) )

)
)
)
(e) Nombre de coupes (X,Y) avec XNY =0 ? (Idem carcest: X CY !)
(f)
) p
)

(
(h) (*) Nombre d’applications croissantes de [[1,p]] dans [[1,n]] ? (Ind. f est une telle appl.
< g(k) = f(k) + k — 1 est strictement croisante de [[1, p]] dans [[1,n+p —1]] !)

une "lemniscate de Bernoulli" (symbole de I’infini), une astroide (de la trigo-
nomeétrie) et deux "cardioides" (la petite est dite "enveloppe" des normales a la grande) :

N
—

o ligne d'herizen PE2

cube 3 3PF




