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PREFACE TO THE AMERICAN EDITION

The presentation of this book to English-speaking students permits
us to return to its reason for existence.

It is addressed to beginners, if we understand by this term all
those who, whatever might be their mathematical knowledge beyond
the usual studies, have not considered the use of complex numbers
for establishing geometric properties of plane figures.

We declare, in fact, that a student accustomed to the classical
methods of analytic geometry or of infinitesimal geometry is not,
ipso facto, prepared to solve problems, even be they elementary,
by appealing to complex numbers. He is even very often much
embarrassed.

Now such obligations arise in the applied sciences, particularly
in electrical studies, where the graphical interpretation of the calcu­
lation is a convenient picture of the circumstances of the phenomenon
studied.

Finally, to assure the reader an easy and complete understanding,
we have not hesitated to develop things from the beginning, by
placing emphasis on the constructions connected with the algebraic
operations.

In deference to the practical end endorsed, we have only considered
constructions related to the concepts and methods of elementary
geometry. One will find in other works (see, for example, the first
cited book by Coolidge) constructions which, following the ideas
of Klein, possess the character of invariance under the group of
circular transformations.

The French edition has undergone a complete revision in the
theory of unicursal bicircular quartics, in that of antigraphies, and
in the proof of the theorem of Schick (art. 128).

In addition, the statements of 136 exercises have been inserted
after the various sections. They will allow the reader to test his
new knowledge and to interest himself at the same time with some
aspects of the geometry of the triangle; a theory is well understood
and will acquire power only after its successful application to the
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6 PREFACE

solution of proposed problems. At the start, some indications of
the path to follow, but not always suppressing personal effort, are
offered to assist the solver. One can find in the Belgian journal
Mathesis, when such a reference is given, a complete solution by
means of complex numbers and often accompanied by developments
which enlarge the horizon of the problem.

The reader desirous of increasing his geometric knowledge in the
domain to which the present work serves as an introduction will
consult with profit, in addition to the books already cited, the re­
markable work Inversive Geometry (G. Bell and Sons, Ltd., London,
1933) by Frank Morley and F. V. Morley. He will also find
in Advanced Plane Geometry (North-Holland Publishing Company,
Amsterdam, 1950), by C. Zwikker, a study of numerous curves
by means of complex coordinates.

It is pleasant to express our gratitude to Professor Howard Eves
of the University of Maine, who was so willing to take on the
burdensome task of the translation and whose judicious remarks
have improved the texture of several proofs, and our thanks to the
Frederick Ungar Publishing Company of New York for the attentive
care that it has brought to the presentation of this book.

Virelles-lez-Chimay (Belgium)
August, 1956

ROLAND DEAUX



FOREWORD

The present work briefly develops the lectures which we have
given since 1930 to the engineering candidates who chose the section
of electromechanics at the Faculte polytechnique de Mons.

A memoir by Steinmetz 1 emphasized the simplifying role that
can be played by the geometric interpretation of complex numbers
in the study of the characteristic diagrams of electrical machines.
This idea has proved fruitful in its developments, and many articles
published in such journals as the Archiv fur Elektrotechnik can be
comprehended only by the engineer acquainted with the meaning
and the results of a plane analytic geometry adapted to representations
in the Gauss plane. One there encounters, for example, unicursal
bicircular quartics discussed by commencing with their parametric
equation in complex coordinates; the procedure consisting of returning
to classical geometry by the separation of the real and the imaginary
will more often than not be devoid of interest, for it hides the clarity
of certain interpretations which employ the relation between a com­
plex number and the equivalent vectors capable of representing this
number.

The study of such questions explains the appearance, particularly
in Switzerland and Germany, of works in which geometric expositions
accompany considerations on alternating currents.2

There does not exist a treatise of this sort in Belgium, and this
lack will perhaps justify the book which we are presenting to the
public.

Since, on the other hand, the geometrical results are independent
of the technical reasons which called them forth, the service rendered
to engineers will be little diminished if we stay in the purely
mathematical domain. We most certainly do not wish to affirm
by this that some technical illustrations of the theories which we

1 Die Anwendung komplexer GrofJen in der Elektrotechnik, ETZ, 1893, pp. 597,
631, 641, 653.

2 O. BLOCH, Die Ortskurven der graphischen Wechselstromtechnik, ZUrich, 1917.
G. l!AUFFE, Ortskurven der Starkstromtechnik, Berlin, 1932.
G. OBERDORFER, Die Ortskurven der Wechselstromtechnik, Munich, 1934.
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8 FOREWORD

develop, presented by an informed specialist, would be lacking in
interest or timeliness; on the contrary, all our best wishes attend
the efforts of the engineer who would contribute to the papers of
Belgian scientific activity a work which certain foreign countries have
judged useful to undertake.

An engineer looking for a geometric solution to a problem born
in an electrotechnical laboratory will be able, in general, to limit
himself to the first two chapters. It is interesting, however, to note
that H. PBieger-Haertell arrived at the determination of the affix
of the center of a circle, not by the method that we give for
finding the foci of a conic (article 60), but by utilizing a property
of Mobius transformations (article 127); and this shows that the
engineer is able to take advantage of these theories too.

The table of contents states the subject matter of each of the
articles, and therefore it appears unnecessary here to take up again
the detailed sequence of material treated.

To the friends of geometry, we hope they find in the reading
of these pages the pleasure that we have experienced in writing them.
No serious difficulty needs to be surmounted. Variety is assured
by the appeals that we make to algebra, to the classical notions of
analytic geometry, to modern plane geometry, and to some results
furnished by kinematics, and the third chapter revives in a slightly
modified form the essentials of the projective geometry of real binary
forms, thus putting in relief all the pertinency of the title given
by Mobius to the first of his papers on the subject: 2

Ueber eine Methode, um von Relationen, welche der Longimetrie
angehOren, zu entsprechenden Siitzen der Planimetrie zugelangen (1852).

We would like to emphasize, moreover, the importance of those
circular transformations of which the particular case of inversion
is so often considered, but of which the direct involutoric case does
not seem to have received the same favor, which it so well deserves.

The obligation of limiting ourselves has not permitted us to treat
the antigraphy with the same amplification as the homography in
the complex plane. Concerning these matters the reader will consult
with profit the Vorlesungen iiber projektive Geometrie (Berlin, 1934)
of C. Juel, the two books of J. L. Coolidge, A treatise on the circle

1 Zur Theone tier Kreisdiagramme: Archiv fur Elektrotechnik, vol. XII, 1923,
pp. 486-493.

• Werke, 2, pp. 191-204.



FOREWORD 9

and the sphere (Oxford, 1916), The geometry of the complex domain
(Oxford, 1924), as well as the Lefons de geometrie projective complexe
(paris, 1931) of E. Cartan.

At a time when difficulties of all sorts create much anxiety for
the most cautious editors, the firm of A. De Boeck has not, however,
been afraid to undertake the publication of this work. For its noble
courage, and for the attentive care that it has brought to the composi­
tion as well as to the presentation of this book, we express our thanks
and our gratitude.

R. DEAUX

Mons, October 23, 1945
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CHAPTER ONE

GEOMETRIC REPRESENTATION
OF COMPLEX NUMBERS

I. FUNDAMENTAL OPERATIONS

I. Complex coordinate. Consider the complex number

x + iy (x and y real)

which we denote by z. Draw, in a plane, two perpendicular coor­
dinate axes Ox, Oy. The point Z having for abscissa the real part x
of the number z and for ordinate the coefficient y of i is called the
representative point, or the image, of the number z. Conversely,
each real point Zl of the plane is the image of a unique complex
number Zl equal to the abscissa of Zl increased by the product
with i of the ordinate of this point. The number Zl is called the
complex coordinate, or the affix, of the point Zl'

A plane in which each real point is considered as the image of
a complex number is called the Gauss plane, the Cauchy plane, or
the plane of the complex variable.

We shall denote a point of the Gauss plane by an upper case letter,
and its affix by the corresponding lower case letter.

Corollaries. 10 The Ox axis is the locus of the images of the real
numbers. The Oy axis is the locus of the images of the pure imaginary
numbers. This is why Ox and Oy are sometimes called the real
axis and the imaginary axis of the Gauss plane.

20 The number -z is the affix of the symmetric of point Z with
respect to the origin O.

2. Conjugate coordinates. The complex number conjugate to

z=x+iy

will be designated by the notation

z = x-iy

15



16 FUNDAMENTAL OPERATIONS

which is read, " z bar," and which will never appear as the written
representation of a vector. A vector will always be indicated by
the juxtaposition of the two upper case letters representing its origin

and its extremity, surmounted by a bar, as AB.
The image Z of the number z is the point symmetric to Z with respect

to the Ox axis.

3. Exponential form. In the Gauss plane, we choose for the
positive sense of rotation and of angles the sense of the smallest
rotation about 0 which carries the Ox axis into the Oy axis. The
algebraic value (xy) of any angle having Ox for initial side and
Oy for terminal side is, then, to within an integral multiple of 27T,

7T
(xy) = +"2' (1)

FIG. 1

y

Let Z be the image of a non-zero complex number
z = x + iy. (2)

Place an arbitrary axis a
on the line OZ.

Z Denote by e and r the
(x.y) algebraic values of anyone

I
I of the angles (xa) and of
:.Y the segment OZ. One
: recognizes in eand r polar

~_...L-_¥""_....;I~ coordinates of Z for the
x-

x pole 0 and the axis Ox.
From the theorem on
orthogonal projections we
have

a

x=rcosB

and, because of equation (1),

y = rsin B.

Equation (2) can then be written as

z = r (cos e+ i sin e)
or

z = reiB
, I (3)

the exponential form of z.



6. ADDITION

When z = 0, we are to take r zero and 8 arbitrary.
We have

17

4. Case where r is positive. When the positive sense of the
a axis is that from 0 toward Z, the number r is positive and is the
modulus of z; 8 is then an argument of z. We write

r = I z I = I x + iy I = + vix2+ y2,

the radical signifying that we extract the arithmetic square root of
x2 + y2.

If, on the contrary, the a axis is such that r is negative, then
equation (3) can be written as

Z = (-r) (-I) eiB

or, since - 1 = ein, as
z = (- r) ei ("+61.

The modulus and an argument of z are then - rand 7T + 8.

5. Vector and complex number. The image Z of the number z

is determined if we know the vector OZ, the vectorial coordinate
of Z for the pole O. We can then say that the number z is represented
by this vector. The number and the vector have equal moduli,
and we can conveniently speak of an argument of the number as
an argument of the vector.

Nevertheless, we will never convey these facts by writing

OZ = z

as is done by some authors, for such a use of the = sign easily leads
to contradictions when employed in connection with the product
of two vectors (see article 10) in the sense of classical vector analysis.

6. Addition. If the n complex numbers

(k = 1, 2, ... , 11)

have for images the n points Z k> their sum

z = Zl + Z2 + ... + Zn

has for image the point Z defined by the geometric equation

OZ = OZI + OZ2 + ... + OZ".

(4)

(5)
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~_ ~(X,.Yr)
\ ' ....
\ /' ",

/. ..., ....
\ / ."",Z(X,y) '1

• ,/ \ I\ /,/' , ,
O' . . , ,

.... ,, .... "
/ . '. \,'

"z; 2

I
ZJ

Let x, y be the coordinates of
the point Z constructed with the
aid of equation (5). By alge­
braically projecting first on the Ox
axis, then on the Oy axis, we
obtain the two algebraic equations

x x = ~Xk' Y = ~Yk

and hence

x + iy = ~ (Xk + iYk),

that is to say, equation (4).
FIG. 2

7. Subtraction. If the complex numbers ZI' Z2 are represented

by the vectors OZI' OZ2' the difference

is represented by the geometric difference

FIG. 3

~
z,

• I
/1

Z .,,/ "
2 ./ 1

, 1

• "" 1
/ /' Ii ./' _._... Z,.."" _.-'. . /.- ..

y

By virtue of article 6 we have

of the corresponding vectors.

We have

Z = ZI + (-Z2) = ZI +z~'

The point Z~ is the symmetric
of Z2 with respect to O.

o~':"'-_-----+.x,
---,-- /
OZ = OZI + OZ2 = OZI - OZ2' (6)

/
Corollaries. 1° Any vector Z' i

of the Gauss plane represents the 2

complex number equal to the complex coordinate of the extremity of
the vector diminished by the complex coordinate of the origin of the vector.

Equation (6) gives, in effect,

so that the vector Z2Z1 represents, like OZ, the difference ZI - Z2'



8. MULTIPLICATION 19

2° Any equality between two geometric polynomials whose terms are
vectors of the Gauss plane is equivalent to an equality between two
algebraic polynomials whose terms are the complex numbers represented
by these vectors, and conversely.

Thus, using the notation suggested in article I, an equation such as

AB = CD +EF

is equivalent to the algebraic equation

b - a = d - c +f - e.

8. Multiplication. If the complex numbers Zl. Zz are represented

by the vectors OZt, OZ2' the product

x

z,

FIG. 4

Therefore

is represented by the vector OZ which one obtains from OZt, for example,

as follows: 10 rotate OZt about 0 through an angle equal to the argument

of the other vector OZz; 20 multiply the vector thus obtained by the

modulus of vector OZ20
If r1, rz and 8t , 82 are the moduli and the arguments of ZI. zz,

we have, by (3) of article 3, !I

The argument of z is then
81 + 8z, while its modulus is

r1 r2 = IOZI 0 OZz I
which justifies the indicated con­
struction.

We can realize the same end by taking on Ox the point U having
abscissa + 1. The sought point Z is the third vertex of triangle
OZtZ directly similar to triangle OUZ2, for

- _ IOZ I I OZI I(Ox, OZ) - 81 + 8z, OZz = OU = l'

Particular cases. 10 The number Zz is real. Its argument is
o or 7T according as it is positive or negative.
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We have

FUNDAMENTAL OPERATIONS

OZ = Z20Z1

and the point Z is on the line OZI'

2° The number Z2 is complex with unit modulus. It then has the
form

Z2 = ei8" 82oF kn, k an integer.

The point Z is at Zi and is obtained from Zl by a rotation of
angle 82 about O.

3° The number Z2 is i or - i. Since

to multiply a complex number Zl by ± i is to rotate its representative

vector OZI about 0 thr(lugh an angle of ± n12.

9. Division. If the complex numbers Zl> Z2 are represented by
- -

the vectnrs OZl> OZ2' the quotient
Z = Zl

Z2

is represented by the vector OZ which one obtains from the vector OZI

as follows: 1° rotate OZI about 0 through an angle equal to the

negative of the argument of vector OZ2; 2° divide the vector thus

y (lbtained by the modulus of vector OZ2'

Using the notation of article 8,
the construction of Z follows from

The point Z is the third vertex of
triangle OZlZ directly similar to
triangle OZ2U,

x We thus treat division as the in-
FIG. 5 verse operation of multiplication.

Particular case. Construction of the point Z given by Z = l/z2'
Since Zl = 1, the point Zl is at U. The lines OZ2' OZ are symmetric
with respect to Ox and we have

1I OZ I = I OZ2 I or I OZ2 . OZ I = 1.
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x

the points

/
I

I
/

/
I

I
I

/
/

I

Then, if Z is the symmetric of Z with respect to Ox,
Z2' Z correspond to one another !I
under the inversion having cen­
ter 0 and power 1; that is to
say, they are harmonic conju­
gates with respect to the extre­
mities P, Q of the diameter of
the circle having center 0 and
radius OU.

Consequently, the point Z is
the symmetric with respect to Ox
of the inverse of point Z2 under FIG. 6

the inversion having center 0 and power 1.

Corollaries. 10 If a point A has affix a, then its inverse under
the inversion having center 0 and power 1 has affix 1/3: and not l/a.

20 The construction of the point with affix

Zl

Z2

can be reduced to that of article 8 by writing

Zl 1
- = Zl X-.
Z2 Z2

10. Scalar product of two vectors. If Zl' Z2 are the affixes
of the points Zl' Z2' tpen

__ 1

OZI . OZ2 = 2 (Z1Z2 + Z1Z 2)'

In fact, from the relations

we find
1 _ 1

Xl = 2 (Zl + Zl), Y1 = 2i (Zl - Z1)'

and, in the same way,

1 _ 1
x2 = 2 (Z2 + Z2). Y2 = 2i (Z2 - Z2)'

It suffices to replace Xl' YI' X 2• Y2 by these values in the classical
expression

Xl X2 +Y1Y2

for the product OZI . OZ2 in order to obtain the announced result.
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Corollary. If a is the affix of the point A, and if AB, CD are
two vectors in the Gauss plane, then (7, corollary 10)

- - 1 -
AB. CD ="2 [(b-a) (J-c) + (b-ii) (d-c)].

11. Vector product of two vectors. If Zl' Z2 are the affixes
- -

of the points Zt> Z2' the algebraic value of OZI X OZ2 on an axis
0' such that the trihedral Oxy' is trirectangular and right-handed,
is equal to

t (_ _ )"2 Zl Z2 - Zl Z2 •

This algebraic value is, in fact,

X 1Y2- X2Yl

and it suffices to replace Xl' x2 , YI' Y2 by the values given in article 10
in order to obtain the announced result.

Corollaries. 1° The algebraic value considered is twice that of
the area of triangle OZ l Z2.

2° If a is the affix of p(lint A, and if AB, CD are two vectors of
the Gauss plane, we have (7, corollary 1°) for the algebraic value- -
ofAB X CD on an axis 0' such that the trihedral Oxy' is trirectangular
and right-handed

1 - -2" [(b - a) (d - f) - (b - Ii) (d - c)].

12. Object of the present course. To each complex number z
corresponds a point Z, and conversely. To each of the fundamental
operations performed on complex numbers corresponds a geometric
construction (6-9). Consequently, to each algebraic operation per­
formed on complex numbers Zl' Z2' ••• , Zm and to each property
of such an operation, corresponds a construction concerning the
points Zl' Z2' ... , Zn and a property of the figure obtained.

To interpret this passage from the algebraic manipulation of com­
plex numbers to the geometric concept, or the reverse, is the aim
of the present notes.



EXERCISES 1 TO 11

Exercises 1 through 11

23

I. Construct the sets of points having for affixes :

I, i, - I, - i; 0, I + i, i O' i-I; I + i, i + 2, 2(1 + i), I + 2i; I, - I, i y3;

1, -I,
+ iY3

2

iV3-1
2

1+ iY3
2

l-iY3
2

2. Construct the images of the roots of the following equations:

z' - I = 0, z· + I = 0, Z3 - I = 0, Z3 + 1 = 0, Z4 - I = 0, Z4 + 1 = 0,
~-1=~ ~+I=~ ~-I=~ ~+I=Q

If n is a positive integer and a a number with modulus r and argument 0, what can
be said about the figure formed by the images of the roots of the equations

zn- a = 0,

3. Which of the numbers represented by the following expressions are real and
which are pure imaginary?

z + z. z-z, zi,
(~ + ~) (z + z)

z-z

ab + iib

aii - I

ab - iib

i(aii + bb)'

i(ab + iib)

ab - iib

4. If a is the affix of a point A, construct the points with affixes:

-a, ii, -,
a

a + ii, a - ii, ia,
a

ii'

ii
-,
a

a + lal,

a-Ia I,
a

~'

I a I--,
a

a-I al
a + I a I

a-Ial

Ii" + Iii [

[Employ the exponential form in the last two cases.]

5. Distance between two points. The distance between two points A, B is

x' + y' = (x + iy) (x - iy)
Using the identity

IABI = Ib-a[ la-bl.

and the elements of analytic geometry, show that:

1° the square of the distance of a point Z from the origin 0 is zz;

2° the square of the distance between points A and B is

(a-bl(ii-b) or (b - a) (b - ii).
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6. Angles between two axes. Remembering that if two axes p, q have the senses

of two vectors AB, CD we have, where (p,q) denotes anyone of the angles between
- - --

these axes, the expression I AB I I CD I cos (p,q) for the scalar product AB' CD,
show that:

1° the angle between the vectors Z,Zs, ZsZ( is given by

---- (z. - z,) (i. - is) + (i. - i,) (z. - zs)
cos (Z,Z.,ZsZ.) = ,

V (z. - z,) (i. - i,) V (z( - zs) (i. - is)

where the radicals denote the arithmetic square roots;

2° the angle IJ between vector OZ and the Ox axis is given by

cos IJ =
z+z z-i

sinlJ=---

2i v'zi

z-z
tanlJ = --­z + z'

expressions which are more easily obtained from z = I z I eiO•

7. Equilateral triangle. A necessary and sufficient condition for three points
A, B, C with affixes a, b, c to be vertices of an equilateral triangle is that

I I I--+---+---=0
b-c c-a a-b '

a relation which is equivalent to anyone of the following:

as + bS + c' = ab + bc + ca, (b - C)2 + (c - a)S + (a - b)' = O.

(b - c)' = (c - a) (a - b), (c - a)S = (a - b) (b - c),

(a - b)" = (b - c) (c - a),

~-~~-~+~-~~-~+~-~~-~=~

I

a b
b c
c a

i1=0,

or, again, that b - c, c - a, a - b be roots of an equation of the form

zS- k = 0.
[Set

b-c = "',
whence

I t is necessary that

relations which, with

c-a = f3,

'" + f3 + y = 0.

"'Ii = f3/l = yy,

Ii + /l + Y= 0,

a-b = y,

give

Conversely, if

I I I- + - + - = 0.
'" f3 y
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exci = pp = yy.

whence

then
(exci)1 = (PP) (yy), (exci)8 = (exci) (PP) (yy),

See article 84 for another demonstration.]

8. \Vith the aid of exercise 7, show that the images of the roots of the cubic equation

ZS + 3a,z s + 3a.z + as = 0

form an equilateral triangle if a, s = as. Deduce that the origin and the images of the
roots of the equation

Zs + pz + q = 0

form an equilateral triangle if pi = 3q.

9. The lines OZ" OZI are perpendicular or parallel according as

or

The lines Z,Z2, Z.Zt are perpendicular or parallel according as

or
(Zl - z.) (zs - Zt) = (Zl - z.) (z. - Zt).

(Use articles 10 and I I.]

10. If ab = cd, we have

I OA I I OB I = IOC I I OD I

and the angles (OA,OB), (OC,OD) have the same bisectors. [Use moduli and argu­
ments.]

If ab = cS, OC is the interior bisector of angle (OA,OB). What can be said if
ab=-c'?

II. If a, b, c are numbers of modulus I and if we set

S, = a + b + e,

show, by employing

that

s. = ab + be + ea,

ati = bb = ec = I,

Ss = abc,

_ S,
S2 =-,

S8

I
is =-,

S. I :: I= I,

and that triangle ABC is equilateral if s~ = 3s•.
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II. FUNDAMENTAL TRANSFORMATIONS

13. Transformation. Any process associating with each point Z
of the Gauss plane at least one point Z' of this plane constitutes
a transformation of the plane into itself, and may be designated
by a letter, say w.

We shall consider only transformations in which

1° to each point Z there corresponds a single point Z' ;

2° each point Z' is the correspondent of a single point Z.
Such a transformation w is said to be one-to-one,. the point Z'

is the correspondent, or the homologue, of Z.
The process which, starting with Z', yields the point Z, is called

the inverse transformation of wand is denoted by w-1 .

The equation of a transformation w is the relation between the
affix z of an arbitrary point Z of the plane and the affix z' of the
point Z' corresponding to Z.

OZ' = OZ + OA,

the equation of the translation IS

(7, corollary 20)

ZZ' = OA

is called the homologue of Z m

the translation of vector OA.

Since we have

FIG. 7

~.
1

I
I

,/ __ .A
,-

I --I ,-
1_'-

o

y

14. Translation. Let A be a fixed point and Z an arbitrary
point of the plane and let a and z be their affixes.

The point Z' such that

Iz' = z+ a·1
When a is real but not zero, the translation is parallel to Ox.

If a = 0, the translation reduces to the identity transformation with
equation

z' = z

which transforms each point of the plane into itself.
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FIG. 8
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15. Rotation. Let A be a fixed point of affix a, and let a be a
given real number, positive, zero, or negative. In a rotation about A
of an angle with algebraic value '!I
a, each point Z of the plane
takes a position Z'.

The vectors AZ', AZ repre­
sent the complex numbers

(7, corollary 1°), and since AZ'
is obtained from AZ by the in­
dicated rotation, we have (8,
particular case 20)

z' - a = (z - a) eia•

The equation of the rotation of angle a in algebraic value, about
the point of affix a, is then

z' = zeia + a (1 - eia ).

Corollary. The symmetry with respect to the point A is nothing
but a rotation of angle a = 71" (or - 71") about A and, since

em = cos 71" + i sin 71 = - 1,
its equation is

z' = -z +2a.

16. Homothety. Let us be given a fixed point A of affix a

and a real non-zero number k, positive or negative. If we arbitrarily
place an axis on the line joining A to any point Z whatever of the
plane, the point Z' of this axis such that we have the algebraic relation

AZ'
AZ = k

is the homologue of Z in the homo­
thety (A, k) of center A and coefficient,
or ratio, k.t

Since

FIG. 9
o AZ' = k AZ,

we also have (7)

z' -a = k (z-a)

1 See R. DEAux, Complements de geometrie plane, article 116 (A. De Boeck,
Brussels, Belgium, 1955).



28 FUNDAMENTAL TRANSFORMATIONS

and the equation of the homothety is

z' = kz + a (1 - k).

Remark. The values I, - I for k give the identity transformation
(14) and the symmetry with respect to point A (15).

FIG. 10
o

17. Relation among three points. Being given three points
A, B, C with affixes a, b, c, if AB, AC are the algebraic values of segments
calculated on axes aI' a2 arbitrarily placed on the lines AB, AC, we have

c-a = (b-a) ei(a.a.). ~~,

where (a1a2) is the algebraic value of anyone of the angles having a1

for initial side and a2 for terminal side.

y a z a, We have the equations (3, 7 co-
rollary 10 )

c - a = AC ei(:ta,)

b - a = AB ei(:ta.)

which give

C c-a AC.__ - __ e' [{:ta,l - (:ta.)]
b-a - AB .

X

The angle relation of Mobius 1

(a1a2) = (xa2) - (xa1)

yields the announced equation.

o

18. Symmetry with respect to a line.
by two of its points A, B, let Z'
be the symmetric with respect to Y
this line of any point Z of the
plane, let d1 and d2 be axes ar­
bitrarily placed on the lines AZ,
BZ, and let d~, d~ be axes which
are the symmetries of d 1, d2 with
respect to the line AB. We have
(17)

a - z = (b - z) ei(a,a.). ~:' (1)

The line being given

d z
d.,

FIG. II

1 See R. DEAUX, Complements de geometrie plane, article 84.
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Z'A
a - z' = (b - z') ei (d;d;) -­

. Z'B'

29

(2)

ZA = Z'A, ZB = Z'B, (3)

In order to eliminate from equations (1) and (2) the ratio ZAjZB
and the angle (d2d1 ), which depend on the point Z considered, let
us substitute for the first equation the result obtained by replacing
each number in the equation by its conjugate, that is to say, by

- . ZA
a - z = (b - z) r' (d, d,l • ZB . (4)

If we divide equation (2) by equation (4), member by member,
and take note of (3), we obtain the equation of the symmetry in the form

a-z' b-z'

a-z b-z
or

or, again,

a - z' Ii - z
b - z' b - z

a-b ab-lib
z'=--_ z- _.

Ii-b ii-b

(5)

6)

Remark. When the line AB is the Ox-axis, the numbers a and b
are real, and we have

Ii = a,

and equation (6) becomes
z' == z,

a result which follows immediately from article 2.

19. Inversion. Let p be the power, positive or negative, of an
inversion of center M with affix m,. y
let d be an axis arbitrarily placed on
the line joining M to any point Z
of the plane; let Z' be the inverse
of Z. We have

and (3)
MZ. MZ' =p (7)

z - m = MZ . ei(xd) (8) 0 x
z' - m = MZ' . ei(xdl. (9) FIG. 12
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In order to introduce the expression (7) for p, and at the same time
to eliminate (xd), which depends on the point Z considered, let
us substitute for equation (8) the result obtained by replacing each
number in the equation by its conjugate, that is to say, by

z - m= NIZ e-i(xdl. (10)

If we multiply equation (9) by equation (10), member by member,
and take note of (7), we get, for the equation of the inversion (M, p)
of center M and power p,

(Z' - m) (z - m) = p

or
, mz +p-mm

Z = _ .
z-m

Remark. When M is at 0 and p = I, the equation of the inversion
IS

, 1
Z =­

z'
which agrees with a corollary of article 9.

20. Point at infinity in the Gauss plane. The projective
plane (which can be studied in analytic geometry with the aid of
homogeneous coordinates) contains an infinitude of points at infinity
constituting a range of points lying on the line at infinity in this plane.

The Gauss plane (which is studied with the aid of the complex
coordinate z) contains, on the contrary, only a single point at infinity,
that which corresponds to z infinite.

By virtue of the equation (19)
, 1

Z =--::-,
Z

in an inversion, the point at infinity in the Gauss plane is the inverse
of the center of inversion.

Zl = WI [Z]. (11)

Consider a transformation W 2 which, operating on each point Zl'
transforms this into a point Z2 ; we will have

Z2 = W2 ['lI]

21. Product of one-to-one transformations.
ation WI associates with each point Z a point Zl'
fact by writing

If a transform­
we express this
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Z2 = W (Z)

lead us to write, by convention,

or, taking note of equation (11),

Z2 = Wd WI [ZJ}
which we agree to write as

Z2 = W2 WI [Z]. (12)

The transformation W permitting us to pass directly from the
points Z to the points Z2 is called the product of the transformations
WI' W2 taken in this order.

Equation (12) and

(13)

In the symbolic product W 2WI' the second factor WI represents the
first transformation to be performed.

These considerations can be extended to any number of trans­
formations. Furthermore, from an equation such as (13) we can
form equations

obtained by multiplying the two members of (13), either on the
right or on the left, by the same transformation W 3 ; this follows
from the definition of a product of transformations.

o

(14)

(I5)

ZI = Z + a1•

Z2 = ZI + a2•

Examples. 10 Product of two translations.
complex numbers represented y

- -
by the vectors OAI , OA2 which
define the translations WI' w 2

(14). If ZI is the correspondent
of Z under WI' while Z2 is that
of ZI under W 2, we have

The equation of the trans- FIG. 13

formation W2WI permitting the direct passage from Z to Z2 is obtained
by eliminating ZI from equations (14) and (15), and is

Z2 = Z + a1 + a2• (16)

-..Ihis proves that the product W2WI is a translation of vector

OAI + OA2• This also follows because we have

ZZ2 = ZZI + Z1Z2 = OAI + OA2.
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The elimination of Zl gIves
the equation

FIG. 14

o

2° Product of two rotations. Let aI' a2 be the affixes of the
) centers AI, A2 of rotations of

angles having algebraic values
Cil, Ci2' If Zl is the corres­
pondent of Z in the first rotation
WI> while Z2 is that of Zl in
the second rotation W 2, we have
(15)

L. s.---A2 Zl - a1 = (z - a1) ei at"
Z2-a2 = (Zl- a2) eiat,.

(17)

which will

Z2 = zei(at,+at,) + a l (1 - ei at,) ei at, + a2 (1 - ei at,)

of the transformation W2Wl which binds Z2 to Z, and
be examined later (86).

30 The product of a transformation wand its inverse w-1 is the
identity transformation, and is represented by 1. Thus we have

w-1w = 1, and ww-l = 1.

22. Permutable transformations. Two transformations WI>

W 2 are said to be permutable if the correspondent of each point Z
in the transformation W2Wl coincides with the correspondent of Z in
the transformation WlW2' We write

W 2W 1 = W 1W2'

Examples. 1° Any two translations whatever are permutable.
The equation of the product W l W 2 of the translations considered

in the first example of article 21 being

z' = Z + a2 + aI'

proves, if we compare with equation (16), that Z' = Z2, which
is what we wished to establish.

2° Two rotations are permutable only if they have the same center.
The equation of the product WlW2 of the rotations considered

in the second example of article 21 being

z' = zei(at,+at,) + a2 (1 - ei at,) ei at, + a1 (1- ei at,),

proves, if we compare with equation (17), that the points Z', Z2
coincide only if we have

a1 (l - ei at,) ei at, + a2 (1 - ei at,) = a2 (1 - ei at,) ei at, + a1 (1 - ei at,)
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or
(a1 - az) (1 - eh .) (1 - ei a.) = o.

Since <Xl' a2 are supposed not to be integral multiples of 27T, the
exponentials e ia1 , eia. are different from 1, whence al = a2 and
the centers A l , A2 of the rotations coincide.

23. Involutoric transformation. A transformation w is said
to be involutoric if the correspondent of an arbitrary point Z being Z',
the correspondent of Z' is Z.

The product of the transformation wand the transformation w

is then the identity transformation, and we have

ww = 1 or W Z = 1. (18)

We therefore say that a transformation is involutoric if its square
is the identity transformation.

If we multiply the two members of the symbolic equation (18)
by w-l , we have (21)

Consequently, a transformation is involutoric if it is identical with
its inverse.

A symmetry with respect to a point, a symmetry with respect
to a line, and an inversion are involutoric transformations.

FIG. 15

·z=z· r;})

Let Ax'y' be a new rectangular

Y'

24. Changing coordinate axes.
system such that (x'y') = (xy) y

and defined by the affix a =

a l + iaz of A and by the alge­
braic value a of angle (xx').

The object is to find the
relation between the affixes

z = x + iy, z' = x' + iy'

of an arbitrary point Z = Z' o'-----------------.x
with respect to the two systems
Oxy, Ax'y'.

We know from analytic geometry that

x = a1 + x' cos a -)I' sin a,

y = az + x' sin a + y' cos a.
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From this we obtain

EXERCISES 12 TO 16

x + iy = a 1 + ia2 + x' (cos ex + i sin ex) + iy' (cos ex + i sin ex),

z = a + z'eia..

Exercises 12 through 16

12. We are given the affixes a, b of the consecutive vertices A, B of two squares
ABCD, ABC'D' and we know that the vertices A, B, C, D succeed each other in the
positive sense of rotation. Find the affixes of the points C, D, C, D' and of the
centers M, M' of the squares. [Employ rotations, translations, and homotheties,

c = b(l + i) - ia, d = a(l - i) + ib, c' = ia + b(l - i),

d' = a( I + i) - ib,
b(l + i) a(l -i)

m = --2-- + --2--'
, a(l+i) b(l-i)

m = --- + ---.J
2 2

13. If a, b are the affixes of the vertices A, B of equilateral triangles ABC, ABC',

find the affixes of C, C', knowing that angle (CA,CB) is - w/3.

Show that
c + c' = a + b, cc' = a2 + b2 - ab,

and also obtain these results from a relation of exercise 7.

14. The product of two inversions with the same center is a homothety. Show
that the inversions are permutable only if their powers are opposite and that the
homothety is then a symmetry.

15. Two inversions having distinct centers are permutable only if the square of
the distance between the centers is the sum of the powers of inversion, or, in other
words, only if the director circles or circles of double points are orthogonal. Their
product is then an involutoric transformation (a Mobius involution, see article 99).
[For symmetry in calculation, take Ox on the line of centers, ....J

16. An inversion is permutable with a symmetry with respect to a line only if its
center is on the line. The product is then an involution. [Take the Ox axis on the
line.]
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III. ANHARMONIC RATIO

FIG. 16

The anharmonic ratio
Z4 of the Gauss plane,

z,

oIn order to express the A.R.
as a function of geometric ele­
ments, place arbitrary axes a13, au, a23, a24 on the lines ZIZs, ZIZ4'
Z2Z3, ZZZ4' which mayor may not be distinct, and designate by
ZIZ3, for example, the algebraic value calculated on al3 of the segment
having Zl for initial point and Z3 for terminal point. Assuming
(xy) = + TT/2, we have (17)

(Zl Z2 Z3 Z4) or (ZI Z2 Z3 Z4)

and has for value

25. Definition and interpretation.
(A.R.) of four distinct points Zl' Zz, Z3'
taken in this order, is by de- y
finition that of their affixes Zl'

zz, Z3' Z4' and is denoted by

If we should choose a13, a14, a23, a24 so that

ZIZ3. Z1Z4
Z2Z3 • Z2Z4

is positive, then this number is the modulus of the A.R. and an
argument is (a23aI3) - (a24aU )'

This is certainly the case if we take
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26. Properties. The classic properties of the A.R. of four real
or complex numbers permit us to state the following properties of
the A.R. of four points of the Gauss plane.

I° An A.R. of four points does not alter in value if we exchange
two points and at the same time the other two points,. it takes the reciprocal
value if we exchange the first two points or the last two points,. it takes
the value complementary to unity if we exchange the two mean points
or the two extreme points.

2° With four points we can form 24 A.R.'s, presenting at most 6 values,
and 3 of these values are the reciprocals of the other 3.

(ZlZ2Z3Z4) = (Z2Z1Z4Z3) = (Z3Z4Z1Z2) = (Z4Z3Z2Z1) = A

1
(ZlZ2Z4Z3) = (Z2Z1Z3Z4) = (Z4Z3Z1Z2) = (Z3Z4Z2Z1) = X"

(ZlZ3Z2Z4) = (Z3Z1Z4Z2) = (Z2Z4Z1Z3) = (Z4Z2Z3Z1) = 1 -A,

1
(ZlZ3Z4Z2) = (Z3Z1Z2Z4) = (Z4Z2Z1Z3) = (Z2Z4Z3Z1) = I-A'

A-I
(ZlZ4Z2Z3) = (Z4Z1Z3Z2) = (Z2Z3ZI Z4) = (Z3Z2Z4Z1) = -A-'

3° The A.R.'s

obtained by keeping the first point fixed and by circularly permuting
the other three are three principal A.R.'s.

4° If the four points are distinct, their A.R.'s are different from I, 0, 00.

5° We have

a relation which displays an A.R. as a function of the differences between
one affix and each of the other three.
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27. Case where a point is at infinity. We denote by 00 both
the point at infinity in the Gauss plane and its affix.

By definition we have

(Z Z Z) 1· ( ) I" ( Zl - Zs '. Zl - Z4 ) __I 2 SOO = 1m ZlZ2ZSZ4 = 1m
Z4-oo Z4-oo Z2 - Zs Z2 - Z4

Hence, in order to develop an A.R. in which the point at infinity
is not in the fourth place, we begin by bringing the point into this place
(26, 1°). Thus

ZS-Zl
(Zloo ZSZ4) = (ZSZ4Zloo) = .

Z4- Zl

Corollary. Each real or imaginary number Z is the anharmonic
ratio determined by the point Z, the point U on the Ox-axis having
abscissa 1, the origin 0, and the point at infinity, for

(ZUOoo) = (zlOoo) = z.

28. Real anharmonic ratio. In order that the A.R. of f(lur
points Zl' Z2' Z3' Z4 of the complex plane be real, it is necessary and
sufficient that these points belong to a common line or to a common
circle. This A.R. is then the same as that considered in elementary
geometry.

With the notation of article 25 we have

(1)

and for this A.R. to be real it is necessary and sufficient that for
some integer n we have

(a 2S alS) - (a24 a14) = mr. (2)

Case I - where the points Zl, Z2, Z3 are collinear. For some integer
n1 we have

and consequently
(a24 au) = (nl - n) 7T

which proves that point Z4 is on the line ZlZ2'



38 ANHARMONIC RATIO

Choose the axes ala, au, a2a, a24 SO that they form a single axis.
Equation (1) then becomes

and is the same as the definition given in elementary geometry for
the A.R. of four collinear points.

Case 2 - where the points Zl' Z2' Za are not collinear. The points
lie on the circle y which they determine. Orient ala, a 2a, au from
Za toward Zl, from Za toward Z2' and from Z4 toward Zl; then
choose the positive sense of a24 so that in equation (2), which holds
by hypothesis, the integer n is even. The equation then becomes

and proves that the
point Z4 is on the circle

FIG. 17

y.
Points Za, Z4 mayor

may not belong to a
common arc defined by
the points Zl> Z2'

If M is the midpoint
of the arc which does
not contain Za, the lines
MZa, MZ4 are bisectors
of the angles (a2aa la),

(a24,aU) and intersect the line ZlZ2 in Z~, Z~. We have, in both
magnitude and sign, for each of the two figures,

ZIZa
----

Z2Z3

and equation (1) becomes
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But, by projecting the second A.R. from point M, we conclude
that it is equal to the A.R. defined in modern plane geometry for
the four points Zl' Z2' Zs, Z4 of the circle y.

Conversely, if the points Zl> Z2' Zs, Z4 are collinear or concyclic,
we have equation (2), and equation (1) proves that the A.R. (ZlZ2ZSZ4)
is real.

29. Construction. Being given three points Zl' Z2' Zs, as well
as a real or imaginary number of modulus r and argument 0, there
exists a unique point Z4 such that

(ZlZ2ZSZ4) = reiO (3)
and we shall construct it.

From the equation

(ZlZ2ZSZ4) =
we obtain

Zl - Z4 = reiO

Z2 -Z4

Z4 [(z2-z S)reiO - (zczs)] = Zl(z2-z S)reiO - Z2(Zl-ZS)' (4)

In this equation, which is linear in Z4' we cannot have at the same time

(Z2-ZS)reiO - (Zl-ZS) = 0,

Zl(z2-zS)reiO - Z2(ZCZS) = 0,

(5)

for this would make

I Z2-ZS Zl-ZS I = (Z2-ZS)(Zl-ZS)(Z2-Z1) = 0,
Zl(Z2-ZS) Z2(Zl-ZS)

which is impossible since the points Zl' Z2' Zs are supposed to be
distinct.
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If (5) does not hold, then equation (4) has the unique finite solution

Zl (Z2 - Za) reiO - Z2 (Zl - Za)
(Z2 - Za) relO - (Zl - Za)

(6)

which is the affix of the only point Z4 fulfilling the requirement.

If (5) does hold, that is, if

Zl - Za = reiO
Z2- Za

or (9)

Z4 is infinite and the point at infinity of the Gauss plane is the only
point Z4 which fulfills the requirement.

To construct Z4 when (5) does not hold, we do not employ the
expression (6) for Z4' but we write equation (3) in the form (25)

I ZlZa: ZlZ4 I ei[(Z3Z•• ZSZ1l - (z.z., z.zll] = reiO.
Z2Za Z2Z4

By equating the moduli and then the arguments of these two
complex numbers we obtain

(7)

(8)

9

FIG. 19
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Equation (7) says that point Z4 is on the circle y which is the
locus of points the ratio of whose distances from points Zl' Z2 is

-..ll ZlZal·
r 1 - r Z Z '

2 a

this circle has for diameter the segment PQ of the line ZlZ2' where
P and Q are defined by

and are thus harmonic conjugates with respect to Zl' Z2. In the
case where r1 = I, that is to say, if r = I ZlZa/Z2Za I, circle y is replaced
by the perpendicular bisector of the segment Z1Z2.

Equation (8) says that Z4 is on the arc u described on Z2Z1 and
for which Z2Z1 subtends an angle of algebraic value

8 = (ZaZ2' ZaZl) - 8,

whose sign specifies on which side of the line Z1Z2 in the oriented
plane we should draw u. In the case where 81 is an integral multiple
of 17, the line Z1Z2 replaces u.

Point Z4 is the intersection of y and u. It will be noticed that
Z4 is at infinity if r1 = I, 81 = 0 ; it is the midpoint of the segment
Z1Z2 if r 1 = I, 81 = 17, and in the two cases, y and u are lines.

30. Harmonic quadrangle. When the A.R. of four points Zl>
Z2' Za, Z4 of the complex plane is equal to - I, it is said to be
harmonic.

The four points are necessarily on a line or on a circle (28). In
either case, if

(9)

we say that Zl> Z2 are harmonic conjugates with respect to Za, Z4
or harmonically separate Za, Z4' and also, since (ZaZ4Z1Z2) = - I
(26), that Za, Z4 harmonically separate Z1' Z2. The figure formed
by the four points is called a harmonic quadrangle, and is degenerate
if the points are collinear.

I. The harmonic conjugate Z4 of Za with respect to Zl> Z2 is

10 the second point common to the circle °circumscribed about triangle
Z1Z2Za and the circle of Apollonius 0a associated with vertex Za;
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2° the second point common to circle °and the symmedian of triangle
ZlZ2ZS drawn through vertex Z3; this line joins Zs to the pole Ps
of side ZlZ2 in circle ° and is symmetric to the median ZsMs with
respect to the bisector ZsNs of angle ZlZSZ2'

Taking the mo­
duli of the two
members of equa­
tion (9) we obtain
(25)

y

FIG. 20

I ZrZ41 = I ZrZal
Z2Z4 Z2Za

and Z4 is on the
circle which is the
locus of points the
ratio of whose dis­
tances from Zl' Z2
is that of the dis­
tances of Zs from
Zt, Z2' This circle
passes through Zs

and through the intersections X, Y with line ZlZ2 of the bisectors
ZSN3• ZsN~ of angle ZlZSZ2' where N3, N~ denote the intersections
of circle °with the diameter normal to ZlZ2; this is the circle of
Apollonius of triangle ZlZ2ZS associated with vertex Z3' and its
center Os is the midpoint of segment XY inasmuch as angle XZsY
is a right angle.

Since (ZtZ2XY) = - 1, the circle of Apollonius 0 3 is orthogonal
to circle ° and the line Z3Z4 is the polar of point 0 3 with respect
to circle ° and thus contains the pole P3 of the line ZlZ2'

From (P 3M 3N 3N;) = - 1 we obtain the harmonic pencil
Z3(P3M 3N3N;) in which the conjugate rays Z3N3. Z3N~ are per­
pendicular and are therefore the bisectors of the angles formed by
the other two rays Z3P3' Z3M3' whence Z3P3 is the symmedian
drawn through vertex Z3 in triangle ZlZ2Z3'

It will be noticed that from the graphic point of view the point
Z4 is determined more neatly by the circle 0 3 than by the line Z3P 3'
for circle ° is cut orthogonally by circle 0 3 but not by line Z3P3
except when Z3 is at N 3 or N~.
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(Zl + Z2) (Zs + Z4) = 2 (Zl Z2 + ZaZ4)'

2 1 +__1_
Zl - Z2 Zl - Zs Zl - Z4

and conversely.

Equation (ZlZ2ZSZ4) = - 1 is equivalent to (26, 5°)

1

_Z..=-l~_Z-,,2 Z=--l--:-_Z-,,-4 = _ 1
1 1

(10)

(11)

43

which is easily written in the form (11), and then, by clearing of
fractions, as equation (10).

Corollary. The affix of the midpoint Zs of a segment Z lZ2 is
ha?{ the sum of the affixes of Zl' Z2'

In fact we have (27)

III. If (ZlZ2ZSZ4) = - 1 and if M s is the midpoint of the segment
Z lZ2 joining two conjugates, we have

(12)

(13)

and the line Z lZ2 is the interior bisector of angle (MsZs, M SZ 4).

from which we get, since the sum of the two first terms is to their
difference as the sum of the two last terms is to their difference,

Zl + Z2 - 2za Z2 - Zl
Zl - Z2 = 2z4 - (Zl + Z2) •

(14)
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If we observe that (II, corollary)

Zl + Z2 = 2 ma, Z2 - Zl = 2 (ma- Zl)'

equation (14) takes the form (12).
The equality of the moduli of the two members of (12) yields

equation (13).
If we place the origin of cartesian coordinates at M a and the

x-axis on ZlZ2, equation (12) becomes

z~ = ZaZ4'

Since z~ is a positive real number, its argument is zero, which is
then also the sum of the arguments of Za, Z4' and the proof is complete.

Conversely, if we have equation (12), then point Ma is the midpoint
of the segment joining Zl to its harmonic conjugate Z2 with respect
to points Za, Z4'

In fact, (12) can be written as

ma (2z1 - Za - Z4) = z~ - ZaZ4

which is linear in ma. The value of ma is that of the affix z of the
midpoint of ZlZ2 if (ZlZ2ZaZ4) = - 1 since we must have

(z - Zl)2 = (z - za) (z - Z4) or Z (2z1 - Za - Z4) = ~ - ZaZ4'

31. Construction problems. I. Being given three distinct points
Za, Z4' Ma, to construct in the Gauss plane two points Zl' Z2 which
harmonically separate Za, Z4 and such that Ma shall be the midpmnt
of the segment ZlZ2' Z.,

FIG. 21

b

If Za, Z4' Ma are not collinear (Fig. 21), the sought points are

(30, III) the intersections of the interior bisector b of angle (MaZa,
M aZ4) with the circle y which passes through Za, Z4 and whose
center 0 is on the perpendicular to b at M a.
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The construction is still applicable if Z3' Z4' M 3 are
with M3 between Z3 and Z4 (Fig. 22).
It does not succeed if M 3 is on an extension
of the segment Z3Z4' for then b coincides
with the line Z3Z4; in this case b contains
Zl' Z2' and these points are determined
by the equation M3Z~ = M3Z3.M3Z4
(Fig. 23).

2. Being given the real or imaginary numbers
a, b, c, to construct the points Z whose affixes
z are the roots of the linear equations

_2 1_+_1_
z - a - z - b z - c'

2=1-+1-
z a b'
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(IS)

(16)

(17)

(18)

The form of equation (15) shows that Z is the harmonic conjugate
of the point A, of affix a, with respect to the points B, C, of affixes
b, c (30, II), and can be constructed by the procedure indicated
above (30, I).

Equation (16) written in the form

_2_=_1_+_1_
o-z o-a o-b

shows that Z is the harmonic conjugate of the origin 0 with respect
to the points A, B of affixes a, b.

If in equation (17) we set

it becomes

2-l-+1-
Zl - a b'

After constructing point Zl' the harmonic conjugate of 0 with respect
to the points A, B of affixes a, b, we obtain Z as the midpoint of OZI
(8).
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As for equation (18), we can construct successively the points
Z2' Z3' ... , Z from

l.=l.+l., l.=~+~ ~=_I_+l., ... , .
Z2 al a2 Z3 Z2 a3 Z Zn-I an

A second procedure consists in constructing the points AI' A2, ••• ,

An of affixes aI' a2 , ••• , an> then their inverses A~, A;, ... , A~ under
the inversion of center 0 and power 1, and having for affixes l/ii l ,

l/ii2, ••• , l/iin (9) ; if we construct the point Z' of affix

_, 1 I I
z = -:;- + -:;- + ... + -:;-,

al a2 an

we have
, I

Z =­
z'

I
z=­

Z'

ex+f:3+Y=O

and the sought point Z is consequently the inverse of point Z'.

3. Being given three distinct numbers a, b, c, as well as three non-zero
numbers ex, f:3, Y whose sum is zero, to construct the point Z defined by

_ex_+_f:3_+_Y_=O. (19)
z-a z-b z-c

We are going to show that if A, B, C are the points of affixes a, b, c,
we have

f:3
(ABCZ) = --,

ex

which permits us to construct Z as has been shown III article 29.
From the equation

we find, if we set
f:3-- = A,
ex

.!.=-I+A
ex

and equation (19) yields successively

I A A-I
-----+---=0,
z-a z-b z-c

A = z-c z-a
I 1

z-c - z-b
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We therefore have (26)

A = (ZCBA) = (ABCZ).
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4. If a, b, c are three distinct numbers, to construct the point Z
such that

(z - a)2 = (z - b) (z - c).

If A, B, C are the points of affixes a, b, c, point Z is the midpoint
of the segment which joins A to its harmonic conjugate with respect
to B, C (30, III).

32. Equianharmonic quadrangle. When four points constitute
a harmonic quadrangle (30), the principal A.R.'s are - 1, 1/2, 2,
and the 24 possible A.R.'s separate themselves into three sets of
eight ratios having these values, for these have - 1, 2, 1/2 for their
reciprocals.

We are going to show that there exist in the Gauss plane quadruples
of points for which the 24 A.R.'s lead to only two values, instead
of the 6 of the general case and the 3 in the case of a harmonic
quadruple.

If four points are such that tW(l principal A.R.'s are equal, they
are equal to a third and have for value either e i :rt/3 or e- i :rt/3• We
say that the anharmonic ratio is equianharmonic and that the four
points form an equianharmonic quadrangle; 12 of their A.R.'s
have the value ei"/3, the other 12 have the value e- i :rt/3•

The principal A.R.'s of any four points have the values (26)

I A- I
A, I -A' -A-

If we have
A 1
1 1 --X' (20)

I A - I
A = I _ A = -A-·

we obtain, by taking the difference of the antecedents and of the
consequents,

We arrive at the same result if we start from either of the relations

A - I I
A = -A-, I _ A

Equation (20) gives

A-I
-A-
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\ 1 . v'3 7T.. 7T 0 I
1\ = - ± t -- = cos - ± t SIn - = e± on s2 2 33'

Properties. 10 Given any three points Zl' Zz' Z3 in the Gauss
plane, there exist two points W, W' which form with the given points
two equianharmonic quadrangles.

The points W, W', called the isodynamic centers of triangle
ZlZZZ3, are common to the three circles of Apollonius of the triangle.

In an equianharmonic quadrangle, the three pairs of opposite sides
have equal products, and conversely.

We know (29) that there exists a unique point W such that

(ZlZZZ3W) = ein/s

and a unique point W' such that

(ZlZ2Z3W') = e-in/3

and we are able to construct these points by noticing, for W for
example, that

I
ZlZ3 . ZlW I - - - - 7T
ZZZ3 . ZzW = 1, (Z3ZZ' Z3Z1) - (WZz, WZ1) T'

But we can determine the pair W, W' by considering only the moduli,
if we write

for from this we obtain

I ZlW I IZlZ3! I ZIW I IZIZz! I Z3W ! 01 Z3Z
1 I

ZzW = ZZZ3' Z3W = Z3ZZ ' ZzW = ZZZI

and similar equalities for W', whence W, W' are common to the
three circles of Apollonius.

The preceding equations give

I ZIW.ZZZ3 1= I ZZW,Z3ZI I = ! Z3W.ZIZzl

and conversely.

20 In order that a triangle ZlZZZ3 be equilateral, it is necessary
and sufficient that one of the isodynamic centers be the point at infinity
in the Gauss plane,. the other isodynamic center is the point of con­
currency of the medians of the triangle.
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(21)

The condition is necessary. In fact, if ZlZ2Za is equilateral, we
have

I ZlZa I = I ZzZa I,
and consequently (25, 27)

(ZlZzZaoo) = e±i3r/S, (22)

from which it follows that the point at infinity is an isodynamic
center. Since the circles of Apollonius reduce to the perpendicular
bisectors of the sides, the second isodynamic center is the point
mentioned.

The condition is sufficient, for equation (22) carries with it equations
(21), and these express that the triangle is equilateral.

30 If the points Zl' Z2' Za are collinear, and if we construct Z',
Z', Z' such thatz a

(ZzZaZlZ;) = - I, (ZaZlZzZ;) = - I, (ZlZzZaZ;) = - I,

then the isodynamic centers of the triple Zl' Z2' Za are the points W,
W' common to the three circles having for diameters the segments ZlZ~,

Z2Z;, ZaZ~.
These circles are, in fact, for the degenerate triangle ZlZ2Za, the

circles of Apollonius associated with the vertices Zl' Z2' Za.

Exercises 17 through 31

17. Images of the square roots of a number. The images A" A. of the square
roots G" G. of a number G with image A are harmonic conjugates with respect to A
and the point U of affix 1, and the segment A,A. has the origin 0 for midpoint. We
can construct A" A. by the process of article 31, I. [0" G. are roots of z· = G, which.
can be written as

(0 - Z)2 = (0 - G) (0 - I).
See article 31, 4.]

Construct the images of the square roots, then of the fourth roots, of i, - i, 1 + t.

18. Images of the roots of the quadratic equation

:' -pz + q = o.
Construct the point M of affix p/2 and the images Q" Q. of the square roots of q.
The images Z" Z. of the roots of the equation harmonically separate Q" Q. and M is.
the midpoint of Z,Z.. See article 31 and exercise 17. [Write the equation as
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Another procedure, generally less simple. is to translate the classical formula

by first constructing the image of p'/4 - q.]
Deduce a construction of the images of the roots of the quartic equation

Z4 - pz' + q = O.

19. Two points Zl' Z. harmonically separate the images of the roots of

azB + 2hz + c = 0

if we have

[Apply II of article 30.]

20. The images Zl' Z. of the roots of the equation

az' + 2bz + c = 0

harmonically separate the images Z;, Z~ of the roots of

a'z' + 2b'z + c' = 0

if we have

ac' - 2bb' + ca' = O.

21. Pair E, F harmonically separating two given pairs Zl' Z. and Z3'~' By
exercise 19, the affixes of E, F are the roots of the equation in 2

I

z· 2z
ZlZ. Zl + Z.
Z3Z4 Z3 + Z4

The construction of E, F reduces (article 31) to that of the midpoint M of segment EF.
The equation gives

Since

m
ZlZ2 - %3%4-

Z, + z. - Z3 - Z4

2(zlz. - Z324) = (Zl + Z3) (z. + 23)

+ (Zl + Z4) (z. + Z4) - (Z3 + Z4) (Zl + 2. + 23 + Z4),

if M ik is the midpoint of ZiZk and G the common midpoint of the segments
M 12M 34, M 13M 24, M u M.3, we have

mUm.3 + m,4m.4 - 2m34g
m =

If we take the origin of axes at G, we have

g = 0,
m13m23

m=---.
m12
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Therefore, if M 12, M ••, M 13 are the midpoints of the segments ZlZ., Z.Z., Z,Zl and

if G is the barycenter of the points Zl> Z., Z., Z., vector GM has a sense symmetric

to that of vector GM12 with respect to the interior bisector of angle (GM1.,GM••)
and

I GM1• I I GM.. I
I GMI=

I GM12 1 •

For another construction of M, see article 104, where M is denoted by O.

22. If the affixes of two pairs of points are the roots of

a1z' + 2b1z + C1 = 0 and

then the points which harmonically separate each of these pairs are given by

(a.b, - a1b.)z' + (a,c1 - a1c.)z + b,c1 - b1c. = O.

23. If three pairs of points are such that each pair harmonically separates the other
two, then the midpoints of any two pairs harmonically separate the third pair.

24. Show that, for any point M, we have

(ABCD) = (ABCM) (ABMD).

From this show that, in order to change only the sign of an anharmonic ratio (ABCD),
it suffices to replace one point in one of the pairs (A,B), (C,D) by its harmonic con­
jugate with respect to the other pair. Thus, if

(AA'CD) = - I,
we have

(A'BCD) = - (ABCD).

25. Being given three points A, B, C, we construct the harmonic conjugate of each
of them with respect to the other two, so that

(AA'BC) = - I, (BB'CA) = - I, (CC'AB) = - 1.

By using the properties of article 26 and of exercise 24, show that:

1° (ABCA') = 1/2, (ABCB') = 2;

2° the elimination of C gives

(ABA'B') = 4

3° from 1° we obtain

and (AA'BB') = (BB'CC') = (CC'AA') = - 3;

(ABC'A') = - 1/2,

and, by eliminating A,

(ABC'B') = - 2,

(BB'C'A') = (CC'A'B') = (AA'B'C') = - 1,

whence A is the harmonic conjugate of A' with respect to B', C', etc.
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26. In exercise 25, designate the affixes of A, B, C by a, b, e and set

a l = a + b + e, a. = ab + be + ea, a. = abc.

1°

By first of all calculating the affixes a', b', e' of A', B', C' as fWlctions of
a, b, c (article 30, II), show that:

1 1 I---, + ---, + ---, = 0;
a-a b-b e-e

3a.- aa.
a' = ----.,,-

aal - 3a'

and that, a, b, e being the roots of the cubic equation

a', b', e' are roots of

pz' - 3qz' - 3rz + s = 0,
where

(1)

(2)

[Set a = z in (1) and then eliminate z from (1) and (2).]

30 there exist two points E, F which harmonically separate each of the pairs AA',
BB', CC' (see exercise 19) and their affixes are the roots of

(3)

27. The isodynamic centers W, W' of the system of points A, B, C are the points
E, F of 30 of exercise 26. [Show (article 32) that

(abew)' - (abew) + I = 0

and find that w is a root of equation (3) of exercise 26.]

28. The images of the roots of the equation

aoZ' + 4al z' + 6a2z2 + 4a.z + a, = 0

form two harmonically separating pairs if

and the affixes of the midpoints of the pairs are

If a,' = aOa2' the two pairs are the vertices of a square whose center has affix - a,lao.
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[If
Zl + z. = t, Zs + z. = U,

the hannonic relation and the elementary functions of the roots yield tu, t + u, vw,
v + w, vu + wt, wu + vt, and then

(vu + wt) (wu + vt)

leads to the desired result.]

29. A necessary and sufficient condition for the images of the roots of the sixth
degree equation

aoz· + 6a1z 6 + l5a.z· + 20asz 3 + 15a.z' + 6a 6z + a. = 0

to be separable into three pairs such that each pair harmonically separates the other
two is that we have

36a1a.a3 - 27a~ - 8aoa~

a'o

The affixes of the midpoints of the pairs are roots of

and the products of the affixes of the points of each pair are roots of

[Set

Zl + z. = 2u, Z3 + Z. = 2v, Z6 + Za = 2w,

The symmetric functions of the roots are

:Eu, :EU + 4:Euv, :E(v + w)U + 4uvw, LUV + 4:EvwU, :EuVW, UVW,

to which we add

2u?' = U + V,

... , which express the harmonic relations. From these obtain U, V, W, to put in the
preceding functions, whence

3as
LUV =-,

ao

as
uvw = --, ....]

ao
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30. A necessary and sufficient condition for the existence of two points E, F har­
monically separating each of the three pairs given by

aoz2 + 2a,z + a2 = 0, boz 2 + 2b,z + b2 = 0, C Oz 2 + 2c,z + C2 = 0,

is that

a21b2 = 0.
C2

All pairs harmonically separating E, F are given by

A(aoz 2 + 2a,z + a2 ) + ",(boz 2 + 2b,z + b2) = 0,

where A and", are arbitrary.

31. Does there exist a point P such that, given two triples of points A, B, C and
A', B', C, the anharmonic ratios (ABCP), (A'B'CP) have unit moduli? Construct P.



CHAPTER TWO

ELEMENTS OF ANALYTIC GEOMETRY
IN COMPLEX NUMBERS

I. GENERALITIES

33. Passage to complex coordinates. Let x and y be the car­
tesian coordinates and z the complex coordinate, relative to two
perpendicular axes Ox and Oy, of a real point Z. We have (1)

x+iy=z
and consequently

x - iy = z.

From these two equations we obtain the formulas

x = ; (z + z), y = ~i (z - z)

permitting us to pass from the rectangular cartesian coordinates to the
complex coordinate.

The polar coordinates 0 and r of Z, relative to the pole a and the
polar axis Ox, are related to x and y by the equations (3)

x = r cos 0,

from which we obtain

y = r sin 0

z-zo= arc tan . ( _) .
lZ+Z

r2 = x2 + y2 = (x + iy) (x - iy) = zz,

y z - z
tan 0 = x = i (z + z)"

We therefore pass from the polar coordinates to the complex coordinate
by the formulas

r = (zz)!,

55
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34. Parametric equation of a curve. If, relative to two per­
pendicular axes Ox, Oy, a curve c has parametric equations

x = fI(t), Y = fe(t), (1)

fl(t), f2(t) being real functions of a real parameter t, the complex
parametric equation of c is

Z = x + iy = fl(t) + ife(t)
or

z = f(t), (2)

f(t) being a complex function of the real parameter t.
Conversely, we pass from (2) to (1) by separating the imaginary and

the real parts.
Direction components of the tangent to c at the point with para­

meter t being

~~ = f~(t), z= f~(t),

the complex number

dx + idy
dt dt

or
dz
dt

we have

is the affix of a point which, joined to 0, gives a line parallel to the
considered tangent. Therefore:

If z = f(t) is the complex parametric equation of a curve c, the tangent
at the point with parameter t is parallel to the line joining the origin
to the point of affix dzJdt.

II. THE STRAIGHT LINE

35. Point range formula. If Zl' Z2' Z are the affixes of two points
Zl' Z2 and of the point Z which divides the segment ZlZ2 in the ratio

k = ZIZ
ZZe '

Zl + kZ2 (I)
Z= l+k.

By analytic geometry, we know that if (Xl' Yl), (x2, Y2), (X, y)
are the rectangular cartesian coordinates of Zl' Z2' Z, then

Xl + kXe YI + kYe
X= l+k ' Y= l+k .
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Since
Z = x +iy,

we obtain equation (1). This result also follows from the classic
vector equation

OZ = OZI + kOZ2

1+ k .

Corollary. By taking k = 1, we again find (30, II) the affix

Z = ! (ZI + Z2)

of the midpoint of the segment ZIZ2.

36. Parametric equation. If a line passes thrQugh the point A
of affix a and is parallel to the line joining the origin to the point B
of affix b, its parametric equation is

I z = a + bt, I (2)

:r:
FIG. 24

o

OZ = OA+AZ
or, since

AZ = t OB

with the real number t varying with
the point Z,

where t denotes a real parameter which can vary from - 00 to + 00.

If Z is any point whatever of the y
line, we have

OZ = OA+t OB.

From this vector parametric equation of the line we obtain (7)
equation (2). This result also follows (34) from the analytic parametric
equations

x = al + bIt, y = a2 + b2t

of the line, where (aI' a2), (b I , b2) are the cartesian coordinates of
the points A, B.

Corollaries. 1° Every real line contains the point at infinity of
the Gauss plane. Equation (2) shows, in fact, that for t infinite we
have z infinite.
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2° It is easy to calibrate the line of equation (2), that is to say,
to construct the points Z which correspond to diverse real values
of t. Since the points A, ZI of affixes a, a + b are given by the
values 0, I of t, the calibration is accomplished by considering AZ1

as a positive unit segment.

3° The parametric equation of the line joining the points ZI' Z2
of affixes z l' Z2 is

since the vector Z2Z1 having the direction of the line represents the
number Z 1 - Z2.

4° To express that the points ZI' Z2' Zs are collinear, it suffices
to state that, t being a real number, we have

Z3 - Zl = t(Zl - Z2)·

This equation is equivalent to

ZIZa = t Z2Z1.

This way of expressing the collinearity of three points is generally
preferred to that pointed out in article 37.

37. Non-parametric equation. The general equation of a real
line of the Gauss plane is of the form

(3)

in which b is a real number. This line contains the point of affix - b/2a
and is perpendicular to the vector represented by the number a.

In fact, the general equation of a real line in rectangular cartesian
coordinates is

!XX + f3y + y = 0,

the numbers ex, fl, y being real. The real points Z of this line then
have for affixes z the solutions of the equation (33)

ex (z + z) + ~ (z - z) + 2y = °
t

or

ex(Z + z)-ij3(z-z) + 2y = 0,

(IX - ij3)z + (ex + ij3)z + 2y = 0
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2')1 = b,ex + if3 = ii,

which, if one sets

ex-if3 = a,

takes the form (3).

Equation (3) admits the solution - bl2a inasmuch as b being real
we have b = b. The parallel line drawn through the origin has
for equation

az + iiz = 0,

and contains the point of affix ia and is thus perpendicular to the
vector joining the origin to the point of affix ii.

Corollaries. 10 The equation of the line j(lining the points Zl' Zz
of affixes Zl' Zz is

I z z

I
Zl Zl

Zz Zz
1=0. (4)

The line with equation (3) contains the points Zl' Zz if we have

(5)

azz + iiz! + b = O. (6)

By claiming that the linear homogeneous equations (3), (5), (6) in
a, ii, b are satisfied by values of a, ii, b which are not all zero, we
obtain equation (4).

20 The points Zl> Zz, Z3 are collinear if

3° The line passing through the point of affix Zl and parallel to
the vector represented by the number c is

I
z z 1 I
Zl ~l 1 = O.
ceO

In fact, the line contains the point of affix Zl + c and it suffices
to refer to equation (4).
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If A' is the midpoint of segment
BC, we have

C a' = l- (b + c)
2

B

y

38. Centroid of a triangle. If a, b, c are the affixes of the
vertices A, B, C of a triangle ABC, which may be a degenerate triangle,

then the affix g of the centroid G of
the triangle is

I
g = "3 (a + b + c).

~---------- and sinceo x
FIG. 25

AG
GA' =2,

we have (35)
a +2a' I

g = I + 2 = 3" (a + b + c).

39. Algebraic value of the area of a triangle. If the angle
(xy) has the value + 1T/2 and if in tracing the perimeter of a triangle
one meets the vertices A, B, C of affixes a, b, c in this order, then the
algebraic value ABC of the area of the triangle is

. I a a I IABC = ~ b ~ I .
eel

The algebraic value is, in fact, that of (AB X AC)/2 on an axis 0'
such that the trihedral Oxy' is trirectangular and right-handed.
That is to say (11)

i I b-a b-a I i I a ~-I - - =-\b-a b-a4 c-a c-a 4
c-a c-a

t -- [(b-a) (c-a)-(b-a) (c-a)] =
4

I I '1 ao =!.... b
o 4 c

a I Ib I .
c 1

Corollaries. 1° The algebraic values

ABC, BCA, CAB

are equal, and they differ only in sign from the equal values

ACB, CBA, BAC.

This follows since a determinant merely changes sign if two rows
are exchanged.
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20 If P is any point whatever of the plane, then

PBC + PCA + PAB = ABC,

PA.PBC + PB.PCA + PC.PAB = O.

(7)

(8)

a Ii 1 I
b b 1 = ABC.
e c 1 I

By taking the origin of cartesian axes at the point P, we see that

PBC +PCA + PAB =
001
eel
a Ii 1

Furthermore

aPBC + bPCA + ePAB =

t - -"4 [a (bc- be) + b (eli-ca) + e (ab-lib)] = 0

and this equation establishes (7) equation (8).

30 If P is the affix of any point P whatever in the plane of a non­
degenerate triangle whose vertices A, B, C have a, b, c for affixes, then

PBC PCA PAB
P = a ABC + b ABC + e ABC . (9)

In fact, equation (8) is equivalent to

(a - p)PBC + (b - p)PCA + (e - p)PAB = 0,

from which we obtain (9).
The numbers PBC/ABC, PCA/ABC, PAB/ABC are the absolute

barycentric coordinates of P for triangle ABC. The relation (9) thus
expresses the affix of a point as a function of the absolute· barycentric
coordinates of this point for any triangle and of the affixes of the vertices
of the triangle.

Exercises 32 through 37

32. Derive the non-parametric equation of a straight line from the parametric
equation, and vice versa. [If z = a + bt, we can refer to corollary 3° of article 37,
or better, by a frequently used general idea, adjoin the conjugate equation

z = ti + bt
and eliminate t. Vice versa, for

az + liZ + b = 0,

we know a point of the line and its direction.]
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33. Intersection of two lines d" d.. I° Find the point of intersection of the two
lines given by

[If

a.z + a.z + b. = 0,

the point of intersection is

If

Z
a,b. - a.b,
a,a. - a.a,

alia. = ada.,
the lines are parallel or coincide according as these ratios are or are not different from
b,/b•.]

2° Find the point of intersection of the two lines given by

z = a, + b,t"
[Reduce to 1° (exercise 32), or adjoin

a, + b,t, = a. + b.t.
find t, if possible, ....]

to

34. Concurrent lines. Find a necessary and sufficient condition for the lines

[Answer:

b, b, a,b, - a,b,
or b. b. a.b. - a.b.

bs b. asb. - asbs

aiz + aiz + bi = 0

to pass through a common point.

a, a, b, I = 0
a. a. b.
as as bs

or z = ai + biti, i = I, 2, 3

0.]

35. Perpendicularity. 1° The lines having equations

are perpendicular if

[See articles II and 37.]

a.z + a.z + b. = 0,

2° The equation of the perpendicular to the first line and passing through the point
of affix z 0 is

Treat the case where the line is given parametrically. In each case, calculate the
affix of the foot of the perpendicular.

36. The perpendicular bisector of side Be of a triangle ABC has for equation

z(b - c) + z(b - c) = bb - cc.

The three perpendicular bisectors are concurrent at the center 0 of the circumscribed
circle with affix
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The altitude through vertex A has for equation

z(b - c) + z(b - c) = a(b - c) + d(b - c).

The three altitudes are concurrent at the orthocenter H with affix

[a(c - b) (c + b - a) + b(a - c) (a + c - b) + c(b - a) (b + a - c)] : I: ~ ~ I·
eel

The median through vertex A has for equation

z(2a-b-c)-z(2a-b-c) = a(b + c)-a(b + c).

We know (article 38) that the point of concurrency G of the medians has affix

(a + b + c)/3.

More generally, we designate as the centroid of n points Z, the point with affix ('"E.z,)fn.

37. Determine the algebraic value of the area of the triangle formed by the lines
having equations

a,z + a,z + b, = 0,

[See article 39 and exercise 33.]

i = 1,2,3.

III. THE CIRCLE

(1)

40. Non-parametric equation. The general equation of a real
or ideal circle of the Gauss plane is of the form

I zz + az + liz + b = 0

(2)

or

in which b is a real number.
The affix of the center is - a and the square of the radius is aa - b.
In rectangular cartesian coordinates, every real or ideal circle has

an equation of the form

x2+ y2 + 20cx + 28y + 'Y = 0,

the numbers a, [:3, 'Y being real. The coordinates of the center are
- a, - [:3 and the square of the radius is a 2 + [:32 - 'Y. According
as this square is or is not positive, the circle is real or ideal.

In complex coordinates, the equation of the circle is then (33)

zz + a(z + z) - i[:3(z - z) + 'Y = 0

zz + (ex -i[:3)z + (ex + i[:3)z + 'Y = °
which, if we set

ex - i[:3 = a, ex + i[:3 = ii, 'Y = b,

takes the form (1).
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From equations (2) we find that the affix of the center and the
square of the radius are

-rx-ifJ = -a, rx2 +fJ2 _y = (rx +ifJ) (rx-ifJ)-y = aa-b.

Example. If A, B, C are three given points in the Gauss plane,
let us determine the locus of points Z such that

ZA.ZB + ZB.ZC + ZC.ZA = O.

If a, b, c, z are the affixes of A, B, C, Z, we must have (10)

~-~~-~+~-~~-~+~-~lf-~+~-~~-~

+ (c-z) (a-z) + (c-z) (a -z) = 0

or, by expanding,

6 zz - 2 (a + b + c) z - 2 (a + b + c) z + (a + b + c) (a + b + c)

- (aa + bE + cf) = O.

The locus is thus a circle. If we place the origin at the centroid G
of the system of points A, B, C, we have (38)

a + b + c = a + b+ l = 0,

aa = GA2 = 1. (2 AB2 + 2 AC2 - BC2)
9

and the equation of the circle becomes

zz = ~ (GA2 + GB2 + GC2) = l~ (AB2 + BC2 + CA2).

The center is G and the square of the radius is the value of ZZ.l

41. Parametric equation. In the Gauss plane, the equation

at + bz=--
ct + d

in which a, b, e, d are real or imaginary constants such that

ad-bc::J::O

and t is a parameter able to take on all real values, represents

lOa straight line if e is zero or if die is real;

2° a circle in all other cases.

1 See exercise 224 of Complbnents de geometrie.

(3)

(4)
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When c = 0, we have ad =F °by virtue of (4), and equation (3),
which now becomes

a b
z=([t+ T

represents a straight line (36).

When d = 0, we have bc =F 0, and by setting

J..=T
t

equation (3) becomes
b a

z=-T+-.
e e

This represents a straight line.

Now suppose cd =F 0. To the values t, 1,0,00 of the parameter t
there correspond on the sought locus the points Z, Zl> Zo, Zoo of
affixes

a + b b a
z, Zl = e + d ' Zo = d' Zoo = c'

The points Zl, Zo, Zoo are distinct, for we have

ad-be
Zl -Zo = d(e + d)'

be-ad
Zl -zoo = e(e + d)'

be-ad
cd

as well as relation (4). Furthermore

(ad-be) t be-ad

(z zlzoZoo) = Z-Zo z-zoo d(et + d) e(et + d)
= t.

Zl-ZO Zl - Zoo ad-be be-ad
d(c + d) e(e + d)

The four points Z, Zl' Zo, Zoo are therefore on a straight line
or on a circle (28). The curve, which is determined by the fixed
points Zl' Zo, Zoo, is the locus of all the points Z furnished by the
set of real values of t considered in (3). The curve is a straight line
if there exists a real value of t which makes z infinite, that is to say,
if the root - dlc of

et+d=O

is real, for a straight line is distinguished from a circle by the fact
that it contains the point at infinity of the Gauss plane.

Conversely, any straight line and any real circle can be represented
by an equation of the form (3).
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In fact, if Z, P, Q, R are an arbitrary point and three fixed points,
of affixes z, p, q, r, on a straight line or circle, we have (28), t denoting
a real number varying with Z,

(zpqr) = t

or, after the development of

z-q . z-r _ t
p-q' p-r - ,

r(p-q) t-q(p-r)
z = (p _ q) t _ (p _ r) .

In this equation, which has the form (3), we have

a=r(p-q), b=q(r-p), c=p-q, d=r-p,

ad-bc = (p-q) (r-p) (r-q)

and this product is not zero since P, Q, R are distinct.

42. Construction and calibration. To construct a circle given
by an equation of the form (3), it suffices to construct three points
of the circle. It is particularly interesting to construct the points
Zl' Zo, Zoo corresponding to the values 1,0, ClO of t and whose affixes
are

t(ez-a) = b-dz,

But if these points are close to one another, it is expedient to use
other values of t. Or we can calculate, as follows, the affix w of the
center and the magnitude R of the radius. It suffices to find the
non-parametric equation of the circle by eliminating t from equation
(3) and its conjugate

which gives

ad-be
cd-de'

w=

- M-& ~-W_ ~-~ 0
zz - ed _ dc z - cd _ de z + cd - de = .

From this we obtain (40)

I
ad-be __b [-_ ! d(ad-bc) I ~ I ad-bc_ I .R = I w - Zo I = I -'--;----'- -
cd - de d d(cd - de) , cd - dc I

We shall obtain these results again by other methods in articles 61
and 127.



43. PARTICULAR CASES 67

FIG. 26

To calibrate the circle, take any point P on it and cut the pencil
P(ZZlZOZoo) by any secant s parallel to the ray PZoo ' Then we
have (41)

Z~Z'
t = Z'Z'.

o 1

Hence, if we adopt as the positive sense of s that from Z~ to Z~

and for unity the length of the segment Z~Z~, we have Z~Z' = t.
The s-axis is immediately calibrated, and it suffices to project this
calibration from P onto the circle.

z'

43. Particular cases. 10 Let A, B be two given points of affixes
a, b and let e be a given real number. The arc described on AB and
for which AB subtends an angle of algebraic value 8 has for equation

z-b .-- = te,a, (5) Y
z-a

t being able to assume all real non­
negative values.

For t < 0, this equation represents
the arc described on AB and for
which AB subtends an angle of
algebraic value ± 7T + 8.

If Z is any point of the first are, 0 l.----------_,..x
we have

FIG. 27
(ZA, ZB) = 8
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and (17)

THE CIRCLE

z - b I ZB 1.0 ·0--= -- e' = te'.
z-a ZA

For a point Z' of the remaining portion of the circumference,
we have

(Z'A, Z'B) = ± 7T + 8, z' - b = I Z'B I ei(±n+O) = - t'eiO

z'-a Z'A '

t' > o.
Equation (5) is of the form (3) since it can be written as

ateiO -b
z = teiO -1 .

2° The circle which is the locus ofpoints Z the ratio of whose distances
from two given points A, B is a given positive number k different from 1
has for equation

z-a _ keit
z-b - , (6)

Z, a, b being the affixes of Z, A, Band t being a real parameter.

If k = 1, equation (6) is that of the perpendicular bisector of segment
AB.

Notice that equation (6) takes the form (3) if we set

t
tan 2" = t1

inasmuch as

eit = cos t + i sin t =
1- t1

2 + 2it1

1 + t;
and (6) becomes

z=
i(kb + a) t1 + kb - a
i(k+l)t1 +k-l·

Corollary. If u, v are two real parameters, then in the parametric
representation

z-a .
--=ue'V
z-b

of the Gauss plane, the parametric curves v = constant are the circles
of the pencil having A, B for base points, and the curves u = constant
are the circles of the orthogonal pencil.
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44. Cases where ad - be = O. Let us find the points Z whose
affixes are roots of equation (3) written in the form

z(ct + d) = at + b.

1st case, c = d = 0. If a = b = 0, every point of the plane is
a point Z. If a = °and b "* 0, or if a "* °and bla is complex
imaginary, there is no point Z. If a "* °and bla is real, the value
t = - bla yields all the points of the plane for points Z.

2nd case, c = 0, d "* 0. We have a = °and the single point Z
of affix bId.

3rd case, c "* 0. We have b = adlc and the equation becomes

a
(z--) (ct + d) = O.

c

If dlc is complex imaginary, the single point Z has alc for affix.
If dlc is real, we have this same point for t "* - dlc and every point
of the plane for t = - dlc.

C'

FIG. 28

B

o

45. Example. Being given three non-collinear points A, B, C and
a real number e, let us determine the points Z such that if we rotate
the points B, C about Z through angles of algebraic values 2e and e
respectively, the resulting points B', C' shall be collinear with point A.

Consider the figure in the oriented Gauss plane and related to
two perpendicular axes Ox, z
Oy for which (xy) = + 1712. Y
If a, b, c, Z, b', c' are the
affixes of points A, B, C, Z,
B', C', we have (15)

b'-z = (b_z)e2iO , (7)

c' - z = (c - z) eiO , (8)

and the points B', C', A are
collinear if (36), t being a
real number, we have

b' -a = t(c' -a).

Upon replacing b' and c' by their values obtained from (7), (8),
t his equation becomes

z(l - e2iO ) + be2iO - a = t[z(l - eiO ) + ceiO - a]
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or
z[(1 - ei8)t - (1 - e2i8 )] = (a - cei8 )t - (a - be2i8 ) (9)

and is of the form (41)

z(ct + d) = at + b.

The expression ad - be for equation (9) is

ei8 (e i8 - 1) [a - c + (b - c)ei8J

and is zero for either one of the following two cases,

"0 1 e 2 ' a - c '8e' = or = nTr, n an Integer; --b = et .
c-

1st case, e = 2nTr. Equation (9) becomes

oz= (a-c)t-(a-b).

The value (a - b)j(a - e) for t, which makes the second member
vanish, is not real since A, B, C are not collinear, and hence the
equation has no root and there is no point Z. Besides, the rotations
give B' = B, C' = C, which explains the non-existence of Z.

2nd case. The equation

!!:..=!.- = ei8 or c - a = ei (,,+8)
c-b c-b

(10)

To obtain a simple construction of Z, write
(11) successively as

c2-2cz = -z (a + b) + ab,
c2-2cz + Z2 = z2- z (a + b) + ab,

(Z-C)2 = (z-a) (z-b).FIG. 29

r---l--~A

says that I CA I = I CB I and that (CB, CA) = Tr + e to within
an integral multiple of 2Tr.

If we take note of the value (10) of e i8 ,

equation (9) becomes

[z(2c - a - b) - (c2- ab)]
[t(c-b)- (a-b)] = O.

Since the second factor cannot vanish inas­
much as (a - b)j(e - b) is complex imagin­
ary, there is a unique point Z and its affix is

c2 -ab
z = 2c _ a _ b . (11)
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The point Z is then (31, 40) the midpoint of the segment which
joins C to its harmonic conjugate C I with respect to points A and B.
Since triangle CAB is isosceles, the symmedian CC I is a diameter
of the circumscribed circle, and point Z is the center of the circum­
scribed circle of the triangle. We easily recognize the fact that the
rotations 2B and B about Z carry B, C into B' = A = C'.

We are led more directly to the indicated construction by the
following often employed device: we choose the origin of the Ox
and Oy axes in such a fashion as to simplify the affix of the point
to be constructed (see the example of article 40). If we place the
origin at C, we have c = 0 and equation (11) becomes

ab 1 1 1
z = --- or - = - + -.

a+b z a b

The construction of Z follows from (31, 20).
Suppose now that ad - bc -=F O. There is then a locus (a straight

line or a circle) of points Z.

3rd case. The coefficient of z in (9) being

(I - eiO ) (t - 1 - eiO ),

the locus is a straight line if 1 + eiO is real, that is, if eiO has the value 1
or - 1. The first hypothesis has to be excluded (1st case). For
eiO = - 1, B is an odd multiple of 7T and the equation is

tea + c) - (a - b)
z -= 2t

or, setting 1j2t = t l'

a+c
Z = (b-a) t1 + -2-'

The sought line is then the parallel to line AB drawn through
the midpoint of segment AC. Moreover, we immediately see that
for the rotations under consideration C' is on AB and B' = B.

4th case. The locus is a circle in all other cases. The points
Zo, Zoo, ZI given by the values 0, 00, 1 of t have for affixes

a-ceiO c-beiO

Zoo = 1 _ eiO' ZI = 1 _ ei8 •

From these we obtain

zo- a = e2iO

zo-b '
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The point Zo is then the intersection of the perpendicular bi­
sector me of segment AB with the
arc y described on AB and for
which AB subtends an angle of

-- --
algebraic value (ZoB, ZoA) = 2B.
We have similar constructions for
Zoo and Zl with the couples (mb'~)

and (rna, a). The required circle I
passes through Zo, Zoo, Zl'

We easily recognize the fact that
Zo, Zoo, Zl must belong to the
locus. The rotation (Zo, 2B) car-

FIG. 30 ries B into A; (Zoo, B) gives C' = A;
(Zl' 2B) and (Zl' B) give B' = C'.

Exercises 38 through 45

38. Construct on quadrilruled paper the locus having parametric equation

I + it
Z=---.

1- it

Calibrate this locus in such a way that its points t = 0, t = I will also be the points
t = 0, t = 1 of the auxiliary linear scale. Show that two points of the locus which
correspond to the values t and -t are synunetric with respect to the Ox axis, and that
the given equation can also be written as Z = ei

\ where t1 is a real parameter.

39. The locus with equation
(0.22 + 0.46i)t - 1

(0.2 + 0.6i)t - I

is a circle whose center, radius, and calibration on quadrilruled paper is required.

[Answer: 53/60 - i/60; V50/60.]

40. Choice of a unit circle. When the properties of a figure to be studied depend
essentially upon three non-collinear points A, B, C, it is advantageous, for simplicity
of calculation, to choose for unity the length of the radius of the circle (0) circum­
scribed about triangle ABC and to place the center 0 of this circle at the origin of the
rectangular axes Ox, Oy of the Gauss plane. Circle (0) is then referred to as the
unit circle. We can still choose the position of Ox, for example by taking as real the
affix of some point playing an important role.

Since the equation of (0) is zz = 1, we have

1
ii =-,

a

_ I
b =-

b'

1
C=-.

c
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If we set
Sl = a + b + e, S2 = be + ea + ab, S8 = abc,

a, b, e are the roots of the cubic equation

and we have the relations of exercise II. The point with affix S2/S1 is on (0).

41. With the axes of exercise 40, show that in a triangle ABC:

1° the equation of the line BC is (article 37, corollary 1°)

z + bez = b + c;
2° that of the altitude AA, is (exercise 35)

be
z-bez = a--;

a

3° the affix of the foot Al of this altitude is

4° the three altitudes AA" BB" CC, are concurrent at a point H (the orthocenter)
with affix s" situated on the Euler line joining the circumcenter 0 to the centroid G

of the triangle, and such that OH = 30G;

5° the centroid of the four points A, B, C, H is the midpoint O. of OH;

6° the algebraic value of the area of the orthie triangle AlBIC1 is

_ i(b2 - c') (c' - a') (a2 - b')

16a2b2c 2

7° the tangents to circle (0) at the points A, B, C form a triangle A'B'C' (the tangential
triangle) whose vertex A' has affix [because (OA'BC) = -1]

2be
a'=---

b + e

and whose area has the algebraic value

- i(b - c) (e - a) (a - b)

(b + c) (e + a) (a + b)

go the symmedian AA' has for equation

z(3a - SI) + Z(as2 - 3s.) + 2(be - a') = 0,

and the three symmedians are concurrent at the Lemoine point K with affix

2(3s1 - S.$I) 2(3s1s. - s~)
k = = ;

9 - SI$1 9s. - S1S2

90 the isodynamic centers W, W' are given by the equation (exercise 27)

(3s. - s~)z' + (SIS. - 9s.)z + 3s1s. - s~ = 0
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which, since it can be written as (8°)

kz' - 2z + k = 0,

proves that W, W' are collinear with the points 0, K, which they harmonically
separate, and are inverses of one another in circle (0). [place Ox on OK.]

42. Second parametric representation of a circle. A point Z moving on a
circle of center n and radius R has an affix of the form

z = w + Rei', t a real variable,

ad- bc oF 0,

in which we frequently designate the exponential eit by r.
Show that the equation

ar + b
z = ----,

cr + d
t real

R=lad-bc!.
ce-dJ

at-btl

ct-dtl'
w =

represents a straight line when I c I = I d I; otherwise it represents a circle whose center n
and radius R are given by

z=

[As in 2° of article 43, set tan t/2 = t" which reduces the equation to

a + b + i(a - b)t,

c + d + i(c - d)t, '

and use the results of article 41.
and 91.]

The development is shorter if we use articles 76

43. The nine-point or Feuerbach (or Euler) circle. In a triangle ABC, the
feet A" B" C, of the altitudes, the midpoints A" B" C, of the sides, and the midpoints
A., B., C. of the distances from A, B, C to the orthocenter H are on a circle (OG)
whose center OG is the midpoint of OH and whose radius is half that of the circum­
scribed circle. (We have (exercise 41, 3°)

$1 S3

a, = 2- 2a"

whence A" B" C, are on the circle (exercise 42) having equation

z= ~ - (~ )r,
center s,/2, and radius I s3/2 I = 1/2. Similarly for a, and a3']

44. If R is the (unit) radius of the circle (0) circumscribed about triangle ABC, the
circumscribed circle of the tangential triangle A'B'C' (exercise 41,70 ) is the inverse of
the Feuerbach circle in the inversion of center 0 and power R2 [since OA2 . OA' = R'
if A2 is the midpoint of BC]. Show (article 19) that the equation of circle (A'B'C')
is (exercise 43)

2
z =----

whose center M has affix
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and lies on the Euler line such that
2R2·0H

OM = ---=-=-=---=c:­OH2 - R"'

the radius of the circle is

I OH" - R2
1

75

45. Griffiths' pencil. Show that the equation of the pencil of circles determined
by the circumcircle (0) and the Feuerbach circle (0.) is

4(1 - '\)zz - 2s,z - 2s1z + 4,\ + SIS, - I = 0,

where ,\ is a real parameter.

The equation of the radical axis of the pencil is

2s,z + 2s1z = 3 - SISI' •

The affix of the center and the square of the radius of a circle of the pencil are

For

S,

2(1 - ,\)'

As,SI - (4'\ - 1) (1 - ,\)

4(1 - ,\)2

I
,\=-­

2' 2' 4'
5-s,s,

4

we have the orthoptic circle, with center G, of the Steiner ellipse inscribed in triangle
ABC, the conjugate circle, with center H, of the triangle, the orthocentroidal circle,
with diameter HG, of the triangle, and the circumcircle of the tangential triangle
(exercise 44).

IV. THE ELLIPSE

46. Generation with the aid of two rotating vectors. If two
vectors issued from a fixed point 0 have given but different magnitudes,
and if they rotate about 0 with constant and opposite angular velocities
wand - w, the fourth vertex of the parallelogram having the two
vectors for a pair of adjacent sides describes an ellipse (E) of center O.

If, for a rectangular cartesian system of origin 0, the affixes of the
extremities A, B of the vectors, in some one of their positions, are a, b,
then the parametric equation of (E) is

z = aeiwt + be-iwt ,

the parameter t being allowed to take on all real values.

(1)
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at = aeiwt , bt = be-iwt

and, since

OZ = OAt + OBt,

x we obtain the equation (7)

z = at + btFIG. 31

Let OAt, OB t be the positions assumed by the vectors OA, OB
Z at the end of time t, and let Z

!I be the fourth vertex of the par­
allelogram constructed on OAt>
OB t ; denote the affixes of At> B to

Z by at> bt> z. We have (15)

or (I) for the locus described by Z.

To find the ordinary cartesian equation of this locus we can write
(1) in the form

x + iy = (al + ia2) (cos wt + i sin wt) + (bi + ib2) (cos wt - i sin wt),

separate the real and the imaginary parts, then eliminate t from the
two parametric equations so obtained.

But the calculation is simpler if we observe that a suitable rotation
of the Ox and Oy axes about 0 converts equation (I) into an equation
of the same form in which the complex numbers a, b are replaced by
their moduli.

In fact, let a, f3 be the arguments of a, b. Since

a = I a I ei<x, b = I b I eiP,

equation (1) can be written as

z = I a I ei(<x+wt) + I b I ei(P-wt). (2)

The vectors represented by the terms in the right member will have
the same direction and the same sense for the particular value to
of t for which

or
f3-ex

to=~'

Let us rotate the axes through the angle

cp = ex + wto = Hex + f3) = f3 - wto• (3)
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If Zl is the new affix of Z for the system (Oxl, 0Yl)' we have (24)

and equation (2) becomes

Zl = I a I ei(iX+evt-'I') + I b I eil{J-evt-'I')

or, because of equations (3),

Zl = I a I eievU-t.) + I b I e-iev(t-t.).

By introducing the new real parameter

t l = t - to

we obtain the announced form

Zl = I a I eievt• + I b I e-ievt•• (4)

In this equation, the separation of the real and imaginary parts

Xl = [I a I+ I b I] cos wtl ,

Yl = [I a I- I b Il sin wtll

and the locus of Z, thus having

X2 y 2

[I a 1~ Ib 1]2 + [! a I~ Ib 112 = 1

for its cartesian equation, is an ellipse (E) of center O.

Remark. If I a I = I b I, equation (4) becomes

Zl = 2 I a I cos wt!'

This represents the segment of length 4 I a I lying on OX l and having
o for midpoint, and is described by point Zl with a simple harmonic
motion.

47. Construction of the elements of the ellipse. 10 The
tangent at Z is perpendicular to the line AtB t, which is parallel to
the normal ZN at Z of the ellipse (E).

The tangent ZT to (E) at Z is parallel to the vector representing
the complex number (34)

dz = iw (aeievt _ be-ievt)
dt

obtained by differentiating equation (1).



78 THE ELLIPSE

But the number
aeiCDt _ be-iwt

is represented by OAt - OB t or BtAt> whence the direction of the

vector representing dzjdt is perpendicular to that of BtAt.

2° The major axis of (E) lies on the interior bisector Ox! of angle
- --

(OAt> OB t) ; the semi-major axis is lOA I+ lOB I, and, if I OA I >
lOB I, the semi-minor axis is lOA I-lOB I.
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As t varies, the lines bearing the vectors OAt, OBt generate two
pencils which, being inversely equal, have in common two per­
pendicular rays Ox!> Oy!> the interior and exterior bisectors of every

--- ----

angle (OAt> OBt). When OAt> OBt are on Ox1, they have the
same sense, while their senses are opposite when they are on 0Yl'
In each case, the tangent to (E) at the point Z which these vectors
determine is perpendicular to AtB t (see 1°), that is, to the diameter
OZ, and the latter is thus an axis of the ellipse.

3° If the lines OAt> OBt meet the normal ZN to (E) in A~, B~,

the foci of the ellipse are the intersections F, F' of the OX1 axis with
the circle passing through A~, B~ and having its center at the point
of intersection T' of the Oy1 axis and the tangent ZT.

The affixes of these foci are the two square roots of the product 4ab.
We have, by 2°,

OP = OF'2 = [lOA I + IOB IF - [i OA I- IOB 1]2 = 4 IOA.OB I
= lOA; 1. lOB; I·

Since, moreover, OX1 IS the interior bisector of angle (OAt, OB t),
we have (30, III)

whence (31, 1) the indicated construction for F and F' and, if f
is the affix of F,

j2 = a;b; = 2at . 2bt = 4ab.

We also note that if T and N are the points of OX1 on the tangent
and the normal at Z, then (TNFF') = - 1, OF = - OF', from
which we get another construction of F and F'.

4° The semi-diameter OZ' conjugate to OZ is perpendicular to A tB t
and has IAtB t I for length.

The diameter conjugate to OZ is parallel to the tangent ZT, and
therefore perpendicular to AtB t. Since the tangent is parallel to
the vector represented by the number (see 1°)

i(aeiUJt _ briUJt) = ein/2.aeiUJt + e-in/2.briUJt = aeiUJ(Hn/2UJ) + be- iUJ (t+n/2UJ)

and since Z' must be furnished by a value t' of t giving

Z' = aeiUJt' + be-iUJt ',

we conclude that Z' is obtained for

(' = t + ---'!!­
2w
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and that

I OZ' I = I aeiwt' + be-iwt' I = I aeiwt - be-iwt I = I AtBt I.
5° The center of curvature C of the ellipse for the point Z is the

harmonic conjugate, with respect to the points A;, B;, of the orthogonal
projection P of the center of the ellipse on the normal.

At the instant t, the magnitude v of the velocity of the point Z
describing the ellipse is (10)

v = I ~; I = IwAtBt I
while the acceleration vector is represented by the complex number

~:: = _w2 (aeiwt + be-iwt) = -w2z.

This vector is therefore w 2ZO. Consequently, the algebraic value
of the normal acceleration, on the arbitrarily oriented normal ZN,
is ZP.w 2• But we know that ZP.w2 has the value

ZC
whence we have

ZB? = ZP.ZC,

which establishes the property.
The point C can be constructed by notlcmg that OP and OC

cut off on ZB t a segment of which B t is the midpoint.

Corollary. The radius vector OZ sweeps over an area which in­
creases proportionally to the time t.

We have just seen that under the motion of equation (1), the

acceleration w 2ZO always passes through the fixed point 0, and the
planar motion takes place under the action of a central force.

48. Theorem. Every ellipse can be generated with the aid of two
determined rotating vectors.

Consider (see Fig. 32) an ellipse (E) with foci F, F', and whose
minor axis lies on 0Yl' If the tangent to (E) at a point Z cuts 0Yl
in T', let A't> B~ be the points where the normal at Z is cut by the
circle having center T' and passing through F, F'. The vectors

OA;/2, OB~/2 are the sought vectors OAt> OBt, which must rotate
with angular velocities that are equal and opposite, but of arbitrary
magnitude inasmuch as the lengths of the axes of the generated
ellipse are independent of w.
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IOXI-[OYI
2

If we know, on OX l and 0Yl> the vertices X and Y of (E), the
- -

sought vectors OA h OBt are carried by two arbitrary axes symmetric
with respect to OX l and, when lOX I > lOY I, the moduli of these
vectors are (47, 20)

IOXI +IOYI
2

49. Ellipse, hypocyc1oidal curve. Theorem I. An ellipse is
in two ways the locus of a point Z which describes a circle with a constant
angular velocity, while the circle rotates around a fixed point 0 with
a constant angular velocity equal to minus half the first angular velocity.

It suffices to interpret equation (1) of the ellipse (E) written in
one of the forms

z = aeiwt + beiwt.e-2iwt,

z = ae-iwt.e2iwt + be-iwt.

(5)

(6)

Consider equation (5). Let A,
B be the points with affixes a,
b; the fourth vertex Zo of the
parallelogram constructed on
OA and OB is the position of
the moving point at the instant
t = O. By rotation about 0 with
constant angular velocity w, the
points A, Zo, and the circle (co)
of center A and radius I AZo I
occupy at instant t the positions
At> Z', (Ct). The affix of At is

aiwt, and vector AtZ' is ob­

tained from AZo by the rotation
represented by the number FIG. 33

biwt. If, then, we rotate AtZ' about At through the angle - 2wt,

we have the vector AtZ representing the number biwt.e-2iwt, and
the point Z can then be obtained as stated in the theorem.

Equation (6) gives Z by considering a point which describes the
circle of center B and radius I OA I with angular velocity 2w, while
this circle rotates about 0 with velocity - w.

Theorem II. An ellipse is in two ways the hypocycloidal locus
of a fixed point Z im'ariably connected with a circle which, without
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slipping, rolls interiorly on a circle of radius twice that of the first circle.
At instant t, the motion of point Z on the ellipse (E) is tangent

to the motion which results (theorem 1) from the rotation of angular
velocity - 2w about At and the rotation of angular velocity w about
O. These rotations compound into a single rotation about the in­
stantaneous center of rotation C a located on line OAt and such that

OCa _ -2w _ 2
CaA

t
- -w- - - .

The locus of C a in the fixed plane, that is, in the plane of the base
curve, is thus the circle f3a of center 0 and radius I OC a I = 2 I OAt I
= 2 lOA I, while the locus of C a in the moving plane, that is, in the plane
of the generating curve, is the circle Pa of center At and radius I AtCa I
= I OAt I = I OA I. The ellipse (E) is then the locus of a point Z
invariably connected with Pa as Pa rolls without slipping on f3a.

p

FIG. 34

If we reason in the same way about point B t, we find that the
instantaneous center of rotation Cb is such that

OCb _ 2w _ 2
CbB

t
- -w - - .

The base curve f3b and the generating curve Pb are the circles (0, 2 OB)
and (B t , OB).
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Corollaries. 1° Knowledge of fJa' Pa, Z implies knowledge of the
- -

rotating vectors OA h OB h with the aid of which (E) is generated (46).

2° The locus of a point Z on Pa and invariably connected with Pa
is the diameter of fJ a lying on OZ (46, Remark).

Theorem III. An ellipse is in two ways the locus of a point Z
invariably connected with a segment of constant length whose extremities
slide on two arbitrarily chosen diameters.

In fact (Fig. 34), if two fixed straight lines p, q radiating from 0
cut the generating circle Pa in points P a, Qa, that we consider as
invariably connected with Pa, point Z is invariably connected with
the constant segment P aQa, and we know (theorem II, corollary 2°)
that the loci of P a, Qa are p, q when Pa rolls on f3a. We may reason
in the same way with Pb' f3 b'

V. CYCLOIDAL CURVES

x
The complex parametric equation of

the cycloidal locus of the fourth vertex
Z of the parallelogram constructed on
OAlt, OA2t is then

50. The Bellermann-Morley generation with the aid of two
rotating vectors. If two vectors radiating from a fixed point 0
and having constant lengths rotate about 0 with constant and different
angular velocities WI' W 2 , then the fourth vertex of the parallelogram
having the two vectors for a pair of adjacent sides describes a cycloidal
curve (r).

Let Ox,~ b~wo fixed rectangu- !I Z

lar axes, OAI, OA 2 the initial posi­
tions of the rotating vectors, and aI'
a 2 the affixes of AI, A2•

At time t the vectors occupy posi-
- -

tions OAlh OA2t such that the
affixes of Alh Au are

(1)
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We can show, as in article 46, that a suitable rotation of the Ox
and Oy axes about 0 converts equation (I) into an equation of the
same form in which the complex numbers aI' a2 are replaced by their
moduli, that is, into

In the new cartesian system (Ox', Oy'), the cartesian parametric
equations of the cycloidal curve are then (34)

x' = I al I cos wIt' + I a2 I cos w 2t',

y' = I al I sin WIt' + Ia2 I sin w2t',

51. Theorems. I. A cycloidal curve is in two ways the locus of
a point Z rotating uniformly about a point while that point rotates
uniformly about a fixed point O.

It suffices to interpret equation (I) written in one of the forms

(2)

(3)

by reasoning as in article 49.
Equation (2) proves that the cycloidal curve is generated by a

point which describes the circle of center Al and radius I OA 2 I
with angular velocity W 2 - WI' while this circle rotates about 0 with
angular velocity WI'

Equation (3) says that the curve (r) is the locus of a point describing
the circle of center A 2 and radius I OA I I with angular velocity
WI - W 2 , while at the same time this circle rotates about 0 with
angular velocity W 2'

II. The cycloidal curve (r) is, in two ways, a roulette arising from
a circular base curve and a circular generating curve.

It is the path of a point invariably connected with

lOa circle PI of center Al and radius I OAlw I !W 2 I which rolls without
slipping on the circle /31 of center 0 and radius I OAI (WI - W2)!W 2 I ;

20 a circle P2 of center A2 and radius I OA 2w 2!w I I 'which rolls without
slipping on the circle /32 of center 0 and radius I OA2 (WI - W2)!W I I·

At an arbitrary instant, which can always be considered as the
initial instant, the motion of point Z on (r) is tangent to the motion
which results (theorem I) from the two rotations of centers 0, Al
and angular velocities WI' W 2 - WI' or of centers 0, A2 and angular
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velocities w 2, WI - W2. These rotations compound into a single
rotation about an instantaneous center C1 or C 2 located on the line
OA1 or OA2 and such that

OC1 W2 - WI OC2--- or --
C1A 1 WI C2A2

From this we obtain

OA1 w2 OA2 WI

C
1
A

1
WI' C

2
A

2
W

2
(5)

In the moving plane, point C1

is then at the constant distance
IA1Cl I= IOA1W 1/w 2 I from the
point Al invariably connected
with this plane, and, in the fixed
plane, at the constant distance
lOCI I = I OA1 (WI - ( 2)/W 2 I
from the fixed point O. Hence
we have the generating circle PI

and the base circle Pl.
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Corollaries. 10 The normal at Z to (r) contains the instantaneous
centers C I , C z. Although this is known from kinematics, we shall
reestablish it by a simple calculation. Since we have designated
by Al the point of affix aleiw,t, the affix of C I is

. t OCI . t Wz - WIa eIW ! -- = a e'UlJ1
I • OA

I
I • W z

and the line ZC I has the direction of the vector represented by the
number

This follows from

But the direction of the tangent at Z to (r) being, by (34),

dz .( . t . t)- = taw e'W, + a W e'W,dt I I Z Z ,

that of the normal is that of ZC I or, by similar reasoning, of ZC z'

20 If two points Cll C z uniformly describe two concentric circles with
angular velocities WI' wz, the line CIC z remains normal to the cycloidal
curve which is generated by the point Z of this line defined by the equation

CIZ WI
CzZ Wz

CIZ
CzZ

and one of the equations (5).

52. Epicyc1oids, hypocyc1oids. The cycloidal curve (I') is
called an epicycloid or a hypocycloid according as the generating vectors
- -
OA I , OA z rotate in the same or the opposite sense, that is, according
as Wll W z have or do not have the same sign.

For an epicycloid, the base circle and the generating circle are exteriorly
or interiorly tangent, but in the latter case it is the larger circle which
rolls on the smaller.

In fact, if WIW Z > 0 and, as in figure 36, I WI I < I W z I, equations
(4) show that CI is between 0 and AI> whence the circles PI' f31
touch exteriorly, while C z is on the prolongation of AzO and the
circles Pz, f3z are tangent interiorly, the radius of the first being
then greater than that of the second.

For a hypocycloid, the base circle and the generating circle are tangent
interiorly, and it is the smaller circle which rolls on the larger.
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In fact, if W1W2 < 0 and, as in figure 37, I WI I > I W2 I, equations (5)
show that CI is on the prolongation of OA1, whence the circles PI'

[:11 are tangent interiorly and the first is the smaller. The same
reasoning applies to P2' [:12'

For a hypocycloid, the diameter of one generating circle is less than
the radius of the corresponding base circle, while the diameter of the
other generating circle is greater than the radius of the corresponding
base circle.

In fact, since W IW 2 is negative, equations (4) give

I
OCI I = IW

2
! + 1, I OC2 I = II WI I + 1

AlCI wI A2C2 W2

and one of the right members of these is less than 2 while the other
is greater than 2.

A cycloidal curve (epicycloid or hypocycloid) is said to be ordinary
if it is generated by a point of one of the generating circles. This point
belongs to two generating circles, the two base circles coincide, the moduli
of the rotating vectors are inversely proportional to those of their angular
velocities, and the radii of the generating circles are proportional to
the moduli of the angular 'velocities of the vectors which cause their
centers to rotate.

In fact, if Z is on the generating circle PI of radius (51, II)

I OAI W I!W 2 I, we have

IAIZ I = I OA2 I = IOAI :: I,
then

IA2Z I = I OAI I = I OA2 :: I

and Z is on the generating circle P2' Moreover

I OAI I = Iw21
,OA2 WI

whence the concentric base circles [:1 1> [:1 2 have (51, II) the same
radius, and the ratio of the radii of the generating circles PI' P2 is

I AICI I : I A2C2 I = I OAI :~ I : I OA2 :: I = I :: i .
An epicycloid is lengthened or shortened according as the point Z

invariably connected with the generating circle exteriorly tangent to
its base circle is exterior or interior to this generating circle.
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A hypocycloid is lengthened or shortened according as the point Z
invariably connected with the generating circle of diameter less than
the radius of its base circle is exterior or interior to this generating
circle.

In the two cases, the cycloidal curve is lengthened or shortened if,
supposing I WI I < I W 2 I, we have

II OAI I < I W2! or I OAI I > I W2!
OA2 WI OA2 WI'

The cycloidal curve of figure 36 (WIW2 > 0, IWI I < IW2 I), which
is an epicycloid, is lengthened if

I AIZ I = I OA2 I > I AIel

or (51, II)

I OA2 I > I OAI :: I or I g~: I < I:: I.
If for the hypocycloid we reason on figure 37, we should note that
in this case I WI I > I w 2 1· 1

VI. UNICURSAL CURVES

53. Definitions. A plane curve is said to be unicursal if it can
be represented in cartesian coordinates by parametric equations

(1)

in which fl(t), f2(t) are rational functions of the real parameter t,
that is, are polynomials or ratios of two polynomials in t.

Its complex parametric equation

then has the form

ao + aIt + a2t2 + + amtm A(t) (2)
Z = bo + bIt + b2t2 + + bntn B(t)'

the coefficients a, b of the polynomials. A(t), B(t) of arbitrary degrees
m, n being real or imaginary constants.

1 In an article where these developments are found (Ueber neue kinematische
Madelle, sowie eine neue Einfuhrung in die Theorie der cyclischen Curven, Zeitschrift
Math. Phys. XLIV, 1899, translated in the Enseignement mathematique, vol. 2, 1900,
pp. 31-48), F. SCHILLING has given the construction of simple apparatuses based on
these properties which permit all the cycloidal curves to be described mechanically.
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Thus the straight line and the circle with respective equations
(36, 41)

are unicursal curves.

54. Order of the curve. If we eliminate t from equations (1),
by Sylvester's method, for example, we obtain the cartesian equation
of the curve in the form

P(x, y) = 0,

where P(x, y) is a polynomial of some degree s in the variables x and y.
The curve is thus algebraic, and we know that an arbitrary straight

line cuts it in s points, real or imaginary, distinct or not. We say
that the curve is of order s.

Theorem. The unicursal curve with equation (2) in which

1° the polynomials A(t), B(t) are relatively prime, and

2° B(t) vanishes for v real or conjugate imaginary values (distinct
or not), is of order

m + n - v if m > n,

2 n-v if m <: n.

Let us first of all obtain from (2) the cartesian parametric equations.
We must give to the fraction a denominator having real coefficients.
Since the total number of real roots and of conjugate imaginary
roots of the equation B(t) = 0 is v, we can write

B(t) = B.(t).Bn_.(t),

where B.(t) is a polynomial of degree v whose coefficients are all
real, while, if v < n, B,,_.(t) is a polynomial of degree n - v whose
coefficients are not all real. The equation

Bn_.(t) = 0

has no real roots nor any pairs of conjugate imaginary roots. By
grouping together the real and the pure imaginary parts we have

Bn-.(t) = B/(t) + iB"(t),

which we will write as
Bn-. = B' + iB";

at least one of the polynomials B/, B" has degree n - v. Note
that B/, B" are relatively prime, for if they should have a common
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root, real or imaginary, Bn-. would have a real root or two conjugate
imaginary roots. We similarly write

A(t) = A'(t) + iA"(t) or A = A' + iA";

at least one of the polynomials A', A" has degree m. We then have

A' + iA"
Z = B.(B' + iB")· (3)

Multiplication of the numerator and denominator of the fraction
by B' - iB" gives the sought form

A'B' + A"B" + i(A"B' - A'B")
Z = B.(B'2 + B"2) (4)

and consequently the cartesian parametric equations of the curve

A'B' + A"B"
x = B.(B'2 + B"2) ,

A"B' - A'B"
Y = B.(B'2 + B"2) . (5)

The real or imaginary points of the curve located on the arbitrary
real or imaginary line with equation

(6)

(8)

correspond to the real or imaginary values of t which are roots of
the equation

A"B' - A'B" = p(A'B' + A"B") + qB.(B'2 + B"2)

obtained by replacing x and y in (6) by their values (5). This
equation can be written as

qB.(B'2 + B"2) + [A'(pB' + B") + A"(pB" - B')] = 0. (7)

The degrees in t of the first and second terms are 2n - v and
m + n - v, respectively.

The announced theorem will then be established if we show that
no root of (7) gives the form % to one, and consequently to the
other, of the expressions (5).

If a root to of (7) renders x and y indeterminate, we will have

A'B' + A"B" = 0,

A"B' - A'B" = 0,

B.(B' + iB") (B' - iB") = 0,

a system equivalent to equation (8) along with

A'B' + A"B" + i(A"B' - A'B") = °or (A' + iA") (B' - iB") = 0, (9)

A'B' + A"B" - i(A"B' - A'B") = °or (A' - iA") (B' + iB") = 0. (to)
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By virtue of (9), to annuls A' + iA" or B' - iB". Since the polyno­
mials A, B are relatively prime, if to annuls A' + iA", this value
also annuls, because of (10) and (8), A' - iA" and B' - iB" ; thus
to annuls each of the polynomials A', A" and is imaginary inasmuch
as B' and B" are relatively prime; the number conjugate to to therefore
annuls A', A", B' + iB", and consequently the polynomials A, Bn-.,

which is impossible. If, on the other hand, the value to annuls
B' - iB", it is imaginary and does not annul B' + iB", for B' and
B" are relatively prime. Hence, by virtue of (10), to must annul
A' - iA" ; the conjugate of to will then annul B' + iB" and A' + iA",
which is impossible.

x
FlG.38

Remarks. I° An imaginary root of (7) gives, with the aid of
(5), an imaginary point of the curve and, by (4), a z whose image
is not this point since each z has a real point for image (I).

2° It may be that a unicursal y
curve consists of a curve of lower
order but counted several times.

Thus, according to the theo­
rem, the equation

z = ao + a1t2

represents a curve of the second
order, or a conic. But if we set

t2 = T, T > 0

the equation becomes
z = ao+ alT

and represents (36) a ray radiating from the point Ao of affix ao,
each point Z of which is given by two values of t, namely the two
square roots of the number T which yields this point. As t varies
from - 00 to + 00, the ray is thus described twice, namely in the
two opposite senses, by the point Z.

Also notice the case where B(t) is the conjugate of A(t). Since
I z I = 1, Z lies on a circle.

3° The only non-irreducible fractions to which the theorem can be
applied are obtained by multiplying the polynomials A(t), B(t) by the
conjugates of an arbitrary number of linear factors into which the
polynomial Bn -.{t) resolves itself.
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and we will have

In fact, if we multiply A(t) and B(t) by a common factor t - 0:,

the analogues of m, n, v are

mi = m + 1, ni = n + 1, VI

if
VI = V + 2.

The only way of increasing by 2 the number of real or conjugate
imaginary roots of B(t) = 0 by multiplying by the single factor
t - 0: is to choose for ex the conjugate of some one of the roots of
Bn_.(t) = O.

It follows that the fraction (4) is the only fraction whose denominator
polynomial has all its coefficients real and to which the theorem for
the determination of the order of the curve can be appli~d.

55. Point construction of the curve. l If we carry out the
indicated division, equation (2) becomes

R(t)
z = Q(t) + B(t)'

Q(t) being a polynomial

Co + CIt + c2t2 + ... + cm_ntm- n (11)

of degree m - n, and the fraction can be replaced by a sum of simple
fractions in which a p-fold root ex, real or imaginary, of B(t) = 0
gives rise to the partial sum

k=P-I lkk (t _ cx)P-k (12)
k=O

where the lk's are constants,
The point Z corresponding to a value of t can then be found

by obtaining the sum of the vectors representing the terms of (11)
and those of the sums analogous to (12). For these latter it will
be noted that

I
I p-k

Z=_k_
t- ex

is the equation of a straight line or of a circle passing through the
origin (t = (0) according as the number ex is real or imaginary.

1 G. HAUFFE, Ortskurven der Starkstromtechnik, p. 131, Berlin, 1932.
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56. Circular unicursal curves. A plane algebraic curve re­
presented by a cartesian equation with real coefficients and which
passes k times through one of the circular points at infinity also
passes k times through the other circular point at infinity. The
curve is said to be k-circular,. it is called circular, bicircular, or tri­
circular according as k is 1, 2, or 3, that is, according as each of the
circular points is a simple, double, or triple point of the curve.

A curve can be k-circular without being unicursal, and conversely.
but it can also possess both of these characteristics.

Theorem. The unicursal curve with equatinn (54)

A(t) A(t) A (13)
z = B(t) = Bv(t) . Bn-v(t) Bv(B' + iB")

is (n - v)-circular.
The coordinates of an arbitrary point of the curve are given by (5).

Since the circular points are at infinity, the values (imaginary) of t

able to give a point of the curve which is to be a circular point must
annul the denominator of the fractions (5) and thus figure among
the roots of

Bv(B' + iB") (B' - iB") = O. (14)

must be roots of

Moreover, the t's corresponding to the
the isotropic line of equation

x + iy = 0

circular point situated on

(15)

A'B' + A"B" + i(A"B' - NB") = 0,

an equation which can be written as

(N + iN') (B' - iB") = 0 or A(B' - iB") = O. (16)

The t's furnishing the considered circular point are therefore the
roots common to equations (14), (16), or, since A and Bv(B' + iB")
are two relatively prime polynomials, are the roots of

B'-iB" = o. (17)

This equation being of degree n - v, the theorem is established.

57. Foci. A real or imaginary point is a focus of a given plane
curve if the two isotropic lines radiating from this point are tangents
to the curve.

When the curve is k-circular, a focus is singular if the isotropic
lines radiating from this point have their points of contact at the
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circular points. For example, the center of a circle is the only focus
of this circular curve, and it is singular.

Theorem. If the unicursal curve with equation (56)

A
Z = B.(B' + iB")

does not have a multiple point in the finite part of the plane on the
isotropic lines radiating from the origin, then the origin is

I0 an ordinary focus if the equation A = 0 has a root which is
at least double and which is not a root of

B' -iB" = 0;

20 a singular focus if the equations in t

A = 0, B' - iB" = 0

have at least one common root.

(17)

The t's of the points common to the curve and to the isotropic
line of equation (15) are the roots of (16) ; the n - v common circular
points (coincident at the same circular point) correspond to the roots
of (17) (56). Among the remaining common points, suppose that
there are no two which coincide because of the existence on the
isotropic line of a multiple point in the finite part of the plane.
Then, in order that the origin be an ordinary focus, that is, in order
that the isotropic line be tangent to the curve at a non-circular
point, it is necessary and sufficient that two roots of the equation
A = 0 be equal but be distinct from any root of B' - iB" = O.
If, on the contrary, the origin is to be a singular focus, the point
of tangency must lie at the circular point, and at least one of the
points given by A = 0 must coincide with the circular point.

Determination of foci. A translation of axes to a sought focus
of affix ep gives the curve the new equation

A A - 4>Bv(B' + iB") Al
, = Bv(B' + iB") - 4> = Bv(B' + iB") = Bv(B' + iB")'

The ep of an ordinary focus annuls the discriminant of Al and the
double root then existing for Al = 0 must not annul B' - iB".
The ep of a singular focus annuls Al and B' - iB". For the 4> of
an ordinary focus, it is necessary to see if the isotropic line contains
or does not contain a multiple point in the finite part of the plane.
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VII. CONICS
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58. General equation. The complex parametric equation of any
real conic of the Gauss plane is of the form

z=
ao+ 2aI t + a2t2

Yo + 2YIt + Y2t2 '
(1)

where ao, aI' a 2 are real or imaginary constants and ro, r 1, r 2 are real
constants.

Consider a real conic referred to two perpendicular axes Ox, Oy
and let w be the affix of anyone of its points O. For the new axes
og, O'IJ parallel, respectively, to Ox, Oy, the conic has an equation
of the form

r0' rl' r2' ex, fl being real constants.

A variable real line through 0 and having equation

'IJ = tg, t a real parameter,

cuts the conic again in the point having cartesian coordinates

0: + flt o:t + flt2

g = Yo + 2YI t + r2t2' 'IJ = Yo + 2YI t + y2t2

and whose affix, for the system og, OTj, is

, = g+ i'IJ = ex + (f3 + io:)t + ~t2.
ro + 2YI t + r2t

The affix z of this point, for the system Ox, Oy, is then (24)

, 0: +WYo + (fl + io: + 2wrl )t + (ifl +Wy2)t2

z = + W = ro + 2YIt + r2t2 '

an equation of the form (1).

Particular cases.

(2)

(3)

(4)

(5)

z=
ao+ 2aI t + a2t2

Yo + 2rI t
(6)
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59. Species. Equation (1) represents an ellipse, a hyperbola, or
a parabola according as the discriminant

~r = 707 2 -r:
(7)ro+ 27It + T2t2

is positive, negative, or zero.

For the conic is an ellipse, a hyperbola, or a parabola according
as there exist 0, 2, or I real values of t which make z infinite.

of the trinomial

The only value of t which makes z of equation (5) infinite is t = 00;
we then have a parabola and, since r I = r 2 = 0, we have ~r = 0.

The z given by (6) is infinite if t is infinite or if t = - rO/2r1 ;

we then have a hyperbola and, since r 2 = 0, we have ~r = - r~ < 0.

Corollary. Equation (1) represents a circle if,

being respectively the discriminant of the trin(lmial

ao + 2alt + a2t2 (8)

and the harmonic invariant of the trinomials (7), (8), we have

~r > 0, 4 ~a~r - H2 = O. (9)

In fact, relations (9) say that the zeros of (7) are imaginary and
that one of them is a zero of (8), whence (1) can be written in the
form

ao + alt bl . .
Z - --- -b Imagmary,

- bo + bIt' 0

and represents a circle (41).

60. Foci, center. 1° The affixes cPI' cP2 of the foci of the conic
with equation (1) are the roots of the equation

(10)

In fact, if we translate the axes to a focus of affix cP' the equation
of the conic becomes

ao- cPro + 2(al - cPTI) t + (a2- cPT2) t2
ZI = ro+ 2T

l
t + r

2
t2 •

Since the ellipse, the hyperbola, and the parabola are not circular



61. CENTER AND RADIUS OF A CIRCLE 97

curves, their foci are ordinary, and the numerator of the fraction
must be the square of a linear function of t (57), whence

(ao-4>ro) (a2 -4>r2)- (al -4>r1)2 = 0,

which is equation (10).
When the conic is a parabola, the affix of the focus is

4>1 = ~ .

20 The affix w of the center of the conic is

H
w = 2Ll

T

since the center is the midpoint of the segment determined by the
foci, and we have w = (4)1 + 4>2)/2.

Corollary. The origin is a focus or the center of the conic according
as

(11)at + b
Z=---

ct + d

Ll a = ° or H = 0.

The affix of the center of61. Center and radius of a circle.
the circle of equation (41)

is

the circle, the numerator

,= at + b -w(ct + d)
ct + d

ad-be
w =--=--

cd-de
and the radius of the circle is

I
ad-be I.
cd-de

Since the center is a singular focus of
of (57)

(12)

must vanish for the root of

et + d = 0,
and therefore

d d
-a~ +b-w(-c~ + d) = 0,

c c

whence the expression (12).1

1 H. PFLIEGER-HAERTEL (Zur Theone der Kreisdiagramme: Archiv fur Elektro­
technik, vol. XII, 1923, pp. 486·493) has calculated w by using some properties of a
Mobius transfonnation (see article 127).
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The affix z of any point of the circle gives the radius R by

R = 1 w-z I·
If we take z = bid, corresponding to t = 0, we have

R = I a~ - be _ ~ I = I add_- bed I = I ad - be I.
cd - de d d(ed - de) ,cd - de

62. Parabola. 10 Consider the equation (58)

z = ao+ 2 alt + a2t2
• (13)

y

...
"

FIG. 39

Let Ao, Al , A2 be the points with affixes ao, aI' a 2 and let AoX,

AoY be axes having the directions of the vectors OA 2, OAl • In
the cartesian system AoX, AoY, the coordinates of a point Z of the
curve are

x = 1 a2 1 t2
, Y = 2 I alit

and the equation of the parabola is

y2 = 4 I al 1

2
x.

I a2 I
We see that the numbers ao, a2, al give a point Ao of the curve, the
direction of the diameters of the curve, and the direction of the tangent
to the curve at Ao. As for the focus, its affix is (60)

Therefore (30, III), if A3 is the harmonic conjugate of A 2 with respect
to point Al and the symmetric of Al with respect to 0, then the focus F
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(14)

of the parabola is defined by AoF = A30. We can easily find the
other fundamental elements of the curve.

2° Consider the equation (59)

ao + 2al t + a2t2
A 2

Z = 2 2 ' u r = r Or 2 - 71 = O.
ro + TIt + T2t

and becomes

It assumes the form (13) by the substitution

TI T
t=---­

r2 1-T

It follows that the diameters are parallel to the vector which represents
the harmonic invariant H = aOr 2 - 2al r i + a2rO, and the parametric
equation of the axis of the curve is (60)

Ll a H
z=~+ ti'

30 When the ortgm is the focus of the parabola, we have Ll a = 0
and equation (14) becomes

(15)

63. Hyperbola. The equation of any hyperbola of the plane
is (58, 59)

and the affix of its center is (60)

H aoT2 - 2al ri + a2rO
w=2Ll= 2Ll .

r r
(16)

Case I: ro = r 2 = O. We have w = ailri and the equation
becomes

(17)

The infinite points of the curve correspond to the values 00 and
o of t. Since the vector OZ has the same direction as (lIt) OZ
and tOZ, the corresponding asymptotes d, d' are parallel to the
vectors OD, OD' representing the numbers a2/2r I , ao/2r l , or, since
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(19)

r1 is real, parallel to the vectors which represent a2, ao' Consequently,
if we mark off on the asymptotes from the center Q

QDl = t OD, QD~ = +OD',

FIG. 40

the fourth vertex of the parallelogram constructed on QD 1, QD~

is a point Z of the hyperbola. The hyperbola is thus easily calibrated
in this way.

Case 2 : ro and r 2 n(lt b(lth zero. This case can be reduced to the
preceding by substituting for t a real parameter T related to t by

o:T + f3
t = yT +0' 0:0 - f3y -=I=- 0, 0:, f3, y, 0 real. (18)

Equation (15) becomes

al)2 + 2 al f30 + aJ32 + 2[aoYo + al(o:o + {3y) + a20:{3] T +
z=--=-,=------c-:-='-;:-;c--=-=------c~'_'__;;,____,__---=-~____,___'_::'__:___-_=___.:,;=_==__-

ro02 + 2 rl {3o + r2{32 + 2[ToYO + rl(o:o + {3y) + r20:f3] T +
(aoy2 + 2 alo:y + a20:2) T2
(roy2 + 2 rIo:y + r20:2) T2



64. ELLIPSE

and will have the form of the first case if

roy 2 + 2 rlyo: + r 20:
2 = 0,

101

(20)

(21)

Suppose ro *" O. Since ar < 0, the equation

rog2+ 2 rIg + r2 = 0 (22)

has two real distinct roots gI' g2 and, by virtue of the inequality (18),
the relations (20), (21) give, for example,

"I S
~ = gI, J" = g2'

If we should have ro = 0, r2 *" 0, we would consider the equation

r2'2 + 2 r I ' + ro = 0
instead of (22).

For the substitution

corresponding to
0: = 1, fJ = 1, "I = gI' S = g2,

equation (19) becomes

z=w+ 4~ (aO~+2aIgI+a2)T+4~ (aJ:+2aIg2+a2)· ~.
r r

64. Ellipse. The ellipse with equation

ao + 2 alt + a2t2 a
z = ro + 2 rlt + r 2t2 ' r > 0 (23)

can be constructed with the aid of two calibrated circles passing through
the origin.

By carrying out the division indicated by the fraction, we have

_ a2 + 2 (alr2- a2rI) t + aOr2- a2rO
z - r; (ro+ 2 TIt + r2t2) r2 •

If ex + ifJ, ex - ifJ are the zeros of the denominator, the fraction
in t decomposes into

A + B
t - 0: - ifJ t - 0: + ifJ

where
A = 2 (a1r2- a2rI) (0: + ifJ) + ao'2 - tl:lro

2ifJ~
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and where B 1S obtained from A by replacing i by - i. Since the
equations

A B
z = t _ CJ. _ if3' Z = t - CJ. + if3

are those of two circles passing through the origin, the statement
is established.

Remark. The equation

Z = aeiwt + be-iwt (24)

of an ellipse generated by two rotating vectors (46) reduces to the
form (23) if we set

wt
tanT = T

inasmuch as

cos wt =
I-T2
1 + T2 '

2T
sinwt = ~-~~

1 + T2 '

. . a + b + 2i(a - b) T - (a + b) T2
z= (a+b)coswt+l (a-b)slllwt = 1 +T2 •

Conversely, by utilizing (18) we can obtain an equation of the form
(24) from equation (23). We leave to the reader the task of carrying
this through.

Exercises 46 through 59

46. An ellipse being given by the positions of two conjugate diameters, construct
the two rotating vectors which generate the ellipse and construct the axes of the curve.

47. 1° Two points Z" Z. describe two circles of center 0 with angular velocities
w, - w. Study the locus of the point which divides segment ZtZ. in a given ratio
and examine its degenerate cases.

2° The locus of the harmonic conjugate of 0 with respect to Z" Z. is a unicursal
bicircular quartic which is the transform by inversion of an ellipse whose center is at
the center of inversion.

3° Consider 1° when the circles are not concentric.

48. The parabola with equation (\ 3) of article 62 degenerates into two coincident
half-lines if at = O. When at rO: 0 :

I° determine the tangent at A o by article 34, and the direction of the diameters by
dividing by t 2 ;

2° the parametric equation of the axis of the parabola is

•at
z = ao - - + a.tt;

a 2
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3° the vertex S of the parabola is given by the value

- (alii. + iila.)

2a.ii.

of the parameter t, and has for affix

a~ (alii. - iila,)'s = ao - - + -'---':-.:__::-::-
a, 4a.a;

[apply article 10];

103

4° calculate the affix of the foot of the directrix and show that its distance from the
focus is

2
or

OA;
8 --- sin' (OAt>OA,).

OA,

49. The parabola having equation (14) of article 62 degenerates into two coincident
half-lines if ao/ro = a,frt. [See exercise 48.]

50. Let us be given two fixed points A, B and a line d which does not pass through A.
If D is a point moving on d, let Z be the point on the line symmetric to AB with respect
to AD such that

AZ· AB = AD'.

Find the locus of Z. [Take the origin at A and use articles 8 and 62 and exercise 48.]

51. If t is a real parameter, the equation

b
z = at +

represents:

1° a straight line counted twice, but from which we omit a finite segment centered at
0, if a and b have the same argument;

2° a straight line counted twice if the arguments of a and b differ by 7T;

3° a hyperbola in all other cases, and which is equilateral if

ab + iib = O.

The foci have ± 2 V -;;b for affixes; construct them [article 31]. By observing that
at a vertex the tangent is normal to the diameter ending at the point of contact,
show that the real vertices are given by

~
-

4 bb
t=± -:.

aa

52. The hyperbola with equation (15) of article 63 is equilateral if (exercise 51)
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The hyperbola degenerates into two coincident lines if

lao ~1 ~'Iao a1 a.
To Tl 72

= O.

z=

[Show that the quotient of the coefficients of T and lIT (article 63) is real.] A segment
is or is not omitted according as

- 2(a1al + a,a,)ror, + (aoa, + aoa.) (2r~ - ror.)

is poslove or negative. [Add to the quotient of the coefficients of T and lIT the
conjugate of the quotient.]

53. Squares of the moduli of the roots of a second degree equation. 10 Show
that the moduli C" C. of the roots of

z' - 2pz + q = 0,

where p and q are real or imaginary, have for squares the roots of

x" - 2[1 p' I + Ip' - q I]x + Iq' I = O.
Write this equation when p and q are real.

2° Deduce that C, = C, if P = 0 or if qlp' is a real number not less than 1. [If

a' = p' -q.
we have

C, = Ip + a I, C: = (p + a) (f; + a), C~ = .... C: + C~ = ... , C, C, = I q I, ....
IfP and q are real, treat the cases where p' - q is positive. zero, or negative. For 2°.
observe that the equation

Iml + Inl = Im+ nl

can hold only if mn = 0 or if mIn is a positive real number.]

54. The curve with equation
4t' + 2(2 + i)t + i

2t'+2t+l

is an ellipse whose foci and vertices have the affixes ± '\/3; ± 2, ± i.

55. 1° If Zo is the affix of an arbitrary point of the ellipse with equation

ao + 2a1t + a,t'z = ---'---"----
ro + 2r,t + r.t'

and with center assumed at the origin (H = 0, article 60), the ellipse can also be
represented with a parameter t, by the equation

( I)
in which a. b are the roots of

A.
u'-zu-- = O.

o 4A.
[See article 47, 3° and article 48.]
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Z=

2° The ellipse reduces to a line segment if Zo = 0 or if - !1./202!1. is a real numher
not less than 1. It suffices, for example, to take Zo = ao/To, corresponding to t = O.
[See the remark of article 46 and use exercise 53, 2°.]

3° Write the equation of exercise 54 in the form (I).
For Zo = i, Z = (3/2)e/l. + (1/2)e- tt••]

56. The equation
(1 + i) (I + t) t

Z=
1 + 2t + 2t2

represents the segment of length v2, centered at the ongm, and lying along the
bisector of the angle formed by the positive axes. [See exercise 55, 2°.]

57. With the notation of article 59, the equation

ao + 2a,t + a2t2

TO + 2T,t + T2t2 '

represents a line segment if

or if

(H
2

- 4!1.!1.)T~

(2ao!1. - HTo)2

is a real number not less than I. [Take the origir, at the center and use
exercise 55, 2°.]

58. Generate, with the aid of two rotating vectors, the locus with equation

Z=
(l - i)t(l + t) - i

(1 + t)2 + t2

and determine the nature of the locus. Construct the locus.

59. Prove, with the aid of the transformation

t
t, = tan 2'

that if two certain trinomials are relatively prime, the equation

ao + 2a,elt + a2e2it
Z=

bo + 2b,e" + b2e2il

is that of a conic if b, is real and [;2 = bo, these numbers being able to be multiplied
by a common imaginary factor.

The conic is an ellipse, a parabola, or a hyperbola according as I bo 1 is less than,
equal to, or greater than I b, I.

Find the conditions for the conic to be a circle [article 59], an equilateral hyper­
bola [exercise 52], or a degenerate conic [exercises 48, 49, 51, 57].
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VIII. UNICURSAL BICIRCULAR QUARTICS AND
UNICURSAL CIRCULAR CUBICS

We first of all make the following remarks about the trinomials

A == ao + 2alt + a2t2
, B == bo+ 2blt + b2t2

in the real parameter t and whose coefficients are real or imaginary.

1° A and B have no common zero and are therefore relatively prime
if and only if their eliminant

dab = 4(aobl - albo) (alb2 - a2bl) - (aOb2 - a2bo)2

is not zero. If we set

mo = alb2 - a2bl, ml = a2bo- aOb2• m2 = aObl - albo,

we have

2° The zeros of B are real or conjugate imaginary if and only if

bo bl b2

bo bl b2 '

for it is necessary and sufficient that bo, bl , b2• and consequently
also their conjugates, be proportional to (the same) three real numbers.

3° For only one zero of B to be real, it is necessary and sufficient
that equations (1) do not hold and that the equations

B == bo + 2blt + b2t2 = 0

B == bo + 2blt + b2t2 = 0

be compatible, and therefore that we have

d bb = 4(bobl - blbo) (blb2 - b2bl) - (bob2 - b2bo)2 = o.
These conditions are necessary, for if we have (1) the two zeros

of B will be real or conjugate imaginary, and if a real number is
a root of an algebraic equation, it is also a root of the conjugate equa­
tion.

The conditions are sufficient, for if bo = 0 or b2 = 0 we have
the real zero 0 or 00, and if bob2 -::f:. 0, the common zero is that of

b2B - b2B == 2(blb2 - b2bl) t + bolJ2 - b2bo,

which is real.
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4° From the preceding it follows that for tlte zeros of B to be non­
conjugate imaginary, it is necessary and sufficient that we have

d bb -::1= 0,

for this inequality will not allow the equalities (1).

65. General equation. If tlte trinomials A, B are relatively
prime, the equation

(2)
ao + 2a1t + a2t2

bo + 2b1t + b2t2

A
Z=-=

B
represents 1

1° a unicursal bicircular quartic if the zeros of B are non-conjugate
imaginary, that is, if d bb -::1= 0 ;

2° a unicursal circular cubic if only one of these zeros is imaginary.
We refer to the notation of article 54.

10 Since the zeros of B are non-conjugate imaginary numbers,
we have n = 2 and v = O. Therefore

n-v=2 (3)

and the curve is bicircular (56). Also, smce m ~ n, we see that
the curve is of order (54)

2n-v = 4.

Hence the curve is a unicursal bicircular quartic.

2° Since B contains only one imaginary zero, it is clear that v = 0
or 1 according as the other zero of B is infinite or a finite real number.

If v = 0, then n = 1 and
n-v=1

and the curve is circular (56). We cannot have m = 1, for then
A and B would each have infinity for a zero. Therefore m = 2
and m > n, whence the curve is of order (54)

m + n-v = 3.

Hence the curve is a unicursal circular cubic with an equation of
the form

with the condition

Z=
a o + 2a1t + a2t2

bo + 2b1t

bo . .b Imagmary.
1

(4)

1 Recall that if the zeros of B are real or conjugate imaginary, the equation is
that of a conic (§ VII).



108 UNICURSAL BICIRCULAR QUARTICS..•

2n-v = 3.

If v = l, then n = 2 and
n-v=l

and the curve is circular (56). Also, since m ~ n, we see that the
curve is of order (54)

Hence the curve IS a unicursal circular cubic with an equation of
the form

(5)

in which bo/b 1, rO/r l are respectively imaginary and real.
We can always reduce form (5) to form (4), and conversely. If

we set
txT + j3

t = yT +0' txO - fIy #- 0, tx, j3, 1', 0 real, (6)

equation (5) becomes

ao(yT + 0)2 + 2 al(txT + fI) (yT + 0) + a2(txT + f3)2
Z = [bo (yT + 0) + 2 bl(txT + j3)] [ro(yT + 0) + 2 rl(txT + fI))

and takes the form (4) if we can satisfy the relations

roY + 2rl tx = 0, (7)

aoy2 + 2al txy + a2tx2#- 0 (8)

expressing that the coefficient of T in the second factor of the de­
nominator is zero and that the coefficient of T2 in the numerator
is not zero. We can satisfy (7) by

tx ro
I' - 2rl

inasmuch as rO/r l is real, and (8) holds because the numerator and
denominator of (5) are relatively prime.

Conversely, we reduce (4) to (5) with the aid of (6) where we
assume I' #- O.

Corollary. For the cubics, it suffices to consider equation (2) m
which

-t- 0 b 0 bo · .a2 -r-, 2 = , b
l

Imagmary.

66. Double point. Theorem I. The origin is a double point
for the cubic or the quartic with equation (2) if the numbers ao, aI' a 2
are proportional to real numbers.
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FIG. 41

If from (2) we obtain the cartesian coordinates x, y of a variable
point o(the curve as functions of t (54), then, for the origin to be
a double point, it is necessary and sufficient that all lines through
the origin intersect the curve in points of which two coincide with
the origin, and hence that x and y vanish simultaneously for values
of t which are real and distinct, real and equal, finite or infinite,
or conjugate imaginary. Therefore it is necessary and sufficient that
z vanish under the same conditions, that is, that the roots of

A => a o + 2al t + a2t2 = 0

be real, finite or infinite, or be conjugate imaginary, whence the
theorem.

Corollary+ If ao, a1, a2 are real, then, according as

is negative, zero, or positive, the two branches of the curve which pass
through the double point D
have real and distinct tangents,
real and coincident tangents,
or conjugate imaginary tan­
gents, and D is called a cru­
node, a cusp or spinode, or an
acnode or isolated point.

Theorem II. If equation (2) represents a quartic C4, and if the
numbers mo, m 1, m 2 are not proportional to real numbers, then C4

has a single proper double point D with affix

d = aomo + alml + a2m2
bomo +bl ml + b2m2

given by the values of t which are the roots of

I
t2 2t 1 I
~2 ~l ~o = O.
m2 ml mo

D is a crunode, cusp, or acnode according as the expression

(9)

(10)

is positive, zero, or negative.
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The translation of axes to an arbitrary point D of affix d replaces
equation (2) by

~ = ao- bod + 2(al - bId) t + (a2- b2d) t2 (12)
bo + 2bl t + b2t2

and D is double for C4 if there exist real numbers ro, r I , r 2 and
a real or imaginary number k such that

bod + kro = ao' bId + kri = aI' b2d + kr2 = a2· (13)

Since D..bb ::f=- 0, we do not have the equalities (1), the numbers bo,

bl> b2 are not proportional to real numbers, and the matrix

['II bo bi b2 II (14)
ro r1 r2

is of rank 2. Consequently, in order that equations (13) in d and k
be compatible, it is necessary and sufficient that we have

I

bo ro ao I
b1 r l a 1 = 0
b2 r2 a2

or
(15)

which implies
(16)

Since, by hypothesis, mo, m l , m 2 are not proportional to real numbers,
the matrix

II ~o ~l ~2 II
mo m1 m2

is of rank 2. All the real solutions of the system (I5), (16) are there­
fore given by

rO='\(mI m2-m2ml)' rl='\(m2mO-mOm2)' r2='\(mOm1 -m1mO)' (17)

where ,\ is an arbitrary pure imaginary number.

For these values, the second order determinants of (14) are, if
we set

bomo + bimi + b2m2 = fJ,

bOrl - bIrO = ,\ m~, bl r2- b2r1 = ,\ mofJ, b2rO- bOr2 = ,\ mIfJ·

They are not all zero since (14) is of rank 2; consequently fJ ::f=- 0.
Since mo, m l , m 2are not all zero, we find from the first two of equations
(13), if m 2 ::f=- 0, for example, the affix (9) of the unique double point.
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The values t1> t 2 of t which give (9) are such that
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d = ao + 2a1t1 + a2t;
bo + 2b1t1 + b2ti

ao + 2a1t2 + a2t~

bo + 2b1t2 + b2t~

or, after performing some algebra,

2m2- m1(t1 + t2) + 2mot1t2 = 0,

and consequently also, even if t1> t 2 are conjugate imaginary,

2fli2- fli} (t} + t2) + 2fliot}t2 = 0.

Since the sought equation is of the form

t2- (t} + t2) t + t1t2 = 0,

the elimination of t 1 + t 2 and t1t 2 from these last three equations
gives (10).

If we replace d in (12) by its value (9), equation (12) becomes

, = _ Jm}fli2- m2fli}) + 2(m2flio- mOfli2) t + (mofli} - m}flio) t2

(bomo+ b}m} + b2m2) (bo+ 2b}t + b2t2) ,

whence, by the corollary of theorem I, we have the assertion concern­
ing the sign of expression (11), for the numbers like m1ifi2 - m2ifi}
are pure imaginaries.

Corollary. If the double point D IS a CUsp, its affix d is a root
of the equation

(bob2- b~)d2 - (aOb2- 2a}b} + a2bo)d + aOa2 - a~ = ° (18)

obtained by setting the discriminant of the trinomial in t in the
numerator of (12) equal to zero.

In fact, the vanishing of (11) implies, by virtue of (17), the vanishing
of rOr2 - ri, which, because of (13), implies the vanishing of

(ao- bod) (a2- b2d) - (a} - b}d)2.

Theorem III. If equation (2) represents a quartic C4, and if the
numbers m o, m}, m 2 are proportional to real numbers Po, P1> P2' the
quartic degenerates into a circle r counted twice, and which has, according
as m 2, mo, or m l is different from zero, the equation

t 2, to, t l being real parameters.
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we get

Because ~ab *- 0, at least one of the numbers mo, ml, m2 is not
zero. Since

equations (15), (16) are equivalent and we can, if m2, for example,
is not zero, choose arbitrary real numbers ro, r l and find r2 by (15).
We are going to show that, for ro' r l not both zero, the first two
of equations (13) are solvable for d and k, that is, that we have
bOrl - bIrO *- °or, what amounts to the same thing, bobl *- 0.

Because ~bb *- 0, we have bo *- 0. Otherwise, from the equations

alba - a2bl = fJ-Po, a2bo- aOb2 = fJ-PI' aObl - albo = fJ-Pa,

boPo + blPI + baPa = 0, (19)

and consequently, if boshould be zero, bo, bl, b2 would be proportional
to real numbers and ~bb would be zero.

Solving the first two of equations (13), we have

d = aOrl - alrO_.
bOrl - bIrO

Therefore C4 has for double points all the points of the locus with
equation

z - ~ota - a.l (20)
- bota - hI·

By virtue of (19), bl/bo is not real, since otherwise b2/bo would also
be real and we would have ~bb = 0. Consequently (41), the locus
of double points is a circle and not a straight line.

Corollary. If mOm lm 2 o:j:: 0, circle r contains the points with
affixes ao/bo' al/bl' a2/b 2• The affix w of its center and its radius R
are (42, 61)

aljl -a/jo
bobl - b/jo'

Theorem IV. When the quartic C4 degenerates into a double circle r,
the point Z with affix (2) runs over the whole circle or over only an
arc of the circle according as the number P~ - 4 PoP2 is negative or
positive.
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Suppose m 2 -::j::. O. The right members of equations (2) and (20)
are equal if

t2(m1t2+ mo) - 2m2t2t - m2 = O.

For a given real t 2' the two values of t are real if

P2(P2ti + P1t2+ Po) ~ o.

(21)

(22)

Since ~ab = 4mOm2- m~ "* 0, we also have 4PoP2 - P~ "* O.
If P; - 4POP2 < 0, relation (22) holds for all real values of t 2 because
P: > 0, while if P; - 4POP2 > 0, we must take t 2 ~ t' or t 2 ~ t",
where we have designated the zeros of P2t2 + plt + Po by t', t"
(t' < t").

When mo -::j::. 0 or ml -::j::. 0, the analogues of (21) are

motot2 + 2mot - (m 2to + m1) = 0,

m1t2
- 2(mot1 + m2)t + m1t1 = O.

Corollary. The two values T 1, T 2 of t which furnish a common
point of r are related by

2moT 1T 2 - m1(Tl + T 2) + 2m2 = o.
In fact, (21) yields the two relations

2m2t2 - m2
T 1 + T2 = , TIT2 = ,

m1t2 + mo m1t2 + mo

from which it suffices to eliminate t 2•

Theorem V. If equation (2) represents a cubic, then this cubic
does not degenerate and it enjoys the properties stated in theorem II.

By hypothesis we have

~ab = 4mOm2 - m~ -::j::. 0,

~b5 = 4(bob1 - b1bo) (b1b2 - b2b1) - (bob2 - b2bo)2 = 0,

but the matrix

(23)

is of rank 2.

It suffices to show that mo, m1, m2 cannot be proportional to real
numbers Po, Pl, P2' because it is on this fact that rests, in theorem II,
the existence of the unique proper double point.
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We employ reductio ad absurdum. If we should have

~=~-~=~~=~-~=~~=~-~=~

we would have
boPo + blPl + b'lfJ2 = 0,

and hence also
hoPo + hlPl + h'lfJ2 = 0,

relations which, because of (23), give

Po = v(b1h2- b2hl), PI = v(b2ho- boh2), P2 = v(bohl - b1ho)·

We would then have

d ab =,.,,2(4poP2-pi) =,."Vdbb =0,

which is contrary to hypothesis.

67. Point construction of the cubic I

ao+ 2a1t + a2t2z = ---"'-----'=-~_='_--=---

bo + 2b1t

If we carry out the division, the equation becomes

and, by taking the origin at the point 0 1

the equation takes the form
b

~ = at + bo + 2b
l
t

when we set

b = 4~2 (4aob~ - 4a1bobl + a2b~).
I

a2
a=~,

I

Since the equations
b

z' = at, z" = --o--~-
bo + 2b1t

are those of a straight line (d) and of a circle (c) passing through°l' each point Z of the cubic is given by the geometric sum of the vectors
joining 0 1 to the points of (d) and (c) which correspond to a common
value of t.

In the calibration of (d) and (c), point 0 1 corresponds to 0 on
(d) and to 00 on (c).

1 O. BLOCH, Die Ortskurven der graphischen Wechselstromtechnik nach einheitlicher
Methode behandelt, p. 58, Zurich, 1917.
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(24)

(25)

The preceding construction shows that the line (d) is the real
asymptote of the cubic. Its equation for the initial axes is

a2 4aIbi - a2bo
z="2b t + 4b2 •

I I

Construction of the double point D. The affix of the double
point is given by (9), but it is also obtainable as the point of intersection
of the lines with equations

ao a2 , a l a2z = -b + -b t, z = -b -+ - t".
o 0 I bi

In fact, equations (13), in which we assume b2 = 0, give

ao- bod r0 al - bId rI

a2 -':;' a2 r2

and if we denote the real numbers rolr2, r I lr 2 by - t f
, - t ff

, equations
(25) say that D is on the lines with equations (24). These lines
are not coincident because, the quotient boib i being imaginary, the
lines are not parallel.

68. Inverse of a conic. The transform of a non-circular conic
(C) by an inversion of center 0 is a unicursal circular cubic or a unicursal
bicircular quartic (CI ) with double point 0 according as 0 is or is
not on (C).

Choose axes with origin at O. The equation of any conic (C) is (58)

Co + 2cI t + c2t2 (26)
Z = ro + 2rI t + r2t2 '

where ro' r I , r 2 are real. Since in the inversion with center 0 and
power p, the point with affix z has the point with affix plz for inverse
(19), the inverse curve (C I ) of (C) has for equation

z - J!... _ p(ro -+ 2rI t + r2t2
) (27)

I - Ii - Co + 2cI t + c2t2

and is therefore (65, 66) a unicursal circular cubic or a unicursal
bicircular quartic with double point O.

(C I ) is a cubic if c2 = 0 or if the trinomial Co + 2cI t + c2t 2 has
only one real zero r, which is then also a zero of Co -+ 2ct t -+ c2t2•

In the two cases (C) passes through 0 for t = co and t = r respectively.

Corollaries. 10 The double point is an acnode, a cusp, or a crunode
according as the conic (C) is an ellipse, a parabola, or a hyperbola
(66, corollary of theorem I).
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The tangents to (C1) at ° are parallel to the asymptotic directions
of (C). In fact, the inverse of a point at infinity on (C) is at 0.

2° The preceding statements are particular cases of general properties
of inversion, which we are going to recall.

An inversion with center ° is a quadratic involutoric point trans­
formation whose fundamental (or 'singular) points are ° and the
circular points I, J. 1 The transform of an algebraic curve (C)
of order 1 which passes to> li' 1; times, respectively, through 0, I,
J, is a curve (C1) of order 21- 10 -li - 1; which passes 1- li -1;,
1 - 1; - 10 , 1 - 10 - li times, respectively, through 0, I, J. The
tangents to (C1) at 0, I, J contain the points of intersection, other
than 0, I, J, of (C) with, respectively, the lines IJ, JO, 01; two
tangents at ° to (C 1) coincide if (C) is tangent to IJ.

Therefore, if (C) is a non-circular conic, we have 1 = 2, li = 1; = 0,
and (C1) is a cubic or a quartic according as 10 has the value I or O.
We deduce from the preceding that a necessary and sufficient condition
for the circular points I, J to be cusps of the quartic (C1) is that the
center ° be a focus of the conic (C), for it is necessary and sufficient
that the conic be tangent to the isotropic lines 01, OJ.

3° The converse of article 65 is true: every unicursal circular cubic
and every unicursal bicircular quartic can be represented by an equation
of the form (2).

We know that a cubic and a quartic are unicursal when they
have, respectively, one and three double points. If the curves are
circular, the quartic being bicircular, the unique double point of
the cubic and the third double point of the quartic are necessarily
in the finite part of the plane. An inversion having this double
point °for center transforms the cubic or the quartic into a conic (C),
for in the case of the cubic we have (see 20)

I = 3, 10 = 2, Ii = I, I; = I, 21 - 10 - Ii - I; = 2,

and for the quartic we have
I = 4, 10 = 2, Ii = 2, I; = 2, 21 - 10 - Ii - I; = 2.

Since the equation of the conic (C) can always be put in the form
(26) (58), the equation of the considered cubic or that of the con­
sidered quartic can always be given the form (27), therefore also
the form (2).

1 See, for example, K. DOEHLEMANN, Geometrische Transformationen, II. Tcil,
p. 50 (Sammlung Schubert, XXVIII, Leipzig, 1908).
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69. Lima~on of Pascal and cardioid. A lima~on of Pascal
is a unicursal bicircular quartic whose circular double points are cusps.

It is called a cardioid when the third double point D is also a cusp.
In an inversion with center D, the lima~on then transforms (68,

corollary 20) into a conic with focus D. According as D is an acnode,
a crunode, or a cusp, the conic is an ellipse, a hyperbola, or a parabola.

The quartic with equation

is a limafon if
Z=

ao + 2aIt + a2t2

bo + 2bIt + b2t2

~b = bob2-b~ = 0,

that is, if the den(lminator is a perfect square.
If we take the origin of axes at the double point D of affix d, the

equation becomes
ao - bod + 2(al - bId) t + (a2- b2d) t2

Z - -"---"----'------;--'---'----=-;-'----'-----,--:~-"---"--'---

I - bo + 2bIt + b2t2 '

and we know (66, theorem I) that ao - bod, al - bId, a2 - b2d
are proportional to real numbers.

The conic obtained from the quartic by the inversion with center D
and power p has for equation

p bo + 2bIt + b2t2

Z2 = ZI = P ao- boa + 2(a
l

- b;J)-t-+=----:(:-a2-·b
2
J) t2 •

In order that D be a focus, it is necessary and sufficient that we
have (60, corollary)

bob2- b; = 0 or bob2- b; = O.

Corollary. The quartic is a cardioid if (66, theorem II)

bob2-bi = 0,

(mOffzl - mIffzo) (mIffz2 - m2ffzl ) - (mOffz2 - m2ffzo)2 = O.

70. Class of cubics and quartics considered. The number m
of tangents which can be drawn from a point to a given plane algebraic
curve is independent of the point and is called the class of the curve.

Plucker has shown that we have the relation

m = n(n -1) - 2d - 3r

connecting the order n, the class m, the number d of non-cuspidal
double points, and the number r of cuspidal double points of the curve.
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Consequently, a unicursal circular cubic is of class 4 or 3 according
as it is not or is cuspidal.

A unicursal bicircular quartic is of class 6 if none of its double points
is a cusp, of class 5 if the proper double point is the only cusp, of class 4
or 3 according as the quartic is a limafon which is not or is a cardioid.

Remark. In the evaluation of the number m of tangents drawn
from a point P of the curve, it is necessary to note that if P is simple,
the tangent at this point counts for 2 in the number m; if P is double,
the tangents at this point count for 4 or 3 according as P is not or
IS a cusp.

71. Foci. Theorem. A unicursal circular cubic possesses a singular
real focus and, according as it is or is not cuspidal, one or two ordinary
real foci.

A unicursal bicircular quartic which is not of the limafon type possesses
two singular real foci and, according as it is or is not cuspidal, one
or two ordinary real foci. A limafon has a singular real focus and
an ordinary real focus,. a cardioid has a singular real focus and no
ordinary focus.

These properties follow from the definition of a focus (57) and
from the class (70) of the curve. Thus, a non-cuspidal quartic
has two tangents t 1 , t z at the circular point I and the conjugate
lines t~, t; as tangents at the second circular point I', whence the
points tlt~, t 2t; are the two singular real foci. Moreover, since
the class is 6, we can draw two tangents t3 , t4 from I whose points
of contact are not I, and the imaginary conjugate lines t;, t~ of
t 3 , t4 are the tangents drawn from I'; the points t3 t;, t4t~ are then
the ordinary real foci.

Singular foci. If we take the origin of axes at the point F
of affix e/>, equation (2) becomes

~ _ ao - boe/> + 2(al - b1e/» t + (~2 --=_t2e/» ~2 (28)
- bo + 2b1t + b2t2

Point F is a singular focus if the numerator and the conjugate of
the denominator have a common zero (57), and therefore if their
eliminant is zero, or

4(bob2- b;) [(aD - boe/» (az- bze/» - (a l - b1e/»2] - [(aD - bocP)h2-

2(a1 - bIcP) hI + (az - bzcP)ho]2 = O.
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If we set, by analogy with what has been done for conics,

119

H ab = aobz - 2a1b1 + azbo'

Haii and H ba having the obvious analogous meanings, the equation
becomes

or

(4~b~b-H~b)c/>z-2(2Hab~b-HabHbb)c/>+4~a~b-H~b = O. (30)

For a cubic, the denominator in equation (2) has a real zero
which is then a zero of the conjugate trinomial, and the eliminant
4~b~b - Hgii is zero. Equation (30) is of the first degree and the
affix of the only singular focus of the cubic is

4~a~b - HZ ab
2(2 Hab~b - HabH bb)"

A quartic which is neither a limayon nor a cardioid has two singular
foci (see theorem) ; their affixes are the two roots of (30).

For the limas;on and the cardioid we have ~b = 0 (69), hence
also ~ii = 0, and equation (29) gives the affix

H ab
H bb

of the only singular focus.

Ordinary foci. Their affixes are to be found among the values
of c/> which annul the discriminant of the numerator of (28) (57).
We must therefore have

or
(31 )

This is the same equation as that for conics, except that the b's
are imaginary (60).

We notice first of all that if the non-circular double point D is
a cusp, its affix d is a root of equation (31), for this equation is none
other than equation (18).

Consequently, if the curve is not cuspidal at D or at the circular
points, the roots of (31) are the affixes of the two ordinary foci.
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= 0 (69),

H ab d d a 'f d 0-x-;- or dd
b

' 1 *-;
the affix of the ordinary focus (If a limafon is, since db

d a

H ab '

If the curve is cuspidal at D but is not a cardioid, the affix of its
ordinary focus is

while for a cardioid this number is the affix of the cusp.

(32)

Corollaries. 10 The equation

((Xo + (Xl t)2
Z - ~~,..-C-~!.-,-~

- bo + 2bl t + b2t2

is that of a unicursal circular cubic or unicursal bicircular quartic having
an ordinary focus at the origin.

20 The equation
z = ( (Xo + (Xlt )2

f30 + f31t

is that of a limafon nf Pascal having its ordinary focus at the origin
if OiO/Oil is imaginary, and that of a cardioid having its cusp at the
origin if OiO/Oil is real (66, theorem I). In both cases we assume f30/f3l
is imaginary.

72. Construction of the quartic. 10 Lima~on and cardioid.
If we set

equation (32) becomes

(33)

(34)

and whose radius is

If U, Zl are the point on Ox such
that OU = 1 and a variable point
on (c), then the triangle OZlZ

:x:

,,,,
U
FIG. 42

,,,,,
,(..,

/ I '.\,,,,
o

y

z;= z~.

of a circle (c) whose center Q has for
affix (61)
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(35)

directly similar to triangle aDZ t gives a point Z of the curve (8)
which corresponds to the same value of t as does Zt.

We can also construct the curve, as an epicycloidal curve, with the
aid of two rotating vectors.

In fact, the addition and subtraction of w in the form (34) to and
from the right member of (33) gives, if we set

rxoflt - rxtflo
a= ,

fll ~o - floPI
Po + tPt

ZI = w + a (:/(:/ .
/"'0 + t/"'t

The coefficient of a has unit modulus and we can set

Po + tPt _ eiT

flo + tfll - ,
whence

z = w 2 + 2aweiT + a2e2iT

and if we place the axes at the point of affix w 2 the equation becomes

, = 2aweiT + a2e2iT•

The vectors representing the numbers 2aw, a2 and rotating with
angular speeds in the ratio I : 2 furnish the construction of the
curve (50). Relation (35) between t and T can, if we set

be written as

rosin (80 + ;)
t = - ----:-------'--

r l sin (81 + ;)

2° Other quartics. If a2 is not zero in equation (2), then, by
carrying out the division of the two trinomials and by placing the
origin at the point with affix a 2/b 2, the equation takes the form

, = a~ + 2a{t
bo + 2b1t + b2t2"

Designating the non-conjugate imaginary zeros of the denominator
by p and q, we can write the preceding equation in the form

I m,= t-p + t-q'
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where land m are constants. Since the equations

l m
~I = t _ p' ~2 = t _ q

represent two circles passing through the origin (t = 00), the quartic
can be constructed pointwise by forming the sum of the vectors issuing
from the origin and terminating at the points (If the circles which
correspond to the same value of t (also see article 64).

3° Double point. If the double point does not have nne of the
numbers ao/bo, ai/bI' a 2/b 2, relative to equation (2), as affix, then it
belongs to the three straight lines or circles with equations

(36)

This follows from equations (13), from which we find, if we denote
the quotient of the real numbers rl' r2 by t,

The double point D with affix d is then on the straight line or the
circle represented by the first of equations (36). We interpret the
other two equations in a similar way.

Remark. For the graphical representation, and the establishment
by classical analytic geometry of the properties of cubics and quartics,
one may consult one of the following works :

GINO LORIA, Spezielle algebraische und transzendente ebene Kurven,
2 volumes, Berlin, 1910;

G. TEIXEIRA, Tratado de las curvas especiales notables, Madrid, 1905 ;

WIELEITNER, Spezielle ebene Kurven (Sammlungen Schubert und
Goschen), Berlin;

H. BRocARD and T. LEMOYNE, Courbes geometriques remarquables,
Paris, 1919 (only one volume published, from Abaque to Courbe
auxiliaire by alphabetical classification).
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Exercises 60 through 71

60. 1° Study, and draw on quadrilruled paper, the curve with equation

t"
Z = I _ it .

[It is a cuspidal cubic with asymptote

Z = 1 + it,

123

singular focus - 1/2, and ordinary focus 4.]

2° By associating the asymptote with a certain circle, show that the curve is a
cissoid of Diodes.

61. Prove that the curve with equation

Z=
2(1 + it)

+ it + 2t"

is a cuspidal bicircular quartic which is not a limas;on of Pascal and whose cusp is at
the origin O.

The inverse of the curve in the inversion of center 0 and power I is a cissoid of
Diocles with singular focus at O.

Show that the quartic can be constructed pointwise with the aid of tangent circles
having equations

Z=
8i

3(t + i)'

4i
Z = 3(i _ t)'

Z=

by calibrating these on quadrilruled paper.

62. The inverse of the cissoid of exercise 60 in an inversion whose center is at the
ordinary focus is a cardioid.

63. If the cubic or the quartic with equation

ao + 2al t + a"t"

bo + 2b l t + b.t'

is such that the numerator vanishes for two real finite values tk of t, the tangents at the
origin contain the points with affixes

Examine the cases a. = 0 and a l = a. = O. [See article 34.]

64. Construct the curve with equation
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z=

The tangents at the double point are perpendicular, the asymptote has the equation

Z = - (1 + it),

the singular focus is at 1 on the curve, the ordinary foci are 2(- 1 ± v2). Con­
struct the curve with the aid of the asymptote and the circle with center 0 and radius 1.
[The curve is a right strophoid.]

65. 1° The orthogonal projection P of a given point Zo on the tangent at a variable
point of the parabola gJ with equation (article 62)

Z = it + t2

describes the locus I having equation

Zo - Zo + 2i(zo + zo)t - 2t2

2 + 4it

2° Locus I is a line (what line ?) when Zo is the focus of gJ and a cubic with double
point Zo in all other cases.

3° When Zo is on the axis of gJ, the cubic is called, in general, a conchoid of Sluse.
Construct this cubic when Zo is the vertex of gJ (cissoid of Diocles), the foot of the
directrix (right strophoid), the symmetric of the focus with respect to the directrix
(trisectrix of Maclaurin).

66. If a bicircular quartic is composed of two coincident circles, equation (30)
of article 71 has a double root and the affix of the center of the circle is

2Hab~ii - Haii~i;H

4~b~ii-H:ii

67. Show that the point with affix

2 + 4t + 2t2

z=----------,-~
2 - 3i - 2t - it2

describes an arc of the circle whose center has affix i-I and whose radius is v2,
and that the endpoints of the arc have affixes

o and
4(3i -1)

5
while the point with affix

1 + 2t + 2t2

Z = ------------
1 + 2(1 + i)t - (2 + i)t2

describes the entire circle whose center has affix 1/2 and whose radius is 1/2. [Use 66,
theorems III and IV.]

68. Lemniscate of Booth. This name is applied to the quartics which are inverses
of an ellipse or a hyperbola when the center of inversion is at the center of the conic.
If the conic is an equilateral hyperbola, we have a lemniscate of Bernoulli. 1

1 G. LORIA, Spezielle ebene Kurven, vol. I, p. 134.
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Show that the curves with equations

1 + t2

Z = -:---=-c---::-:
3 + 2it - 3t2'

Z=
2i + t + t 2

2- it"

are, respectively, an elliptic lemniscate of Booth and a lemniscate of Bernoulli.

69. The quartic with equation

ao + 2a,t + a2t'
Z = -'--------

bo + 2b,t + b.t'

is a lemniscate of Booth if (using the notation of articles 66 and 71)

aomo + a,m, + a2m2 H ••

bomo + b,m, + b.m. 26..

Deduce that the (inflexional) double point is the midpoint of the segment determined
by the ordinary foci. Apply this to the lemniscate of exercise 68.

70. The equation

reduces to the form

Z
ao + 2a,e" , + a.e·i /,

bo + 2b,e'" + b.e''''

"'0 + 2""t + ",.t'
Z = ----'-----

f30 + 2f3, t + f3.t'

if we set t = tan (/2. [We have

. I + it
e,t l = ---.-,

I-tt

"'0 = ao+ 2a, + a.,

f30 = bo + 2b, + b.,

71. If we set

"'2 = - (ao - 2a, + a2),

f3. = - (b o - 2b, + b.).]

eitl = 2, t = !..!:..,
'7. t 2

the transformation executed in exercise 70 becomes the linear substitution

'7, = it, + t2, '7. = - it, + t2.

By considering the invariant of a binary quadratic form or the simultaneous invariant
of two such forms, show (then verify directly) that

46.. = - 6.a, 4H•• = - HaP'



CHAPTER THREE

CIRCULAR TRANSFORMATIONS

I. GENERAL PROPERTIES OF THE HOMOGRAPHY

73. Definition. Let z, z' be the affixes of two points Z, Z'
of the plane referred to two perpendicular axes Ox, Oy, and let
ex, fl, y, 8 be given constants, real or imaginary.

Consider the equation

exzz' + flz + yz' + 8 = ° (I)

which is bilinear in z and z.' By writing the equation in the form

z(exz' + fl) + yz' + 8 = 0,

we see that if, having arbitrarily chosen z', we wish the equation
to give one and only one value for z (00 not excluded), it is necessary
and sufficient that the equations

cx.z' + fl = 0, yz' + 8 = °
be incompatible, or that

cx8 -fly* o. (2)

We then conclude, by writing the equation in the form

z'(cxz + y) + flz + 8 = 0,

that to each value of z there corresponds one and only one value of z'.

Consequently, if the inequality (2) holds, equation (1) associates
with each real point Z of the w plane one and only one point Z'
of the superimposed w' plane, and conversely.

This particular one-to-one transformation (13) of the Gauss plane
onto itself is called a homographic transformation of the complex plane,
or, for a reason which will appear soon (76, 77), a direct circular

126
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transformation of the plane. It is also called a Mobius transformation,
after the name of the German geometer who discovered it in 1853.1

Solved for z', equation (1) of the transformation becomes, by
setting - j3 = a, - 8 = b, ex = c, I' = d,

z' = az +b
cz + d'

(3)

We say that z' is a homographic function of z.

74. Determination of the homography. A homography is
determined if to three distinct and arbitrarily chosen points ZI' Z2'
Zs we assign, as correspondents or homologues, three distinct and arbi­
trarily chosen points Z~, Z;, Z;.

If
(4)

are the affixes of the given points, we must have the conditional
system

in which the matrix

CXZIZ~ + j3z1 + I'z~ + 8 = 0,

CXZ2Z~ + j3z2 + I'z~ + 8 = 0,

cxzsz; + j3zs + I'z~ + 8 = 0,

ZlZ~ Zl z~

Z2Z~
I

Z2 Z2

zsz; Zs z;

(5)

(6)

of the coefficients of the unknowns ex, j3, 1', 8 is of rank 3, since other­
wise we would have

ZlZ~ z~ Zl z~

~l Z2Z~ z~ 0, ~2 Z2 z~ °
zsz; Z' Zs z;s

1 MOBIUS, Ueber eine neue Verwandtschaft zwischen ebenen Figuren, Werke, 2,
pp. 205-217.
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and consequently also

o z~ 1 o o
.£\1 - Z~.£\2 = Z2(Z~ - z~) z~ 1

za(z~ - z~) z~ 1

= (z~ - z~) (z~ - Z~) (03'2 - Za) = 0,

which is contrary to the hypothesis (4).
The numbers LX, {3, y, 8 are thus determined to within an arbitrary

common factor, the homography is unique, and its equation

zz' 03' Z' 1
ZIZ~ ZI z~ 1

Z2Z~ 03'2 o3'~ =0 (7)

zao3'~ za z'a

(8)lXZ~ + {3 = 0

is obtained by insisting that equations (1) and (5) are satisfied by
the values, which are not all zero, of LX, {3, y, 8.

The above proof assumes that all the points are in the finite part
of the plane. Three cases remain to be considered.

1° A single point, say ZI' is at infinity. The first of equations
(5) is replaced by

and the matrix, corresponding to (6),

z~ 1 0 0

is of rank 3 as shown by the last three columns. The equation of
the unique homography is then

zz' z z' 1
z' 0 01

Z~~ Z2 z~ 1 = O.

zao3'; za z~ 1

We see that this equation can be obtained from (7) by dividing
the elements of the second line by %1 and then letting %1 approach
infinity.
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The matrix

= O.

2° A point oj each triple is at infinity and the two points are not
corresponding, say the points Zl' Z~. The first two of equations
(5) are replaced by (8) and

<XZ2 +y = o.
Z~ 0 0

Z2 0 1 0

is of rank 3 and the equation of the unique homography is

zz' z z' 1
z~ 1 0 0
Z2 0 1 0

zaz; za z; 1

3° Two corresponding points, say Zl' Zl' coincide with the point
at infinity. The conditional equations (5) are then

ex = 0,

f:Jz2 + yz; + 8 = 0,

f:Jza + yz; + 8 = 0,
and since the matrix

is of rank 2, the unique homography has for equation

z z' 1
Z2 z; 1 = O.
za z; 1

75. Invariance of anharmonic ratio. The anharmonic ratio
of any four points Zl' Z2, Za, Z4 is equal to that of their correspondents
Z~, Z~, Z;, Z~ in any homography of the complex plane.

We must show that (25)

(z~z;z;z~) = (zlz2zaz4)

or, assuming the eight affixes are finite, that

z;-z~

z;-z;
z~ -z~

z;-z~
(9)
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From equation (1) of the homography we obtain

, , (ex8-f3y) (ZI- za)
Z -z = -7----,-c-~--;----'

1 a (CXZ1+ y) (CXZa + y)
(10)

and the analogous differences, whence we obtain equation (9). This
equation can be verified also by starting with the second member.

Now suppose z~ is infinite. This will be so if, when ex ~ 0,
we have ZI = - y!ex, or, when ex = 0, we have ZI = 00. Since (27)

we have, by expressions analogous to (10),

(11)

In the first case, by replacing y!a by - ZI' we obtain the desired
relation; in the second case (11) becomes

76. Circular transformation. The homographic transfor­
mation is said to be circular because of the following property.

Every curve of the set consisting of the straight lines and the circles
of the plane is transformed into a curve of this set.

In fact, let I be any straight line or circle, Zl> Z2' Za three fixed
points and Z a moving point on I, and Z~, Z~, Z;, Z' their corres­
pondents in any homography of the complex plane.

The anharmonic ratio (ZIZ2ZaZ) is real (28); this is then also
true of (Z~Z;Z~Z') (75), and the point Z' thus describes the straight
line or the circle l' passing through Z~, Z;, Z; (28).

Article 91 will determine when l' is a straight line.

77. Conservation of angles. If two curves I, II intersect in a
point Z, whose affix is not - die, at an angle of algebraic value 8,
then their transforms I', l~ under the homography of equation (3) intersect
in Z', the homologue of Z, at an angle 8 + kTr, k an integer.

We say that the homography conserves angles (to within kTr) in
both magnitude and sign, or, that the homography is a directly
conformal transformation.
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Let
z = jet)

FIG. 43

l-}
T

dz r'dt

,T' l'dz'
dt

be the equation of l. The tangent at point Z is parallel to the vector
OT which represents dzjdt, and we can agree to orient the tangent
positively in the sense of this vector.

The equation of I' is

, af(t) + b
z =

ef(t) + d

and the tangent at the point Z' corre­
sponding to Z, which is assumed to be
such that cf(t) + d # 0, is parallel 0

to the vector Or' which represents

dz' ad-be dz
dt (ez + d)2 dt'

If rp is the argument of (ad - bc)j(cz + d)2, we then have

(Ox, aT') = rp + (Ox, aT)

and, for the curves II' I~, by an obviously symmetric notation,

From these relations we obtain by subtraction, to within 2kTT,

(OT',OT;) = (01', OTI ) = e.
If the positive sense of the tangent to I~ at Z' is opposite to the

sense of OT~' its angle with OT' is then e+ (2k + I)TT, which proves
the theorem,

78. Product of two homographies. The product of two homo­
graphies is a homography.

Let
(XI ZZ1 + f31 Z + YIZI + 81 = 0,

be the equation of a homography WI in
corresponds a point ZI' and

(X2Z I Z 2 + f32Z1 + Y2Z 2 + 82 = 0,

(12)

which to each point Z there

the equation of a homography W 2 in which ZI corresponds to Z2'
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The product (21) W = W 2W 1 of these homographies is the trans­
formation which permits us to pass from Z to Z2. Its equation
results from the elimination of Zl from (12) and (13), and is

(0I.1Y2-0I.J]1)ZZ2 + (OI.lJ2-f3J32)Z + (YIY2-0I.201)Z2 +y102-f3201 = 0, (14)

a bilinear equation in z, Z2. Since

(0I.1Y2 - 0I.2(31) (Y102- f32( 1) - (01.102- f31(32) (Y1Y2 - 01.2( 1)

= (0I.101-f31Yl) (~02-f32Y2) -:::j=. 0,

w is a homography.

(15)ad-bc-:::j=. °

79. Circular group of the plane. A set of transformations
constitutes a group if it satisfies the following two properties:

10 the product of any two transformations of the set is a trans­
formation of the set ;

20 the inverse (13) of each transformation of the set is contained
in the set.

The set of homographies

, az + b
Z -

- cz + d'

possesses these two properties by virtue of article 78 and because
the replacement of a by - d and d by - a converts equation (15)
into the corresponding inverse transformation. We call this group
the circular group of the plane.

80. Definitions. We call a point a double point of a homo­
graphy if it coincides with its homologue.

A homography which is not the identity has at most two double points.
In fact, there exists a single homography having three given double
points (74), and the identity transformation possesses this property.

It is convenient to denote the Gauss plane by w or w' according
as we consider it the set of points Z or that of their transforms Z'
under a homography.

The limit point L of the w plane for a homography w is the
point whose homologue L' is at infinity in w'. The limit point
M' of the w' plane is the homologue of the point M == L' at infinity
in the w plane. The points L, M' are thus the homologues of the
point at infinity in the homographies w -1 and w (13).
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Exercises 72 through 74

(ABC)
W= BCA'

is

72. 1° If a. b, c are the affixes of the points A. B. C. then the equation of the homo­
graphy w in which the points B. C, A correspond to the points A, B, C. and which is
indicated by

a.zz· + fJz + 'Yz' + 8 = 0,
where

a. = ab + bc + ca - a" - b" - c', fJ = ac' + ba2+ cb2 - 3abc,

'Y = abo + bc' + ca' - 3abc, 8 = abc(a + b + c) - a'b" - b'c' - c·a·.

2° If A is the point at infinity in the plane, the equation of the homography is

zz' - bz - cz' + b2+ cl - bc = O.

73. 1° The homography w", the square of the homography w having equation

a.zz· + fJz + 'Yz' + 8 = O.
has for equation

a.('Y - fJ)zz" + (cxS - fJ2)Z + ('Y" - cxS)z" + S('Y - fJ) = O.

If w is not the identity homography z = z', w" is the identity only if fJ = 'Y; w is then
an involution (articles 23 and 99).

2° The equation of w· is

a.(fJl + 'Y' - fJ'Y - cxS)zz'" + (fJ' + cx'Y8 - 2a.fJ8)z

+ ('Y' + cxfJS - 2a.'YS)z'" + S(fJ' + 'Y' - fJ'Y - a.8) = 0,

and this homography is the identity if w = I or if

fJ' + 'Y" = fJ'Y + cx8.

3° w· and w· are involutions if we have. respectively,

fJ" + 'Y2 - 2a.8 = 0; fJ='Y or fJ' + 'Y' + fJ'Y - 3a.8 = 0,

and they cannot be involutions simultaneously.

4° The homography of exercise 72 is such that w· = I. The verification is easy
if A is at infinity; exercise 74 establishes the result more simply.

74. Cyclic homographies. A homography w is cyclic with period n if w" = I.
that is. if the homogmphy w" transforms each point into itself. If AI> A..... , An-I>
An = A are the transforms of a point A by the homogmphies w, w"• •..• W"-l. w", we
say that A, AI> A., ... , An-I constitute a cyclic set of w. We shall consider the case
n = 3. (The case n = 2 is that of the involution.)
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1° The homography determined by

w = (A BC)
BCA

possesses the cyclic triple A, B, C. Show that each point D is the start of a cyclic
triple by establishing that if E is the homologue of D and F the homologue of E, then
the homologue of F is D. [Use articles 75 and 29.] Therefore w is cyclic of period 3.
Show this even more simply.

2° Obtain (exercises 72, 73) the identity

(ac" + ba" + cb" - 3abc)" + (ab" + bc" + ca" - 3abc)"

- (ac" + ba" + cb" - 3abc) (ab" + bc" + ca" - 3abc)

- (ab + bc + ca - a" - b" - CO) [abc(a + b + c) - a"b" - b"c" - c"a"] = O.

3° If A', B', C' are the harmonic conjugates of A, B, C, respectively, with respect
to the pairs (B,C), (C,A), (A,B), the triple A', B', C' is cyclic for w.

4° We have
(AA'B'C') = (BB'C'A') = (CCA'B') = - I.

Construct A', B', C' (article 30). [See exercises 25; 26; 41, 8°.]

II. THE SIMILITUDE GROUP

81. Definition. The homography with equation

f3z + yz' + 8 = 0, f3y #- 0
or

, az +b
z =--d-' ad#-O

(1)

(2)

at infinity in the Gauss plane is
The two limit points coincide with

in which, ex or c being zero, the zz' term does not figure, IS called
a similitude.

82. Properties. 10 The point
a double point for every similitude.
the point at infinity (80).

In fact, if z is infinite, equation (2) shows that z' is also infinite.

20 Each straight line is transformed int(l a straight line and each
circle is transformed into a circle.

The curve with equation

pt + q
z = rt + s ' ps - qr #- 0

is a straight line or a circle according as rls is real or imaginary (41).
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Its transform by (2) has for equation

z' = ....:.(,--,ap,,----,+----;-;-br-<-)---,t"":'+--ca-,q,-+--,---b_s
d(rt + s)

and is a straight line or a circle according as rIsis real or imaginary,
for in addition

(ap + br)s - (aq + bs)r = a(ps - qr) * O.

3° Each figure (F) transforms into a directly similar figure (F'),
whence the name of direct similitude has been given to the trans­
formation, and the ratio of similitude of (F') to (F) is [ f31'Y [ or I aid I.

It suffices to consider two corresponding triangles ZlZ2Za,
Z~Z;Z;. We have (75, 82, 10)

(ZlZ2Za 00) = (Z~Z;Z~ 00)

whence (25), by equating the moduli and then the arguments,

(ZaZ2, ZaZl) = (Z~Z~, Z~Z~).

The two triangles are thus directly similar, and the ratio of similitude
IS

4° The direct similitudes constitute a group.

In fact, the product of two similitudes is a homography which,
also having the point at infinity as a double point, is a similitude;
this fact also follows from equation (14) 78, for if 1Y 1 = 1Y 2 = 0 we
have 1Y1'Y2 - cx 2f31 = O. In addition, the replacement of a by - d
and of d by - a converts equation (2) into the corresponding inverse
transformation, and this, we note, is a similitude.

The similitude group, being contained in the circular group, is a
subgroup of the latter.

5° Every direct similitude is the product of a rotation, a homothety
having the same center, and a translation, where one or tW(l of these
component transformations may be wanting.

Equation (2) follows, in fact, from the equations

a , b
Zl = d z, Z = Zl +d'
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The first represents the identity transformation if a = d, a homothety
with center at the origin if ajd is real but different from unity (16),
a rotation about the origin if ajd is imaginary with unit modulus (15),
the (permutable) product if a homothety and a rotation both centered
at the origin if aid is imaginary with non-unit modulus. The second
represents a translation or the identity transformation.

(3)
aw +b

d
w=

83. Center of similitude. A similitude which is neither the
identity transformation nor a translation has a double point a in the
finite part of the plane and called a center of similitude; the similitude
is the permutable product of a rotation and a homothety both centered
at a, one or the other of these two transformations perhaps being wanting.

A translation has only the point at infinity f(.>r double point (82, 10).
A point a of affix w is a double point for the similitude with

equation (2) if

or
w(d-a) = b.

If d = a, b = 0, every point a is a double point, and (2) represents
the identity transformation.

If d = a, b *" 0, there is no finite point a, and (2) represents a
translation.

If d *" a, the only value of w is

b
w = d-a'

For the origin at a we have

z = , +w, z' = " + w

and equation (2) becomes

" + w = a(' +w) + b
d

or, taking note of (3),

r=!:.,
d

which completes the proof (82, 50).

Construction. If ZI' Zi and Z2' Z; are two pairs of corresponding
points and if P is the point common to the lines ZIZ2' Zi.Z;, the point
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Q is the secondpoint common to the circles Yl = (ZIZ~P), Y2 = (Z2Z~),

To each line d passing through ZI'
the similitude associates a line d'
passing through Z~ (82, 20). If d
rotates about Zl, d' generates a pencil
directly equal to that described by %2
d (77); the angle (dd') is the..efore
constant and the point dd' lies on the
circle Yl passing through ZI' Z~, P,
for ZIZ2 and Z~Z; are two lines d, FIG. 44
d'. Since ZlQ, z~n are also two corresponding lines, Q is on YI'
A similar argument applied to the pair Z2' Z; shows that Q also
lies on Y2'

If the lines ZlZ2' Z~Z; are parallel, then, according as the vectors

ZIZ2' Z~Z; are not or are equal, the similitude is a homothety
with center n = (ZlZ~, Z2Z~) or a translation.

84. Determination of a similitude. A direct similitude is deter­
mined by two pairs of corresponding points.

These two pairs, and the point at infinity in the Gauss plane
considered as a double point, determine a homography (74, 30).
If the given points Zl' Z2 and their given homologues Z~, Z; have
ZI' Z2 and z~, z; for affixes, the equation of the similitude is

z z'
Zl z~ I = O.
Z2 z~ I

Corollaries. I° A direct similitude is determined by its center and
a pair of corresponding points.

2° A necessary and sufficient condition for two triangles ZIZ2ZS'
Z~Z~Z~, proper or degenerate, to be directly similar is that

Zl z~ I
Z2 z~ 1 = O.
za z~ 1

3° In order that a triangle ZlZ2ZS be equilateral, it is necessary
and sufficient that
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or again
(Zl - Z2)2 + (Z2 - Za)2 + (Za - Zl)2 = o.

In fact, it is necessary and sufficient that the triangles
Z2Z3Zl be directly similar.

85. Group of translations. The translations of the plane form
a group.

The product of the translations with equations

has for equation
Z2 = Z + al + a2

and is a translation of vector equal to the sum of the vectors of the
given translations.

Moreover, the set
z'=z+a

of translations contains the inverse of each transformation of the set.

86. Group of displacements. The translations and the rotations
of the plane form a group called the group of displacements.

The similitude with equation (2) is a translation if the coefficient
aid of z has the value 1, and a rotation about the center of similitude
if aid is imaginary with modulus I (83). Each of the equations

Zl = Plz + gl' Z2 = PZZl + g2 (4)

then represents a translation or a rotation if IPI I = IP2 I = I, and
the product of these similitudes having for equation

Zz = P2PlZ + P2gI + g2 (5)

is itself a translation or a rotation. Also, the inverse of ZI = Piz + ql

is Zl = zlpl - qllpl' which is again a translation or a rotation.
It follows that the translations and the rotations form a group.

We call this group the group of displacements for the following
reason. If a figure (F) is arbitrarily displaced in its plane so as
finally to occupy a position (F'), then the figures (F), (F') are directly
equal. That is, (F') corresponds to (F) under a direct similitude
whose ratio of similitude is I. This similitude then has an equation
of the form

Z' = pz + g, I P I = 1
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and is a translation or a rotation capable, just as the considered
displacement, of carrying (F) into coincidence with (F').

Corollaries. 10 Every transformation of this group conserves the
magnitude and the sense of each angle, as well as the length of each
segment.

20 The rotations do not constitute a group, but rotations having the
same center do constitute a group.

In fact, equations (4) represent rotations if

and (5) represents a translation if

ei (6 1+6,) = 1 or 81 + 82 = 2k-rr, (k an integer).

On the other hand, if the rotations have the same center, say
the origin, we have q1 = q2 = 0 and (5) represents a rotation.

87. Group of translations and homotheties. The equation

z' = pz + q

represents a translation if p = 1, and a homothety if p is real but
different from 0 and 1 (83). If each of the equations (4) represents
a translation or a homothety, then so also does equation (5). More­
over, the inverse of a translation or a homothety is another translation
or homothety. The translations and the homotheties therefore form
a group.

Corollaries. 10 Every transformation of this group conserves the
magnitude and the sense of each angle, as well as the direction of each
segment, and changes the length of each segment in a constant ratio.

20 The homotheties do not constitute a group, but the homotheties
having the same center do constitute a group.

The product of two homotheties not having the same center is a
translation if the ratios of the homotheties are reciprocals of one another,
otherwise it is a homothety whose center is on the line which joins the
centers of the given homotheties.

Suppose the center of the first homothety, with equation (4), is
at the origin; then q1 = O. If q2 01::- 0, (5) represents a translation
if PIP2 = 1, a homothety if P1P2 01::- 1; when q2 = 0, (5) represents
a homothety or the identity transformation. If (4) and (5) represent
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homotheties, the affixes of their centers, with ql = °and q2 =1= 0, are

and are thus collinear.

88. Permutable similitudes. Two direct similitudes are per­
mutable (22) if they are two translations or if they have the same center.

If we reverse the order of the similitudes Wl' w 2 characterized
by the coefficients Pl' ql and P2' q2 of equations (4), these equations
are replaced by

and the equation of the product WlW 2 is

z~ = PIP2Z + PIq2 + qp (6)

We will have W2Wl = W l W 2 if the second members of equations
(5) and (6) are equal, and hence if

qI(1- P2) = q2(1 - PI)· (7)

When Pl = I, so that Wl is a translation, it is necessary that P2 = I
or ql = 0, that is, that W 2 be a translation or W l be the identity trans­
formation. The last case affirms that the identity transformation
is permutable with every similitude, which is obvious.

When Pl and P2 are different from I, equation (7) states that

qI q2--=--,
I-PI I-P2

and hence that the centers of similitude of WI and W2 coincide (83).

89. Involutoric similitude. The only direct involutoric similitude
is the symmetry with respect to a point.

The direct similitude with equation

z' = pz + q (8)

is involutoric if (23) it coincides with its inverse with equation

z = pz' + q,

and therefore if for all z
z = p2z + pq + q

so that
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If P = 1, it is necessary that q = 0, and equation (8) represents
the identity transformation. If p = - 1, we have

z'=-z+q

which represents (15, 16) the symmetry with respect to the point
of affix q/2.

90. Application. We shall examine some properties of the
following figure which is encountered in electrical studies: being
given a triangle ABC, consider the triples of directly similar triangles
BCA', CAB', ABC'.

One of these triples is determined when A' is chosen, and we
have the three direct similitudes

A'

:x:
FIG. 45

\--+--,.---.,t-........-~c

C'~--I--~f----=~

y

o

ex = (CAB', ABC'), fl = (ABC',BCA'), y = (BCA', CAB').

A

I
: ; :
b' e' 1

If we designate by a the
affix of A in some rectan­
gular cartesian system, the
equation of ex in running
complex coordinates b', c'
is (84)

or

b'(a-b) + e'(a-e) +

be - a2 = O. (9)

Similarly, the equations of fl, yare

e'(b-e) + a'(b-a) + ea-b2 = 0,

a'(e-a) + b'(e-b) + ab-e2 = O.

10 The centers of similitude Sa, Sb' So of ex, fl, yare, respectively,
the orthogonal projections of the circumcenter of triangle ABC on the
symmedians through A, B, C.l

Equation (9) gives
be-a2

s = .
a b+e-2a

1 Sa. Sb' So are, in the geometry of the triangle, the vertices of the second BROCARD
triangle.
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If the origin is assumed at A, then a = 0 and we have

l-=l-+l.
Sa b C '

whence the indicated construction for Sa (31, 20).

2° Point Sa is common to the circle passing through C and tangent
to AB at A and the circle passing through B and tangent to AC at A.

This construction is that of article 83 utilizing the two pairs of
equal pencils

C(AS a ••• ) A A(BS a ••• ), A(CS a... ) A B(ASa... )

if we note that to the ray in the first pencil joining the centers C and A,
there must correspond in the second pencil the tangent AB at the
center A.

3° The centroid of triangle A'B'C' is fixed and coincides with the
centroid G of triangle ABC.

Point A' is determined if we know

I
BA' I --BC and (BC, BA') = 8.

If we set

we then have

and consequently

a' - b b' - c c' - a--=--=--=Ac-b a-c b-a

a' b(1 - A) + CA,

b' c(l - A) + aA,

c' = a(1 - A) + bA.

(10)

(11)

(12)

The vertices of triangle A'B'C' are thus fixed by means of a common
complex parameter ".

Addition of equations (10), (11), (12), member by member, gives

a' + b' + c' = a + b + c,

which establishes the property (38).

4° If ABC is equilateral, so also is A'B'C'. IfABC is not equilateral,
the only two equilateral triangles A'B'C' have their vertices at the
centroids of the equilateral triangles constructed on BC, CA, AB, all
exterior to triangle ABC or all interior to triangle ABC.



90. APPLICATION

A'B'C' is equilateral if (84)

I

b(1 -,\) + e,\ e(1 -,\) + a,\
e(l -,\) + a,\ a(l -,\) + b,\

I a(1 -,\) + b,\ b(l -,\) + e,\
o
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or, by breaking up the determinant into a sum of four determinants,
if

, a b 1 1

1 bel I (3,\2 - 3 ,\ + 1) = O.
I e a 1 I

This relation holds for all values of ,\ if ABC is equilateral, and in
the contrary case if

\ = 3 ± i V3 _ V 3 ±i",/.
1\ 6 -3 e ,

whence the theorem.

5° The points A', B', C' are collinear if they respectively describe
the circumcircles of triangles GSbSc> GScSa, GSaS b, the line A'B'C'
passing thr(lugh G. 1

The collinearity of A', B', C' holds if (36, 4°), t being a real para­
meter, we have

b' - a' = t(e' - a')

or, by taking note of (10), (11), (12), if

,\ = (a-b)t + (b-e)
(a + e - 2b) t + a + b - 2e

If we substitute this value in (10), we obtain for a parametric equation
of the locus of A'

Since we have

a'
(ae - b2

) t + ab - e2

(a + e - 2b) t + a + b - 2e·

, ae - b2 a + e - 2b I ae - b2 a + e - 2b ,
! ab - e2 a + b - 2e I = I (b - e) (a + b + e) 3 (b - e)

(b - e) (a2 + b2 + e2 - ab - be - ea):::j:: 0

1 These three circles are the MCCAY circles of triangle ABC. One can find
further properties in our study, Triangles associlfs a trois figures semblables, Ma­
thesis, 1931, pp. 181-186.
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a+b
--2-- c

a +c-2b
a + b-2c

if ABC is not equilateral, and since, B1 and C1 being the, midpoints
of the sides CA and AB, the quotient

a+c_ b
2

is imaginary, the locus of A' is a circle (41). The values - I, 0, 00

for t give the points G, Sc, Sb' We similarly obtain the loci of B'
and C'. The line A'B'C' passes through G by virtue of 30 •

Exercises 75 through 83

75. Given two circles having equations

zz = R~, zz-az-az + a2 _R: = 0,

there exists an infinity of direct similitudes

,= exr + {3

which transform the first into the second. They are such that ex is any number of
modulus R 1/R2 and {3 = - aex.

If R 1 = R2, these similitudes are rotations centered on the radical axis of the circles.
If R1 ;;z:: R2, the center of similitude describes the circle having equation

( :; - 1)zz + a(z + z - a) = O.

76. Find the affixes of, and construct. the pairs of corresponding points of a given
direct similitude which, with a given point. are the vertices of an equilateral triangle.

77. On each pair of corresponding points Z, Z' in a direct similitude is constructed
the triangle ZZ'Z" directly similar to a given triangle ABC. Show that the figure
consisting of the points Z" is directly similar to that consisting of the points Z and
to that consisting of the points Z·.

78. Determine the locus of pairs of corresponding points of a direct similitude
which subtend a right angle at a given point.

79. Construct a triangle knowing the vertices of the equilateral triangles constructed
exteriorly (interiorly) on its sides.

Generalize: construct n coplanar points A k (k = 1,2•...• n) knowing the vertices Bk

of the triangles A~k+lBk directly similar to a given proper or degenerate triangle.
[See Mathesis, 1950, p. 262.]
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80. Two points AI> A2 describe two coplanar circles (01) and (02) with constant and
opposite angular velocities. If K is a fixed point, determine the locus of the vertex P
of the triangle KA2P directly similar to the triangle K01Al • [It is an ellipse, a circle,
or a line segment. See Mathesis, 1950, p. 353.]

81. If BCA1A.. CAB1B2, ABC1C2 are directly similar figures, and if A1B2P, B1C2Q,
ClAIR also are directly similar figures, then the triangles ABC, PQR have the same
centroid. [See Mathesis, 1953, p. 347.]

82. 1° In the application of article 90, we can construct three points A", B", C"
(collinear or vertices of a triangle) satisfying the vector relations

B"C" = AA', C"A" = BB' , A"B" = CC'.

2° If the triangle ABC is equilateral, the figures A'B'C, A"B"C" are directly
similar no matter what point be chosen for A'.

3° If ABC is not equilateral, these figures are directly similar only if A'BC is a right
isosceles triangle with right angle at A'; the figures are then actually equal with
corresponding segments perpendicular to one another.

[For the collinearity of A", B", C", which occurs if AA', BB', CC' are parallel,
see Mathesis, 1931, pp. 181-186.]

83. A direct similitude transforms a unicursal algebraic curve of order 11 and k-cir­
cular into a curve of the same type; it transforms the centroid, the orthocenter, the
circumcenter, and the isodynamic centers of any triangle into these same points in the
corresponding triangle.

III. NON-SIMILITUDE HOMOGRAPHY

91. Limit points. The homography with equation

, az +b
z = --, ad - be =1= 0

ez + d

possesses two limit points L, M' (80) with affixes

1= -;, m' = :.

(1 )

(2)

(3)

can be written asof the homography

be-ad
c2

The equation

(z -I) (z' - m') =

In fact, equation (1) or

ezz' + dz' - az - b = 0

Theorem I.

can, by taking note of (2), be written as

, I' , b 0zz - z -mz--=
e
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(z -1) z' - (z -1) m' -1m' - ~ = 0
e

which is easily put in the form (3).

Theorem II. For a straight line or a circle (C) of the w plane to
transform into a straight line (C') of the w' plane, it is necessary and
sufficient that (C) contain the limit point L of w.

It is necessary, for if (C') is a straight line it must contain the
point L' at infinity in w', and then (C) contains L.

It is sufficient, for if (C) contains L, the transform (C') contains
L' and is therefore a straight line.

Corollary. The pencil of lines having vertex L is the only pencil
which transforms into a pencil of lines, and this pencil has M' for vertex.

Theorem III. The corresponding pencils of lines having their vertices
at the limit points L, M' are inversely equal, and if Z, Z' are any
two corresponding points, the product

LZ.M'Z'

d

y

L

o~--------x

FIG. 46

M'

is a constant.

On the lines LZ, M'Z'
place axes d, d' whose positive
senses are those of L toward
Z and M' toward Z'. If

cp = (xd), rp' = (xd')

and if e, r are the argument
and the modulus of

(bc - ad)jc2 ,

we have

z -1 = LZ.ei~, z' - m' = M'Z' .eW .

From equation (3), which can be written as

LZ.M'Z' .ei(~H') = reiO

we obtain

LZ . M'Z' = r = i be -;;. ad I

and, to within an integral multiple of 217,

cp + cp' = 8.

constant
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If d1, d1' IS a second pair of corresponding axes similar to d, d',
we have

whence

CPl - cP = - (cp{ - cp'), (xdl) - (xd) = - [(xd{) - (xd')],

(ddl) = - (d'd{),

which establishes the inverse equality of the pencils.

Remark. The angle of the two axes intersecting in the limit point L
is conserved in magnitude but not in sense (see article 77).

92. Double points. Theorem I. If a homography of the complex
plane is not a similitude, it possesses two double points E and F in the
finite part of the plane and the midpoint of segment EF coincides with
the midpoint of the segment determined by the limit points Land M'.

When the double points coincide, the homography is said to be para­
bolic.

The affixes e, f of the double points (80) are the roots of the equation

ez2-(a-d)z-b = 0

obtained by setting z' = z in (l), whence

(4)

1 1
e = 2)a - d + V (a - d)2 + 4be], f = 2)a - d - V (a - d)2 + 4be].

The homography is parabolic if

(a - d)2 + 4 be = o.
The segments EF, LM' have the same midpoint, for from (4)

and (2) we obtain
a-d

e +f = -- = 1+ m'.
e

Theorem II. If the homography is not parabolic, the anharmonic
ratio formed by the double points and any two corresponding points
is a real or imaginary constant A, different from 0, I, 00.

This property applies also to a similitude which is not a translation.

For two pairs Z, Z' and Zv Z~ of corresponding points we have (75)

(efzzl) = (efz'z{)
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e-z e-z} e-z' e-zi.
--:--=--:--,
f-z f-z} f-z' f-Zl

e-z e-z'
--:--
f-z f-z'

e-zl e-zi.
--:--,
f-z} f-z~

(efzz') = (efz}zD = A.

By taking Z = L, Z' = L' = 00, we have (91)

A = (efloo) = e-l = ee + d = a + d + V (a - d)2 + 4 be. (5)
f -l ef + d a + d _ V (a _ d)2 + 4 be

In the case of the similitude having equation (1) with c = 0 and
a * d, point E is the center of similitude and point F is at infinity,
and we have

b
e = d-a'

b
z-e z-~

(eoozz') = (zz'eoo) = -,-- = + b bz -e az
-d--d-a

_z(d - a) - b d - ..!:.... - A (6)
az(d-a)-ab' - a - .

A translation is a direct parabolic similitude.

Remark. For a parabolic homography (similitude or not), A = 1.

Theorem III. Let E and F be two fixed points and A a given
number, real or imaginary but different from O. If to each point Z
we associate the point Z' such that (EFZZ') = A, then this correspondence
is a Mobius transformation having E and F for double points.

10 If E, F are in the finite part of the plane, we have

(efzz') = A,

z-e z'-e
--=A-­
z-f z'-f'

zz'(I-A) + z(Ae-f) + z'(,\j-e) + ef(I-A) = 0 (7)

and since
(1 - A)2ef - (Ae -f) (,\j - e) = A(e _1)2 * 0,
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the transformation is a homography. The equation giving the
affixes of the double points is

(1 -A)[Z2 - (e +f)z + ef] = 0 (8)

, ad, b 0zz --z +-z -- =
c c c

and is an identity if A = 1, in which case (7) is the equation z = z'
of the identity transformation. If A :f= 1, the roots of (8) are e andf,
so that E and F are the double points of the homography.

2° If F is at infinity, we have

(e oozz') = (zz' e 00) = A,

z- e = A(Z' -e),

z -Az' + e(A -1) = 0,

the equation of a similitude with double point E if A :f= 1, and the
identity transformation if A = 1. This result can be gotten from
(7) by taking f infinite.

Theorem IV. If a homography is not a similitude, its equation
can be put in the form

(z- e) (z' -f) + (z- f) (z' - e) = (z-z') (m' -1), (9)

e, f being the affixes of the double points E, F, distinct or not, and l,
m' those of the limit points L, M'.

Equation (1) or

can, since
a-d b

e+f= -c-' ef=-c'

be written in either one of the two forms

d d
zz' - (e + f +-) z +- z' + ef = 0, (10)

c c

zz' - !!... z + (!!... - e - f) z' + ef = 0, (11)
c c

and is therefore equivalent to the equation obtained by adding (10)
and (11), member to member, which gives

a+d
2zz' - (e +f) (z + z') + 2ef=-- (z-z').

c

This equation is nothing but (9) if we take note of (2).
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If we set

93. Decomposition of a homography. If a homography is not
a similitude, it is a product of similitudes, an inversion, and a symmetry
with respect to a line.

From equation (3) we find
, , be-ad

z = m + e2(z -I) .

we have
, , be-ad

z = m + --2-Z2'
e

We thus pass from Z to Zl by a translation, from Zl to Z2 by an
inversion of center 0 and power I followed by a symmetry with
respect to Ox (9), and then from Z2 to Z' by a similitude.

94. Definitions. The constant (92)

(EFZZ') = ,\

is called the invariant of the homography. The homography, assumed
not to be the identity transformation, is parabolic if,\ = I, hyperbolic
if ,\ is real but different from 0 and I, elliptic if ,\ is imaginary with
unit modulus and therefore of the form eirJ. with ex not an integral
multiple of 7T, and lflxodromic if,\ is imaginary with non-unit modulus.

The corresponding cases for the similitude are: translation, homo­
thety, rotation, and product of a rotation and a concentric homothety.

10 The limit points L, M' are
the midpoint of their join. The

line LM' is double for the
homography.

We have -- dlc 0:/= alc or
a 0:/= - d, for otherwise from
(a-d)2 + 4bc = 0 (92) we
would obtain a2 + bc = 0 or
ad - bc = 0, which cannot
be. Line LM' is double

M' d
o because line M'E corresponds

to line LE (91, II) and we
know that E is the midpoint
of LM' (92, I).FIG. 47

95. Parabolic homography.
distinct and the double point E is

p

d' L
o
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2° Any two corresponding points Z, Z' are on the circle y passing
through Z and tangent to line LM' at E.

The ohomography is the product of the symmetry with respect to the
perpendicular bisector p of segment LM' and the inversion having center
M' and power (LM')2/4, or of the inversion (L, (LM')2/4) and the
symmetry having axis p.

We orient the line LZ = d from L toward Z. Since line LM'
is double, point Z' is (91, III) on the axis d' which is symmetric
to d with respect to p, and is such that we have in magnitude and sign

LZ.M'Z' = LE2.

If Z~ is the symmetric of Z with respect to p, we have

M'Z~.M'Z' = M'E2,

which establishes the property.
It follows that every circle y tangent to LM' at E is transformed

into itself by the parabolic homography. We say that such a circle
is anallagmatic.

3° If the points Z, Z' move on the fixed axes d, d', the line ZZ' envelops
the circle E having center E and tangent to d, d'.

The equation (9) of the homography is

2(z - e) (z' - e) = (z - z') (m' -I) (12)

and gives, if we equate the moduli of the two members,

[ EZ.EZ' [ = [ZZ'.LE [.

Denoting the radius of y by R and the distance from E to the line
ZZ' by h we have, for the inscribed triangle EZZ',

I EZ.EZ' I = 2Rh,

and hence

h = I ZZ'. LE I
2R .

But I ZZ'/2R I is the sine of the inscribed angle ZEZ', which
is equal to angle ELZ. Therefore h is equal to the distance from
E to d, and ZZ' is tangent to the circle E.

We also conclude that in a parabolic homography the quotient

I
EZ.EZ' I

ZZ'

is constant and equal to half the distance between the limit points.
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4° The equation of the parabolic homography is

1 1 2--z-=e- z' -e = l-m'· (13)

The homography is determined by its limit points, or by its double point
and a pair of corresponding points.

The double point and an arbitrary point Z are harmonic conjugates
with respect to the homologues Z', Z" of Z in the homography and
in the inverse of the homography.

Equation (13) is obtained from equation (12) by replacing z - z'
by (z - e) - (z' - e) and by dividing the two members by
(z - e) (z' - e) (m' -l). The equation can be written if we know
land m', for 2e = l + m', or if we know e and the affixes q and q'
of two corresponding points, for

2 1
l-m' q-e - q' -e·

In this latter case, the second tangents drawn from Q, Q' to the
circle having center E and tangent to line QQ' intersect the tangent
at E to the circle EQQ' in the limit points L, M'.

Between the affixes of Z", Z we have the relation

1 2
z" - e - z-=-e l- m'· (14)

By subtracting (13) from (14), member from member, we have

2 1 1
e - z = e - z' + e - z"

and consequently (30, II)
(ezz'z") = - 1.

96. Hyperbolic homography. 10 Any two corresponding points
Z, Z' and the double points E, F lie on a common circle y. Every
circle passing through E and F is anallagmatic.

In fact, the invariant (EFZZ') = A is real (28).

20 The limit points lie on the line EF, have the same midpoint as
segment EF, and are inside or outside the segment EF according as
A is negative or positive. The line LM' is a double line of the homo­
graphy.

We have, in fact,
EL

A = (EFL 00) = FL.
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We shall study in § IV the case where the limit points coincide.

3° The homography is the product of the symmetry with respect to
the perpendicular bisector p of segment LM' and the inversion which,
having its center at the limit point M', exchanges the double points,
or of the similar inversion with center at L and the symmetry having
axis p.

d d'o 0

p

FIG. 48

d'o

FIG. 49

In the corresponding inversely equal pencils having centers L and
M', the axes do, d~ placed on LM' are oriented positively from L
toward E and from M' toward E, so that the sense from L toward Z
for d fixes the sense of d', which is that from M' toward Z'. We
then reason as in 2° of article 95.

97. Elliptic homography. We have

A = (EFZZ') = (EFLoo) = (EFooM') = eirx • (IS)

1° The limit points L, M' lie on the perpendicular bisector q of
segment EF, and (LF, LE) = ex.

2° Any two corresponding points Z, Z' lie on a circle Yl of the pencil
of circles having E, F for limit points. All the circles of this pencil
are anallagmatic.

In fact, from (15) we find

I ZE I I Z'E I
ZF = Z'F .

3° The line LM' is a double line of the homography, for the axes
d l = LE and d~ = M'E are homologues.
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40 The homography is the product of the symmetry with respect to
the perpendicular bisector p of segment LM' and the inversion having

center at the limit point M' and power equal to the square of the distance

d;

M'

FIG. 50

from the center to a double point, or of the similar inversion having

center at L and the symmetry having axis p.
In fact, LZ.M'Z' = M'Z~.M'Z' = M'P.

98. Siebeck's theorem. l The double points E, F of a direct
circular transformation are the foci of the conic enveloped by the line
joining two variable corresponding points Z, Z' lying on two corresponding
lines d, d' radiating from the limit points L, M'.

The transformation determines on d
and d' two projective point ranges which
are not perspective if the point dd' is
not E or F. Line ZZ' then envelops
a conic y tangent to d and d'. The
center of y is the midpoint of LM', for,

M' Land M' being the limit points of the
FIG. 51 ranges (Z) and (Z'), the parallels to d'

and d drawn through Land M' are tangents to y.
The pencils E(Z), E(Z') are projective and their double rays are

the tangents to y drawn from E. It follows that E will be a focus

1 Archiv der Mathematik und Physik, vol. 33, 1859, pp. 462-474. Its proof is
based on calculus.
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if these tangents are isotropic lines, or if the pencils are directly
equal, that is, if the angle (EZ, EZ') is constant to within a multiple
of 7T.

Let Zl' Z~ be two other corresponding points on d, d'. From

(ZZIEoo) = (Z'Z~EM')

we obtain, by equating the arguments,

(EZl> EZ) = (EZ~, EZ') ± 7T,

(EZl> EZ') + (EZ', EZ) = (EZ~, EZI) + (EZI , EZ') ± 7T,

(EZ', EZ) = (EZ~, EZ I ) ± 7T,

which is what we had to establish. I

Corollary. The conic 'Y is a circle if the homography is parabolic.
We have already established this (95, 30 ).

Exercises 84 through 91

84. Steiner ellipses. The conic tangent to the sides of a triangle ABC at their
midpoints is an ellipse C called the inscribed Steiner ellipse of the triangle; it has the
centroid G of ABC for center. The homothety with center G and coefficient - 2
transforms the inscribed Steiner ellipse into the circumscribed Steiner ellipse.

1° The tangents to C form two projective point sets on AB and AC which deter­
mine a homography OJ. in the Gauss plane, whose limit points L, M' are defined by

AL: LB = 2, AM': M'C = 2;

Band C are corresponding points.

2° If a, b, c are the affixes of A, B, C in any rectangular system, the equation of OJ. is

3zz' - (a + 2c)z - (a + 2b)z' + ab + bc + ca = O.

[See article 91, theorem I.]

3° With the notation of exercise 26, show (article 98) that the affixes of the foci
Fb F2 of the ellipse C are the roots of the equation in 1>

31>2 - 2a,1> + a2 = O.
If a, b, c are the roots of

Z3 - a,z2 + a2z - as = 0,

the equation obtained from this by differentiation is none other than the equation
in 1> z.

'We have given another proof in Mathesis, 1932, p. 268.
2 BELTRAMI (Memorie della Ace. di Bologna, vol. IX, 1869, pp. 607-657) considered

F b F 2 as the polar pair of the point at infinity with respect to the triple A, B, C, and
F. MORLEY (Quarterly Journal, vol. XXV, 1891, pp. 186-197) identified them with
the foci of C. [See Mathesis, 1955, p. 81.]
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40 By taking the origin at G and Gx on GFlo show that if B., Bb, B, are the angles
that GA, GB, GC make with GFlo then we have

3GF: = -[GA ·GBcos(B. + Bb) + GB 'GCcos(B b + Be) + GC ·GAcos(Be + B.)],

sin (B. + Bb) sin(B b + Be) sin (Be + B.)
GC + GA + GB = O.

85. The equation of a parabolic homography can always be put in the form
(article 95, 40 )

---=-.
z z' a

a real.

Deduce (article 30, II) that, if A, B are two given points, any point Z and the harmonic
conjugate of B with respect to A and to the symmetric of A with respect to Z corre­
spond in a parabolic homography. Determine the double point and the limit points
of the homography.

86. Show that if Ais the invariant of a homography having distinct limit points, L,
M', the equation of the homography is

(z - 1) (z' - m') = - (A + 1)2 (1- m')2.

Dedu ce that the homography with equation

(z -I) (z' - m') = k(/- m')2, 1~ m',

is parabolic, elliptic, or hyperbolic according as k is equal to, less than, or greater
than - 1/4, and loxodromic if k is not real.

When 1= m', A= - 1. For the origin at L, and if E is a double point, the equation
is

87. Invariant of a direct similitude. The invariant is I for a translation,
imaginary with unit modulus for a rotation of angle different from (2k + 1)1T, real and
different from 1 and 0 for a homothety (- 1 for a symmetry), imaginary with non­
unit modulus for the remaining case. These similitudes can then be called parabolic,
elliptic, hyperbolic, and loxodromic, respectively.

The anallagmatic lines and circles are, respectively, the parallels to the translation
vector, the circles centered at the center of rotation, the lines drawn through the center
of homothety and, if the homothety is a symmetry, the circles centered at the center of
homothety. There are no anallagmatic lines or circles in the last case.

88. In a loxodromic homography, the point of intersection of two corresponding
lines describes an equilateral hyperbola which passes through the double points E,
F and on which the limit points L, M' are diametrically opposite one another. [This
follows immediately by article 91, III. For a direct calculation, take the origin at
the midpoint of LM' and the Ox axis on LM'. Then we have (exercise 86)

(z - 1) (z' + 1) = 4kl2

for the equation of the homography. A line through L has equation

z - 1 = (z - l)e't,
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from which we obtain its transform and, if we set

157

the equation

of the locus, which, for

can be written as

k
-=- = a2 = e2lIX

k '

1[1 - Zeit +e2i(t-ct)]
Z = -=-----:-=--,,-:--=­

1 - e2i(t-IX)

1 + iT

1 - iT '

li(l + a)T li(l - a)
Z=- 2 + 2'1' .

See article 63 and exercise 5 I. The affixes 4> of the foci are given by

4>2 = 12( 1 - ~ ) • ]

89. 1° The cyclic homography of period 3 (exercise 74)

w = (A BC)
BCA

has the isodynamic centers W, W' of the system A, B, C for double points. [For,
in order to have (ABCE) = (BCAE), we must have (article 32) E = W or W'.]

2° Starting with exercise 72, show that the affixes of W, W' are the roots of equa­
tion (3) of exercise 26.

3° The invariant of w is ,\ = e±2in/3 (± according to the order in which we choose
W, W' for writing ,\), and w is elliptic. [Considerthe product (lOW'ab) (ww'be) (lOW'ea).]

4° The limit points L, M' are the centers of the equilateral triangles constructed
on WW' as side (the Beltrami points). [Consider (WW'L 00) = ,\.] Their affixes are

I = 3as - (ab2 + be2 + ea2
)

3a - a2
2 1

m'=
3as - (ae 2 + ba2 + eb2)

3a - a2
2 1

5° When A, B, C are vertices of a triangle inscribed in a circle (0), the inverses of L,
M' in (0) are called the Broeard points 0, 0' of the triangle. If (0) is the unit circle,
we have (exercises 40 and 41)

3-(~ +~ +.!:.)
e a b

w

3-(~+~+~)
b e a

w'
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6° Deduce from 5° (and from exercise 41, 80) that n, n', which are synunetric to
one another with respect to the line joining 0 to the Lemoine point K, are on the
circle of diameter OK (the Brocard circle), and that line LM' (the Lemoine line) is the
polar of K in (0). The angle (OK, on) is the Brocard angle of triangle ABC.

90. A homography admits an irreducible cyclic set of order n only if its invariant
has the form

where n1 is a positive integer less than n and prime to n, and it suffices to take n1 < n/2.
Each point of the plane is then the start of a cyclic set of order n.

If n > 2, the homography is elliptic. Each cyclic set is situated on an anallagmatic
circle and constitutes a harmonic (Casey) polygon, transformed from a regular polygon
by an inversion whose center is a double point of the homography. [See Mathesis,
1889, p. 50 and 1932, p. 275.]

91. Point P being an arbitrary point in the plane of triangle ABC, we construct the
triangles APe', BPA', CPB' directly similar, respectively, to triangles ABC, BCA,
CAB.

1° Triangle A'B'C' corresponds to triangle ABC in a direct similitude having
equation

z(p - r) + z'(r - s) + ww' - pr = O.

where w, w', r, s are the affixes of the isodynamic centers W, W' and of the Beltrami
points (exercise 89) R, S of triangle ABC.

2° Discuss the nature of w as P varies, ABC remaining fixed. [See Mathesis, 1937.
p.46.]

IV. MOBIUS INVOLUTION

99. Equation. A homography of the complex plane

, az + bz =---
cz + d

is involutoric, and is called a Mobius involution, if

(1)

a + d = O. (2)

In fact, it is necessary and sufficient that equation (I) be identical
to the inverse homography (23)

az' + b
z = cz' + d'

If we write the two homographies as

czz' - az + dz' - b = 0, czz' + dz - az' - b = 0

we conclude that (2) is the sought condition.
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From the form
czz' - a(z + z') - b = 0

we see that an equation of the involution is symmetric in z and z'.

159

FIG. 52

Corollary. If Z' is the homologue of Z, then Z is the homologue
of Z'. We say that Z and Z' doubly correspond, or are conjugate,
in the involution.

100. Sufficient condition. In order that a homography be in­
volutoric, it is sufficient th.at two distinct homologous points doubly
correspond.

In fact, if Zo' Z~ are two such homologous points, we have the
identities

czoZ~ - azo + dz~ - b == 0,

cz~zo - az~ + dzo- b == 0,

which, by subtracting member from member, give

(a + d) (z~- zo) == 0

or, since Zo * z~, gives a + d = O.

10I. Properties. 1° A M 6bius involution is a hyperbolic homo­
graphy whose invariant has the value - 1.

It suffices to set a + d = 0 in equation
(5) of article 92 to find that A = - 1. This
fact is immediate in the case of an involutoric
similitude (89).

2° The double points E, F and any two
conjugate points Z, Z' are vertices of a harmonic
quadrangle (30).

3° The limit points L, M' coincide at the
midpoint of segment EF, the conjugate of the
point at infinity of the Gauss plane, and called
the central point of the involution.

4° The product of the distances of the central
point from two conjugate points is a constant
called the power of the involution, and is equal
to the square of the distance from the central point to a double point.
The line determined by the double points interiorly bisects the angle
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formed by the lines joining the central point to the two conjugate points
(30, 91).

5° The line EF and its perpendicular at L are double lines for the
Mobius involution. The first line carries a hyperbolic involution of
points having E, F for double points; the second line carries an
elliptic involution of power - LP.

6° The circles passing through E, F, as well as the orthogonal tra­
jectories of these circles, are anallagmatic. In fact, the orthogonal
trajectory passing through Z also passes through Z' (30).

7° A Mobius involution is the product of the inversion of center L
and power - LP and the symmetry with respect to the perpendicular
bisector of EF. These transformations are permutable (96).

102. Determination of an involution. An involution is deter­
mined if we are given any two pairs of conjugate points,. the points
of one or of both pairs may coincide.

Let Zl' Z~ and Z2' Z~ be the two given pairs of points. If
Zl == Z~, Z2 == Z~, then these points are the double points of
the involution, and the involution is determined inasmuch as the
homologue of any point Z is the harmonic conjugate of Z with
respect to the double points (101). If Zl is distinct from Z~, there
exists a unique homography of the complex plane in which Zl' Z~,

Z2 have for homologues Z~, Zl' Z~ (74), and it is an involution
inasmuch as the distinct points Zl> Z~ correspond doubly (100).

Equation. First form. If Zl, z~ and Z2, z~ are the affixes
of the given points, the involution has an equation of the form (99)

azz' + b(z + z') + c = 0

with the conditions

The sought equation is then

zz' z + z'
ZlZ~ Zl + z~

Z2Z~ Z2 + z~

o. (3)
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(4)

(5)

m the involution

(10)

Second form. If Z1' z~ and Z2' z~ are gzven as roots of the
equations

ar 2 + 2b2z + C2 = 0,

the affixes of an arbitrary pair of conjugate points
are the roots of the equation

a1z2 + 2b1z + C1 + ,\(a2z2 + 2b2z + c2) = 0, (6)

in which ,\ is a parameter able to take on all complex values.

The usual equation

rxzz' + f3(z + z') + y = °
of an involution says that there exists a constant linear relation
between the product and the sum of the affixes of two conjugate
points. For Zl> Z~ and Z2' Z; we must then have

(XCI - 2f3b1+ yal = 0, (7)

(XC2 - 2f3b2+ ya2 = 0, (8)

and for any conjugate pair of points whose affixes are the roots of

az2+ 2bz + c = 0, (9)

we will have

exc - 2f3b + ya = 0.

From (7), (8), (10) we obtain

I
:: :: :: I = °
abc

and consequently, if J1'1' J1'2 are two arbitrary complex numbers,

a = J1' l a l + J1'2a2, b = J1' l bl + J1'2b2' C = J1' I C1 + J1''Jh.

It suffices to substitute these values into (9) and to set J1'2/J1'1 =,\

in order to obtain (6).

Affixes of the double points. If an involution is given by (3),
the affixes of the double points are the roots of

Z2 2z

Z1Z~ Z1 + Z'l = 0.
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In the case of equation (6), the ..\'s for the double points annul the
discriminant

(..\a2 + a1) (..\c2 + c1) - (..\b2 + bl )2

and the sought affixes are the values of

..\b2 + bl

..\a2 + a 1

for each of the ..\'s found.
But we can also form an equation of the

these affixes e, f for roots. Let it be

rz2 + 2sz + t = O.
Since we must have

second degree having

(11)

(efz1z{) = - 1 or (30, II)
it is necessary that

(e + f) (Zl + z{) = 2(ef + zlz{),

(12)

and, similarly,
rC2 - 2sb2 + ta2 = O.

From (11), (12), (13) we obtain the sought equation

(13)

FIG. 53
C'

103. Theorem. If the four sides of a complete quadrilateral are
in the finite part of the plane, the three pairs of opposite vertices are
three pairs of conjugate points in a Mobius involution.

Let (A, A'), (B, B'), (C,
C') be the three pairs of op­
posite vertices, A, B, C lying
on a common side. At least
two of these pairs are com­
posed of proper points; let
A, A' be one of the pairs.
There exists a unique homo­
graphy w of the complex

C plane in which A, B, C have
A, C', B' for homologues ; A
is a double point in this

homography. The homography determines on the corresponding
lines ABC, AB/C' two projective ranges

ABC ... 7\ AC'B'
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which, having point A in common, are perspective from center A'.
The limit points Land M' of these ranges, lying on the parallels
to AB' and AB drawn through A', are also the limit points of w.

The second double point of w is thus A' (92, I) and we have (75)
(AA'BC) = (AA'C'B'). Hence we also have (26)

(AA'BC) = (A'AB'C'),

an equation which proves that in the homography of the complex
plane which assigns A', B', C' as the homologues of A, B, C, the
points A, A' doubly correspond; this homography is then an in­
volution (100).

Corollary. fr c, C' are at infinity, the involution is a symmetry
with respect to the center of the parallelogram ABA'B' (89).

104. Construction of the involution defined by two pairs
of points AA', BB'.

It suffices to construct the double points E, F, for then any
pair of corresponding points Z, Z' can be constructed by (30)
(EFZZ') = - 1.

Case I, A, A', B, B' collinear. a) If the pairs AA', BB' do not
separate one another (Fig. 54), E, F are the double points of the
hyperbolic involution (AA', BB') determined on the double line
AA'BB'. The radical axis a of any two circles ex, f3 passing through
A, A' and B, B' intersects this line at the central point O. The
circle y of center 0 and orthogonal to ex contains E, F.

FIG. 54

A

FIG. 55

b) If AA', BB' separate one another, the double line AA'BB' is
the perpendicular bisector of the segment EF, and the points E,
F are common to the circles ex, f3 having AA', BB' for diameters
(Fig. 55).
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Case 2, A, A', B collinear (Fig. 56). The line AA'B transforms,
by the involution, into the circle 'Y = A'AB', which thus contains
the central point O. In order to determine 0, we note that

(BAA' 00) = (B'A'AO) = (OAA'B'),

whence, if P is the second point of 'Y on the parallel to AA'B drawn
through B', we have

P(BAA' 00) = P(OAA'B')

and point 0 is on the line PB.

B

FIG. 56

The problem becomes that of constructing E, F such that (EFAA')
= - 1 and such that 0 shall be the midpoint of EF (31). The
interior bisector OJ of angle AOA' is cut in E, F by the circle S
passing through A and A' and having its center K on the exterior
bisector of this angle.

Case 3, A, A', B, B' are the vertices of a quadrangle. a) If A'
is at infinity, then A is the central point and E, F are such that
(EFBB') = - 1 with A as the midpoint of EF (31).

b) If the four points are proper points, let C, C' be the points
(AB, A'B'), (AB', BA'). Points C, C' are conjugate points in the
involution, for they form the third pair of opposite vertices of the
quadrilateral having sides a = AB'C', b = BC'A', c = CA'B',
d = ABC (103). The involution transforms the lines a, b, c, d into
the circles a' = A'BC, b' = B'CA, c' = C'AB, d' = A'B'C',
which then have in common the central point of the involution
(91, II). The double points E, F are the intersections of the
interior bisector p of angle BOB', for example, with the circle f3
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passing through B, B' and having its center on the exterior
bisector q (31).

A

I
I
t
I

\
\

\

\ ,
" ....

I
I

/
/

./

--.;' .....~

FIG. 57

Corollary. In a complete quadrilateral abed, the circles circum­
scribed about triangles abc, bcd, cda, dab have a common point 0,
called the Miquel point of the quadrilateral.

The angles subtended at ° by the diagonals AA', BB', CC' have
the same interior bisector p.

The circles passing through the pairs of opposite vertices (A, A'),
(B, B'), (C, C') and centered on the exterior bisector q have two common
points E, F on p, and we have (91, III)

OA.OA' = OROB' = OC.OC' = OE2 = OF2. 1

1 See our study, Involution de Mobius et point de Miquel: Mathesis, 1945, vol. LV,
pp. 223-230.
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Exercises 92 through 96

92. Being given an equilateral triangle ABC, show that the homography having B,
C for double points and A for a limit point is cyclic of period 6, and that its cube is a
Mobius involution. Construct the cyclic set which belongs to a given point P.

93. Two Mobius involutions with equations

a,zz' + b,(z + z') + c, = 0, z = I, 2,

have in common a pair of conjugate points whose affixes are required. Construct
the pair when the involutions are given by their double points.

94. Being given a Mobius involution and a point P, there exists only one pair of
points of the involution having P for midpoint. Construct them.

95. Let us refer a Mobius involution to two rectangular axes Ox, Oy whose origin
is the central point of the involution and such that the Ox axis contains the double
points E, F with affixes a and - a.

1° If x, y and x', y' are the coordinates of two conjugate points Z, Z', then the
cartesian equations of the involution are

a2x a2y
x' = y' = - -:-''-----c-

x2 + y2 ' x2 + y2

2° Ox and Oy are the only lines which contain an infinite number of pairs of points
of the involution. For a line to contain a pair of points of the involution, it is necessary
and sufficient that the line intersect the segment EF; construct such a pair of points.

]0 The pairs of points of the involution collinear with a given point (p,q) describes
the circular cubic having equation

(x2 + y2) (qx - py) + 2a2xy - a2(qx + py) = O.

96. The homography

implies the involutions
(

E FA B C )
E F A' B' C' .

(EF, AB', BA'),

[Use articles 75 and 100.]

(EF, AC', CA'), (EF, Be', CB'),

V. PERMUTABLE HOMOGRAPHIES

105. Sufficient condition. A sufficient condition for two hom(l­
graphies of the complex plane to be permutable is that they have the
same double points.

We know that for two similitudes the condition is both necessary
and sufficient (88).
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Parabolic homographies. If E is the double point common to
the parabolic homographies with equations (95)

1 1 1 1--- -,-- = aI' -,-- - -,-,- = a2 (1)z-e z -e z -e z-e

which permit us to pass from point Z to point Z', then from Z'
to Z", the homography associating Z with Z" has the equation

1 1
-----=a +a2z- e z" -e I

(2)

and is parabolic with double point E. If we interchange the roles
of the first two homographies, which amounts to interchanging the
constants aI' a 2 in equation (1), the product is again given by (2).

Non-parabolic homographies. Let E, F be the common double
points and let Al and A2 be the invariants of the two homographies
WI' w 2• The equations of these homographies are (92, III)

(ejzz') = AI' (ejz'z") = A2
and the equation of W 2W1 is

(ejzz') (ejz'z") = (ejzz") = AIA2•

The product is thus a homography with double points E, F and invariant
A1A2 ; it is therefore the same as W1W2'

106. The homographies permutable with a parabolic homography WI

with double point E are the parabolic pomographies with double point E.
Any homography W 2 permutable with WI must have E for double

point. Otherwise, let E 2 be the homologue of E in W2; it will
also be the homologue of E in W 2W1 (21), and can be the homologue
of E in WIW2 only if E 2 is double for WI' which is impossible since
E is the only double point of WI'

Homography W 2 cannot have a double point F 2 distinct from E.
In fact, the homologue F 21 of F 2 in WI is distinct from E and F 2'

and is also the homologue of F 2 in w1w2; it cannot, on the other
hand, be the homologue of F 2 in W2W1 since it is not double for W 2•

The sought w2's must then have the unique double point E, which
is sufficient (105).

107. A non-involutoric homography WI with double points E, F is
permutable with only one involution I, namely that which has E, F
for double points.
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or (26)

If E is not double for I, its conjugate E' in I cannot be distinct
from F, for E/, the homologue of E in IWl, would not be the homo­
logue of E in wlI as it should be if WI and I are permutable.

If E' is at F, it is the homologue of E in IWI and in wlI. But then
the conjugate of F in I is E, and the double points X, Y of I are
such that (EFXY) = - 1. The homologue Xl of X in WI is
the homologue of X in wlI but not that of X in IWI because WI'

being non-involutoric, cannot have its invariant (EFXX l ) equal to
- 1, and Xl is not double for I. The hypothesis thus does not
give an involution I which is permutable with WI'

lt is therefore necessary that E be double for I and, by the first
part of the argument, that F be the second double point of I. This
condition is sufficient (105).

The involution I is the united involution of the. homography.

Corollary. If Al and A_I are the homologues of a point A in the
homography WI and in its inverse wI l

, the conjugate of A tn the united
involution I is its harmonic conjugate A" with respect to Al and L l .

We have the equation (92, II)

(EFA_I A) = (EFAAl ),

(EFA_I A) = (FEAI A),

proving (100) that A is double for a Mobius involution admitting
the pairs EF, A_lAl . If A" is the second double point we then have

(EFAA") = - I, (A_1A1AA") = -I,

which establishes the corollary.

Remark. When WI is parabolic with double point E, point A"
is always at E (95, 40 ).

108. Harmonic involutions. A necessary and sufficient condition
for two distinct involutions to be permutable is that the double points
of one be harmonic conjugates with respect to the double pnints of the
other.

We also say that the involutions are harmonic.
Let 11' 12 be two involutions with double points E l , F1 and E 2,

F 2' and with equations

a1zz1 + bl (z + Zl) + Cl = 0,

a2z1z2 + b2(ZI + Z2) + C2 = o.
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The homography 1211 has for equation (78)

(a1b2- a2b})zz2 + (a}c2- b}b2)z + (b}b2- a2c})z2 + b}c2- b2c} = ° (3)

and is identical to the homography 1112 with equation

(a2b} - a1b2)zz2 + (a2c1- b2b1)z + (b2b} - a1c2)z2 + b2c1- b}c2 = ° (4)

if the coefficients of equations (3) and (4) are proportional. Since
11 and 12 are distinct, the matrix

II
al b1 c}

a2 b2 C2

is of rank 2. If b1 or b2 is not zero, we do not have simultaneously

a1b2- a2b1 = 0, b1C2 - b2c1 = 0,

and the quotient of two corresponding coefficients in (3) and (4)
is - 1. The coefficients of z or of Z2 give

(5)

the double points

a1c2- 2b1b2+ c1a2 = 0,

which is a necessary and sufficient condition that
of 11' 12 whose affixes are roots of

a1z
2 + 2b1z + C1 = 0,

form a harmonic quadruple (102).
If b1 = b2 = 0, we have a 1c2 - a 2c1 =1= 0 and (3) and (4)

1211 = 1112 if a 1c2 + a 2c} = 0, which is (5).

we obtain

Corollary. If two Mobius involutions with double points E1, F 1

and E 2, F 2 are harmonic, their product is a new involution with double
points E3 , F3' and each pair of these three involutions is harmonic;
the quadrangles E}E2F IF 2' E2E3F 2F3' E3E 1F3F 1 are harmonic (30).

In fact, (5) says that in (3) the coefficients of z, Z2 are equal, and
1211 is an involution 13. From the equation

1211 = 13

121111 = 131} or (23) 12 = 1311•

Since the product 131} is an involution, the reasoning above permits
us to conclude that II' 13 are also harmonic. In the same way we
show that 12, 13 are harmonic.

109. A necessary and sufficient condition for two non-involutoric
homographies to be permutable is that they have the same double points.

We know that this theorem is true if one of the homographies
is parabolic (106). If the given homographies WI' W2 are not para-



170 PERMUTABLE HOMOGRAPHIES

bolic, let E, F be the double points of WI' If E is not double for
W 2, its homologue E 2 in W2 is also the homologue of E in W2WI,

and in order that E 2 be at the same time the homologue of E in
WIW 2, it must be double for WI' and hence be at F. Similarly,
the homologue F2 of F in W2' not being F, will have to be E.
Consequently, E, F will correspond doubly in W 2, which will thus
be involutoric, which is contrary to the hypothesis. It is necessary,
then, that E be double for W 2, and we easily conclude that F must
be double for W2' These conditions are, moreover, sufficient (105).

Corollary. A non-involutoric homography is permutable with the
homographies having the same double points, and, in particular, with
its united involution (107) if it is not parabolic.

A Mobius involution is permutable with the homographies for which
it is the united involution, and with the involutions which have its
double points for conjugate points (108).

110. A necessary and sufficient condition for the product of a homo­
graphy wand an involution I to be an involution is that the double
points of W be conjugate points in 1. We say that I is harmonic to w.

If the equations of wand I are

ex.zz' + f3z + yz' + S = 0, (6)

az'z" + bz' + bz" + c = 0, (7)

that of Iw is

(ex.b-f3a)zz" + (cx.e-f3b)z + (yb-Sa)z" +yc-Sb = 0

and represents an involution J if

ex.c - f3b = yb - Sa
or

S f3+y
a--b--+c = O.

ex. ex.
(8)

Since the affixes of the double points E, F of ware the roots of

ex.z2 + (f3 + y)z + S = 0,

and have for product and sum S!ex. and - (f3 + y)!rx, equation (8)
says that E, F are conjugate points in 1.

Corollaries. 10 If w is parabolic, its double point is also double
for J.

20 Every homography w is, in a double infinity of ways, the product
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of two Mobius involutions,. these have the double points of W as a common
pair of points.

In fact, from Iw = J we obtain W = 1], since 12 = 1. We deter­
mine an involution I by arbitrarily selecting one of its double points.
Since the equation Iw = J can be written as I = Jw-l and since w,

w-l have the same double points, we conclude that these points are
also conjugate points in J.

III. Simultaneous invariant of two homographies. As
generalizations of articles 108 and 110, we can consider two homo­
graphies WI' w 2 with equations

(XIZ Zl + f31z + yIZl +°1 = 0,

(X2Z1Z2 + f32Z1 + Y2Z2 +°2 = 0

whose product W 2WI, with equation (78)

((XIY2 - (X2f31)ZZ2 + ((XI02 - f31(32)Z + (YIY2 - (X201)Z2 + YI02 - f3201 = 0,

is an involution.
It is necessary and sufficient that we have (99) equality of the

coefficients of z and z 2' or

(XI02 - f31f32 - YIY2 + (X201 = O. (9)

The left member of this equation is a simultaneous invariant of

Corollaries. 1° If WI' w2 are not similitudes and if they have
EI , F l' E 2, F 2 for double points and L I , M~, 1.2, M; for limit
points (91), condition (9) becomes

edl + eJ2 = /1/2 + m{m;. (10)

2° Assuming W 2 == WI' we have the condition

f3~ +Y; - 2(XIOI = 0 (11)

for the square of WI to be a Mobius involution.
If WI is a similitude, then (Xl = 0, (11) gives Yl - ± if3I' and

WI is a rotation of angle ± n/2.
If (Xl :::): 0, (10) becomes

and, by taking E I for origin, m~ = ± ill; WI is an elliptic homography
with invariant A = e±inl. (97).
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FIG. 58

112. Transform of a homography. In a homography Wi, the
homologue of a point A or Ak will be designated by Ai or Aki•

Let A, Al be any two cor­
responding points of a homography
WI' and let A2, Al2 be the homo­
logues of A, Al in a homography
W2' The correspondence which
connects A2 and Au as A moves
in the Gauss plane is the product
of the successive homographies

W;\ WI' w2 and is therefore (78) the homography

(12)

This homography W is called the transform of WI by W 2•

To any two corresponding points A, Al in the homography WI that
is transformed, the transforming homography W 2 associates two cor­
responding points A 2, A l2 in the transformed homography w.

In particular, each double point of WI is transformed into a double
point of w. Since, on the other hand, a homography does not alter
anharmonic ratios, the homographies WI and ware simultaneously
parabolic, hyperbolic, elliptic, or l(lxodromic with the same invariant,
and a Mobius involution is transformed into a Mobius involution.

The permutability of the homographies WI' w 2 which IS expressed
by

(13)

is related as follows to the notion of the transform of one homography
by another. Multiply the two members of (13) on the right by
Wi!, then by w I I (21). Since w 2wi1 = WIWII = 1, we have

By virtue of (12), these equations say that if WI' W 2 are two permutable
hom(lgraphies, each is transformed into itself by the other, whence any
two corresponding points in the one are transformed by the other into
two points which are also corresponding points in the first homography.
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Exercises 97 through 102
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97. The cyclic homographies

(~ ~ ~),
are inverses of one another. Show that:
1° if

(
A B C)
CAB

[See Mathesis, 1947, p. 65.]

(BCAA') = (CABB') = (ABCC') = -I,

and ifW, W' are the isodynamic centers of A, B, C (exercises 26, 27,89), the united
involution is [article 107, corollary]

(WW, WoW', AA', BB', CeO);

2° the foci F" F. of the inscribed Steiner ellipse (exercise 84) constitute a pair of
points of this involution and are therefore on a circle which passes through W, W'.

98. The involutions of exercise 96 are harmonic to the homography.

99. An involution is harmonic to a homography W (article 110) if it transforms W

into w-l.

100. Every homography w can be transformed into a similitude by a properly
chosen homography WI' It suffices to take WI such that one of its limit points coincides
with a double point of w.

Obtain, with the aid of exercise 87, the anallagmatic lines or circles of a non-simili­
tude homography.

101. 1° The product of two Mobius involutions

Jl = (ElE" FlFl), J. = (E.E., F.F.)

is a homography w which is : parabolic if El = E.; elliptic if the pairs E" F l and E.,
F. are collinear or concyclic and separate one another non-harmonically; hyperbolic
with a positive invariant if the pairs E" F l and E h F. are collinear or concyclic and do
not separate one another; hyperbolic with a negative invariant if (ElFlE.F.) is of the
form e'''' (ex real), and involutoric if

(ElFlE.F.) = - 1;
loxodromic in all other cases.

2° If (ElFlE.F.) = k, the invariant of w is

[
1- Vk]'
1+ Vk .

102. Three Mobius involutions which are harmonic in pairs and none of which is a
symmetry have distinct central points A" A., A. and are determined by the arbitrary
choice of these points.

IfP" p., P s are the conjugates of an arbitrary point P, the triangles PlA.A., AlPaAs,
AlA.Ps are directly similar, the lines AlP" A.P., AsPs are concurrent at the isogonal
conjugate of P in the proper or degenerate triangle AlA.A., and we have three equa­
tions like

I AlP· AlPl I = I AlA•. AlA. I.
[See Mathesis. 1947, p. 67.]
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VI. ANTIGRAPHY

113. Definition. An antigraphy is a transformation of the Gauss
plane which has an equation of the form

otZZ' + flz + yz' + 8 = 0, ~8 -fly *- 0 (1)

in which ex, fl, 1', 8 are real or imaginary constants, or of the form

, az + b
z = eZ + d' ad - be -=1= O. (2)

The inequalities are justified as in article 73.

(3)
, az" + b

z = ---;";--:-''----7­

ez" + d
z" == z,

114. Properties. I° An antigraphy is the product of a symmetry
with respect to the Ox axis and a homography.

Equation (2), for example, follows from the elimination of z" from
the equations

of which the first is the equation of the considered symmetry.

2° An antigraphy is determined if to three distinct and arbitrarily
chosen points Zv Z2. Za. we associate three distinct and arbitrarily
chosen points Z~, Z~, Z~.

The proof is accomplished as in article 74.

3° The anharmonic ratio of any four points Zl, Z2, Za, Z4 is equal
to the conjugate of the anharmonic ratio of their homologues Z~,

Z~, Z~, Z~ in an antigraphy.

The first of equations (3) gives

and the second (75)

whence

Corollary. An antigraphy leaves real anharmonic ratios invariant.

4° The product of a homography and an antigraphy is an antigraphy.
The product of two antigraphies is a homography.
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Thus, the product of the homography and the antigraphy having
equations

ex1ZZ1 + f31Z + 'Y1Z1 + 01 = 0, ex2Z'Zl + f32Z1 + 'Y~' + 82 = 0

has for equation (78)

(ex1'Y2 - ~l)ZZ' + (ex102- f31(32)Z + (1'11'2 - o::a81)Z' + 1'182- f3201 = 0

and is an antigraphy.

A. ANTISIMILITUDE

115. Equation. The antigraphy with equation (1) or (2) is called
an antisimilitude if ex = C = 0, and it then has an equation of the form

Z' = pz + q.

It is the product of the symmetry with respect to Ox and a similitude
(114, 81).

116. Properties. I. Any antisimilitude has the point at infinity
for a double point. It transforms any straight line into a straight line,
any circle into a circle, and any triangle into an inversely similar triangle
for which the ratio of similitude of the second to the first is I p I.

As Z approaches 00, so does z'.
The straight line or the circle having equation

at + b
Z - -- t a real parameter (4)

- ct + d'

is transformed into the curve having the equation

, (pa + qc) t +pb + qd
Z = _

ct + d

which represents (41) a straight line or a circle according as (4)
represents a straight line or a circle.

If ZlZ2Z3, Z~Z~Z; are two corresponding triangles, we have
(114, 3°)

(ZlZ2Z3 00) = (Z~Z~Z~ 00)

and, by expressing that the moduli are equal while the arguments
are opposite,

(Z3Z2' Z3Z1) = - (Z~Z;, Z~Z~).
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The triangles are thus inversely similar and the ratio of similitude
I Z~Z~JZIZ2 I is Ip I (82). This is why an antisimilitude is also
called an inverse similitude.

II. An antisimilitude is determined by two pairs, ZI' Z~ and Z2'
Z~, of corresponding points, and has for equation

z' z 1
Z' ZI 1 - 0.1
Z' Z2 12

A necessary and sufficient condition for two triangles ZIZ2Za, Z~Z~Z;

to be inversely similar is

ZI z~

Z2 z~ 0.
za z;

III. An antisimilitude is an inversely conformal transformation,. it
preserves the magnitudt of each angle but reverses its sense.

This follows from property I.

117. Symmetry. lo The symmetry with respect to the line d
having equation (37)

az + az + b = 0, b real

is the antisimilitude with ratio 1 and with equation

az' + az + b = ° (5)

and whose double points are all the points of the line d.

The line d contains the point S with affix - bJ2a and is parallel
to the vector representing the number iii (37); it therefore also
contains the point T with affix - bJ2a + iii. In order that two
points Z', Z be symmetric with respect to d, it is necessary and
sufficient that triangles Z'ST, ZST be inversely similar, or that (116)

z'

b
-2a

b . _
--+ta

2a

z
b

-2a
b .

-2a- ta

0,

an equation which is none other than (5).
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2° The antisimilitude with equation

z' = pz + q (6)

is a symmetry with respect to a line if I p I = 1 and pq + q = 0.

It is necessary and sufficient that the equation

z-pz-q = ° or Az->"PZ->..q = °
represent a real straight line, and therefore, if r is a real number,
that we have (37)

,\ = ->..p, Aq = r.

The first equation says that Ip I = 1. If q = 0, the second equation
is realized; if q *- 0, elimination of >.. gives pij + q = 0.

3° Symmetry with respect to a line is the only involutoric antisimilitude.

The antisimilitude with equation (6) is an involution if its square,
with equation

z" = pz' + q = p(pz + ij) + q or z" = ppz + pij + q, (7)

is the identity transformation (23), that is, if

pp = 1, pij + q = 0.

It is then (see 20) a symmetry with respect to a line.

4° An antisimilitude is involutoric when there exists a pair of distinct
corresponding points Z, Z' which correspond doubly.

Such a pair of points gives the relations

z' - pz - q = 0, z - pz' - q = 0, z *- z'

- ij+fiqz = --7---',"-=-
I-pp

or
z' - pz - q = 0, pz' - Z + ij = 0,

If the determinant - 1 + Pi> of the coefficients
is not zero, we find

z' = q + pij
I-pfi ,

z *- z'.

of the unknowns

and, contrary to hypothesis, we would have z' = z. It is necessary,
then, that Pi> = I, and that the condition of compatibility of the
equations, q + pij = 0, hold, whence the property.

118. Double points. In addition to the point at infinity, an
antisimilitude possesses

lOa proper double point if the ratio of similitude is different from 1 ;



178 ANTIGRAPHY

2° a line of double points if it is a symmetry with respect to a line;

3° nQ proper double point in the case of an inverse equality which
is not a symmetry.

The affixes of the possible double points of the antisimilitude
with equation

Z' = pz + q

are the roots of the equation

z-pz-q = 0, (8)

and hence also those of the conjugate equation

- pz + z - ij = o.
By considering these two linear equations in z, z, we find, if
1 - pp #- 0,

- ij+pq
Z= 1-#'

q + pij
I-pp'z=

whence 1°.
When pp = 1, or Ip I = 1, the equations are compatible if

pij + q = o.
The antisimilitude is the symmetry with respect to the line having
equation (8) (117,20 and 10), whence 2°.

If the equations are incompatible, we have 3°.

119. Construction of the double point E. Suppose the inverse
similitude is given by the two pairs of corresponding points Zl'
Z~ and Z2' Z~ such that I Z~Z~/Z1Z2 I #- 1.

First method. Since we must have

(9)

E is common to the circles 1'1> 1'2 which are the loci of points the
ratio of whose distances from Zl' Z~ or Z2' Z~ is 1 Z~Z~/Z1Z2 I.
But the center Ed of the direct similitude determined by the same
pairs Zl, Z~ and Z2' Z~ also satisfies equations (9) (83) and is
common to 1'1' 1'2° Since we can recognize Ed with the assistance
of the circle containing the points Zl, Z~, (ZlZ2' Z~Z~) (83), point E
is determined by elimination.

Second method. Point E is also a double point for the square
of the antisimilitude, the equation of which is (7). This represents
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a homothety since pp is real and different from unity by hypothesis.
The lines joining two pairs of corresponding points in this homothety
then intersect in E.

Therefore, if we construct the triangles Z~Z~Z~', Z~Z~Z~' respectively
inversely similar to the triangles ZlZ2Z~, ZlZ2Z~, the lines ZlZ~', Z2Z;'
intersect in E,

Exercises 103 and 104

103. In the application of article 90, triangles ABC, A'B'C' are always directly
similar if ABC is equilateral; if ABC is arbitrary, then the midpoints of its sides form
the only triangle A'B'C' directly similar to ABC.

Triangles ABC and A'B'C' are inversely similar only if BA' = AT and if the
angle at A', when conventionally oriented, is twice the Brocard angle of ABC. [Take
circle (ABC) for unit circle and see exercise 89.]

104. Let A', B', C' be the symmetries of the vertices A, B, C of a triangle with
respect to the sides BC, CA, AB, and let A" B" C, be the midpoints of B'C', C'A',
A'B', Show that triangles AC,B" C,BA" B,A,C are inversely similar to ABC.

From this it can be shown that the construction of triangle ABC, knowing A', B', C'
(the problem of three images) depends upon a 7th degree equation. [See Mathesis,
1935, p. 154.]

B. NON-ANTISIMILITUDE ANTIGRAPHY

120. Circular transformation. An antigraphy is an inversely
conformal transformation.

In fact, it is the product of the symmetry with respect to Ox
and a homography (114); these two transformations are circular
(116, 76) and the first is inversely conformal (116) while the second
is directly conformal (77).

12I. Limit points. The antigraphy with equation

, az +b
z = cz + d' ad - be -=I=- 0, c -=I=- °

possesses two limit points L, M' (80) with affixes

l =_a , a
c' m =-C

and its equation (I) or

cz'z + dz' - az - b = 0

(1)

(2)

(3)
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can, by taking note of (2), be written as

(- I) ( , ') _ bc - adz- z -m - c2 • (4)

We can establish the following properties as in article 91.

A necessary and sufficient condition for a straight line or a circle
(C) of the w plane to transform into a straight line (C') of the w' plane
is that (C) contain the limit point L of w.

The pencil of lines with vertex L is the only pencil which transforms
into a pencil of lines, and this pencil has its vertex at M'.

If r, eare the modulus and the argument of (be - ad)Jc2, the product

I LZ.M'Z' I
has the constant value r. The pencils (If homologous lines having
their vertices at L, M' are directly equal and the angle

(LZ, M'Z')

has the constant value e.

Remark. The angle of two axes which intersect in the limit point L
is conserved in magnitude and sense (see article 120).

122. Inversion. An involutoric antigraphy which is not an axial
symmetry (117) is an inversion whose power may be positive or negative.

According as the power is positive or negative, the circle of inversion
is the locus of the double points of the inversion or the inversion has
no double points.

The antigraphy w with equation (1) is an involution if (23) its
square w2 is the identity homography. The equation of w2, which
results from the elimination of z' from (I) and

" az'+b
z = cz' + d'

is
(cil + de)zz" - (ail + be)z + (cli + dd)z" - (ali + bd) = o. (5)

We have w2 = 1 if
cil + de = 0,

ail + be = cli + dd,

ali + ba = O.

(6)

(7)

(8)
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Relation (6) implies that

cil= -dc, ea = -dc, ciiCa = dedc

and consequently, since c -=/= 0, aii = dd and relation (7) becomes

- b b
be = cb or - = -. (9)

c c

(10)

= I if

-7'c

As for equation (8), it can, because of (9), be written as

~. ~ +.!!.-. ~ = .!!.- (~+ ~) = °cc cc c c c

and is true if (6) holds. Therefore, when c -=/= 0, we have w!
d il b

- real.
c

Equation (3) of w becomes, by taking note of (10),

1- il, a _ b °zz--z --z--=e c c
or

I a_ il ail b
(z --) (z----=-) = ~ +-.ecce c

b
- real,
c

ae + cd = 0,

10 The equation
, az + bz=--cz + d

represents an inversion if
c-=/=O,

We know (19) that this equation represents the inversion whose
center has ale for affix and whose power is aiilcc + blc.

Corollaries.

and an axial symmetry if (11 7)

c = 0, I a I = Id I, ab + bd = 0.

2° An antigraphy w is an inversion or an axial symmetry when there
exist two pairs of distinct corresponding points such that the points
of each pair correspond doubly (involutoric pairs), or when there exists
one such pair and a double point.

If there exist two involutoric pairs Zl' Z~ and Zz, Z~, we have
(114, 26)

(ZlZ~ZZZ;) = (Z~ZlZ;Z2) = (ZlZ~Z2Z;)

and the anharmonic ratio is consequently real. The points Zl' Z~,

Zz, Z~ are therefore on a line or on a circle (28). In the first case,
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if ZIZ~, Z2Z~ have the same midpoint E, we have a symmetry
with axis perpendicular to line Z1Z2 at E; if ZIZ~, Z2Z~ do not
have a common midpoint, there exists a point 0 on the line such that

OZI' OZ~ = OZ2' OZ~,

and which is therefore the center of an inversion in which ZI' Z~

as well as Z2' Z~ are homologues, and this is the only antigraphy
enjoying this property, for we know four pairs (Zl> Z~), (Z~, ZI),
(Z2' Z~), (Z~, Z2) of corresponding points. 1 If ZI' Z~, Z2, Z~
are concyclic, then, according as the lines ZIZ~, Z2Z; are not or
are parallel, eLi is an inversion with center 0 == (ZIZ~, Z2Z;) or the
symmetry whose axis is the diameter perpendicular to these lines.

Suppose, now, that there exists an involutoric pair ZIZ~ and a
double point E, elements which determine an eLi. If Z~ is at infinity,
eLi is the inversion with center ZI and power ZIP; if E is at infinity,
eLi is the symmetry with respect to the perpendicular bisector of seg­
ment ZIZ~, When Zl> Z~, E are collinear and in the finite part
of the plane, then, according as E is or is not the midpoint of ZIZ~,

eLi is the symmetry with respect to the perpendicular to ZIZ~ at
E or the inversion in the circle having for diameter the segment
EF, where (EFZIZ~) = - 1. When ZI' Z~, E are not collinear,
eLi is, according as E is or is not on the perpendicular bisector of
ZIZ~, the symmetry with respect to this line or the inversion having
for center 0 the point of intersection of line ZIZ~ with the tangent
at E to the circle EZIZ~ and for power OP.

3° A non-involutoric antigraphy cannot have both an involutoric pair
and a double point (corollary 20).

It can have one and only one involutoric pair.

To obtain such an antigraphy, it is sufficient to determine it by
three pairs (ZI' Z~), (Z~, ZI), (Z2' Z~) of corresponding points
for which ZI' Z~, Z2' Z; are neither collinear nor concyclic.

4° A non-involutoric antisimilitude cannot possess an involutoric pair
(117, 4°), for it has a double point at infinity.

123. Non-involutoric antigraphies. A non-involutoric anti­
graphy eLi is called hyperbolic, parabolic, or elliptic according as it

, If z; is at infinity, Z, is the center of the inversion having power Z,Z•.Z,Z;.
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(13)

(14)

possesses two double points E, F, a single double point E = F,
or an involutoric pair P, Q.

Theorem. w is hyperbolic if the homography w2 is hyperbolic but
not a Mobius involution,. parabolic if w2 is parabolic,. elliptic if w2

is elliptic or a Mobius involution.
w2 is never loxodromic.
The homography w2, not being the identity since w is not in­

volutoric, possesses two distinct or coincident double points (82,
83, 92) X and Y.

A double point of wis necessarily double for W2• But if wpossesses
an involutoric pair PQ, the homologues of P, Q in w2 are P, Q.
Therefore the points X, Yare double for w or else constitute, when
they are distinct, the involutoric pair of w. Moreover we know
(122, corollary 30) that the existence of such a pair excludes the
existence of a double point.

The points X, Yare the images of the roots of the equation

(ea + di)Z2 - (aa + be - eb - dd)z - (ah + bd) = 0 (11)

obtained by setting z" = z in (5). The discriminant of (11),

6. = (aa + be - cb - dd)2 + 4(ea + de) (ab + bd), (12)

is easily written as

6. = (aa + be + eb + dd)2 - 4(ad - be) (ad - bi),

and consequently is real for any w.
The invariant (94, 92) of w2 being

,\ = aa + be + cb + dd + V""LS
aa + be + eb + dd - V 6.

is the quotient of two real or two conjugate imaginary numbers.
It is therefore a real or an imaginary number with unit modulus.
Therefore w2 is never loxodromic.

1° w2 is a direct similitude if, considering its equation (5), we have
(81)

ea + de = O.

This relation implies (122)
aa= dd

and expression (12) becomes

6. = (be - eb)2.

(15)
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be = eli,
for this equation, along with (15), gives (7), which, with (6), makes
wan inversion (122). Since be - eb is thus a non-zero pure imagi­
nary number, we have b. < O. From (14) we observe that ,\ is an
imaginary ei° or has the value - 1 ; w2 is consequently a rotation
or a symmetry with center X, that is, an elliptic homography or an

involution. As for w, it necessarily has X and the point at infinity
Y for involutoric pairs, for, not being an antisimilitude, it is unable
to have the double point Y; its limit points are coincident at X.

2° Suppose, now, that w2 possesses two limit points L 2, M~. The
limit points L, M' of ware distinct. Since L 2, M~ are, respectively,
the homologue of L in w-I and the homologue of M' in w, we have

__ (L 00 M' L2) -2 _ (X Y L L2 00)
w - 00 M' M~ L' W - X Y M' 00 M~ .

Therefore w gives (114, 30)

(L2M'Loo) = (LM~ooM')

or (26)

(L2M'Loo) = (M~LM' 00).

This equation shows that Land M' correspond doubly in an anti­
graphy having L 2, M~ for corresponding points. It follows that
(117, 4° and 30) L 2, M~ are symmetric with respect to the perpendicular
bisector~ of segment LM'.

If w2 is parabolic, its unique double point X = Y, the midpoint
of segment L2M~ (95), is the only double point E = F of w, which
is therefore parabolic.

In the remaining cases, in order to know if X, Yare double or
are associated involutorically in w, it is sufficient to find out if we
have

or
(XYLoo) = (XY ooM') (16)

(XYLoo) = (YXooM'). (17)

If w2 is hyperbolic but is not a Mobius involution, X, Yare on
the line L2M~ and symmetric with respect to~ (96). This sym­
metry gives us

(XYLoo) = (YXM' 00) = (XYooM'),

that is to say, relation (16), and w is hyperbolic.
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If lij2 is elliptic, X, Yare on~ (97). This is also the case when
<.02 is a Mobius involution, for (101) L 2, M~ coincide on ~ and
the double points X, Yare located on the interior bisector of the
angle formed by the lines which join L 2 to two conjugate points
L, M'. The symmetry with respect to ~ gives

(XYLoo) = (XYM' 00) = (YXooM'),

that is to say, equation (17), and cij is elliptic.

Corollary. cij is parabolic, hyperbolic, or elliptic according as ~

of expression (12) or (13) is zero, positive, or negative.

If ~ = 0, we have,\ = I and cij2 is parabolic (94).

If ~ > 0, ,\ is real and cij2 is non-involutoric hyperbolic because
,\ = - I implies ail + be + co + dJ = °and (13) gives

~ = -4(ad-bc) (ad-be) < o.
If ~ < 0, ,\ is - 1 or eiO ::f= I and cij2 is elliptic or involutoric.

124. Elliptic antigraphy. The limit points L, M' may be
coincident or distinct (123).

Theorem I. If L == M', the antigraphy is the product of an
inversion and a rotation having common center L.

For the origin of axes at L, equation (4) of article 121 is

z' = .!- eiO
Ii '

and we must assume ei° ::f= ± 1, otherwise we have an inversion (19).

Theorem II. If L ::f= M', the involutoric pair PO is on the per­
pendicular bisector of segment LM' (123).

For any two corresponding points Z, Z', we have the following relations
between segments or angles:

I PZ I I PZ' I I PL IQZ . QZ' = QL '

(ZP, ZQ) - (Z'P, Z'Q) = (LP, LQ).

These follow (25) from the equation

(PQLZ) = (QPooZ') or (PQLZ) = (PQZ' 00).
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125. Hyperbolic antigraphy. The double points E, F are sym­
metric with respect to the perpendicular bisector of the segment LM'
of the limit points (123).

For any two corresponding points Z, Z', we have the following relations
between segments or angles:

I
EZ I . I EZ' I - I EL I
FZ " FZ' - I FL '

(ZE, ZF) + (Z'E, Z'F) = (LE, LF).

These follow from the equation

(EFLZ) = (EF ooZ') or (EFLZ) = (FEZ' 00).

126. Symmetric points. The symmetry with respect to a line
and the inversion are the only two involutoric antigraphies. This
is why we also give the name symmetry to the inversion, and in
place of saying that two points are corresponding or conjugate in
an inversion of positive power, we also say that these points are
symmetric with respect to the circle of inversion.

loA necessary and sufficient condition for two anharmonic ratios
(ABCP), (ABCQ) having the same first three points to have conjugate
complex numbers for values is that the points P, Q be symmetric with
respect to the circle or the line which passes through the points A, B, C.

The condition is sufficient. In fact, if A, B, C are on a circle,
the circle is the locus of the double points of an inversion in which
A, B, C, P correspond to A, B, C, Q ; if A, B, C are on a line, the
line is the axis of a symmetry in which A, B, C, P correspond to
A, B, C, Q, and in both cases we have (114)

(ABCP) = (ABCQ).

The condition is necessary, for if we have the preceding equality
and if Q1 is the symmetric of P with respect to the circle or the
line ABC, we also have

(ABCP) = (ABCQl)'

whence

(ABCQ) (ABCQl)' (ABCQ)

and, consequently (29), Q == Ql'
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Corollary. The isodynamic centers W, WI of a triangle ABC are
symmetric with respect to the circumcircle.

In fact we have (32)

(ABCW) = emf',

2° If two points P, Q are symmetric with respect to a line or a circle y,

and if we transform the figure by a homography or by an antigraphy,
the transforms p', Q' ofP, Q are symmetric with respect to the transform
y' of y.

If A, B, C are three points of y, we have, by 1°,

(ABCP) = (ABCQ).

Let A', B', C' be the transforms of A, B, C.

When it is a question of a homography, we have

(18)

(ABCP) = (A'B'C'P'),

and, by virtue of equation (18),

(ABCQ) = (A'B'C'Q')

(A'B'C'P') = (A'B'C'Q'),

whence the property, because of 1°.

In the case of an antigraphy,

(ABCP) = (A'B'C'P'),

and, by virtue of (18),

(ABCQ) = (A'B'C'Q')

(A'B'C'P') = (A'B'C'Q').

Corollary. A homography or an antigraphy transforms the vertices
A, B, C of a triangle into the vertices A', B', C' of an equilateral triangle
if one of the limit points of the transformation coincides with one of
the isodynamic centers W, WI of ABC.

In fact, if the homography or the antigraphy is arbitrary, the
transforms of W, WI are the isodynamic centers W', W~ of A'B'C',
for (A'B'C'W') and (A'B'C'W~) have the values e±m/', and A'B'C'
is equilateral if W' or W~ is at infinity (32, 2°).

In particular, an inversion of center W or WI makes A'B'C'
equilateral, for, since the inverse of the center is the point at infinity,
this center is the limit point of the inversion.
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(19)

127. Determination of the affix of the center of a circle
by the method of H. Pflieger-Haertel. Let us be given the
circle with parametric equation

at + b
Z - t real.

- et + d'

z' = t

The affix w of its center Q has already been calculated in (42) and by
considering Q as a singular focus of the circle (61). A third process
consists in considering the circle with equation (19) as the transform
of the Ox axis of equation
y

(20)
az' +b

z= .
ez' + d

by the homography with equation

ad-bi
ed-de·w=

0',

~
M'

FIG. 59

o
o

The center Q and the point M
x at infinity in the plane are sym­

metric with respect to the circle
(126). Their homologues Q', M'
in the homography (20) are then

symmetric with respect to the Ox axis, the homologue of the circle.
But the affix of M' being - die, since it corresponds to z infinite,
that of Q' is - die. The affix of Q is then obtained by replacing
z' by - die in (20), and is

128. Schick's theorem. I If AI' Bl> CI are the orthogonal
projections of any point P on the sides BC, CA, AB of a triangle ABC,
we have the equality of anharmonic ratios

(ABCP) = (AIB1ClOO). (21)

Let 0 be the center of the circle (0) circumscribed about triangle
ABC and let P' and A~, B~, C~ be the symmetrics of P with respect
to (0) and the sides BC, CA, AB.

The first two symmetries give

(BCPoo) = (BCP'O) = (BC~oo),

whence
(BCP'O) = (CBoo~)

1 Miinchener Berichte, 30 (1900), p. 249.
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and we consequently have (100) the Mobius involution

I a = (BC, OA~, P' 00),

of which the two analogous ones are

189

Ib = (CA, OB~, P' 00), Ie = (AB, OC~, P' 00).

FIG. 60

The product of the involutions la' I b is the homography

_ (B A~ P' 00)
IbI a - A B~ P' 00

which gives
(PI ooBA~) = (P' ooAB~) .= (ooP/B~A),

from which we obtain (100) the Mobius involution

I = (P' 00, AA~, BB~).

From the homography

_ (C B~ P' 00)
IeIb - B C~ P' 00

we obtain in the same way the involution

P' 00, BB~, CC~
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which, having two pairs in common with the preceding involution,
does not differ from it (102), and we therefore have

I = (P' 00, ~, BB~, CC~).

From this we find
(ABCP') = (A~B~C~oo).

The inversion in (0) and the homothety with center P and coefficient
1/2 give

(ABCP') = (ABCP),

and hence equation (21) is established.

Corollaries. 1° The pedal triangle AIBICI of a point P is directly
similar to the triangle formed by the transforms A 2, B2 , C2 of the
vertices of the fundamental triangle in any inversion with center P.

In fact, the inversion gives

and we therefore have

(A1B1C100) = (A2B2C2 00),

which establishes the property (82).

2° If P', A~, B~, C~ are the symmetries of a point P with respect
to the circumcircle (0) of ABC and with respect to the sides BC, CA,
AB, we have the Mobius involution I

I = (P'oo,~, BB~, CC~).

This involution also possesses the pair PQ, where Q is the second
focus of the conic inscribed in triangle ABC and whose other focus is P. 2

In fact, Q is the center of circle A~B~C~. Since this circle is
transformed by the involution into the circle ABC, in which P, P'
are inverses, the conjugate of P in I is Q (126).

1 P. DELENS, Mathesis, 1937, p. 269.
2 R. DEAUX, Mathesis, 1954, p. 132.
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Exercises 105 through 112

191

f(te· 8 + I)
z- .

- te· 8 - I '

105. Consider the antigraphy w having distinct limit points L, M' and equation

(z - I) (z' - m') = re·8, r > O.

1° The angle (LZ,M'Z') has the constant value O.

2° If 0 =F- krr, pairs of corresponding lines intersect on a circle l' which passes
through Land M'; if 0 = krr, pairs of corresponding lines are parallel or coincident
with LM'.

3° For the origin of axes at the midpoint 0 of LM' and Ox on LM', the parametric
equation of l' is (article 43)

the radius and the affix of the center are If csc 0 I and - it cot O.

4° The cartesian equations of ware

r[(x' + f) cos 0 + y' sin 0]
x = f + --:..:..---,---,'-----=-=,-------=-:::---..:

(x' + f)' + y" '

y=
- (x' + f) sin 0 + y' cos 0

(x' + f)' + y"

Deduce 3° from this in order to compare the method of classical analytic geometry
with the process based on complex numbers.

106. If an antigraphy w is such that any two of its corresponding lines are parallel
(exercise 105), then it is the product of an inversion centered at the limit point L, the

power being p, and a translation of vector LM', where M' is the second limit point.
It is parabolic with double point at the midpoint of LM' if P = - LM"/4; hyper­

bolic with double points on LM' and symmetric with respect to this midpoint if
p > - LM'2/4; elliptic with involutoric pair P, Q on the perpendicular bisector of
LM' and having the same midpoint as LM' if P < - LM"/4.

107. If an antigraphy has an equation all of whose coefficients are real, it is the
product of an inversion centered at a limit point and a translation parallel to the line
joining the limit points.

The product of an arbitrary inversion and an arbitray translation has an equation
which can be reduced to this form. The same is true of the product of a translation
and an inversion.

108. An inversion and a translation are never permutable.

109. The product of an inversion of center I and power p with a rotation of center R
and angle 0 is an antigraphy which is elliptic if I and R coincide or if

p < -IR" or
o

P > IR" tan" -'2'
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hyperbolic if
(J

- IR2 < p < IR" tan' -'
2 '

parabolic if

p = -IR" or
(J

p = IR' tan' - ,
2

Consider the case (J = 1T, and show that the product of the inversion (I,p) and the
symmetry of center R is an elliptic, a parabolic, or a hyperbolic antigraphy according
as p is less than, equal to, or greater than - IR'.

110. The product of a rotation of center C and the symmetry with respect to a line
d is an involutoric or parabolic antisimilitude according as d does or does not pass
through C.

Ill. 1° IfZ, Z' are any two corresponding points of an antigraphy iii having distinct
limit points L, M', and if L" M'. are the limit points of iii', triangles LZL., M'LZ'
are inversely similar, which yields the construction of L. if we know L, M' and a pair
of corresponding points Z, Z'. From this we obtain M'. (article 123).

2° If iii is not the product of an inversion and a translation (exercise 106), the circle r
on which pairs of corresponding lines of iii intersect (exercise 105) cuts the line L,M'.
at the double points E, F of iii if iii is hyperbolic or parabolic; the lines LL. and M'M'.
are tangent to circle rat Land M'; if iii is elliptic, its involutoric pair P, Q is cut on the
perpendicular bisector of segment LM' by the circle with center L. and orthogonal
to circle r.

2p
pz-s.i =

112. Simson line, 1° A necessary and sufficient condition for the orthogonal
projections A" B" Ct of a point P on the sides BC, CA, AB of a triangle to be collinear
on a line d is that P lie on the circumcircle (0) of ABC [articles 128 and 28]. Line d
is called the Simson line of P for ABC.

2° Point At is the midpoint of BtCt ifP is the intersection of (0) with the symme­
dian through A.

3° 1£(0) is the unit circle, then, with the notation of exercise 41, the equation of dis

P' + SIP' - s.P - s.

4° The Simson line of the point P' diametrically opposite P on (0) is perpendicular
to d and cuts d on the Feuerbach circle (exercise 43) at the point with affix

s.
St-­

p 2

w = ---=---
2

The equation of d can be written as

z- W S3

i-iii P
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VII. PRODUCT OF SYMMETRIES

129. Symmetries with respect to two lines. I. The product
of two symmetries with respect to parallel axes d l , d 2 is the translation
whose vector is twice that of the translation perpendicular to dl and
which carries d l into d 2•

FIG. 61

ZT 2
I
I
I
I

----r:------- d2

t2
----i-:-------a;

I
·Z

o

Take Ox parallel to d l , d2 and
let aI' a2 be the ordinates of
these lines, whose equations are
then (33)

z-z = 2ia1 ,

z-z = 2ia2•

If Zl is the symmetric of any
point Z with respect to dl> and
Z2 is the symmetric of Zl with
respect to d2' the equations of the two symmetries are (117)

whence the equation of their product, taken in the indicated order, is

Z2 = Z + 2i(a2 - a1),

which proves the theorem (14).

Conversely, a given translation is, in an infinity of ways, the product
of two symmetries with respect to tw(' axes perpendicular to the direction of
the translation,. the first axis being chosen arbitrarily, the second is
obtained by a translation whose vector is half th.at of the given translation.

II. The product of two symmetries with respect to axes d l , d 2 which
intersect in a proper point 0 is the rotati(>n with center 0 and with
angle twice the algebraic value (d l d2) of the angle formed by the arbitrarily
oriented axes d l , d 2•

Take the origin of the coordinate axes at 0 and let aI' (X2 be the
angles (xdl ), (xd2). Line d l , passing through the origin, has an
equation of the form (37)

az+dz=O
and is therefore

z x + iy OAleiotl

z = x - iy = OAle-iotl
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and the equation of their pro­
d

2
duct is

Z2 = ze2i(ex.-ex l ) ,

FIG. 62
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Using the same notation employed in the preceding theorem, the
two symmetries then have for
equations

whence the theorem (15).

Conversely, a given rotation is,
in an infinity ofways, the product

of two symmetries with respect to axes issuing from the center of the
rotation,. the first axis being chosen arbitrarily, the second is obtained
by a 1'otation whose angle is half that of the given rotation.

FIG. 63

L

y

1c;~:::..~ ..X

O=M'

\z
I

_+-------+'---dZl-Z = 2ia,

ZIZl = p,

the equation of the product is

z'(z - 2ia) = p.

We thus have a homography
whose limit points L, M'
have 2ia, 0 for affixes, and whose double points E, F have the roots of

z2-2iaz-p = 0
for affixes, that is to say,

130. Symmetry and inversion. The product of the symmetry
with respect to a line d and the inversion of power p and center 0 not
on d is a hyperbolic, elliptic, or parabolic homography according as p
is less than, greater than, or equal to the square of the distance of 0 from d.

If 0 is on d, the product is a Mobius involution having 0 for central
point, and whose double points are on d or on the perpendicular to d
through 0 according as the powe1' p is positive or negative.

We have similar results for the product of an inversion and a symmetry
with respect to a line.

Take Ox parallel to d and
let a be the ordinate of a
point of d. The equations
of the symmetry and the in­
version being (129, 19)

ia ± vi p_a2•
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If a is not zero, that is, if the center ° is not on the axis d, the
homography is not involutoric; points E, F are distinct on Oy or
d according as p is less than or greater than a2 ; E, F coincide at
the point (d, Oy) if P = a2•

If a = 0, we have a Mobius involution with equation

z'z =p.

The central point is ° and points E, F, with affixes ± y'p, are
on Ox or Oy according as p is a positive or a negative number.

Conversely, a non-loxodromic and non-similitude homography is, in
a unique way, the product of a symmetry with respect to a line and
an inversion with center M', and, in a unique way, the product of an
inversion with center L and a symmetry with respect to a line (95,
96, 97). The symmetry and the inversion are permutable if the homo­
graphy is a Mobius involution (101).

131. Product of two inversions. An inversion with center °
and negative power p has no real double points, for its equation

z'z = p

for origin at °gives the double points by means of the equation

zz = p or x2 + y2 = P (1)

which has no real roots. Since equation (1) has real coefficients,
it represents an ideal circle (40), whose center ° is real, the square
of whose radius is the negative number p, and all of whose points
are imaginary and are said to be double for the inversion. This
ideal circle is called the circle of inversion. By considering such
circles of inversion, we can employ properties about pencils of circles
established in analytic geometry or in projective geometry when these
pencils do not exclude the imaginaries of von Staudt.

Theorem. The product 1211 (21) of two inversions Iv 12 having
the distinct points 01' O2 as centers,l PI' P2 for powers, and 1'1'

1'2 for circles of inversion is a non-loxodromic homography OJ having
for limit points Land M' the inverses, respectively, of O 2 and 0 1

in II and 12, and for double points E and F the centers of the null circles
(the Poncelet points) or the base pf'ints of the pencil of circles to which

1'1 and 1'2 belong.

, If 0, = O 2, the product 121, is the homothety (0" P./p,).
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The homography w is

1° hyperbolic if at least one of the circles Y1' Y2 is ideal or if Y1'

Y2 are real and non-intersecting;

2° parabolic if Y1' Y2 are real and tangent;

3° elliptic if Y1' Y2 are real and intersecting;

4° a Mobius involution if the circles Y1' Y2 are orthogonal, one of
the circles being allowed to be ideal.

If L 1 is the inverse of L in 11' the inverse of L 1 in 12 must be
at infinity. Hence L 1 = 02' and

(2)

Since 0 1 is the inverse, in 11, of the point at infinity, M' is the inverse
of 0 1 in 12, and we have

02M'.020 1 = P2' (3)

The homography w is a Mobius involution if L = M'. Equation
(3) then gives

L02·010 2 = P2

and, by adding this to (2), we find

PI + P2 = 010~. (4)

Since PI' P2 are the squares of the radii of Y1' Y2' these circles are
orthogonal.

Line 0 10 2 contains the homologue in w of each of its points,
and is thus a double line for w. Hence w is non-Ioxodromic. The
double points E, F of ware therefore on line 0 10 2 or on the per­
pendicular to 0 10 2 at the midpoint of segment LM', a fact which
will determine the hyperbolic, parabolic, or elliptic character of w.

If E, F are on 0102' they constitute a pair of conjugate points
in each of the inversions, for if 0lE.01E1 = PI we must also have
02E1.02E = P2 so that E may be double for w. It follows that
E, F will be on 0 10 2 if there exists on this line two points which
are conjugate with respect to each of the circles Y1' Y2' in other
words, if the pencil of circles determined by Y1' Y2 contains two
point circles, distinct or not; these point circles will be the points
E, F. This will occur when at least one of the circles Y1' Y2 is ideal,
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or when Y1' Y2 are real but non-intersecting, or when Y1' Y2 are
tangent, in which case E = F.

IfY1' Y2 are real and intersecting, !I Z'
their common points are neces­
sarily E and F.

These results can also be ob­
tained by analytical methods. Take
0 1 for origin, place 0lX on line
0 10 2 and let 0 10 2 = a. The
equations of 11' 12 being

(z' -a) (zl-a) = P2'

that of w is
azz' - (a2- P2)Z - PIz' + aPI = 0

and the affixes of E, F, the roots of

az2- (a2-P2 + PI)Z + aPI = 0,

(5)

(6)

are real and distinct, real and equal, or conjugate imaginary according
as

Ll = (a2- P2 +Pl)2 - 4a2PI = (PI +P2 - a2)2 - 4hP2 =

(7)

is positive, zero, or negative.
If at least one of the numbers PI' P2 is negative, Ll is obviously

positive. If PI> P2 are positive and equal to the squares ri, r;
of the radii of the real circles Y1' Y2' we have

Ll = (r~ + r~-a2)2-4r~~ =

~+~+~~+~-~~-~+~~-~-~

positive, zero, or negative according as Y1' Y2 do not intersect, are
tangent, or do intersect.

Corollaries. 10 If the product 1211 is a Mobius involution, the
double points E, F of the involution are on the line 0 10 2 if one of the
inversions has a negative power, and on the perpendicular to 0 10 2

at L = M' if the powers PI' P2 are both positive. We have

(OI02EF) = - 1.

Because of (4), expression (7) for ~ becomes - 4PIP2; E, Fare
then on 0P2 if PIP2 < o.

Since O 2 is the homologue of 0 1 in w, we have (EF010 2) = - .
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and conversely.

20 A necessary and sufficient condition for the product of the inversions
11, 12 to be a Mobius involution is that the inversions be permutable.

In fact, the product 1211 is an involutoric homography if (23)

(1211)2 = 1 or 12111211 = 1.

If we multiply on the right by 11, then on the left by 12, and note
that I~ = I = 12, we have

1112 = 1211>

132. Homography obtained as product of inversions.
Theorem I. A hyperbolic, parabolic, or elliptic homography is, in
a single infinity of ways, the product of two inversions whose centers are
found on the line joining the limit points of the homography.

Take any point 0 1 on the line joining the limit points L, M'
of the homography w whose double points are E, F. Let 11 be the
inversion with center 0 1 and power PI = 0lE.01F or 0lE2
according as w is or is not hyperbolic. The inversion 12 having
for center the point O 2 such that 0102.01L = P1 and for power
P2 = 02E.0 2F or 02E2 according as w is or is not hyperbolic,
is such that

1211 = w.

In fact, the homography 1211 has E, F for double points and L
for limit point (131), and is therefore w (74).

Theorem II. There are two single infinities of ways of obtaining
a Mobius involution as a product of two inversions. Either the centers
are on the line determined by the double points E, F, which they separate
harmonically, and each of the in-versions interchanges E and F, or the
circles of inversion intersect orthogonally at E and F (131, corollary 1°).

Theorem III. Every loxodromic homography is, in an infinity of
ways, the product of four inversions.

It is, in fact, in a double infinity of ways, the product of two Mobius
involutions (110, corollary), and each of these involutions is obtained
as a product of two inversions (theorem II).

133. Antigraphy obtained as product of three symmetries.
Theorem I. Every antigraphy w is the product of three symmetries.

10 Suppose, first of all, that w is not an antisimilitude; it then
does not have the point at infinity for a double point (116). If



133. ANTIGRAPHY OBTAINED AS PRODUCT OF THREE SYMMETRIES 199

S designates the symmetry with respect to an arbitrarily chosen
line s, we have

w=w8,

w being a non-similitude homography since otherwise the point at
infinity would be a double point for w. We know (110) that w

is, in an infinity of ways, the product J2J1of two Mobius involutions
which have the double points of w for pairs of conjugate points,
one of them, say J l' being able to be determined by the arbitrary
choice of a second pair of conjugate points. Since w is not a
similitude, we can choose J1 so that its central point will be on s.
We have

w = J2J18.

But JIS is an inversion (101) II, whence

w = J211'

Since J 2 is (132, II), in an infinity of ways, the product 1312 of two
inversions, we have

w = 131211,

2° If w is an antisimilitude, its transform (112) by a non-similitude
homography 8 is a non-antisimilitude antigraphy w', the product
I;I~I~ of three symmetries whose transforms by 8-1 give w as the
product of three symmetries.

Corollary. A homography is the product of four symmetries (axial
symmetries or inversions), for it is the product of an axial symmetry
and an antigraphy.

Theorem II. The product 131211 of three inversions having distinct
centers is an inversion 14 or a symmetry 14 with respect to a line if the
circles of inversion (II)' (1 2), (13) belong to a common pencil of circles
or are orthogonal in pairs. The circle or the line (14) belongs to the same
pencil or is orthogonal to (II)' (1 2), (13)'

The equation

is equivalent to
1312 = 1411

obtained by multiplying the two sides of the preceding equation
on the right by 11' The homography w = 1312 is neither loxodromic
nor a similitude (131).
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If w is non-involutoric and hyperbolic, or is parabolic, the circles
(1 2), (13) define a pencil of circles having the double points E, F
of w for Poncelet points (131), and since we must have w = I4I}>
it is necessary that the circles (II)' (It) belong to this pencil. More­
over, it is sufficient that (II) belong to this pencil in order that 14

exist (132).
If w is elliptic, a similar argument proves that (11)' (1 2), (13) must

pass through E, F, a condition which is sufficient.
If w is a Mobius involution, it is possible for the orthogonal circles

(1 2), (13) to have E, F for Poncelet points or to pass through E, F,
the first situation holding if (1 2) or (13) is ideal (131). Similarly,
the orthogonal circles (11)' (14) belong to the same pencil as do (1 2),

(13) or are orthogonal to these circles (132, II).

Assorted exercises 113 through 136

113. The product of an inversion and a translation is the only antigraphy (elliptic,
hyperbolic, or parabolic) whose limit points have the same midpoint as the involutoric
pair or as the double points.

114. If A, B, C are the vertices of a triangle, the antigraphy

W = (A BC)
BCA

is elliptic. The points of the involutoric pair are the isodynamic centers and the
limit points are the Brocard points. The point of intersection of a pair of corre­
sponding lines describes the Brocard circle. The square of w is a cyclic homography
of period 3.

115. Boutin points. There exist, on the circumcircle (0) of a triangle ABC,
three points B;, called Boutin points, such that OBi is parallel to the Simson line of Bi .

B,B,B. is an equilateral triangle. If we take (0) as unit circle and a point B; as unit
point (exercise 40), then s. = 1, for if the unit point is arbitrary on (0) the affixes
of B; are roots of z' = s•.

116. The tangent to the unit circle (0) at the point M with affix eit has the equation

z + ze'it = 2eit.

Let M, be the orthogonal projection of M on the diameter Ox. Show that M" the
symmetric of M, with respect to the considered tangent, describes a two-cusped
epicycloid 8. Determine the base curve and the generating curve. Show that the
tangent to (0) at M and the tangent to Iff at M, intersect on Ox.

117. Two vectors OA, OB of the same length rotate about 0 with constant angular
velocities of algebraic values ex, f3 such that ex + fJ ~ O. Take the circle with center 0
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and radius OA as unit circle. Let a, b be the affixes of A, B and set elt = T, t being
a real parameter.

1° Line AB has the equation

z + abTlX+Pz = aTIX + bTP•

2° This line envelops a cycloidal curve r with equation

a{3TIX + b(Y.'TP
Z=

",+{3

and its point of contact T divides segment AB in the constant ratio ex : {3. Curve r
is tangent to the circle at the points given by

TP-a =~.
b '

if one of these points of contact is chosen for unit point, the equation of r can be
written as

{3T IX + exTP
z=-----.

ex+{3

118. Two points P, Q, which are initially coincident at a point A of a circle r, move
on the circle in the same direction with constant angular velocities, that of Q being
twice that ofP. Show that the point M situated at the trisection point of segment PQ
nearer P describes a cardioid tangent to PQ at M, whose singular focus is the center 0
of r and whose cusp R is on AO such that OR = AO/3.

119. Two points P, Q, starting from a common initial point A on a circle (0) of
center 0 and radius 1, move on the circle in opposite directions, the speed of Q being
twice that of P. The symmetric of Q with respect to P describes a hypocycloid of three
cusps (a Steiner hypocycloid, or deltoid), tritangent to circle (0) at three points, one of
which is A, which are vertices of an equilateral triangle AA'A". The cusps R, R', R"
are the homologues of A, A', A" in the homothety having center 0 and coefficient - 3.

If the Ox axis is placed on OA from 0 toward A, then the equation of the hypocycloid
is

Show, by changing the parameter, that this curve is a unicursal circular quartic of
third class with no foci.

The orthogonal projection of 0 on the line PQ describes a regular trifolium (or
three-leaved rose) having equation

Z=

and is a unicursal circular quartic of the sixth class having a triple point at 0 with the
consecutive tangents making angles of 120° with one another. It can be generated
as follows: a circle PI with center Al and radius 1/4 rolls without sliding on the fixed
circle {31 with center 0 and the same radius; the symmetric of 0 with respect to Al and
invariably fixed to PI generates the trifolium.

120. Let us take the circumcircle of a triangle ABC as unit circle and the point
diametrically opposite a Boutin point (exercise 115) as unit point, and let us denote
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the affix of a point P of the circle byeit. Then the envelope of the Simson line of P
is a Steiner hypocycloid having equation

It is tangent to the sides of the triangle and tritangent to the Feuerbach circle of center
~ -

O. at the points Ai such that, if Bi are the Boutin points, O"Ai = BiO/2.

121. If the circumcircle (0) of a triangle ABC with centroid G is the unit circle,
and if the Ox axis contains a Boutin point Bi, then the number s2/3 is the affix of the
symmetric of G with respect to OBi'

122. 1° The circumcircle (0) of a triangle ABC being the unit circle, the affix of
the centroid G l of the pedal triangle of any point P (formed by the orthogonal pro­
jections AI> BI> C l of P on BC, CA, AB) is

2° If P describes (0), of radius R, the centroid of the collinear points AI, BI> C l

moves on an ellipse or centered at the centroid G of triangle ABC. The axes of or
have lengths R ± OG and are parallel to the bisectors of the angles formed by a
Boutin diameter OBi and the symmetric of OG with respect to this diameter. C passes
through the trisection points of the altitudes of ABC which are nearer the vertices,
through the orthogonal projections on BC, CA, AB of the points of intersection of the
symmedians with (0), and through the symmetrics, with respect to the midpoints
of the sides, of the points which divide the distances from these midpoints to the feet
of the corresponding altitudes in the ratio I : 2.

123. 1° The antigraphy w which associates with the vertices A, B, C of a triangle
the vertices A', B', C' of the pedal triangle of a point P has the equation

2z'z - 2id - (Sl - s.P + S3P" + p)z + I + PP = O.

The affixes of the limit points L, M' are

1 = p,
Sl - SoP + S3P' + Pm' = ---"------'----

2

2° w is an inversion only if P is the orthocenter of ABC. Determine the circle of
inversion.

3° w is never the product of an inversion and a concentric rotation.
4° The homography which associates A', B', C' with A, B, C has the equation

2pz"z - 2z" - (I + pfi)z + Sl - s.P + S3P" + p = O.

It is a Mobius involution only if P is on the circumcircle of ABC.

124. In a triangle ABC, determine the pairs of points for which the vertices of the
pedal triangle can be so associated as to give equal triangles. [See Mathesis, 1949,
p.257.]

125. If a conic is tangent at A', B', C' to the sides BC, CA, AB of a triangle, its
foci constitute a pair of corresponding points in each of the six Mobius involutions

(AA,B'C'), (BB,C'A'), (CC,A'B'), (BC,AA'), (CA,BB'), (AB,CC').
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126. An arbitrary affinity which transfonns the Gauss plane into itself has an
equation of the fonn

z' = az + bfii + c,

where a, b, c are complex constants whose images yield a simple description of the
properties of the affinity. [See Mathesis, 1950, p. 101.]

127. A variable point P in the plane of a triangle ABC and the centroid of its pedal
triangle correspond in an affinity. State some of the properties of this transfonnation.
[See exercises 122, 126.]

128. The pairs of lines OA, OAt and OB, OBI fonn angles having the same bisectors
if

aa. bb,
aa. = hh, '

where a, a" b, b, are the affixes of A, A" B, B, in a rectangular system (Ox, Oy).

129. Isogonal points. Let P be any point in the plane of a triangle ABC and con­
sider the point Q such that the pairs of lines (AP,AQ), (AB,AC) fonn two angles
having the same bisectors, and similarly for the pairs of lines (BP,BQ), (BC,BA).

1° If the circumcircle of triangle ABC is the unit circle (exercise 40), we have
(exercise 128)

Show that

pq - a(p + q) + a2 = [pq - a(f> + if) + a2]as3'

pq - b(p + q) + b2 = ff>if - fJ(i> + if) + fJ2Jbs3•

p + q + PqS3 = s,.

2° The angles (CP,CQ), (CA,CB) also have the same bisectors. The points P, Q
are said to be isogonal points in triangle ABC. The transfonnation which associates
with each point P its isogonal Q is called an isogonal point transformation (or an isogonal
inversion). P and Q are the foci of a conic inscribed in the triangle, whence the name
focal pairing given to the transformation by F. and F. V. MORLEY (Inversive Geometry,
1933, p. 196). It has equation (1).

130. If P is a given focus of a conic r inscribed in triangle ABC, the affix of the
second focus Q is given by

or, if we set

by

When IP I
infinity.

_ S3(P2 - s,p + S2 - f>S3)
q= I-pf>

p3 _ S,p2 + S2P - S3 = (p - a) (p - b) (p - c) = IT,

1 S3IT
if= - + ----

P p(1 - pfi)

1, P is on the circumcircle, r is a parabola, and Q is the point at

131. The locus of pairs of isogonal points collinear with the circumcenter of triangle
ABC has the equation (exercise 130)

(z - a) (z - b) (z - c) = S3t,

where t is a real parameter. This is a non-circular cubic called the MacCay cubic
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of the triangle. It passes through the vertices A, B, C of the triangle, where it touches
the altitudes, through the orthocenter H, through the circumcenter 0, where the
tangent is OH, through the centers of the inscribed and escribed circles, where the
tangents contain 0, through the points (BC,OA), (CA,OB), (AB,OC), and through
the points on (0) diametrically opposite the Boutin points. The asymptotes are
parallel to the Boutin diameters and pass through the centroid of ABC. [See Mathesis,
1949, p. 225.]

132, Let w be the antigraphy which associates with the vertices A, B, C of a triangle
the vertices A', B', C' of the pedal triangle of a point P whose isogonal is Q.

1° The affix of the limit point M' is (exercises 123, 130), if p:;r: 0,

I + pp + lIs.
m'=

2p .

2° The vectors PM', OQ have the same direction and, if R is the radius of the
circumcircle (0) of ABC, we have, in algebraic value,

R'- OP'
PM'= OQ

2R' .

3° The equation giving the double points or the involutoric pair is

2(fii' - p)z' - 2(m'fii' - pft)z + (I + pp) (m' - p) = O.

4° The locus of points P such that w may be the product of an inversion and a
translation is the MacCay cubic of the triangle. [Use exercises 113 and 131.] P is
the center of the inversion and the vector of the translation is

R'-OP'
2R2 OQ.

Lines PA, M'A' are parallel, as are PB, M'B' and PC, M'C'.

133. Being given the affix m of the center of a conic inscribed in a triangle ABC,
form the equation giving the affixes of the foci.

Find, in this way, the equation giving the foci of the inscribed Steiner ellipse (exer­
cise 84) in the case where the circumcircle is the unit circle.

In the same case, the affixes of the centers of the circles tangent to the sides of the
triangle are the roots of the equation

2z + S3Z' = S"

which is equivalent to

Z4 - 2s.z· + 8ssz + s: - 4s,sS = O.

134, A triangle ABC and a line which cuts the sides BC, CA, AB in A', B', C'
form a quadrilateral Q giving the Mobius involution (AN, BB', CC').

1° The equation of this involution is

(z - a) (z - a') = A(Z - b) (z - b'),

where>' represents a complex parameter, and the affix of the Miquel point M is any
one of the expressions

aa' - bb'

a + a'-b-b'
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bb' - cc'

b + b' - c -c'

ee' - aa'

c + c'-a-a' .
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2° A focus Z of a conic inscribed in Q being such that, for example, angles (ZA,ZB),
(ZB',ZA') are equal, show (exercise 128) that the locus of the foci of all these conics
has the equation

(z - a) (z - a') = t(z - b) (z - b'),

where t denotes a real parameter.
This locus, called the focal locus of Van Rees, is, in general, a non-unicursal circular

cubic. It passes through the six vertices of Q and the Miquel point, which is the
focus of the parabola of the family of conics.

3° The two (real) foci of anyone of the conics are given by the same value of t
(article 98).

4° The focal locus of Van Rees is the locus of pairs of conjugate points in a Mobius
involution. The midpoints of the pairs of points are collinear.

5° The locus of the harmonic conjugate of a fixed point P with respect to the real
foci of a variable conic inscribed in a quadrilateral Q is a straight line if Q is a parallelo­
gram; otherwise it is a straight line or a circle according as P is or is not on the line
containing the midpoints of the diagonals of Q.

6° The harmonic conjugates of a point with respect to the three pairs of opposite
vertices of a quadrilateral lie on a straight line or a circle which passes through the
symmetric of the point with respect to the Miquel point of the quadrilateral. [See
Nieuw tijdschrift voor wiskunde, 35th year, 1947-48, p. 15\.J

135. A necessary and sufficient condition for the two pairs of real foci of two conics
inscribed in a triangle to separate one another harmonically is that the centers of the
conics be a pair of isogonal points. [See Mathesis, 1954, pp. 218, 31\.J

136. If e is an arbitrary point in the plane ofthe Mobius involution I = (AA',BB'),
and if D is the second point of intersection of the two circles AB'C, A'Be, then the
second point of intersection of the two circles ABD, A'B'D is the conjugate C of e
in I (STRUBECKER, Monatshefte fur Math. und Physik, vol. 41, 1934, p. 439). [It
suffices to consider the transform 11 of I by an inversion of center e, and the central
point of 11 (article 104).J
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